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Tight-Binding Model of Electronic Structures 
 Consider a collection of N atoms.  The electronic structure of this system refers to its electronic wave 
function and the description of how it is related to the binding energy that keeps the atoms together.  In 
an independent electron approximation, a single electron time-independent Schrödinger equation, 

 Hψν (
!r ) = ενψν (

!r ) , (1) 

is solved to find the eigenstates, ψν (ν = 1, 2, ...), and the corresponding eigenenergies, εν, of the 
Hamiltonian operator, 

 H = −
1

2
∇
2
+V

r( ) , (2) 

where V (

r )  is the potential energy operator and we have used the atomic unit.  (For example, the 

density functional theory provides a framework to derive an effective single-electron potential energy 
operator, which incorporates the interaction among the many electrons [1-3].) 

§1.  Tight-Binding Model 
 In the tight-banding model of electronic structures, single-electron wave functions are expanded in 
terms of atomic orbitals [4,5], 

 ψ
nlm
(r,θ,ϕ ) = R

nl
(r)Y

lm
(θ,ϕ ) , (3) 

centered around each atom, where Rlm and Ylm are radial and spherical-harmonics functions in polar 
coordinates.  (This scheme is also called the linear combination of atomic orbitals, or LCAO.)  In Eq. 
(3), n, l and m are the principal, angular-momentum and magnetic quantum numbers, respectively.  For 
example, 1s atomic orbital (n = 1 and l = m = 0) is spherically symmetric and is taken as positive 
definite (see the figure below). 

 
For p atomic orbitals, we work with the Cartesian representation, such that the three orthogonal p 
orbitals are along the x, y and z axes [4-6] (see the figure below), 
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where r = x
2
+ y

2
+ z

2 . 
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HOPPING INTEGRALS 
 As a specific example, we consider a collection of silicon atoms, such as a silicon cluster.  The 
electron configuration in a free silicon atom is 1s22s22p63s23p2, and thus there are four valance electrons 
(shown in bold) in the outer shell, which mainly contribute to the chemical bonding.  We will represent 
the electronic structures of silicon clusters as a linear combination of four atomic orbitals per atom—one 
3s orbital and three 3p orbitals, 3px, 3py and 3pz, centered around each silicon atom, 

 ψ

r( ) =

i=1

N

∑ c
iαψα


r −

r
i( )

α∈{s,px ,py ,pz}

∑ . (5) 

(The effects of inner shell electrons can be effectively included using pseudopotential methods [7].) 
 To solve the eigenvalue problem, Eq. (1), we need the Hamiltonian matrix elements between these 
atomic orbitals at different interatomic distances.  In tight-binding methods, these so called hopping 
integrals are fitted as analytic functions of the interatomic distance, r.  For the sp-bonding, there are only 
four nonzero hopping integrals as shown in the figure below, in which σ and π bondings are defined 
such that the axis of the involved p orbitals are parallel and normal to the interatomic vector, 
respectively. 

 
 In this lecture, we adopt the tight-binding model of silicon by Kwon, et al. [8], in which the hopping 
integrals are fitted as 
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whereas the diagonal Hamiltonian elements on each atom are given by 

 
s H s = E

s

p
x
H p

x
= p

y
H p

y
= p

z
H p

z
= E

p






. (7) 

In Eq. (6), p1d and p1n denote the p orbitals parallel and normal to the bonding axis, respectively, centered 
at the first atom.  The parameters in Eqs. (6) and (7) are listed in the tables below. 
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r0 (Å) n Es (eV) Ep (eV) 
2.360352 2 -5.25 1.20 

 

λ ssσ spσ ppσ ppπ 
hλ(r0) (eV) 
nλ 
rλ (Å) 

-2.038 
9.5 
3.4 

1.745 
8.5 
3.55 

2.75 
7.5 
3.7 

-1.075 
7.5 
3.7 

 

 To convert the values into atomic units, divide all the lengths by the Bohr radius, aB = 0.5291772083 
Å, and all the energies by the Hartree energy, EH = 27.2113834 eV. 

