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Quantum Dynamics Basics 
 In this chapter, we will simulate the dynamics of a particle, such as an electron, which follows the 
law of quantum mechanics [1].  Basics of the quantum-dynamics (QD) method [2-5] are described, 
along with corresponding data structures in program, qd.c. 

§1.  Schrödinger Wave Equation 
WAVE FUNCTION 
 The state of an electron at time t is specified by a complex-valued wave function, 
ψ(

r, t) = Reψ(


r, t)+ i Imψ(


r, t)  ∈ C (where i = −1 ), which is spread in the 3-dimensional space, 


r = (x, y, z)  ∈ R3.  Given the wave function, we can calculate various physical properties such as: 

• P(

r, t) =ψ*

(

r, t)ψ(


r, t) = ψ(


r, t)

2
= Reψ(


r, t)

2
+ Imψ(


r, t)

2 : The probability to find the electron at 
position r  at time t. 

• 
r (t) = dx dy dz∫∫∫ ψ(


r, t)

2 
r : The expected position of the electron at time t. 

Here, ψ*
(

r, t) = Reψ(


r, t)− i Imψ(


r, t)  is the complex conjugate of the wave function. 

 Normalization: The electron wave function must be normalized such that the electron must be found 
somewhere in the entire space with probability 1, i.e., 

 dx dy dz∫∫∫ ψ(

r, t)

2
=1 . (1) 

WAVE EQUATION 
 The time evolution of the electron state, subjected to a time-independent, real-valued potential, 
V (

r ) , is described by the following partial differential equation: 

 i
∂

∂t
ψ(

r, t) = −


2

2m
∇2

+V (

r )









ψ(

r, t) , (2) 

where   = 1.05457×10-27 g•cm2/s is the Planck constant, m = 9.10938×10-28 g is the electron mass, and 

∇
2
=
∂ 2

∂x2
+
∂ 2

∂y2
+
∂ 2

∂z2
 is the Laplacian operator. 

 Dimensionless equation: In the following, we measure length (x, y, z) in unit of 2 /me2  = 
0.529177×10-8 cm, time (t) in unit of 3 /me4  = 2.41889×10-17 s, and energy (V) in unit of me4 / 2  = 
4.35974×10-11 g•cm2/s2, where e = 4.80321×10-10 esu is the electron charge in the CGS unit.  Substituting 

 

x =

2

me
2
′x , y =


2

me
2
′y , z =


2

me
2
′z

t =

3

me
4
′t

V =
me

4


2

′V














 (3) 

in Eq. (2), we obtain 
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i•
me

4


3

∂

∂ ′t
ψ(

′r , ′t ) = −


2

2m
•
me

2


2











2

′∇ 2
+
me

4


2
V (

′r )












ψ(

′r , ′t ) , 

or the dimensionless equation, 

 i
∂

∂ ′t
ψ(

′r , ′t ) = −

′∇ 2

2
+V (

′r )









ψ(

′r , ′t ) . (4) 

In the following, we will use the dimensionless variables discussed above but omit the ´ symbol for 
brevity. 
TWO-DIMENSIONAL ELECTRON 
 As a specific example, the program qd.c simulates the time evolution of an electron confined in the 
2-dimensional plane (z = 0).  Such electrons are common at the interface between two heterogeneous 
materials in semiconductor devices.  The electron state is now specified by the 2-dimensional wave 
function, ψ(x, y, t) , where 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly (Lx and Ly are the system sizes in the x and y 
directions, respectively), and its time evolution is governed by the 2-dimensional Schrödinger equation, 

 i
∂

∂t
ψ(x, y, t) = Hψ(x, y, t) . (5) 

In Eq. (5), the Hamiltonian operator, H, is defined as 

 
H = −

1

2

∂ 2

∂x2
−
1

2

∂ 2

∂y2
+V (x, y)

= T
x
+T

y
+V

. (6) 

 Boundary condition: We impose the periodic boundary condition on the wave function such that 

 ψ(x + L
x
, y) =ψ(x, y)

ψ(x, y+ L
y
) =ψ(x, y)





. (7) 

DISCRETIZATION  

 The wave function is discretized on a regular mesh of size Δx and Δy in the x and y directions, 
respectively.  Here Δx = Lx/Nx and Δy = Ly/Ny, where Nx and Ny are the numbers of mesh points in the x 
and y directions, respectively.  We denote the discretized wave function as ψj,k = ψ(jΔx, kΔy), see the 
figure below. 

 
Figure: 2-dimensional mesh, on which the wave function is discretized. 

