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Eigensystems 
 We will discuss matrix diagonalization algorithms in Numerical Recipes in the context of the 
eigenvalue problem in quantum mechanics, 

 𝐴|𝑛⟩ = 𝜆!|𝑛⟩, (1) 

where A is a real, symmetric Hamiltonian operator and |𝑛⟩ is the n-th eigenvector with eigenvalue 𝜆!.  In 
an N-dimensional vector space, Eq. (1) becomes 

 ∑ 𝐴ij𝑥$
(!)'

$() = 𝜆!𝑥*
(!), (2) 

where A is an N´N matrix, and 𝑥*
(!) is the i-th element of the n-th eigenvector 𝑥(!) ∈ 𝐑'. 

ORTHONORMAL BASIS 

(Orthogonality) The basis set {|𝑛⟩|𝑛 = 1,… ,𝑁} can be made orthonormal, i.e., 

 ⟨𝑚|𝑛⟩ ≡ ∑ 𝑥*
(+)𝑥*

(!)'
*() = 𝛿mn, (3) 

or, by defining the transformation matrix U as 

 𝑈in = 𝑥*
(!) (4) 

(i.e., the n-th column of U is the n-th eigenvector), U is orthogonal, 

 𝑈.𝑈 = 𝐼 (5) 

where I is the N´N identity matrix. 

Proof of Eq. (3): First note that all eigenvalues 𝜆! are real.  (∵ By multiplying eq. (1) by ⟨𝑛| from the left, 
⟨𝑛|𝐴|𝑛⟩ = 𝜆!⟨𝑛|𝑛⟩.  For a Hermitian matrix (and of course for a real, symmetric matrix), ⟨𝑛|𝐴|𝑛⟩ is real, 
and ⟨𝑛|𝑛⟩ is also real since its complex conjugate is itself.)  Next, by multiplying Eq. (1) by ⟨𝑚| from the 
left, we obtain 
 ⟨𝑚|𝐴|𝑛⟩ = 𝜆!⟨𝑚|𝑛⟩. (6) 
Similarly, 

 ⟨𝑛|𝐴|𝑚⟩ = 𝜆+⟨𝑛|𝑚⟩. (7) 

By taking the complex conjugate of Eq. (7) and noting the reality of the eigenvalue, 

 ⟨𝑚|𝐴|𝑛⟩ = 𝜆+⟨𝑚|𝑛⟩. (8) 

Subtracting Eq. (8) from Eq. (6), 

 0 = (𝜆! − 𝜆+)⟨𝑚|𝑛⟩. (9) 

If 𝜆! ≠ 𝜆+, Eq. (9) requires that ⟨𝑚|𝑛⟩ = 0.  On the other hand, if 𝜆! = 𝜆+, we can still make them 
orthogonal without modifying the eigenvalue.  For example, Gram-Schmidt orthogonalization procedure 

 |𝑛/⟩ ← |𝑛⟩ − |𝑚⟩⟨𝑚|𝑛⟩ (10) 

makes ⟨𝑚|𝑛/⟩ = ⟨𝑚|𝑛⟩ − ⟨𝑚|𝑚⟩⟨𝑚|𝑛⟩ = ⟨𝑚|𝑛⟩ − ⟨𝑚|𝑛⟩ = 0, followed by the normalization |𝑛/⟩ as 
|𝑛/⟩ ← |𝑛/⟩/⟨𝑛/|𝑛/⟩) 0⁄ . 

(Completeness) The orthonormal basis set {|𝑛⟩} is also complete, i.e., in the N-dimensional vector space, 

 ∑ |𝑛⟩⟨𝑛|'
!() = 1 (11) 

is the identity operator.  Equivalently, 
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 ∑ 𝑥*
(!)𝑥$

(!)'
!() = 𝛿ij, (12) 

or 

 𝑈𝑈. = 𝐼. (13) 

Equation (11) states that any vector in the N-dimensional vector space |𝜓⟩ is a linear combination of the 
N basis functions, 

 |𝜓⟩ = ∑ |𝑛⟩⟨𝑛|𝜓⟩'
!() , (14) 

since there are only N linearly independent vectors in this vector space. 
 The orthogonality and completeness together states that 

 𝑈.𝑈 = 𝑈𝑈. = 𝐼. (15) 
or 
 𝑈2) = 𝑈.. (16) 

ORTHOGONAL TRANSFORMATION 
 Now, we use the orthogonal matrix U to restate the matrix eigenvalue problem.  To do so, multiply 
Eq. (2) by 𝑥*

(+) and sum the resulting equation over i, 

 ∑'*() ∑ 𝑥*
(+)𝐴ij𝑥$

(!)'
$() = 𝜆! ∑ 𝑥*

(+)𝑥*
(!)'

