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Monte Carlo Simulation of Stochastic Processes 
 
In this lecture, we discuss the MC method used to simulate stochastic natural and artificial processes. 
 
§1  Random Walks1 
 
We consider the simplest but most fundamental stochastic process, i.e., random walks in one dimension. 
DRUNKARD’S WALK PROBLEM 
 Consider a drunkard on a street in front of a bar, who starts walking at time t = 0.  At every time 
interval τ (say 1 second) the drunkard moves randomly either to the right or to the left by a step of l (say 
1 meter).  The position of the drunkard x along the street is a random variable. 

 
A MC simulation of the drunkard is implemented according to the following pseudocode. 
• Program diffuse.c 
 Initialize a random number sequence 
 for walker = 1 to N_walker 
   position = 0 
   for step = 1 to Max_step 
     if rand()2 > RAND_MAX/2 then 
       Increment position by 1 
     else 
       Decrement position by 1 
     endif 
   endfor step 
 endfor walker 

 
Figure.  An MC simulation result of a walking drunkard’s position for 500 steps. 

                                                
1 H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods, Part 2 (Addison-Wesley, Reading, MA, 
1988). 
2 The function rand() returns a random integer  with uniform distribution in the range between 0 and RAND_MAX. 
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PROBABILITY DISTRIBUTION 
 The drunkard’s position, x(t), at time t is a random variable, which follows the probability density 
function, P(x, t).  By generating many drunkards (with different random-number seeds), we can have a 
MC estimate of P(x, t).  The following graph shows a histogram of the drunkard’s position over 1,000 
samples at 100 and 500 steps.  Note that the initial probability density is P(x, 0) = δx,0, meaning that the 
drunkard is at the origin with probability 1.  As time progresses, the probability distribution becomes 
broader. 

 
Figure.  A histogram of the drunkard’s position for 1,000 random drunkards. 

 Let’s analyze the probability density of the drunkard’s position.  First consider the probability, Pn(x), 
that the drunkard is at position x at time nτ.  Suppose that the drunkard has walked to the right n→ times 
to the right and n← = n - n→ times to the left.  Then the drunkard’s position x is (n→ - n→)l.  There are 
many ways that the drunkard can reach the same position at the same time; the number of possible 
combinations is 

! 

n!

n"!n#!
, 

where n! is the factorial of n.  (There are n! combinations to arrange n distinct objects in a list.  However 
n→ objects are indistinguishable and therefore the number of combinations is reduced by a factor of n→!  
Due to a similar reason, the number must be further divided by n→!.)  Let’s assume that the drunkard 
walks to the right with probability, p, and to the left with probability, q = 1 - p.  Then each of the above 
path occurs with probability, pn→(1 - p)n←.  Consequently the probability that the drunkard is at position x 
= (n→ - n→)l at time nτ is given by 

Pn x = (n! " n# )l( ) =
n!

n!!n#!
p
n! (1" p)

n# . 

The mean value of x at time nτ is thus 

xn = Pn x = (n! " n# )l( )(n! " n# )l
n!=0

n

$

=
n!

n!!n#!
p
n! (1" p)n# (n! " n# )l

n!=0

n

$ .

 

Now recall the binomial identity, which we will use as a generating function for the binomial series, 
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n!

n!!n"!
p
n!q

n"

n!=0

n

# = (p+ q)
n . 

By differentiating both sides of the above identity by p, we obtain 

!

! p

n!

n!!n"!
p
n!q

n"

n!=0

n

# =
n!

n!!n"!
n!p

n!$1q
n"

n!=1

n

#

=
!

! p
(p+ q)

n
= n(p+ q)

n$1

 

By multiplying both sides by p, and noting the term n! = 0  is zero, 

n!

n!!n"!
n!p

n!q
n"

n!=0

n

# = np(p+ q)
n$1 . 

For q = 1 - p, we get 

n!

n!!n"!
n!p

n! (1# p)n"

n!=0

n

$ = np . 