 In the discretized form, the Hamiltonian operator in Eq. (6) acts as 
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 Hψ( )
j,k
= Txψ( )

j,k
+ Tyψ( )

j,k
+ Vψ( )

j,k
, (8) 

where 

 

Txψ( )
j,k
= −

1

2

ψ j−1,k − 2ψ j,k +ψ j+1,k

(Δx)2

Tyψ( )
j,k
= −

1

2

ψ j,k−1 − 2ψ j,k +ψ j,k+1

(Δy)2

Vψ( )
j,k
=Vj,kψ j,k















 (9) 

and the potential-energy function is discretized as Vj,k = V(jΔx, kΔy). 

 Note that the discretized H is a mapping from an Nx×Ny array ψ (ψj,k is its element at the j-th column 
and k-th row) to another Nx×Ny array Hψ.  The (j, k)-th element, (Hψ)j,k, of the output array, Hψ, is a 
linear combination of the input array with different indices, as specified in Eqs. (8) and (9). 

§2.  Numerical Integration of Schrödinger Equation 
 The time evolution of the wave function is formally written down as 

 ψ(t +Δt) = exp −iHΔt( )ψ(t) , (10) 

where we omit the indices for simplicity.  Here the exponential function of an operator is defined as a 
series expansion, 

 exp −iHΔt( ) =
1

n!
−iHΔt( )

n

n=0

∞

∑ . (11) 

 In the split-operator method [2-5], the wave function is propagated for a small time interval, Δt, as 

 
ψ(t +Δt) = exp −iVΔt / 2( )exp −iT

x
Δt( )exp −iT

y
Δt( )exp −iVΔt / 2( )ψ(t)

+O Δt[ ]
3( )

. (12) 

 In Eq. (12), the application of the potential propagator, exp(-iVΔt/2), is straightforward. 

 

exp −iVΔt / 2( )ψ( )
j,k
=ψ j,k −

iΔt

2
Vψ( )

j,k
+

−i
Δt

2











2

2!
V
2ψ( )

j,k
+

=ψ j,k −
iΔt

2
Vj,kψ j,k +

−i
Δt

2











2

2!
Vj,k( )

2

ψ j,k +

= exp −iVj,kΔt / 2( )ψ j,k

. (13) 

Note that, for real number a, 

 

exp ia( ) =1+ ia+
1

2!
(−a2 )+

1

3!
(−ia3)+

1

4!
(a4 )+

1

4!
(ia5 )+

= 1−
1

2!
a
2
+
1

4!
a
4
+









+ i a−

1

3!
a
3
+
1

5!
a
5
+











= cos(a)+ isin(a)

. (14) 
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Using Eq. (14) in Eq. (13), 

 

exp −iVΔt / 2( )ψ( )
j,k
= cos Vj,kΔt / 2( )− isin Vj,kΔt / 2( )



 Reψ j,k + i Imψ j,k
 

= cos Vj,kΔt / 2( )Reψ j,k + sin Vj,kΔt / 2( ) Imψ j,k






+i cos Vj,kΔt / 2( ) Imψ j,k − sin Vj,kΔt / 2( )Reψ j,k






. (15) 

 Many algorithms have been proposed to apply the kinetic propagators such as exp(-iTxΔt).  Among 
these algorithms, the space-splitting method (SSM) [4,5] is highly scalable on massively parallel 
computers.  To understand the SSM, we first note that the operation of Tx on ψj,k is expressed as 

 Txψ j,k = bψ j−1,k + 2aψ j,k + bψ j+1,k  (16) 

where 

 a =1/ 2 Δx( )
2

b = −1/ 2 Δx( )
2






 (17) 

For each index k, the operation of Tx on ψj,k thus amounts to the multiplication of a tridiagonal matrix 
(note the periodic boundary condition),  

 T
x
=

2a b b
b 2a b

b 2a b
  

b 2a b
b 2a b

b b 2a





















. (18) 

 In the SSM, this tridiagonal matrix is expressed as a direct sum of 2×2 submatrices, 

 

Tx =

2a b b
b 2a b

b 2a b
! ! !

b 2a b
b 2a b

b b 2a

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

=
1
2

a b
b a

a b
b a

!
a b
b a

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

+

a b
a b
b a

!
a b
b a

b a

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

+
1
2

a b
b a

a b
b a

!
a b
b a

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

(19) 

where we have omitted the index k.  The exponential of a 2×2 matrix on the right-hand side of Eq. (19) 
is calculated analytically as follows: 
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exp −iΔtT
x( ) =Ux