*() = 𝜆!𝛿mn, (17) 

where we have used the orthonormality, Eq. (3).  Using U, equation (17) can be rewritten as 

 𝑈.AU = Λ, (18) 
where 
 Λmn = 𝜆+𝛿mn, (19) 
is a diagonal matrix.  Thus the matrix eigenvalue problem amounts to finding an orthogonal matrix, U, or 
the associated orthogonal transformation, Eq. (18), which eliminates all the off-diagonal matrix elements. 

GRAND STRATEGY 
 The grand strategy of matrix diagonalization is to nudge the matrix A towards diagonal form by a 
sequence of orthogonal transformations, 

 𝐴 → 𝑃).AP) → 𝑃0.𝑃).AP)𝑃0 → ⋯, (20) 

so that its off-diagonal elements gradually disappear.  At the end, the orthogonal matrix is 

 𝑈 = 𝑃)𝑃0⋯. (21) 
ORTHOGONAL TRANSFORMATION ~ ROTATION: JACOBI TRANSFORMATION 
 As an illustration, let us consider a two-state system, for which the most general Hamiltonian matrix 
is 

 𝐻 = G𝜀) 𝛿
𝛿 𝜀0

I. (22) 

(We define the indices such that e1 < e2, i.e., the first state is the lower-energy state.)  We express first 
eigenvector of this Hamiltonian as 

 |𝑢⟩ = Kcos𝜃sin𝜃R = cos𝜃|1⟩ + sin𝜃|2⟩, (22)  
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which is most general.  (Because of the normalization condition, the any vector in the 2-dimensional vector 
space can be specified by one parameter.)  Once we specify the first eigenvector, the second is readily 
determined from the orthonomality as 

 |𝑣⟩ = K−sin𝜃cos𝜃 R, (22) 

see the figure below.  The rotation angle 𝜃 specifies the deviation of the first eigenvector |𝑢⟩ from |1⟩. 

 
The orthogonal matrix is then 

 𝑈 = [𝑢 𝑣] = Kcos𝜃 −sin𝜃
sin𝜃 cos𝜃 R. (23) 

 To find the specific rotation angle 𝜃, let us return to the original eigenvalue problem, 

 G𝜆 − 𝜀) −𝛿
−𝛿 𝜆 − 𝜀0

I K
𝑢)
𝑢0R = K00R. (24) 

The eigenvalues are obtained by solving the secular equation, 

 det(𝜆𝐼 − 𝐻) = [𝜆 − 𝜀) −𝛿
−𝛿 𝜆 − 𝜀0

[ = (𝜆 − 𝜀))(𝜆 − 𝜀0) − 𝛿0 = 0, (25) 

and its two solutions are 

 𝜆± =
4!54"±6(4!24")"578"

0
. (26) 

Now let us examine the lower eigenenergy 𝜆2.  By substituting the eigenvalue and the corresponding 
eigenvector, Eq. (22), into Eq. (24), we obtain 

 𝜃 = tan2) ]24!54"26(4!24")
"578"

08
^. (27) 

For example, if the off-diagonal element 𝛿 is small, we can expand Eq. (27) is its power series, the first 
term of which is (we have assumed 𝜀) < 𝜀0) 

 𝜃 = 8
4!24"

. (28) 

Jacobi Transformation 
 In Jacobi transformation, each orthogonal transformation Pk in Eq. (20) is the two-dimensional rotation 
applied to a pair of rows, i and j, and the pair of columns of the same indices.  One such rotation eliminates 
a pair—(i,j) and (j,i)—of off-diagonal elements.  A sequence of two-dimensional rotations will eventually 
eliminate all the off-diagonal elements.  (In fact, later rotations may partially restore off-diagonal elements 
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eliminated earlier.  Nevertheless, this procedure will converge, and the square sum of all the off-diagonal 
elements becomes smaller as we continue the procedure.) 