Similarly, 

n!

n!!n"!
n"p

n! (1# p)n"

n!=0

n

$ = nq . 

Using the above two equalities in the expression for xn, 

xn =
n!

n!!n"!
p
n! (1# p)n" (n! # n" )l

n!=0

n

$ = n(p# q)l . 

If the drunkard walks to the right and left with equal probability, then p = q = 1/2 and xn = 0 as can be 
easily expected. 
 Now let’s consider the variance of xn. 

xn
2
=

n!

n!!n"!
p
n! (1# p)n" (n! # n" )l( )

2

n!=0

n

$

=
n!

n!!n"!
p
n! (1# p)n" n!

2 # 2n!n" + n"
2( )

n!=0

n

$ l
2
.

 

We can again make use of the binomial relation.  By differentiating both sides by p twice, 

n!

n!!n"!
n!
2
p
n!#2q

n"

n!=2

n

$ = n(n#1)(p+ q)n#2 +
n!

n!!n"!
n!p

n!#2q
n"

n!=2

n

$ . 

Multiplying both sides by p2, 
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n!

n!!n"!
n!
2
p
n!q

n"

n!=2

n

# = n(n$1)p2 (p+ q)n$2 +
n!

n!!n"!
n!p

n!q
n"

n!=2

n

#

%
n!

n!!n"!
n!
2
p
n!q

n"

n!=0

n

# $ npq n$1
= n(n$1)p2 (p+ q)n$2 +

n!

n!!n"!
n!p

n!q
n" $ npqn$1

n!=0

n

#

%
n!

n!!n"!
n!
2
p
n!q

n"

n!=0

n

# = n(n$1)p2 (p+ q)n$2 + np(p+ q)n$1

 

For p + q = 1, 

n!

n!!n"!
n!
2
p
n!q

n"

n!=0

n

# = n(n$1)p2 + np . 

Similarly, 

n!

n!!n"!
n"
2
p
n!q

n"

n!=0

n

# = n(n$1)q2 + nq . 

Now differentiate both sides of the binomial relation with respect to p and then by q, 

n!

n!!n"!
n!n"p

n!#1q
n"#1

n!=1

n#1

$ = n(n#1)(p+ q)n#2

%
n!

n!!n"!
n!n"p

n!q
n"

n!=1

n#1

$ = n(n#1)pq(p+ q)n#2

%
n!

n!!n"!
n!n"p

n!q
n"

n!=0

n

$ = n(n#1)pq(p+ q)n#2

 

For p + q = 1, 

n!

n!!n"!
n!n"p

n!q
n"

n!=0

n

# = n(n$1)pq . 

By combining the above results, 

xn
2
=

n!

n!!n"!
p
n!q

n" n!
2 # 2n!n" + n"

2( )
n!=0

n

$ l
2

= n(n#1)p2 + np# 2n(n#1)pq+ n(n#1)q2 + nq%& '(l
2

= n(n#1)(p# q)2 + n%& '(l
2

 

The variance is obtained as 

xn
2 ! xn

2
= n(n!1)(p! q)2 + n"# $%l

2 ! n(p! q)l[ ]
2

= 1! (p! q)2"# $%nl
2

= (p+ q)
2 ! (p! q)2"# $%nl

2

= 4pqnl
2
.

 

For p = q = 1/2, 
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Var[x
n
]= nl

2 . 

DIFFUSION LAW 
 The main result of the above analysis is the linear relation between the steps and the variance of the 
random walk (the latter is also called the mean square displacement).  The following graph confirms 
this linear relation.  This relation means that a drunkard cannot go far.  If he walks straight to the right, 
he can reach to the distance, nl, in n steps.  On the other hand, the drunkard can reach only, 
Std[x

n
]= nl , on average. 

 The time evolution of P(x, t) for the drunkard’s walk problem is typical of the so call diffusion 
processes.  Diffusion is characterized by a linear relation between the mean square displacement and 
time, 

!R(t)
2
= 2Dt . 

The above drunkard follows this general relation, since 

x(t = n! )2 = nl
2
= 2

l
2

2!