(half)
U

x

(full)
U

x

(half)
+O (Δt)3( ) =

ε2
+ ε2

−

ε2
− ε2

+

ε2
+ ε2

−

ε2
− ε2

+


ε2
+ ε2

−

ε2
− ε2

+

























ε1
+ ε1

−

ε1
+ ε1

−

ε1
− ε1

+


ε1
+ ε1

−

ε1
− ε1

+

ε1
− ε1

+

























ε2
+ ε2

−

ε2
− ε2

+

ε2
+ ε2

−

ε2
− ε2

+


ε2
+ ε2

−

ε2
− ε2

+

























(20) 

where 

 
ε
n

+
=
1

2
exp −

iΔt

n
(a+ b)









+ exp −

iΔt

n
(a− b)





















ε
n

−
=
1

2
exp −

iΔt

n
(a+ b)









− exp −

iΔt

n
(a− b)






























 (21) 

The operation of exp(-iTyΔt) is executed in a similar manner. 

§3.  Data Structures of qd.c 
NX, NY: Number of mesh points in the x and y directions. 
psi[NX+2][NY+2][2]: psi[i][j][0|1] is the real|imaginary part of the wave function on mesh point (i, j) in 
the xy plane. 
 The wave function to be simulated is in the range, 1 ≤ i ≤ NX and 1 ≤ j ≤ NY.  To simplify the 
operation of the finite-difference operators considering the periodic boundary condition, the wave 
function values at the edge are duplicated as follows: 
 for (sy=1; sy<=NY; sy++) 
  for (s=0; s<=1; s++) { 
   psi[0][sy][s] = psi[NX][sy][s]; 
   psi[NX+1][sy][s] = psi[1][sy][s]; 
  } 
 for (sx=1; sx<=NX; sx++) 
  for (s=0; s<=1; s++) { 
   psi[sx][0][s] = psi[sx][NY][s]; 
   psi[sx][NY+1][s] = psi[sx][1][s]; 
  } 

v[NX+2][NY+2]: v[i][j] is the potential energy at mesh point (i, j). 
u[NX+2][NY+2][2]: u[i][j][0|1] is the real|imaginary part of the potential propagator at mesh point (i, j). 

 The potential propagator, exp(-iVΔt/2), is operated in qd.c as follows, see Eq. (15). 
 for (sx=1; sx<=NX; sx++) 
  for (sy=1; sy<=NY; sy++) { 
   wr=u[sx][sy][0]*psi[sx][sy][0]-u[sx][sy][1]*psi[sx][sy][1]; 
   wi=u[sx][sy][0]*psi[sx][sy][1]+u[sx][sy][1]*psi[sx][sy][0]; 
   psi[sx][sy][0]=wr; 
   psi[sx][sy][1]=wi; 
  } 

 The program qd.c simulates an electron incident on a potential barrier of height BH and width BW, see 
the figure below.  In addition, an edge potential of height EH is applied at i = 1 or NX or j = 1 or NY in 
v[i][j].  The potential v[i][j] = 0 at all the other mesh points. 
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Figure: The potential energy function. 

 In classical mechanics, a particle coming from one side of the potential barrier with a higher kinetic 
energy than BH will pass through the barrier to the other side; otherwise, the particle will bounce back at 
the barrier.  In quantum mechanics, a part of the electron wave function is transmitted through the 
barrier and the other part is reflected at the barrier. 
ND: The number of spatial dimensions = 2. 
al[ND][2][2]: al[0|1][0|1][0|1] is the x|y-direction, half (Δt/2)|full (Δt)-step, real|imaginary-part of the 
diagonal element of the kinetic propagator, see Eqs. (20) and (21). 
bux|y[2][NX+2|Y+2][2]: bux|y[0|1][i][0|1] is the x|y-direction, half (Δt/2)|full (Δt)-step, real|imaginary-
part of the upper off-diagonal kinetic propagator on mesh i, see Eqs. (20) and (21). 
blx|y[2][NX+2|Y+2][2]: blx|y[0|1][i][0|1] is the x|y-direction, half (Δt/2)|full (Δt)-step, real|imaginary-
part of the lower off-diagonal kinetic propagator on mesh i, see Eqs. (20) and (21). 