§2.  Projection of Hopping Integrals 
 In the tight-binding model presented in the previous section, the electronic wave functions are 
expanded in terms of the p orbitals along the Cartesian x, y and z axis, whereas the hopping integrals are 
parameterized for p orbitals that are parallel or normal to the bonding directions.  To construct the 
Hamiltonian matrix elements, we need to decompose the Cartesian p orbitals into the bond-parallel and 
bond-normal p orbitals. 
PROJECTION OF S-P INTEGRALS 

 Consider the Hamiltonian matrix element, 〈s|H|pα〉, between the s orbital, |s〉, on one atom and one of 
the p orbitals, |pα〉 (α = x, y, z), on another atom.  Let d̂  be the unit vector along the bond from the first 
atom to the second.  In the figure below, â  is the unit vector along one of the Cartesian (x, y or z) axes. 

 
 We first decompose the p orbital along â  into two p orbitals that are parallel and normal to d̂ , 
respectively (see the figure below): 

 pa = â• d̂ pd + â• n̂ pn , (8) 

where n̂  is the unit vector normal to d̂  within the plane spanned by d̂  and â . 
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 Let θ be the angle between vectors d̂  and â .  Consider an arbitrary point in the 3D space, whose 
polar angle from the d̂  axis is χ.  On this point, the value of the p basis function around the â  axis is 
given by 

 

pa = cos χ −θ( )
= cosχ cosθ + sin χ sinθ
= cosθ pd + sinθ pn

= â• d̂ pd + cos π
2
−θ

"

#
$

%

&
' pn

= â• d̂ pd + â• n̂ pn

, 

where we have used a trigonometric addition theorem to derive the second line from the first. // 

 The Hamiltonian matrix element is then given by 

 s H pa = s H â• d̂ pd + â• n̂ pn( ) = â• d̂( )hspσ r( ) , (9) 

where hspσ (r)  is the Hamiltonian matrix element in Eq. (6) evaluated at atomic distance r.  Note the 
overlap between the |s〉 and |pn〉 orbitals is zero by symmetry.  To obtain explicit formula in terms of px, 
py and pz centered around the first second atom, let us introduce the directional cosines along the x, y 
and z axes as d̂ = (dx,dy,dz ) .  Then 
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. (10) 

In Eq. (10), the matrix elements between the p orbitals on the first atom and the s orbital on the second 
atom are obtained simply by inverting the direction of the bonding unit vector, d̂ , i.e., changing the 
signs of the directional cosines. 
PROJECTION OF P-P INTEGRALS 
 Consider two unit vectors â

1
 and â

2
, each of which is one of the Cartesian unit vectors, i.e., x̂ , ŷ  

and ẑ , along the x, y and z axes, respectively.  Let d̂  be the unit vector along the bond between two 
atoms.   
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 First, the p orbital along â
1
 can be decomposed into two p orbitals that are parallel and normal to d̂ , 

respectively, as we did in Eq. (8): 

 p
1
= â

1
• d̂ pd1 + â1 • n̂1 pn1 , (11) 

where n̂
1
 is the unit vector normal to d̂  within the plane spanned by d̂  and â

1
.  (We define the origins 

of pd1  and pn1  to be at the first atom.)  The p orbital along â
2

 is decomposed in a similar manner. 

 Now the Hamiltonian matrix element between |p1〉 and |p2〉 is given by 

 
p
1
H p

2
= â

1
• d̂ pd1 + â1 • n̂1 pn1( )H â

2
• d̂ pd2 + â

2
• n̂

2
pn2( )

= â
1
• d̂( ) â2 • d̂( ) pd1 H pd2 + â

1
• n̂

1
pn1( )H â

2
• n̂

2
p
n2( )

, (12) 

where we have used the fact that the matrix elements between orthogonal p orbitals are zero by 
symmetry.  Note that 

 pd1 H pd2 = hppσ r( ) , (13) 

and 

 

â
1
• n̂

1
p
n1( )H â

2
• n̂

2
p
n2( ) = â

1
• n̂

1( ) â2 • n̂2( ) pn1 H p
n2

= â
1
• n̂

1( ) â2 • n̂2( ) n̂1 • n̂2( )hppπ r( )
= â

1
• n̂

1( ) n̂1( )• â
2
• n̂

2( ) n̂2( )hppπ r( )

= â
1
− â

1
• d̂( ) d̂( )• â

2
− â

2
• d̂( ) d̂( )hppπ r( )

, (14) 

where we have used the relation, 

 â
1
• n̂

1( ) n̂1 = â1 − â
1
• d̂( ) d̂ , 

see the figure below. 