!

"
#

$

%
&t . 

The “diffusion constant” in this example is D = l2/2τ. 

 
Figure.  Variance of the drunkard’s position (1,000 samples.) 

CONTINUUM LIMIT—DIFFUSION EQUATION 
 Diffusion is central to many stochastic processes.  The probability density function, P(x, t), is often 
analyzed by partial differential equations, which is derived as follows.  We start from a recursive 
relation, 

P(x, t) =
1

2
P(x ! l, t !! )+

1

2
P(x + l, t !! ) , 

i.e., the probability density is obtained by adding two conditionally probabilities that he was: i) at one 
step left at the previous time and walked to the right with probability 1/2; and ii) at one step right at the 
previous time and walked to left with probability 1/2.  By subtracting P(x, t-τ) from both sides and 
dividing them by τ, 
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P(x, t)!P(x, t !! )

!
=
l
2

2!

P(x ! l, t !! )! 2P(x, t !! )+P(x + l, t !! )

l
2

. 

Let’s take the limit that τ → 0 and l → 0 with l2/2τ = D is finite.  The above equation then becomes 

!

!t
P(x, t) = D

! 2

!x2
P(x, t) . 

This parabolic equation is known as the diffusion equation. 
CENTRAL-LIMIT THEOREM 
 Now we will see a manifestation of a very important theorem in probability theory, namely the 
central-limit theorem.  Consider a sequence of random numbers, {yn | n = 1,2, ..., N}, which may follow 
an arbitrary probability density.  The sum of all the random variables, Y = (y1 + y2 + ... + yN), itself is a 
random variable.  The central-limit theorem states that this sum follows the normal (Gaussian) 
distribution for a large N. 
 The drunkard’s position is a special example of this theorem.  Let’s rewrite the binomial distribution 
as 

P
N
(x) =

N!

N + x

2

!

"
#

$

%
&!

N ' x

2

!

"
#

$

%
&!

p
(N+x )/2

q
(N'x )/2 , 

where x = (n! " n# ) .  For p = q = 1/2, 

P
N
(x) =

N!

N + x

2

!

"
#

$

%
&!

N ' x

2

!

"
#

$

%
&!

1

2

!

"
#
$

%
&

N

. 

For N → ∞, this distribution reduces to the normal distribution, 

lim
N!"

P
N
(x) = P(x) =

1

2!"
exp #

x
2

2" 2

$

%
&

'

(
) ,        (1) 

where ! = N . 

STIRLING’S FORMULA 
 The proof of the above limiting behavior requires the knowledge about the asymptotic behavior of 
factorials.  This is answered by the Stirling’s theorem,3 

N!= 2!NN+1/2
e
!N
1+

1

12N
+!

"

#
$

%

&
' . 

(Factorial is an extremely fast growing function of its argument!)  The proof of Stirling’s theorem 
exemplifies an interesting observation: Integer problems are hard, but approximate solutions to them are 
often easily obtained by expanding the solution space to the real or sometimes even to the complex 
numbers.  This is particularly true for asymptotic behaviors, since N is so large that the discrete unit, 1 
<< N, is negligible. 
! Let’s first define the gamma function, 
                                                
3 G. Arfken, Mathematical Methods for Physicists, 3rd Ed. (Academic Press, San Diego, 1985). 
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!(z) " e
#t
t
z#1
dt

0

$

% (z &C;Re z > 0) . 

The factorial n! is a special case of the gamma function where z is an integer.  To prove this, let’s recall 
a recursive relation for the gamma function, 

Γ(z+1) = zΓ(z), 
which is easily proven by integrating by part, 

f (x)g(x)[ ]
a

b
=

d

dx
f (x)g(x)[ ]dx =

a

b

! f (x) "g (x)dx +
a

b

! "f (x)g(x)dx
a

b

! , 

where f’(x) = df(x)/dx: 

!(z+1) = e
"t
t
z
dt

0

#

$ = "e"tt z%& '(
0

#
" "e"t( ) zt z"1 dt

0

#

$ = z!(z) . 