 The 2×2 block-diagonal form of the kinetic propagator, Eq. (20), can be handled  

 U
x

(half)ψ( )
i, j
= ε

2

−δ
mod(i,2),0

ψ
i−1, j +ε2

+ψ
i, j
+ε

2

−δ
mod(i,2),1

ψ
i+1, j

 (22) 

 U
x

(full)ψ( )
i, j
= ε

1

−δ
mod(i,2),1

ψ
i−1, j +ε1

+ψ
i, j
+ε

1

−δ
mod(i,2),0

ψ
i+1, j

 (23) 

where δmod(i,2),0  = 1 (if mod(i, 2) = 0) and 0 (else), etc.  The above kinetic propagator is used in qd.c to 
update the wave function as follows, where d (= 0 for x; 1 for y) is the direction and t (= 0 for Δt/2—
half; 1 for Δt—full) is the time step: 
 /* WRK|PSI holds the new|old wave function */ 
 for (sx=1; sx<=NX; sx++) { 
  for (sy=1; sy<=NY; sy++) { 
   wr=al[d][t][0]*psi[sx][sy][0]-al[d][t][1]*psi[sx][sy][1]; 
   wi=al[d][t][0]*psi[sx][sy][1]+al[d][t][1]*psi[sx][sy][0]; 
   if (d==0) { 
    wr+=(blx[t][sx][0]*psi[sx-1][sy][0]-blx[t][sx][1]*psi[sx-1][sy][1]); 
    wi+=(blx[t][sx][0]*psi[sx-1][sy][1]+blx[t][sx][1]*psi[sx-1][sy][0]); 
    wr+=(bux[t][sx][0]*psi[sx+1][sy][0]-bux[t][sx][1]*psi[sx+1][sy][1]); 
    wi+=(bux[t][sx][0]*psi[sx+1][sy][1]+bux[t][sx][1]*psi[sx+1][sy][0]); 
   } 
   else if (d==1) { 
    wr+=(bly[t][sy][0]*psi[sx][sy-1][0]-bly[t][sy][1]*psi[sx][sy-1][1]); 
    wi+=(bly[t][sy][0]*psi[sx][sy-1][1]+bly[t][sy][1]*psi[sx][sy-1][0]); 
    wr+=(buy[t][sy][0]*psi[sx][sy+1][0]-buy[t][sy][1]*psi[sx][sy+1][1]); 
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    wi+=(buy[t][sy][0]*psi[sx][sy+1][1]+buy[t][sy][1]*psi[sx][sy+1][0]); 
   } 
   wrk[sx][sy][0]=wr; 
   wrk[sx][sy][1]=wi; 
  } 
 } 
 /* Copy the new wave function back to PSI */ 
 for (sx=1; sx<=NX; sx++) 
  for (sy=1; sy<=NY; sy++) 
   for (s=0; s<=1; s++) 
    psi[sx][sy][s]=wrk[sx][sy][s]; 

INITIAL WAVE FUNCTION 

 ψ(x, y, t = 0) =C exp −
(x − x0 )

2

4σ 2









exp ik0x( )sin

π y

L
y









  (24) 

 To understand the meaning of this wave function, consider 

 ψ(x, y) =C exp ik0x( ) , (25) 

where C = LxLy  is the normalization constant such that  

 dx
0

Lx

∫ dy |ψ(x, y) |2=
0

Ly

∫ dx
0

Lx

∫ dyC
2
cos

2
(k
0
x)+ sin

2
(k
0
x)( ) =1

0

Ly

∫ . (26) 

Then 

 

Hψ(x, y) = −
1

2

∂ 2

∂x2
+
∂ 2

∂y2








C exp ik0x( )

= −
C

2

d
2

dx
2
exp ik0x( )

= −
ik0C

2

d

dx
exp ik0x( )

=
k0
2
C

2
exp ik0x( ) =

k0
2

2
ψ(x, y)

, (27) 

and thus the expectation value of its energy is 

 

E
0
= dx

0

Lx

∫ dy
0

Ly

∫ ψ*
(x, y)Hψ(x, y)

= dx
0

Lx

∫ dy
0

Ly

∫ ψ*
(x, y)

k
0

2

2
ψ(x, y)

=
k
0

2

2

. (28) 

or k
0
= 2E

0
. 

 We can show that the following ‘traveling’ wave function is a solution to the time-dependent 
Schrödinger equation, if the potential energy function is 0: 

 ψ(x, y, t) =C exp ik0 x − v0t( )( ) , (29) 

where v
0
= E

0
/ k

0
 is the wave speed. 
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 The last factor in Eq. (24) also satisfies the Schrödinger equation and follows the boundary 
condition, 

€ 

ψ(x,0) =ψ(x,Ly ) = 0 , which is required if there is a very high potential barrier at y = 0 and Ly 
(the electron then cannot exist).  Finally, the first Gaussian factor in Eq. (24) acts to localize the wave 
function around x = x0 and spread σ. 
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Quantum Dynamics Basics II—Spectral Method 
 In this chapter, we will solve the time-dependent Schrödinger equation using another numerical 
technique, i.e., the spectral method, which is based on Fourier transformation. 