 
Substituting Eqs. (13) and (14) in Eq. (12), we obtain 

 p
1
H p

2
= â

1
• d̂( ) â2 • d̂( )hppσ r( )+ â

1
− â

1
• d̂( ) d̂( )• â

2
− â

2
• d̂( ) d̂( )hppπ r( ) , (15) 
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 To obtain explicit formula in terms of px, py and pz centered around the first and second atoms, let us 
introduce the directional cosines along the x, y and z axes as d̂ = (dx,dy,dz ) .  Then 
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, (16) 

where hppσ  is a short-hand notation for hppσ (r) . 

 In summary, the Hamiltonian matrix in the tight-binding model consists of 4×4 blocks, in which 
each atomic pair is assigned a block: 

 H = i

j





s
i
s
j

s
i
p
jx

s
i
p
jy

s
i
p
jz

p
ix
s
j

p
ix
p
jx

p
ix
p
jy

p
ix
p
jz

p
iy
s
j

p
iy
p
jx

p
iy
p
jy

p
iy
p
jz

p
iz
s
j

p
iz
p
jx

p
iz
p
jy

p
iz
p
jz































, (17) 

where the diagonal blocks (i = j) are diagonal, 

 

E
s

0 0 0

0 E
p

0 0

0 0 E
p

0

0 0 0 E
p

















, (18) 

and the off-diagonal blocks (i ≠ j) are given by 

 

hssσ dxhspσ dyhspσ dzhspσ

−dxhspσ dx
2hppσ + 1− dx

2( )hppπ dxdy hppσ − hppπ( ) dxdz hppσ − hppπ( )
−dyhspσ dydx hppσ − hppπ( ) dy

2hppσ + 1− dy
2( )hppπ dydz hppσ − hppπ( )

−dzhspσ dzdx hppσ − hppπ( ) dzdy hppσ − hppπ( ) dz
2hppσ + 1− dz

2( )hppπ
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. (19) 

 Though two atomic basis functions on different atoms are not exactly orthogonal, we will ignore 
their overlaps and treat the 4N-function basis set as an orthonormal basis set. 
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Appendix A—Hamiltonian Matrix 
Consider the energy eigenvalue problem, 

 H ψ = ε ψ . (A1) 

As shown in Eq. (5), we expand the wave function, ψ , in terms of atomic orbitals, 

 ψ =
i=1

N

∑ c
iα

α∈ s,px ,py ,pz{ }
∑ iα , (A2) 

where iα  is the α-th atomic eigenstates (α ∈ {s, px, py, pz}) of the i-th atom.  Substituting Eq. (A2) into 
Eq. (A1) and multiplying the both sides by ′i ′α , we obtain 

 c
iα

′i ′α H iα
iα

∑ = ε c
iα

′i ′α iα
iα

∑ . (A3) 

Using the orthonormality of the basis set, ′i ′α iα = δ
i ′iδα ′α , Eq. (A3) becomes 

 H ′i ′α ,iαciα
iα

∑ = εc ′i ′α , (A4) 

where the Hamiltonian matrix is defined as 

 H ′i ′α ,iα = ′i ′α H iα = d

rψ ′α

* 
r −

r′i( ) −

1

2
∇2

+V

r( )









ψα


r −

r
i( )∫ . (A5) 

In the 4N×4N matrix in Eq. (17), the indices i and α are combined as κ = 4(i - 1) + α, where i ∈ {1, 2, 
..., N} and α ∈ {1↔s, 2↔px, 3↔py, 4↔pz}.  With this indexing scheme, Eq. (A4) becomes an ordinary 
matrix eigenvalue problem, 

 H !κ κcκ
κ

∑ = εc !κ . (A6) 
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Appendix B—Trigonometric Addition Theorem 
In the proof of Eq. (8), we have used the trigonometric addition theorem, 

 cos χ −θ( ) = cosχ cosθ + sin χ sinθ , (B1) 

which may be derived from the following identity, 

 exp i(χ −θ )( ) = exp iχ( )exp −iθ( ) . (B2) 

The left-hand side of Eq. (B2) is 

 exp i(χ −θ )( ) = cos χ −θ( )+ isin χ −θ( ) , (B3) 

whereas its right-hand side is 

 
exp iχ( )exp −iθ( ) = cos χ( )+ isin χ( )"# $% cos θ( )− isin θ( )"# $%

= cos χ( )cos θ( )+ sin χ( )sin θ( )"# $%+ i sin χ( )cos θ( )− cos χ( )sin θ( )"# $%
. (B4) 

Comparison of the real parts of Eqs. (B3) and (B4) gives Eq. (B1). 
 