Also note that  

!(1) = e
"t
dt

0

#

$ = "e"t%& '(
0

#
=1 . 

Therefore, Γ(N+1) = NΓ(N) = N(N−1)Γ(N−1) = ... = N(N−1)...2Γ(1) = N!. 
Now let’s perform an asymptotic expansion of 

!(z+1) " e
#t
t
z
dt

0

$

% . 

To get a handle on this, you should first plot the integrand, f(t) = e−ttz, for a large z. 

 
Figure.  Integrand of the gamma function Γ(z) for z = 10. 

Note that the most significant contribution to the integral comes from the maximum of f(t), which is 
located by df / dt = e!tt z!1(!t + z) = 0 , as t = z.  As we increase z, you will notice that the distribution of 
this function becomes sharper and sharper around its peak.  Our strategy is thus to expand the integrand 
around its maximum.  Since everything occurs near t ~ z (very big), let’s scale the integration variable as 
t = zs, so that the main contribution to the integral comes from s ~ 1. 

!(z+1) = e
"zs (zs)z

0

#

$ zds = z
z+1

e
"zs exp z ln s( )

0

#

$ ds = z
z+1 exp z(ln s" s)( )

0

#

$ ds . 

Now the function, g(s) = lns − s, is peaked at s = 1 (dg/ds = 1/s − 1 = 0 at s = 1). 
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Figure.  Function g(s) = lns − s. 

 
Figure.  Function exp(z(lns - s))/exp(-z). 

Note that the exponential function with a large prefactor in its argument acts as a discreminator.  It 
emphasizes the maximum value and makes the other regions less and less significant for larger 
prefactors (see the Figure above right). 
Since the most significant contribution comes from a very narrow range near s = 1 for a large z, let’s 
expand g(s) around s = 1.  Note that g′(s) = 1/s − 1, g′′(s) = −1/s2, ..., so that g(1) = −1, g′(1) = 0, g′′(1) = 
-1,...  The Taylor expansion of g(s) around s = 1 is thus, 

g(s) = g(1)+ !g (1)(s"1)+
1

2
!!g (1)(s"1)

2
+!

= "1"
1

2
(s"1)

2
+!.

 

Substituting this expansion in the integrand, we obtain 

!(z+1) = zz+1 dsexp z "1"
1

2
(s"1)2 +!

#

$%
&

'(
)

*
+

,

-
.

0

/

0

= z
z+1
e
"z

dsexp "
z

2
(s"1)2 +!

)

*
+

,

-
.

0

/

0

1 zz+1e"z dsexp "
z

2
(s"1)2

)

*
+

,

-
.

"/

/

0

= z
z+1
e
"z 2

z
duexp "u2( )

"/

/

0

= 2! zz+1/2e"z

 

Here we have changed the variable to u = z 2(s!1) , and used the fact that the function is so 
concentrated around s = 1 that changing the lower limit of the integration range from −1 to −∞ does not 
affect the result.  (We have only derived the leading term in the Stirling’s formula.  The other terms can 
be obtained by keeping subsequent terms in the above Taylor expansion.) // 
 

PROOF OF EQUATION 1 
 By substituting the leading term of the Stirling’s expansion into the binomial probability density, 
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N!

N + x

2

!

"
#

$

%
&!

N ' x

2

!

"
#

$

%
&!

1

2

!

"
#
$

%
&

N

=
1

2!

N
N+1/2

N + x

2

!

"
#

$

%
&

N+x

2
+
1

2 N ' x

2

!

"
#

$

%
&

N'x

2
+
1

2

exp 'N +
N + x

2
+
N ' x

2

!

"
#

$

%
&
1

2

!

"
#
$

%
&

N

=
1

2!

N

2

!

"
#

$

%
&

N

N + x

2

!

"
#

$

%
&

N+x

2 N ' x

2

!

"
#

$

%
&

N'x

2

4N

(N + x)(N ' x)

!

"
#

$

%
&

1/2

=
2

!N

1

1+
x

N

!