§1.  Discrete Fourier Transform 
 Consider a complex-valued function, ψ(x) ∈ C, in the range, x ∈ [0, L].  We assume the periodic 
boundary condition: ψ(x + L) = ψ(x).  Let us discretize ψ(x) on N mesh points, xj = jΔx (j = 0, ..., N-1), 
with equal mesh spacing, Δx = L/N (see the left figure below).  We denote the discrete function values as 
ψj = ψ(xj). 

    
 Discrete Fourier transformation represents ψ(x) as a linear combination of trigonometric functions, 
exp(ikx) = cos(kx) + i sin(kx), with different wave numbers, k: 

 ψ
j
= ψm exp ikmx j( )

m=0

N−1

∑ , (1) 

where the discrete wave numbers, km, are defined as 

 k
m
=

2πm / L m = 0,1,…,N / 2−1( )
2π m− N( ) / L m = N / 2,N / 2+1,…,N −1( )





, (2) 

and the expansion coefficients are given by 

 ψm =
1

N
ψ j exp −ikmx j( )

j=0

N−1

∑ . (3) 

 Note that the choice of wave numbers in Eq. (2) guarantees that ψ(x) has the periodicity of L.  Also, 
because of the discrete sampling in the real space, wave numbers separated by 2πnN/L = 2πn/Δx (n = ±1, 
±2, ...) are all equivalent.  (Higher wave numbers oscillate more, but come back to the same value as 
their lower wave number counterparts at xj.)  Among these equivalent wave numbers, we use the 
smallest-magnitude wave number, since physically it represents the lowest-energy state and, 
mathematically, the discrete mesh points in the real space cannot represent higher wave numbers.  
Accordingly, in Eq. (2), the wave numbers for the higher indices, m = N/2, N/2+1, ..., N-1, are folded 
back by 2πN/L, so that all the wave numbers are in the range, [-π/Δx, π/Δx], see the right figure above.  
(For simplicity, we assume that N is an even number.) 
 To prove the correctness of the above Fourier expansion, it is convenient to think the discrete 
function, ψj, as a vector in the N-dimensional vector space: ψ = ψ

0
,ψ

1
,…,ψ

N−1( ) .  In this vector space, 
we define the plane-wave basis set, 
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 m = bm x j( ) =
1

N
exp(ikmx j ) m = 0,1,…,N −1









, (4) 

which is orthonormal, i.e., the inner products of the basis functions are 

 m n ≡ bm
*
x j( )bn x j( )

j=0

N−1

∑ = δ
m,n
= 1 m = n

0 m ≠ n{ . (5) 

For m ≠ n, carry out the sum of geometric series; otherwise (m = n), all N summands are 1/N. 

 

m n =
1

N
exp i kn − km( ) x j( )

j=0

N−1

∑ =
1

N
exp i

2π

N
n−m( ) j











j=0

N−1

∑

=

1

N

exp i2π n−m( )( )−1

exp i
2π

N
n−m( )









−1

= 0 m ≠ n

1

N
•N =1 m = n













.// 

 The above basis set is also complete, i.e., any discrete function, ψj, in this N-dimensional vector 
space can be represented as a linear combination of N basis set functions, bm(xj).  Specifically, 

 ψ = m m ψ
m=0

N−1

∑ , (6) 

or 

 1= m m

m=0

N−1

∑ . (7) 

Suppose the function is expanded as 

 ψ = c
n
n

n=0

N−1

∑ . 

Multiplying both sides by m  and using the orthonormality, Eq. (5), we get m ψ = c
m

.// 

 The Fourier coefficients, ψ
m

, in Eq. (3) are readily obtained from Eq. (6).  Substituting the 
definitions of the basis functions and the inner product in Eq. (6), we obtain 

 ψ j = exp ikmx j( )
1

N
exp −ik

m
x
l( )ψl

l=0

N−1

∑
m=0

N−1

∑ . 

Comparing this equation with Eq. (1) identifies the expansion coefficients, ψ
m

, in Eq. (1) as Eq. (3). 

