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Quantum Monte Carlo Simulation 
We use random walks to obtain the ground state (i.e., the eigenstate with the lowest energy) of a 
quantum system [1].  To understand this method, we substitute τ = it into the time-dependent 
Schrödinger equation (in one dimension) to obtain 

 ∂
∂τ

ψ(x,τ ) = −H
!
ψ(x,τ ) = !

2m
∂ 2

∂x2
ψ(x,τ )−V (x)

!
ψ(x,τ ) . (1) 

If we retain only the first term in the right-hand side, this is the diffusion equation we have 
studied in the lecture on “Monte Carlo Simulation on Stochastic Processes”.  We can thus 
interpret the wave function ψ(x,τ) as a probability density with a diffusion constant D =  /2m.  
We have learned that random walks can be used to find the solution to the diffusion equation.  
The second term, on the other hand, is a growth term, i.e., the population density of the random 
walkers at x grows or decays for a negative or positive potential V(x) value, respectively. 

The general solution to Eq. (1) is written in terms of the eigenstates, φn(x), and eigenenergies, En, 
of the Hamiltonian H.  (We sort the eigenenergies, En, in the ascending order, with E0 being the 
ground state energy.) 

 ψ(x,τ ) = exp(−Hτ / )ψ(x, 0) = c
n
φ
n
(x)exp(−E

n
τ / )

n

∑ , (2) 

where the weight of the initial wave function projected onto the n-th eigenstate is 

 c
n
= dxφ

n
(x)ψ(x, 0)∫ . (3) 

Consider the long-time limit of Eq. (2).  Noting that the ground state decays slowest among all 
the eigenstates, we obtain 

 lim
τ→∞

ψ(x,τ ) = c0φ0 (x)exp(−E0τ / ) . (4) 

Thus the histogram of random walkers will be proportional to the ground-state wave function, 
φ0(x), in the long-time limit. 

The only problem of the above procedure is that the population of walkers will decay to zero if 
E0 > 0 or explode to infinity if E0 < 0.  To avoid this problem, we will measure the energy from a 
reference energy, Vref, which is adjusted to achieve a stationary population of random walkers.  
As shown in Appendix, E0 can be determined from the relation, 

 E
0
= V =

V (x)ψ(x,τ )dx
−∞

∞

∫
ψ(x,τ )dx

−∞

∞

∫
, (5) 

or it can be estimated by finite sampling, 

 E
0
= V =

1

N
V (x

i
)

i=1

N

∑ , (6) 

where N is the number of random walkers and xi is the position of the i-th walker. 

Quantum Monte Carlo simulation discretizes imaginary time in unit of Δτ.  During one time step, 
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Δτ, each random walker moves either to the right or left by step length, ∆s, which is related to Δτ 
by (∆s)2 = 2DΔτ.  (Note that we have proven this relation in the lecture on “Monte Carlo 
Simulation of Stochastic Processes, when we derive the diffusion equation from random walks.  
The diffusion constant D = 1/2 in the atomic unit,   = m = 1.)  The reference potential can be 
estimated from the mean potential 〈V〉 and the change in the number of random walkers during 
Δτ as follows. 

 V
ref
= V −

N(τ +Δτ )− N(τ )

N(τ )Δτ
, (7) 

as shown in Appendix. 
This leads to a simple quantum Monte Carlo simulation algorithm shown below. 

(Quantum Monte Carlo Algorithm) 
1. Place N0 walkers at the initial set of positions xi. 

2. Compute the reference energy, Vref = Σi V(xi)/N0. 

3. For each walker, 

 a. Randomly move the walker to the right or left by a fixed step length ∆s. 

 b. Compute ΔV = V(x) − Vref and a random number r in the range [0, 1].  If ΔV > 0 and r < 
ΔVΔτ, then remove the walker.  If ΔV <0 and r < −ΔVΔτ, then add another walker at x.  
Otherwise, just leave the walker at x. 

4. Compute the mean potential energy (6) and the actual number of random walkers.  The new 
reference potential is given by Eq. (7).  The average 〈V〉 is an estimate of the ground state 
energy. 