"
#

$

%
&

N+x

2

1'
x

N

!

"
#

$

%
&

N'x

2

 

Consider 

ln 1+
x

N

!

"
#

$

%
&

N+x

2

1'
x

N

!

"
#

$

%
&

N'x

2

(

)

*
*

+

,

-
-
=
N

2
1+

x

N

!

"
#

$

%
&ln 1+

x

N

!

"
#

$

%
&+

N

2
1'

x

N

!

"
#

$

%
&ln 1'

x

N

!

"
#

$

%
& . 

We know that the standard deviation of this distribution is 

! 

N , so that x << N in the range where PN(x) 
has any significant value.  By expanding the above expression in x/N and retaining only the leading 
term, we get 

ln 1+
x

N

!

"
#

$

%
&

N+x

2

1'
x

N

!

"
#

$

%
&

N'x

2

(

)

*
*

+

,

-
-
=
N

2
1+

x

N

!

"
#

$

%
&
x

N
'
1

2

x

N

!

"
#

$

%
&

2!

"
##

$

%
&&+

N

2
1'

x

N

!

"
#

$

%
& '

x

N
'
1

2

x

N

!

"
#

$

%
&

2!

"
##

$

%
&&

=
x

2
1+

x

N

!

"
#

$

%
& 1'

1

2

x

N

!

"
#

$

%
&'

x

2
1'

x

N

!

"
#

$

%
& 1+

1

2

x

N

!

"
#

$

%
&

=
x

2
1+
1

2

x

N

!

"
#

$

%
&'

x

2
1'
1

2

x

N

!

"
#

$

%
&=

x
2

2N

 

where we have used the expansion,  

ln(x) = x !
1

2
x
2
+
1

3
x
3
+! . 

Therefore 
N!

N + x

2

!

"
#

$

%
&!

N ' x

2

!

"
#

$

%
&!

1

2

!

"
#
$

%
&

N

=
2

!N

1

1+
x

N

!

"
#

$

%
&

N+x

2

1'
x

N

!

"
#

$

%
&

N'x

2

=
2

!N
exp '

x
2

2N

!

"
#

$

%
&

=
2

!

1

"
exp '

x
2

2" 2

!

"
#

$

%
&

 

where ! = N . // 
 

(Normalization) 
 Note that the binomial distribution function satisfies the following normalization relation, 
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P
N
(x)

n!=0

N

" =
N!

N + x

2

#

$
%

&

'
(!

N ) x

2

#

$
%

&

'
(!

1

2

#

$
%
&

'
(

N

=1 . 

For n→ = 0,1,..., x = n→ - n← = 2n→ - N = -N, -N+2, ...  Therefore x values are distributed uniformly with 
stride 2.  Now let’s define a continuous probability density function, P(x), such that the number of 
sample points generated by Ntry trials in the range [x, x+Δx] is NtryP(x)Δx.   

N
try
!xP(x) = N

try

!x

2

N!

N + x

2

"

#
$

%

&
'!

N ( x

2

"

#
$

%

&
'!

1

2

"

#
$
%

&
'

N

. 

The factor Δx/2 is the number of possible x values in the range.  Therefore, 

P(x) = lim
N!"

1

2

N!

N + x

2

#

$
%

&

'
(!

N ) x

2

#

$
%

&

'
(!

1

2

#

$
%
&

'
(

N

=
1

2!"
exp )

x
2

2" 2

#

$
%

&

'
( , 

where ! = N . 

 
§2  Random Walks in Finance4 
 
GEOMETRIC BROWNIAN MOTION 
 Stock price, S(t), as a function of time t, is a random variable.  Time evolution of a stock price is 
often idealized as a diffusion process, 

dS = µSdt +!S" dt , 

where µ is the drift term (or the expected rate of return on the stock), σ is the volatility of the stock 
price, and ε is a random variable following the normal distribution with unit variance. 
 Suppose the second, stochastic term is zero, then the solution to the above differential equation is 

S(t) = S0 exp µt( ) . 

