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Machine learning (ML) encompasses a broad range of algorithms and modeling tools used for a vast
array of data processing tasks, which has entered most scientific disciplines in recent years. This
article reviews in a selective way the recent research on the interface between machine learning and
the physical sciences. This includes conceptual developments in ML motivated by physical insights,
applications of machine learning techniques to several domains in physics, and cross fertilization
between the two fields. After giving a basic notion of machine learning methods and principles,
examples are described of how statistical physics is used to understand methods in ML. This review
then describes applications of ML methods in particle physics and cosmology, quantum many-body
physics, quantum computing, and chemical and material physics. Research and development into
novel computing architectures aimed at accelerating ML are also highlighted. Each of the sections
describe recent successes as well as domain-specific methodology and challenges.
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I. INTRODUCTION

The past decade has seen a prodigious rise of machine
learning (ML) based techniques, impacting many areas in
industry including autonomous driving, health care, finance,
manufacturing, energy harvesting, and more. ML is largely
perceived as one of the main disruptive technologies of our
ages, as much as computers have been in the 1980s and 1990s.
The general goal of ML is to recognize patterns in data, which
inform the way unseen problems are treated. For example, in a
highly complex system such as a self-driving car, vast
amounts of data coming from sensors have to be turned into
decisions of how to control the car by a computer that has
“learned” to recognize the pattern of “danger.”
The success of ML in recent times has been marked at first

by significant improvements on some existing technologies,
for example, in the field of image recognition. To a large
extent, these advances constituted the first demonstrations of
the impact that ML methods can have on specialized tasks.
More recently, applications traditionally inaccessible to auto-
mated software have been successfully enabled, in particular,
by deep learning technology. The demonstration of reinforce-
ment learning techniques in game playing, for example, has
had a deep impact on the perception that the whole field was
moving a step closer to what was expected from a general
artificial intelligence (AI).
In parallel to the rise of ML techniques in industrial

applications, scientists have increasingly become interested
in the potential of ML for fundamental research, and physics is
no exception. To some extent, this is not too surprising, since
both ML and physics share some of their methods as well as
goals. The two disciplines are both concerned about the
process of gathering and analyzing data to design models
that can predict the behavior of complex systems. However,
the fields prominently differ in the way their fundamental
goals are realized. On the one hand, physicists want to
understand the mechanisms of nature and are proud of using
their own knowledge, intelligence, and intuition to inform
their models. On the other hand, machine learning mostly does
the opposite: models are agnostic and the machine provides
the “intelligence” by extracting it from data. Although often
powerful, the resulting models are notoriously known to be as
opaque to our understanding as the data patterns themselves.
Machine learning tools in physics are therefore welcomed
enthusiastically by some, while being eyed with suspicion by
others. What is difficult to deny is that they produce surpris-
ingly good results in some cases.
In this review, we attempt to provide a coherent selected

account of the diverse intersections of ML with physics.
Specifically, we look at an ample spectrum of fields (ranging
from statistical and quantum physics to high energy and
cosmology), where ML recently made a prominent appear-
ance, and discuss potential applications and challenges of
“intelligent” data mining techniques in the different contexts.
We start this review with the field of statistical physics in
Sec. II, where the interaction with machine learning has a long
history, drawing on methods in physics to provide better
understanding of problems in machine learning. We then turn
the wheel in the other direction of using machine learning for
physics. Section III treats progress in the fields of high-energy
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physics and cosmology, Sec. IV reviews how ML ideas are
helping to understand the mysteries of many-body quantum
systems, Sec. V briefly explores the promises of machine
learning within quantum computations, and in Sec. VI we
highlight some of the amazing advances in computational
chemistry and materials design due to ML applications. In
Sec. VII we discuss some advances in instrumentation leading
potentially to hardware adapted to perform machine learning
tasks. We conclude with an outlook in Sec. VIII.

A. Concepts in machine learning

For the purpose of this review we briefly explain some
fundamental terms and concepts used in machine learning. For
further reading, we recommend a few resources, some of
which have been targeted especially for a physics audience.
For a historical overview of the development of the field we
recommend Schmidhuber (2014) and LeCun, Bengio, and
Hinton (2015). An excellent recent introduction to machine
learning for physicists is by Mehta et al. (2018), which
includes notebooks with practical demonstrations.1 Useful
textbooks written by machine learning researchers are
Christopher Bishop’s standard textbook (Bishop, 2006), as
well as the book by Goodfellow, Bengio, and Courville (2016)
which focuses on the theory and foundations of deep learning
and covers many aspects of current-day research. A variety of
online tutorials and lectures is useful to get a basic overview
and get started on the topic.
To learn about the theoretical progress made in statistical

physics of neural networks in the 1980s–1990s we recom-
mend the book Statistical Mechanics of Learning (Engel and
Van den Broeck, 2001). For learning details of the replica
method and its use in computer science, information theory,
and machine learning we recommend the book of Nishimori
(2001). For the more recent statistical physics methodology
the textbook of Mézard and Montanari is an excellent
reference (Mézard and Montanari, 2009).
To get a basic idea of the type of problems that machine

learning is able to tackle it is useful to defined three large
classes of learning problems: supervised learning, unsuper-
vised learning, and reinforcement learning. This will also
allow us to state the basic terminology, building basic equip-
ment to expose some of the basic tools of machine learning.