5. Repeat steps 3−4 until the estimates of the ground state energy 〈V〉 have reached a steady 
state value with only random fluctuations.  Average 〈V〉 over many Monte Carlo steps to 
compute the ground state energy. 

The program, qmwalk.c, implements this algorithm for a harmonic potential, V(x) = x2/2, in the 
atomic unit.  Initially, the walkers are randomly distributed within a distance w0 of the origin.  
Input parameters are the desired number of walkers N0, the number of Monte Carlo steps per 
walker mcs, and the step length ds.  The program computes the current number of walkers N, the 
current estimate of the ground state energy, and the value of Vref.  Initial part of the samples is 
discarded in the averages to approximate equilibration. 

The following figure shows the time average of the mean potential 〈V〉 (calculated at the imcs-th 
Monte Carlo step as the accumulated sum of 〈V〉 over imcs steps, Esum, divided by imcs) and the 
estimate of Vref for N0 = 50, ds = 0.1, and mcs = 500. 
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Figure: Time average of the mean potential 〈V〉 (denoted as Esum/imcs) and the estimate of Vref as a function of 
quantum Monte Carlo steps, imsc. 

The following figure shows the histogram of the random walkers from the same simulation. 

 

Figure: Histograms of random walkers in quantum Monte Carlo simulations for mcs = 500 and 50,000, compared 
with the exact solution, ψ0 (x) = π

−1/4
exp(−x

2
/ 2) . 

Appendix: Derivation of Equations (5) and (7) 
Let us rewrite the imaginary-time Schrödinger equation (1), including the reference potential. 

 ∂
∂τ

ψ(x,τ ) = !
2m

∂ 2

∂x2
ψ(x,τ )−V (x)−Vref

!
ψ(x,τ )  (A1) 

By integrate this equation with respect to x, we obtain 

 

∂

∂τ
ψ(x,τ )dx

−∞

∞

∫ =


2m

∂

∂x
ψ(x,τ )






−∞

∞

−
V (x)


ψ(x,τ )dx +

−∞

∞

∫
V
ref


ψ(x,τ )dx

−∞

∞

∫

= −
V (x)


ψ(x,τ )dx +

−∞

∞

∫
V
ref


ψ(x,τ )dx

−∞

∞

∫
. (A2) 
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The kinetic-energy term vanishes, because the wave function and hence its derivative are 0 at x 
→ ±∞. 

Now note that, in the long-time limit, the wave function is 

 ψ(x,τ ) ≈ c0φ0 (x)exp −(E0 −Vref )τ / !( ) . (A3) 

By differentiating Eq. (A3) with respect to time, we obtain 

 ∂
∂τ

ψ(x,τ ) ≈ Vref −E0
!

ψ(x,τ ) . (A4) 

Substituting Eq. (A4) into (A2), we obtain 

 V
ref
−E

0


ψ(x,τ )dx

−∞

∞

∫ = −
V (x)


ψ(x,τ )dx +

−∞

∞

∫
V
ref


ψ(x,τ )dx

−∞

∞

∫ . (A5) 

The terms proportional to Vref cancel, and we finally obtain 

 E0
!

ψ(x,τ )dx
−∞

∞

∫ =
V (x)
!

ψ(x,τ )dx
−∞

∞

∫ , (A6) 

which is equivalent to Eq. (5). 

To derive Eq. (7), note that the number of random walkers N(τ) is written as 

 N(τ ) = ψ(x,τ )dx
−∞

∞

∫ . (A7) 

Equation (A2) can then be written as 

 d
dτ

N =
Vref − V
!

N(τ ) . (A8) 

Suppose we have estimated the current rate of change in N.  We will then set Vref in order to 
counter-balance this change so that a steady population is, i.e.,  

 −
d
dτ

N
current

=
Vref
new − V
!

N(τ ) , (A9) 

or 

 Vref
new

!
=
V
!
−
dN / dτ
N(τ )

. (A10) 

The time-discretized form of Eq. (A.10) gives Eq. (7). 
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