§2.  Spectral Method for Integrating Time-Dependent Schrödinger Equation 
HAMILTONIAN OPERATOR 
 Consider the time-dependent Schrödinger equation in one dimension in atomic unit, 

 i
∂

∂t
ψ(x, t) = Hψ(x, t) , (8) 
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where the Hamiltonian operator, H, is defined as 

 H = −
1

2

∂ 2

∂x2
+V (x)

= T +V

, (9) 

with T and V being the kinetic- and potential-energy operators, respectively. 
 The kinetic energy operator is diagonal in the Fourier (or momentum) space.  To see this, we operate 
T on the wave function in its Fourier representation, Eq. (1): 

 −
1

2

∂ 2

∂x2
ψ
m

m=0

N−1

∑ exp ik
m
x( ) =

k
m

2

2
ψ
m

m=0

N−1

∑ exp ik
m
x( ) , (10) 

i.e., the kinetic energy operator multiplies the factor, k
m

2
/ 2 , to the Fourier coefficient of the wave 

function: 

 ψ
m T
 →

k
m

2

2

ψ
m

. 

 Recall, on the other hand, the potential energy operator is diagonal in the real space, i.e., it multiplies 
the factor, Vj = V(xj) to the wave function: 

 ψ
j V
 → V

j
ψ

j . 

SPLIT-OPERATOR TECHNIQUE AND SPECTRAL METHOD 
 The above observation, that the kinetic- and potential-energy operators are diagonal in the real- and 
momentum-spaces, respectively, suggests an efficient algorithm for the time evolution of the wave 
function.  Recall the Trotter expansion (also called the split-operator technique): 

 ψ(x, t +Δt) = exp −iVΔt / 2( )exp −iTΔt( )exp −iVΔt / 2( )ψ(x, t)+O Δt[ ]
3( ) . (11) 

The time evolution operator, exp −iVΔt / 2( ) , arising from the potential energy, is easily operated in the 
real space, 

 exp −iVΔt / 2( )ψ j
= exp −iV

j
Δt / 2( )ψ j , (12) 

or 
 ψ

j exp −iVΔt/2( )
 → exp −iV

j
Δt / 2( )ψ j

. 

On the other hand, the time evolution operator, exp −iTΔt( ) , arising from the kinetic energy, is operated 
in the Fourier space as 

 exp −iTΔt( ) ψm
= exp −ik

m

2
Δt / 2( ) ψm

, (13) 
or 
 ψ

m exp −iTΔt( )
 → exp −ik

m

2
Δt / 2( ) ψm

. 

 The spectral method is formally represented in terms of the forward and inverse Fourier 
transformation operators, F and F-1, 

 ψ
j F

−1 → F
−1ψ

j
= ψm =

1

N
ψ j exp −ikmx j( )

j=1

N

∑ , (14) 
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 ψ
m F
 → F ψ

m
=ψ

j
= ψm exp ikmx j( )

m=1

N

∑ , (15) 

as follows 
 ψ(t +Δt) = exp −iVΔt / 2( )F exp −iTΔt( )F−1

exp −iVΔt / 2( )ψ(t) . (16) 

Equation (16) amounts to the following algorithm. 

Spectral Split-Operator Algorithm 

 

1. ψ j ← exp −iVjΔt / 2( )ψ j

2. ψm F
−1←  ψ j

3. ψm ← exp −ikm
2
Δt / 2( ) ψm

4. ψ j F
←  ψm

5. ψ j ← exp −iVjΔt / 2( )ψ j

 

COMPUTATION OF THE ENERGY 
 The total energy is a conserved quantity for the time-dependent Schrödinger equation, Eq. (8), and is 
useful for estimating the discretization error.  The total energy can be calculated as follows: 

 

H = T + V

= dxψ*
(x) −

1

2

∂ 2

∂x2








∫ ψ(x)+ dxψ*

(x)V (x)∫ ψ(x)

≅ dx ψ j

* −
1

2

∂ 2

∂x2








ψ j + dx Vj ψ j

2

j=0

N−1

∑
j=0

N−1

∑

. (17) 

To calculate the first term (i.e., the kinetic energy) in Eq. (17), let us expand the wave function in terms 
of its Fourier components as in Eq. (1): 

 

T = dx ψm

*
exp −ikmx j( )

m=0

N−1

∑ −
1

2

∂ 2

∂x2









 ψn exp iknx j( )
n=0

N−1

∑
j=0

N−1

∑

= dx ψm

*
exp −ikmx j( )

m=0

N−1

∑
kn
2

2
ψn exp iknx j( )

n=0

N−1

∑
j=0

N−1

∑

= dx ψm

*

m=0

N−1

∑ ψn

n=0

N−1

∑
kn
2

2
exp i kn − km( ) x j( )

j=0

N−1

∑

= dx ψm

*

m=0

N−1

∑
kn
2

2
ψn

n=0

N−1

∑ Nδm,n

= dxN
km
2

2
m=0

N−1

∑ ψm

2

. (18) 

