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Singular Value Decomposition: Reduced Density Matrix 
 We will introduce the singular value decomposition of a matrix in the context of the reduced density 
matrix of a quantum system connected to an environment. 
REDUCED DENSITY MATRIX1 
 Let us consider a quantum system (block) B, which is spanned by the N-dimensional orthonormal 
basis set {|𝑖⟩ | i = 1,…,N}, surrounded by an environment E, which is spanned by the M-dimensional 
orthonormal basis set {|𝑗⟩ | j = 1,…,M} (see the figure below). 

 
 The ground state of the total (= block + environment) system can be represented as 

 |𝜓⟩ = ∑!"#$ ∑ 𝜓ij|𝑖⟩|𝑗⟩'
(#$ . (1) 

 Now consider the expectation value of an arbitrary operator, A, which acts only within the block: 

 

⟨𝐴⟩ = ∑" ∑ 𝜓ij∗⟨𝑗|⟨𝑖|𝐴( ∑"! ∑ 𝜓"!(!|𝑖*⟩|𝑗*⟩(!

= ∑" ∑( ∑"! ∑ 𝜓"!(!𝜓ij∗⟨𝑖|𝐴|𝑖*⟩⟨𝑗|𝑗*⟩(!

= ∑" ∑ ∑ 𝜓"!(𝜓ij∗( ⟨𝑖|𝐴|𝑖*⟩"!

≡ ∑" ∑ 𝜌"!"𝐴""!"! = tr+(𝜌𝐴)

, (2) 

where the reduced density matrix is defined as 

 𝜌"!" ≡ ∑ 𝜓"!(𝜓ij∗( , (3) 

and the matrix element of the operator is 𝐴""! ≡ ⟨𝑖|𝐴|𝑖*⟩. 

SINGULAR VALUE DECOMPOSITION (SVD) 

Problem: What is the optimal reduced density matrix r of rank-m (≪ N)? 

Solution: Singular value decomposition (SVD) of y Î RN´RM. 

(Theorem) An N´M matrix y (assume N ≥ M) can be decomposed as (see Appendix A for proof of SVD 
and associated polar decomposition) 
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or 

 𝜓 = UDV,, (5) 

where 𝑈 = C𝑈"- = 𝑢"
(-)E Î RN´RM is column orthogonal, i.e., 

 ∑ 𝑢"
(-)𝑢"

(-!)!
"#$ = 𝛿--!, (6) 

or  

 
1 R. P. Feynman, Statistical Mechanics (Benjamin/Cummings, Reading, MA, 1972) Chap. 2. 



2 

 𝑈,𝑈 = 𝐼', (7) 

and 𝑉 = C𝑉"- = 𝑣"
(-)E Î RM´RM is column orthogonal, i.e., 

 ∑ 𝑣"
(-)𝑣"

(-!)'
"#$ = 𝛿--!, (8) 

or  

 𝑉,𝑉 = 𝐼'. (9) 

The columns of U, whose same-numbered elements dn are nonzero, are an orthonormal set of basis 
vectors that span the range (see Appendix B for the range); the columns of V, whose same-numbered 
elements dn are zero, are an orthonormal basis for the nullspace that is mapped to zero, i.e., the subspace 
of x ∈ RM, where 𝜓𝑥 = 0. The program, singular.c, in the source code directory of the class home page 
demonstrates this automatic construction of orthonormal bases for the range and the nullspace. 

TRUNCATED SVD AS OPTIMAL APPROXIMATION 

(Theorem) Let 𝜓 = UD𝑉, be the SVD of 𝜓 with the diagonal elements in descending order d1 ≥ d2 ≥ ⋯ 
≥ dM and let 

 𝜓(0) ≡ ∑ 𝑢(-)𝑑-𝑣(-),0
-#$ , (10) 

be the rank-m truncation of the SVD.  Then 

 min
rank(5)#0

‖𝐴 − 𝜓‖6 = R𝜓(0) − 𝜓R
6
= 𝑑07$, (11) 

where the matrix 2-norm is defined in terms of the vector 2-norm as ‖𝐴‖6 = min
89(∈;")8##$

‖Ax(∈ 𝑅!)‖6.  

Therefore, 𝜓(0) is the optimal rank-m approximation to 𝜓. 
 Equation (10) shows that SVD is a representation of a matrix as a sum of outer products of two 
vectors, just as a density matrix is. 
LOW-RANK APPROXIMATION TO THE REDUCED DENSITY MATRIX 

 Substituting the rank-m approximation (10) in the definition of the reduced density matrix, Eq. (3), 

 

𝜌 = ψψ,

= ∑0-#$ ∑ 𝑢(-)𝑑-W𝑣(-),𝑣(-
!)X𝑑-!𝑢(-

!),0
-!#$

= ∑0-#$ ∑ 𝑢(-)𝑑-(𝑑--!)𝑑-!𝑢(-
!),0

-!#$

= ∑ 𝑢(-)𝑑-6𝑢(-),0
-#$

. (12) 

(Summary) The rank-m truncation of the SVD of the global (= block + environment) ground state wave 
function, 

 𝜓(0) = ∑ 𝑢(-)𝑑-𝑣(-),0
-#$ , (13) 

or 

 𝜓ij
(0) = ∑ 𝑢"(%)𝑑-𝑣((%)

0
-#$ , (14) 

produces the rank-m approximation to the reduced density matrix, 

 𝜌(0) = ∑ 𝑢(-)𝑤-𝑢(-),0
-#$ , (15) 

or 
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 𝜌""!
(0) = ∑ 𝑢"(%)𝑤-𝑢"!(%)

0
-#$ , (16) 

where 𝑤- = 𝑑-6.  The rank-m approximation 𝜌(0)  is optimal in the least square sense. 
DENSITY MATRIX RENORMALIZATION GROUP 
 The density matrix renormalization group (DMRG) algorithm by Steven White2 is a systematic 
procedure to accurately obtain a quantum ground state with a modest computational cost.  The DMRG 
incrementally add environments to the block, solve the global (= block + environment) ground state, and 
construct a low-rank block density matrix to represent the block with reduced degrees of freedom. 