(Confirm that the above solution satisfies dS / dt = µS .)  Therefore the first term in right-hand side of the 
differential equation describes the stock-price growth at a compounded rate of µ per unit time. 
 Suppose, on the other hand, the first term is zero (no growth).  Let’s define U = ln S so that dU = 
dS/S.  Then the above differential equation leads to 

dU =!" dt . 
Or 

U(t)!U(0) =! "t "
i

i=1

N

# . 

                                                
4 J. C. Hull, Options, Futures, and Other Derivatives, 3rd Ed. (Prentice Hall, 1997); E. Barucci, L. Landi, and U. Cherubini, 
IEEE Comput. Sci. & Eng., Spring 1996, p. 66. 
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According to the central-limit theorem, the sum over N random variables, E = Σ εi, follows the normal 
distribution with variance N.  By defining t = NΔt,  

U(t)!U(0) =! t" . 

Namely the logarithm of U(t) is a diffusion process whose variance scales as t. (σ is the diffusion 
constant.)  S(t), whose logarithm follows the normal distribution, is said to follow the log-normal 
distribution. 

 
Figure.  Log-normal distribution. 

MC SIMULATION OF STOCK PRICE 
 An MC simulation of a stock price is performed by interpreting the time-evolution equation to be 
discrete (dt is small but finite).  At each MC step, stock-price increment relative to its current price, 
dS/S, follows a normal distribution which has a mean value, µdt, and standard deviation ! dt  (or 
variance σ2dt).  Or you can generate the increment as 

dS

S
= µdt +! dt" , 

where ξ is a random number which follows a normal distribution with variance 1 (you can use the Box-
Muller algorithm to generate ξ). 
BLACK-SCHOLES ANALYSIS5 
 We will not get into the details of the Black-Scholes analysis of an option price.  However, let’s look 
briefly at what it does.  It determines the price of options. 
 A (European6) call7 option gives its holder the right to buy the underlying asset at a certain date 
(called the expiration date or maturity) for a certain price (called the strike price).  Note that an option 
gives the holder the right to do something but that the holder does not have to exercise this right.  
Consider an investor who buys an European call option on IBM stock with a strike price of $100.  
Suppose that the current stock price is $98, the expiration date is in two months, and the option price is 
$5.  If the stock price on the expiration day is less than $100, he or she will clearly not exercise.  (There 
is no point in buying for $100 a stock that has a market value of less than $100.)  In this circumstance 
                                                
5 F. Black and M. Scholes, “The pricing of options and corporate liabilities,” Journal of Political Economy 81, 637 (1973).  
See also http://www.nobel.se/economics/laureates/1997, 1997 Nobel Economy Prize homepage. 
6 An option that can be exercised only at the expiration date.  In contrast, an American option can be exercised at any time up 
to the expiration date. 
7 Put option, on the other hand, is the right to sell. 
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the investor loses the entire initial investment of $5.  Suppose, for example, the stock price is $115.  By 
exercising the option, the investor buys a stock for $100.  If the share is sold immediately, he or she 
makes a gain of $15.  The net profit is $10 by subtracting the initial investment from the gain. 

 
Figure.  Profit from buying a call option: option price is $5, strike price is $100. 

 The Black-Scholes analysis determines the price of an option based on the assumptions: 
i) The underlying stock price follows the simple diffusive equation in the previous page; 
ii) In a competitive market, there are no risk-less arbitrage8 opportunities; 
iii) The risk-free rate of interest, r, is constant and the same for all risk-free investments. 

The main observation is that the option price, which is a function of the underlying stock price, itself a 
stochastic process which depends on the same random variable, ε.  By constructing a portfolio that 
contains a right combination of the option and the stock, we can eliminate the random contribution to the 
growth rate of the portfolio.  From the no arbitrage principle above, the growth rate of such a risk-less 
portfolio must be r.  The resulting equation gives a partial differential equation that must be followed by 
the price, f, of the call option,  

! f

!t
+ rS

! f

!S
+
1

2
" 2
S
2 !