By substituting Eq. (18) in (17), we obtain 

 
H = T + V

= dxN
km
2

2

ψm

2

+ dx Vj ψ j

2

j=0

N−1

∑
m=0

N−1

∑
. (19) 
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CONSERVATION OF THE TOTAL ENERGY 

 Let’s consider the temporal change of the total energy 〈H〉.  It is convenient to introduce the 
eigenvalues, εn, and eigenvectors, |n〉, of the N×N Hamiltonian in the N-dimensional vector space: 

 H n = ε
n
n n = 0,…,N −1( ) . 

 The wave function is then expanded with the orthonormal basis set consisting of the energy 
eigenvectors as 

 ψ(t) = exp(−iHt) n n ψ(0) =
n=0

N−1

∑ exp −iε
n
t( ) n n ψ(0)

n=0

N−1

∑ , 

and accordingly the expectation value of the total energy at time t is 

H (t) = ψ(t) H ψ(t)

= ψ(0) m exp iε
m
t( ) m

m=0

N−1

∑








H exp −iε

n
t( ) n n ψ(0)

n=0

N−1

∑










= ψ(0) m exp iε
m
t( ) m

m=0

N−1

∑








 exp −iε

n
t( )εn n n ψ(0)

n=0

N−1

∑










= exp i(ε
m
−ε

n
)t( )εn ψ(0) m n ψ(0) m n

n=0

N−1

∑
m=0

N−1

∑

= ε
n
n ψ(0)

2

n=0

N−1

∑ = constant

 

i.e., the total energy is time invariant.  Here we have used the orthonormality, 〈m|n〉 = δm,n. 

§3.  Fast Fourier Transform 
 The bottleneck in implementing the above spectral method is the computational cost associated with 
the discrete Fourier transform.  Since the computation of each of the N Fourier coefficients, ψ

m
, 

involves summation over N terms, the computational time grows as O(N2).  The fast Fourier transform 
(FFT) algorithm1 reduces this complexity to O(NlogN), and makes the quantum-dynamics simulation 
less compute-intensive.  The discussion in this lecture note follows Chapter 12 in the Numerical 
Recipes.2  First, download and read sections 12.1 “Fourier Transform of Discretely Sampled Data” and 
12.2 “Fast Fourier Transform” at http://www.library.cornell.edu/nr/bookcpdf.html. 
DANIELSON-LANCZOS ALGORITHM 
 The summation in the Fourier transform can be split into two partial sums as follows:  

                                                
1 J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 
297 (1965). 
2 W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C, 2nd Ed. (Cambridge U Press, 
1993). 
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ψ
j
= ψm exp ikmx j( )

m=0

N−1

∑ = ψ
m
exp i2πmj / N( )

m=0

N−1

∑

= ψ2m exp i2π (2m) j / N( )
m=0

N /2−1

∑ + ψ2m+1 exp i2π (2m+1) j / N( )
m=0

N /2−1

∑

= ψ2m exp i2πmj / (N / 2)( )
m=0

N /2−1

∑ + exp i2π j / N( ) ψ2m+1 exp i2πmj / (N / 2)( )
m=0

N /2−1

∑

. 

Therefore, 

 ψ
j
=ψ

j

0
+W

N

jψ
j

1 , (20) 

where 

 

ψ
j

0
= ψ2m exp i2πmj / (N / 2)( )

m=0

N /2−1

∑

ψ
j

1
= ψ2m+1 exp i2πmj / (N / 2)( )

m=0

N /2−1

∑
W

N
= exp i2π / N( )















. (21) 

Note that ψ
j

0  and ψ
j

1  represent N/2-element Fourier transforms consisting of even and odd sub-arrays, 
respectively.  Accordingly, in the sub-array Fourier components, ψ

j

0  and ψ
j

1 , j should be read as j mod 
(N/2), i.e., an index in a N/2-long Fourier transform. 
 The top part of the figure below illustrates this decomposition due to Danielson and Lanczos for an 
8-element Fourier transform, specifically for 

 ψ
5
=ψ

5mod4=1

0
+W

8

5ψ
5mod4=1

1 , 

where circles and squares denote the even and odd sub-arrays, respectively. 