1. Supervised learning and neural networks

In supervised learning we are given a set of n samples of
data; let us denote one such sample Xμ ∈ Rp with
μ ¼ 1;…; n. To have something concrete in mind each Xμ

could be for instance a black-and-white photograph of an
animal, and p the number of pixels. For each sample Xμ we
are further given a label yμ ∈ Rd, most commonly d ¼ 1. The
label could encode for instance the species of the animal on
the photograph. The goal of supervised learning is to find a
function f so that when a new sample Xnew is presented
without its label, then the output of the function fðXnewÞ
approximates well the label. The dataset fXμ; yμgμ¼1;…;n is
called the training set. In order to test the resulting function f

one usually splits the available data samples into the training
set used to learn the function and a test set to evaluate the
performance.
Let us now describe the training procedure most commonly

used to find a suitable function f. Most commonly the function
is expressed in terms of a set of parameters, called weights
w ∈ Rk, leading to fw. One then constructs a so-called loss
function L½fwðXμÞ; yμ� for each sample μ, with the idea of this
loss being small when fwðXμÞ and yμ are close, and vice versa.
The average of the loss over the training set is then called the
empirical risk RðfwÞ ¼

P
n
μ¼1 L½fwðXμÞ; yμ�=n.

During the training procedure the weights w are being
adjusted in order to minimize the empirical risk. The training
error measures how well such a minimization is achieved. A
notion of error that is the most important is the generalization
error, related to the performance on predicting labels ynew for
data samples Xnew that were not seen in the training set. In
applications, it is common practice to build the test set by
randomly picking a fraction of the available data and perform
the training using the remaining fraction as a training set. We
note that in a part of the literature the generalization error is the
difference between the performance of the test set and the one
of the training set.
The algorithms most commonly used to minimize the

empirical risk function over the weights are based on gradient
descent with respect to the weights w. This means that the
weights are iteratively adjusted in the direction of the gradient
of the empirical risk

wtþ1 ¼ wt − γ∇wRðfwÞ: ð1Þ

The rate γ at which this is performed is called the learning rate.
A very commonly used and successful variant of the gradient
descent is the stochastic gradient descent (SGD) where the full
empirical risk function R is replaced by the contribution of
just a few of the samples. This subset of samples is called
minibatch and can be as small as a single sample. In physics
terms, the SGD algorithm is often compared to the Langevin
dynamics at finite temperature. Langevin dynamics at zero
temperature is the gradient descent. Positive temperature
introduces a thermal noise that is in certain ways similar to
the noise arising in SGD, but different in others. There aremany
variants of the SGD algorithm used in practice. The initial-
ization of the weights can change performance in practice, as
can the choice of the learning rate and a variety of so-called
regularization terms, such as weight decay that is penalizing
weights that tend to converge to large absolute values. The
choice of the right version of the algorithm is important. There
are many heuristic rules of thumb and certainly more theo-
retical insight into the question is desirable.
One typical example of a task in supervised learning is

classification, that is, when the labels yμ take values in a
discrete set and the so-called accuracy is then measured as the
fraction of times the learned function classifies the data point
correctly. Another example is regression where the goal is to
learn a real-valued function, and the accuracy is typically
measured in terms of the mean-squared error between the true
labels and their learned estimates. Other examples would be1See https://machine-learning-for-physicists.org/.
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sequence-to-sequence learning where both the input and the
label are vectors of dimension larger than 1.
There are many methods of supervised learning and many

variants of each. One of the most basic supervised learning
methods is the widely known and used linear regression,
where the function fwðXÞ is parametrized in the form
fwðXμÞ ¼ Xμw, with w ∈ Rp. When the data live in high-
dimensional space and the number of samples is not much
larger than the dimension, it is indispensable to use a
regularized form of linear regression called ridge regression
or Tikhonov regularization. The ridge regression is formally
equivalent to assuming that the weights w have a Gaussian
prior. A generalized form of linear regression, with para-
metrization fwðXμÞ ¼ gðXμwÞ, where g is some output chan-
nel function, is also often used and its properties are described
in Sec. II.D.1. Another popular way of regularization is based
on separating the examples in a classification task so that the
separate categories are divided by a clear gap that is as wide as
possible. This idea stands behind the definition of the so-
called support vector machine method.
A rather powerful nonparametric generalization of the ridge