HOUSEHOLDER TRANSFORMATIONS FOR TRIDIAGONALIZATION 
 Instead of eliminating a pair of off-diagonal elements at one time as in Jacobi transformation, 
Householder transformation eliminates an entire row but the first two elements at a time. 
 In Chapter 11 of Numerical Recipes, Householder transformations are used to reduce a real, symmetric 
matrix to a tridiagonal form, in which only the diagonal (𝐴ii), upper subdiagonal (𝐴i	i5)), and lower 
subdiagonal (𝐴*5)	*) elements may be nonzero.  The function tred2() achieves this.  The resulting tridiagonal 
matrix is then diagonalized (i.e., both subdiagonal elements are eliminated), using another set of 
orthogonal transformations in function tqli(). 
 The magical orthogonal matrix P is constructed from a vector in the N-dimensional vector space.  First, 
let us prove a useful lemma. 

(Lemma) Let 𝑣 (∈ 𝑅') and 

 𝑃 = 𝐼 − 0::#

:#:
, (29) 

then P is symmetric and orthogonal, i.e., 

 𝑃.𝑃 = PP = 𝐼. (30) 

∵First, 
 𝑃ij = 𝛿ij −

0:$:%
∑ :&

"'
&(!

, (31) 

is symmetric with respect to the exchange of the indices i and j.  Next, 

 

𝑃.𝑃 = `𝐼 − 0::#

:#:
a `𝐼 − 0::#

:#:
a

= 𝐼 − 7::#

:#:
+ 7::#::#

(:#:)"

= 𝐼 − 7::#

:#:
+ 7::#

:#:
= 𝐼

.  // 

 Now, given an arbitrary vector x in the N-dimensional vector space, we can device an orthogonal 
matrix that eliminates all the elements but the first one when multiplied to x. 

(Theorem) For ∀𝑥	(∈ 𝐑'), let 
 𝑣 = 𝑥 ± ‖𝑥‖0𝑒) (32) 
where  

 𝑒) = g

1
0
⋮
0

i (33) 

and the vector 2-norm is defined as 

 ‖𝑥‖0 = √𝑥.𝑥 = k∑ 𝑥*0'
*() . (34) 

Then 
 𝑃𝑥 = `𝐼 − 0::#

:#:
a 𝑥 = ∓‖𝑥‖0𝑒), (35) 

i.e., the Householder matrix P, when multiplied, eliminates all the elements of x but the first one. 

∵Note that, 
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𝑣.𝑣 = (𝑥. ± ‖𝑥‖0𝑒).)(𝑥 ± ‖𝑥‖0𝑒))

= ‖𝑥‖00 ± 2‖𝑥‖0𝑥) + ‖𝑥‖00
= 2‖𝑥‖0(‖𝑥‖0 ± 𝑥))

.  

Then 

 

𝑃𝑥 = 𝑥 − 0::#

0‖=‖"(‖=‖"±=!)
𝑥

= 𝑥 − (=±‖=‖">!)?=#±‖=‖">!#@=
‖=‖"(‖=‖"±=!)

= 𝑥 − (=±‖=‖">!)‖=‖"(‖=‖"±=!)
‖=‖"(‖=‖"±=!)

= 𝑥 − 𝑥 ∓ ‖𝑥‖0𝑒) = ∓‖𝑥‖0𝑒)

.  //  

  The Householder matrix can be used for tridiagonalization as follows: Let us decompose a real, 
symmetric matrix A as 

 𝐴 = g

𝑎11 𝑎12 ⋯ 𝑎)'
𝑎21
⋮
𝑎')

i = g

𝑎11 𝐴12 = 𝐴21.

𝐴21 𝐴22
i.  (36) 

where A21, A12, and A22 are (N-1)´1, 1´(N-1), and (N-1)´(N-1) matrices, respectively.  Now let  

 𝑣 (∈ 𝐑'2)) = 𝐴21 + sign(𝑎21)‖𝐴21‖0𝑒). (37) 
(The sign has been chosen to minimize the cancellation error.)  Then 

 𝑃̄𝐴21 ≡ `𝐼'2) −
0::#

:#:
a𝐴21=-sign(𝑎21)‖𝐴21‖0𝑒) ≡ ke). (38) 

Now 

 

𝑃𝐴𝑃 ≡ g

1 0 ⋯ 0
0
⋮ 𝑃̄
0

i g

𝑎11 𝐴21.