 
 In a similar manner, each N/2-element Fourier transform is further decomposed into two N/4-
element Fourier transforms, e.g., 
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ψ

j

0
= ψ2(2m) exp i2π (2m) j / (N / 2)( )

m=0

N /4−1

∑ + ψ2(2m+1) exp i2π (2m+1) j / (N / 2)( )
m=0

N /4−1

∑

= ψ2(2m) exp i2πmj / (N / 4)( )
m=0

N /4−1

∑ + exp i2π j / (N / 2)( ) ψ2(2m+1) exp i2πmj / (N / 4)( )
m=0

N /4−1

∑
. 

Therefore, 

 ψ
j

0
=ψ

j

00
+W

N /2

j ψ
j

01 , (22) 

where 

 

ψ
j

00
= ψ2(2m) exp i2πmj / (N / 4)( )

m=0

N /4−1

∑

ψ
j

01
= ψ2(2m+1) exp i2πmj / (N / 4)( )

m=0

N /4−1

∑
W

N /2 = exp i2π / (N / 2)( )















. (23) 

In ψ
j

00  and ψ
j

01  (see Eq. (23)), j should be read as j mod (N/4). 

 The decomposition of Fourier transform into sums of two sub-array Fourier transforms, e.g., Eqs. 
(20) and (22), continues recursively.  The figure above illustrates how the even (circles) and odd 
(squares) sub-array Fourier components are combined.  Eventually, the sub-array contains only one 
element, at which stage the recursion terminates, and the sub-array Fourier components is a function 
value at some grid point.  For example, in the figure above, the bottom circle and square represent ψ

j

010  
and ψ

j

011 , which turn out to be ψ
2

 and ψ
6

, respectively.  In general, we can obtain the wave function 
index from the bit sequence to specify the recursive sub-array by reversing the bit sequence and 
converting it to decimal.  This works because successive subdivisions of the data into even and odd are 
tests of successive low-order (least significant) bits of the wave function index.   

 The right figure below shows all the wave functions that participate in the construction of ψ
5
, and 

how they are combined to construct ψ
5
.   

 
 In the FFT algorithm, the input wave function values are first re-ordered by applying the bit-reversal 
operation to each wave function index.  The Danielson-Lanczos procedures, such as Eqs. (20) and (22), 
are then applied recursively, starting from the smaller sub-arrays up.  The figure below shows all the 
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combinations of sub-array Fourier coefficients to construct all the Fourier components in the bit-
reversed scheme, in which the combinations to construct ψ

5
 are represented by bold lines. 

 
  The figure above shows that, to compute all N Fourier transforms, the sub-array Fourier transforms 
can be re-used.  Consequently, there are N complex multiplications and N complex additions at each 
recursive step.  (Note that the Danielson-Lanczos procedure, e.g., in Eq. (20) and (22), involves one 
multiplication and one addition, and is represented by two lines in the figure above.)  To compute all the 
Fourier components, every array element is connected to two (even and odd) sub-array elements at each 
recursive step.  Since there are log2N recursive steps, the number of complex floating-point operations in 
the FFT algorithm is 2 log2N. 
 The program, four1(double data[], unsigned long nn, int isign), in Numerical Recipes in C 
implements the above algorithm.  On input, the data[] array contains 2*nn elements that represent nn 
complex function values, such that data[2*j-1] and data[2*j] (j = 1, ..., nn) are the real and imaginary 
parts of the function value on the j-th grid point.  If isign = 1, four1() performs the Fourier transform, 

 dataj ← datam exp i2πmj / N( )
m=0

N−1

∑ , 

and, on output, data[] contains the transformed function values.  Else if isign = −1, four1() performs a 
part of inverse Fourier transform, 

 datam ← dataj exp −i2πmj / N( )
j=0

N−1

∑ , 

without dividing the result by nn.  To complete the inverse Fourier transform, the caller of the four1() 
function needs to divide the resulting data[] array by nn. 
 In your 1D quantum dynamics program, you may define 

double psi[2*N], 

where psi[2*j] and psi[2*j+1] (j = 0, ..., N−1) are the real and imaginary parts of the wave function on 
the j-th grid point.  Since four1() expects the index to start from 1, instead of 0 in the above psi[] array, 
we need to call four1() with psi-1 as the first argument.  (Note in C, the array name is a pointer to its 
first element.)  The following shows typical calls to four1() in your quantum dynamics program: 

/* Fourier transform */ 
four1(psi-1, (unsigned long) N, 1) 
 
/* Inverse Fourier transform */ 
four1(psi-1, (unsigned long) N, -1) 
for (j=0; j< 2*N; j++) 
 psi[j] /= N; 