Appendix A — Polar and Singular-Value Decompositions 
A.1 POLAR DECOMPOSITION 

(Theorem) Let A be a real 𝑁 ×𝑀 matrix, where 𝑁 ≥ 𝑀 (i.e., mapping from an M-dimensional source 
vector space to a larger N-dimensional target vector space). Then, there exists a column-wise orthogonal 
matrix S (∈ ℜ!×' and) such that 
  𝐀 = 𝐒𝐉, (A1) 
 𝐒=𝐒 = 𝐈'×', (A2) 
where 𝐈'×' is the identity matrix and the unique nonnegative matrix J is 
  𝐉 = √𝐀=𝐀 ∈ ℜ'×'. (A3) 

(Proof) Consider a spectral (or eigen) decomposition of J: 

  𝐉 = ∑ 𝜆"|𝑖⟩⟨𝑖|'
"#$ , (A4) 

where 𝜆" 	(≥ 0) is the i-th eigenvalue and {|𝑖⟩ 	 ∈ ℜ' 	|	𝑖 = 1,… ,𝑀} is an orthonormal set of 
eigenvectors, where ⟨𝑖|𝑗⟩ = 𝛿",(. Define a mapped N-element vector 

 |𝜓"⟩ = 𝐀|𝑖⟩	(∈ ℜ!), (A5) 
then 

 j𝜓"k𝜓(l = ⟨𝑖|𝐀=𝐀|𝑗⟩ = ⟨𝑖|𝐉6|𝑗⟩ = 𝜆(6⟨𝑖|𝑗⟩ = 𝜆(6𝛿",( 	. (A6) 
For those eigenvectors with 𝜆" ≠ 0, define 

 |𝑒"⟩ = |𝜓"⟩/𝜆" 	(∈ ℜ!), (A7) 
so that these vectors are orthonormal, i.e., j𝑒"k𝑒(l = 𝛿",(. For those eigenvectors with 𝜆" = 0, we use the 
Gram-Schmidt procedure to construct an orthonormal basis set and append it to the above basis set. 
Define a column-wise orthogonal matrix, 
 𝐒 = ∑ |𝑒"⟩⟨𝑖|'

"#$ ∈ ℜ!×' (A8) 
(note 𝐒=𝐒 = ∑ |𝑖⟩⟨𝑒"|'

"#$ ∑ k𝑒(l⟨𝑗|'
(#$ = ∑ ∑ |𝑖⟩ j𝑒"k𝑒(lpqr

?'(

'
(#$ ⟨𝑗|'

"#$ = ∑ |𝑖⟩⟨𝑖|'
"#$ = 𝐈'×'.) When 𝜆" ≠ 0, we 

have 
 𝐒𝐉|𝑖⟩ = ∑ |𝑒(l𝜆" ⟨𝑗|𝑖⟩s

?('

'
(#$ = 𝜆"|𝑒"⟩ = |𝜓"⟩ = 𝐀|𝑖⟩. (A9) 

When 𝜆" = 0, 
 𝐒𝐉|𝑖⟩ = ∑ |𝑒(l 𝜆"⏟

@

⟨𝑗|𝑖⟩s
?('

'
(#$ = 0|𝑒"⟩ = 0 = |𝜓"⟩ = 𝐀|𝑖⟩. (A10) 

Namely, SJ is identical to A as a mapping for the entire M-dimensional source vector space. // 
  

 
2 S. R. White, “Density-matrix algorithms for quantum renormalization groups,” Physical Review B 48, 10345 (1993).  
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A.2 SINGULAR VALUE DECOMPOSITION 

(Theorem) Let A be a real 𝑁 ×𝑀 matrix, where 𝑁 ≥ 𝑀 as above. Then, there exists column-wise 
orthogonal matrices U (∈ ℜ!×') and V (∈ ℜ'×'), such that 
  𝐀 = 𝐔𝐃𝐕=, (A11) 
 𝐔=𝐔 = 𝐕=𝐕 = 𝐈'×', (A12) 
where D (∈ ℜ'×') is a nonnegative diagonal matrix. 
(Proof) Consider the polar decomposition, A = SJ, in Eq. (A1). We perform the eigen-decomposition of 
J as 

 𝐉 = 𝐕𝐃𝐕=, (A13) 
where D is the diagonal matrix such that its matrix elements are 
 𝐷"( = 𝜆"𝛿"(, (A14) 
and V (∈ ℜ'×') is an orthogonal matrix, i.e., 𝐕=𝐕 = 𝐈'×'. Substituting Eq. (A13) in Eq. (A1), we 
have 
 𝐀 = 𝐒𝐕𝐃𝐕= ≡ 𝐔𝐃𝐕=, (A15) 
Note that U = SV (∈ ℜ!×') is a column-wise orthogonal, since 
 𝐔=𝐔 = 𝐕=𝐒=𝐒𝐕 = 𝐕= 𝐒=𝐒y

𝐈"×"
𝐕 = 𝐕=𝐕 = 𝐈'×'. // 

 
Appendix B — Rank and Range of a Matrix 

For an N´M matrix A, consider the mapping, 

 𝑥(∈ 𝑅')
5
→ 𝑏 = Ax(∈ 𝑅!). (B1) 

The range of matrix A is the vector space spanned by all linearly independent vectors {b}, which are 
mapped from some x.  The rank of matrix A is the size (i.e., the number of linearly independent vectors) 
of its range. 