𝐴21 𝐴22
i g

1 0 ⋯ 0
0
⋮ 𝑃̄
0

i

⎣
⎢
⎢
⎢
⎡𝑎11 𝐴21.

𝑘
0 𝑃̄𝐴22
⋮
0 ⎦

⎥
⎥
⎥
⎤

g

1 0 ⋯ 0
0
⋮ 𝑃̄
0

i

⎣
⎢
⎢
⎢
⎡
𝑎11 𝑘 0 ⋯ 0
𝑘
0 𝑃̄𝐴22𝑃̄
⋮
0 ⎦

⎥
⎥
⎥
⎤

, (39) 

i.e., all the elements in the first row and first column but a11, a12 and a21 have been eliminated by this 
transformation.  Next, a similar Householder transformation is applied to the first column and first row of 
the (N-1)´(N-1) submatrix 𝑃̄𝐴22𝑃̄, which eliminates all the elements in the second row and second column 
in the original N´N matrix but a22, a23 and a32, so on (see the figure below, in which white cells represent 
eliminated matrix elements). 
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After (N-2) such transformations, all the off-diagonal elements but the diagonal and upper/lower sub-
diagonal elements are eliminated. 

DIAGONALIZATION OF A TRIDIAGONAL MATRIX—QR DECOMPOSITION 
QR Decomposition 
 The diagonalization of the tridiagonal matrix obtained above can use QR decomposition (or similar 
QL decomposition).  That is, any square matrix A can be decomposed into  

 𝐴 = 𝑄𝑅, (40) 
where Q is an orthogonal matrix and R is an upper-triangular matrix, i.e., Rij = 0 for i > j. 
 For example, this can be achieved by using a Householder transformation as follows.  First, we 
decompose the N´N matrix A into the first column A1 and the rest A2:  

 𝐴 = z
𝑎11
⋮
𝑎')

{ = |𝐴) 𝐴0 }.  (41) 

Let 

 𝑣 (∈ 𝑅') = 𝐴) + sign(𝑎11)‖𝐴)‖0𝑒), (42) 
then 

 𝑃𝐴) ≡ `𝐼' −
0::#

:#:
a𝐴)=-sign(𝑎11)‖𝐴)‖0𝑒) ≡ ke), (43) 

and thus 

 𝑃𝐴 =

⎣
⎢
⎢
⎢
⎡

PA) PA0

⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡ 𝑘0
⋮ PA0

0 ⎦
⎥
⎥
⎥
⎤

, (44) 

i.e., all the elements in the first column but one have been eliminated.  Next, we can apply a similar 
elimination to A(2:N,2:N) submatrix to eliminate all the lower-triangular elements in the second column, 
see the figure below. 

 
After (N-1) transformation, the resulting matrix is upper-triangular, i.e., 

 𝑃'2)⋯𝑃0𝑃)𝐴 = 𝑅, (45) 
or 

 𝐴 = 𝑃)2)𝑃02)⋯𝑃'2)2) 𝑅 ≡ 𝑄𝑅. (46) 
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Orthogonal Transformation 
 Let Eq. (40) be the QR decomposition of matrix A.  Then, define another matrix by 

 𝐴/ = 𝑅𝑄. (48) 

Since 𝑅 = 𝑄2)𝐴 = 𝑄.𝐴 from Eq. (40), Eq. (48) defines an orthogonal transformation, 

 𝐴 → 𝐴/ = 𝑄.AQ. (49) 

It can be proven that, if A is tridiagonal, then 𝐴/ is also tridiagonal, i.e., the orthogonal transformation 
preserves the tridiagonality.  The QR algorithm consists of successive applications of this orthogonal 
transformation. 

(QR algorithm) 

 �1. 𝑄C𝑅C ← 𝐴C
2. 𝐴C5) ← 𝑅C𝑄C

𝑠 = 1,2, … . (50) 

 The following theorems then guarantee that the eigenvalues can be obtained by the QR algorithm. 
(Theorem) 

1. limC→E𝐴C is upper-triangular, and 
2. The eigenvalues appear on its diagonal. 
 In Chapter 11 of Numerical Recipes, function tqli() uses QL algorithm, instead of the above QR 
algorithm, to achieve lower-triangularity, to minimize the cancellation error. It diagonalizes a tridiagonal 
matrix by a sequence of rotations to eliminate subdiagonal elements, in addition to eigenvalue-shift to 
accelerate the convergence. 