regression is the kernel ridge regression. Kernel ridge regres-
sion is closely related to Gaussian process regression. The
support vector machine method is often combined with a
kernel method and as such is still the state-of-the-art method in
many applications, especially when the number of available
samples is not very large.
Another classical supervised learning method is based on

so-called decision trees. The decision tree is used to go from
observations about a data sample (represented in the branches)
to conclusions about the item’s target value (represented in the
leaves). The best known application of decision trees in
physical science is in data analysis of particle accelerators,
as discussed in Sec. III.B.
The supervised learning method that stands behind the

machine learning revolution of the past decade is multilayer
feed-forward neural networks (FFNN), also sometimes
called multilayer perceptrons. This is also a relevant method
for the purpose of this review and we describe it briefly here.
In L-layer fully connected neural networks the function
fwðXμÞ is parametrized as follows:

fwðXμÞ ¼ gðLÞðWðLÞ � � � gð2ÞðWð2Þgð1ÞðWð1ÞXμÞÞÞ; ð2Þ

where w ¼ fWð1Þ;…;WðLÞgi¼1;…;L, and WðiÞ ∈ Rri×ri−1 with
r0 ¼ p and rL ¼ d are the matrices of weights, and ri for
1 ≤ i ≤ L − 1 is called the width of the ith hidden layer. The
functions gðiÞ, 1 ≤ i ≤ L, are the so-called activation functions
and act componentwise on vectors. We note that the input in
the activation functions is often slightly more generic affine
transforms of the output of the previous layer than simply
matrix multiplications, including, e.g., biases. The number of
layers L is called the network’s depth. Neural networks with
depth larger than some small integer are called deep neural
networks. Subsequently machine learning based on deep
neural networks is called deep learning.
The theory of neural networks tells us that without hidden

layers (L ¼ 1, corresponding to the generalized linear regres-
sion) the set of functions that can be approximated this way is

limited (Minsky and Papert, 1969). On the other hand, already
with one hidden layer L ¼ 2 that is wide enough, i.e., r1 large
enough, and where the function gð1Þ is nonlinear, a very
general class of functions can be well approximated in
principle (Cybenko, 1989). These theories, however, do not
tell us what is the optimal set of parameters (the activation
functions, the widths of the layers, and the depth) in order for
the learning of Wð1Þ;…;WðLÞ to be tractable efficiently. We
know from empirical success of the past decade that many
tasks of interest are tractable with a deep neural network using
the gradient descent or the SGD algorithms. In deep neural
networks the derivatives with respect to the weights are
computed using the chain rule leading to the celebrated
back-propagation algorithm that takes care of efficiently
scheduling the operations required to compute all the gra-
dients (Goodfellow, Bengio, and Courville, 2016).
Important and powerful variants of deep feed-forward

neural networks are the so-called convolutional neural net-
works (Goodfellow, Bengio, and Courville, 2016), where the
input into each of the hidden units is obtained via a filter
applied to a small part of the input space. The filter is then
shifted to different positions corresponding to different hidden
units. Convolutional neural networks implement invariance to
translation and are, in particular, suitable for analysis of
images. Compared to the fully connected neural networks
each layer of the convolutional neural network has a much
smaller number of parameters, which is in practice advanta-
geous for the learning algorithms. There are many types and
variances of convolutional neural networks. Among them we
mention that the residual neural networks (ResNets) use
shortcuts to jump over some layers.
Next to feed-forward neural networks are the so-called

recurrent neural networks (RNNs) in which the output of units
feeds back at the input in the next time step. In RNNs the
result is thus given by the set of weights, and also by the whole
temporal sequence of states. Because of their intrinsically
dynamical nature, RNNs are particularly suitable for learning
for temporal datasets, such as speech, language, and time
series. Again there are many types and variants on RNNs, but
the ones that caused the most excitement in the past decade are
arguably the long short-term memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997). LSTM networks and
their deep variants are the state of the art in tasks such as
speech processing, music compositions, and natural language
processing.