2
f

! 2S
= rf .9 

 

                                                
8 Buying/selling portfolios of financial assets in such a way as to make a profit in a risk-free manner. 
9 This equation is worth a Nobel prize! 
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PROBLEM—NORMAL DISTRIBUTION 

What is the standard deviation of the random number, ζ, that follow the normal probability density, 

P !( ) =
1

2!"
exp !

# 2

2" 2

"

#
$

%

&
' ? 

(Answer) 
Note that 

I !( ) = d" exp !
" 2

2! 2

"

#
$

%

&
'

!(

(

) = 2! dsexp !s2( )
!(

(

) = 2#! , 

where we have introduced a new variable, s, through ! = 2" s .  By differentiate both sides by σ,  

dI

d!
= d"

" 2

! 3
exp !

" 2

2! 2

"

#
$

%

&
'

!(

(

) = 2# . 

Or 

d!

2"#
! 2 exp !

! 2

2# 2

"

#
$

%

&
'

!(

(

) = ! 2 =# 2 . 

From the symmetry, the average value, 〈ζ〉 = 0, and therefore the variance of ζ is ! 2 ! !
2

=" 2  and 
the standard deviation is σ. 
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APPENDIX A—DERIVATION OF THE BLACK-SCHOLES EQUATION 
Let us assume that the stock price, S, is the geometric diffusion process as described in the lecture, 

 dS = µSdt +!S" dt , (A1) 

Suppose that f is the price of a call option contingent on S.  Ito’s lemma (K. Ito, 1951) states that the 
time change in f during dt is given by 

 df =
! f

!S
µS +

! f

!t
+
1

2

! 2 f

!S2
" 2
S
2

!

"
#

$

%
&dt +

! f

!S
"S# dt . (A2) 

! Equation (A2) is understood as the Taylor expansion as follows: 

 

f (S + dS, t + dt)! f (S, t)

=
! f

!t
dt +

! f

!S
dS +

1

2

! 2 f

!S2
dS( )

2
+!

=
! f

!t
dt +

! f

!S
µSdt +!S! dt( )+

1

2

! 2 f

!S2
µSdt +!S! dt( )

2

+!

=
! f

!t
dt +

! f

!S
µSdt +!S! dt( )+

1

2

! 2 f

!S2
µ 2S2dt2 + 2µ!S2!dt dt +! 2

S
2! 2dt( )+!

=
! f

!S
!S!

"

#
$

%

&
'(dt)

1/2
+
! f

!t
+
! f

!S
µS +

1

2

! 2 f

!S2
! 2
S
2! 2

"

#
$

%

&
'dt +O (dt)

3/2( )

. (A3) 

In the above derivation, we have arranged the terms in increasing power of (dt)1/2 and retained the terms 
up to dt.  Now consider the random variable,  

 1

2

! 2 f

!S2
" 2
S
2# 2dt , (A4) 

which appears in the last term of the order dt.  Since ε follows the normal distribution of variance 1 (i.e., 
〈ε2〉 = 1), its expectation value is  

 1

2

! 2 f

!S2
" 2
S
2
dt . (A5) 

Though the random variable (A4) fluctuates around the mean value (A5), the effect of the fluctuation on 
the growth of f is higher order in dt and can be neglected.  Consequently, we can regard this term as 
deterministic and hence 

 f (S + dS, t + dt)! f (S, t) =
! f

!S
"S#

"

#
$

%

&
'(dt)

1/2
+
! f

!t
+
! f

!S
µS +

1

2

! 2 f

!S2
" 2
S
2

"

#
$

%

&
'dt +O (dt)

3/2( ) , (A6) 

which proves Eq. (A2).// 

Now let us define a portfolio, which is a linear combination of S and f as follows: 

 ! = " f +
! f

!S
S . (A7) 

Then its time change during dt is given by 
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d! = "df +
! f

!S
dS

= "
! f

!S
µS +

! f

!t
+
1

2

! 2 f

!S2
" 2
S
2

#

$
%

&

'
(dt "

! f

!S
"S# dt +

! f

!S
µSdt +"S# dt( )

= "
! f

!t
+
1

2

! 2 f

!S2
" 2
S
2

#

$
%

&

'
(dt

. (A8) 

Because the random terms arising from df and dS cancel each other, the change dΠ is deterministic (i.e., 
risk-free).  From the assumption, the growth rate of such a portfolio is equal to the risk-free interest rate, 
r.  Therefore, 

 d! = "
! f

!t
+
1

2

! 2 f

!S2
" 2
S
2

#

$
%

&

'
(dt = r!dt = r f "

! f

!S
S

#

$
%

&

'
(dt . (A9) 

Dividing Eq. (A9) by dt and rearranging the terms, we obtain the Black-Scholes equation, 

 ! f

!t
+ r

! f

!S
S +

1

2

! 2 f

!S2
" 2
S
2
= rf . (A10) 

 



16 

APPENDIX B—ANALYTIC SOLUTION FOR THE FREE-SPACE DIFFUSION PROBLEM 
Consider the diffusion equation in one dimension, 

 !

!t
P x, t( ) = D

! 2

!x2
P x, t( ) . (B1) 

The formal solution of this equation is 

 P x, t( ) = exp tD
! 2

!x2

!

"
#

$

%
&P x, 0( ) . (B2) 

Now consider the initial condition at time t = 0 that x = 0 with 100% certainty: 

 P x, 0( ) = ! x, 0( ) =
dk

2!
exp ikx( )

!"

"

# . (B3) 

Substituting Eq. (B3) in (B2), 

 

P x, t( ) = exp tD
! 2

!x2

!

"
#

$

%
&

dk

2"
exp ikx( )

'(

(

)

=
dk

2!
exp 'Dtk2 + ixk( )

'(

(

)

=
dk

2!
exp 'Dt k '
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2Dt

!

"
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$
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&

2

+
x
2

4D
2
t
2

*

+
,
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-

.
/
/

!

"
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&
&'(

(
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x
2

4Dt

!

"
#
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%
&

dk
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ix
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"
#

$
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&
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"
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&&'(

(

)

= exp '
x
2

4Dt

!

"
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%
&

ds

2! Dt
exp 's2( )

'(

(

)

= exp '
x
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4Dt
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"
#

$

%
&

!

2! Dt

=
1

2!"
exp '

x
2

2" 2

!

"
#

$

%
&

, (B4) 

where 

 ! 2
= 2Dt . (B5) 

Delta Function 

Consider a box x ∈ [0, L] discretized on N mesh points with spacing Δx = L/N.  As shown in the chapter 
on quantum dynamics, any periodic function on these mesh points can be expanded with the 
orthonormal basis set, 

 1

N
exp ik

m
x( ) k

m
=
2!m

L
m = 0,…,N !1( )

"
#
$

%
&
'

, (B6) 

as 

 ! j = exp ikmx j( )
1

N
exp !ik

m
x
l( )!l

l=0

N!1

"
m=0

N!1

" . (B7) 
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Or 

 ! j =
1

N
exp ikm x j ! xl( )( )!l

m=0

N!1

"
l=0

N!1

" . (B8) 

For Δx → 0,  

 
! x

j( ) =
dx

!x0

L

"
1

N
exp ikm x j # xl( )( )! x

l( )
m=0

N#1

$

=
dx

L0

L

" exp ikm x j # xl( )( )! x
l( )

m=0

N#1

$
. (B9) 

This indicates, for L → ∞,  

 ! x j ! xl( ) =
1

L
exp ikm x j ! xl( )( )

m=0

N!1

" . (B10) 

Noting that there are k points with interval 2π/L,  

 

! x j ! xl( ) =
1

2!

2!

L
exp ikm x j ! xl( )( )

m=0

N!1

"

=
1

2!
#k exp ikm x j ! xl( )( )

m=0

N!1

"

$
1

2!
dk% exp ik x j ! xl( )( )

. (B11) 

 