2. Unsupervised learning and generative modeling

Unsupervised learning is a class of learning problems where
input data are obtained as in supervised learning, but no labels
are available. The goal of learning here is to recover some
underlying, and possibly nontrivial, structure in the dataset. A
typical example of unsupervised learning is data clustering
where data points are assigned into groups in such a way that
every group has some common properties.
In unsupervised learning, one often seeks a probability

distribution that generates samples that are statistically similar
to the observed data samples; this is often referred to as
generative modeling. In some cases this probability distribu-
tion is written in an explicit form and explicitly or implicitly
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parametrized. Generative models internally contain latent
variables as the source of randomness. When the number
of latent variables is much smaller than the dimensionality of
the data we speak of dimensionality reduction. One path
toward unsupervised learning is to search values of the latent
variables that maximize the likelihood of the observed data.
In a range of applications the likelihood associated with the

observed data is not known or computing it is itself intractable.
In such cases, some of the generative models discussed later
offer on alternative likelihood-free path. In Sec. III.D we also
discuss the so-called ABC method that is a type of likelihood-
free inference and turns out to be useful in many contexts
arising in physical sciences.
Basic methods of unsupervised learning include principal

component analysis and its variants. We will cover some
theoretical insight into these methods that were obtained using
physics in Sec. II.C.1. Physically very appealing methods for
unsupervised learning are the so-called Boltzmann machines
(BM). A BM is basically an inverse Ising model where the
data samples are seen as samples from a Boltzmann distri-
bution of a pairwise interacting Ising model. The goal is to
learn the values of the interactions and magnetic fields so that
the likelihood (probability in the Boltzmann measure) of the
observed data is large. A restricted Boltzmann machine
(RBM) is a particular case of BM where two kinds of
variables—visible units, that see the input data, and hidden
units—interact through effective couplings. The interactions
are in this case between only visible and hidden units and are
again adjusted in order for the likelihood of the observed data
to be large. Given the appealing interpretation in terms of
physical models, applications of BMs and RBMs are wide-
spread in several physics domains, as discussed in Sec. IV.A.
An interesting idea to perform unsupervised learning yet be

able to use all the methods and algorithms developed for
supervised learning is autoencoders. An autoencoder is a feed-
forward neural network that has the input data on the input,
and also on the output. It aims to reproduce the data while
typically going through a bottleneck in the sense that some of
the intermediate layers have very small width compared to the
dimensionality of the data. The idea is then that the autoen-
coder is aiming to find a succinct representation of the data
that still keeps the salient features of each of the samples.
Variational autoencoders (VAEs) (Kingma and Welling, 2013;
Rezende, Mohamed, and Wierstra, 2014) combine variational
inference and autoencoders to provide a deep generative
model for the data, which can be trained in an unsupervised
fashion.
A further approach to unsupervised learning worth men-

tioning here is adversarial generative networks (GANs)
(Goodfellow et al., 2014). GANs have attracted substantial
attention in the past years and constitute another fruitful way
to take advantage of the progress made for supervised learning
can be directly used to advance also unsupervised learning.
GANs typical use two feed-forward neural networks, one
called the generator and the other called the discriminator. The
generator network is used to generate output from random
input and is designed so that the output looks like the observed
samples. The discriminator network is used to discriminate
between true data samples and samples generated by the
generator network. The discriminator is aiming at the best

possible accuracy in this classification task, whereas the
generator network is adjusted to make the accuracy of the
discriminator the smallest possible. GANs currently are the
state-of-the art system for many applications in image
processing.
Other interesting methods to model distributions include

normalizing flows and autoregressive models with the advan-
tage of having tractable likelihood so that they can be trained
via maximum likelihood (Larochelle and Murray, 2011; Uria
et al., 2016; Papamakarios, Murray, and Pavlakou, 2017).
Hybrids between supervised learning and unsupervised

learning that are important in application include semisuper-
vised learning, where only some labels are available, or active
learning, where labels can be acquired for a selected set of data
points at a certain cost.

3. Reinforcement learning

Reinforcement learning (Sutton and Barto, 2018) is an area
of machine learning where an (artificial) agent takes actions in
an environment with the goal of maximizing a reward. The
action changes the state of the environment in some way and
the agent typically observes some information about the state
of the environment and the corresponding reward. Based on
those observations the agent decides on the next action,
refining the strategies of which action to choose in order to
maximize the resulting reward. This type of learning is
designed for cases where the only way to learn about the
properties of the environment is to interact with it. A key
concept in reinforcement learning is the trade-off between
exploitation of good strategies found so far and exploration in
order to find yet better strategies. We also note that reinforce-
ment learning is intimately related to the field of theory of
control, especially optimal control theory.
One of the main types of reinforcement learning applied in

many works is the so-calledQ learning.Q learning is based on
a value matrix Q that assigns the quality of a given action
when the environment is in a given state. This value function
Q is then iteratively refined. In recent advanced applications
of Q learning the set of states and action is so large that it is
impossible to even store the whole matrix Q. In those cases
deep feed-forward neural networks are used to represent the
function in a succinct manner. This gives rise to deep Q
learning.
The most well-known recent examples of the success of

reinforcement learning are the computer programs ALPHAGO

and ALPHAGO ZERO that for the first time in history reached
superhuman performance in the traditional board game of Go.
Another well-known use of reinforcement learning is the
locomotion of robots.

II. STATISTICAL PHYSICS

A. Historical note

While machine learning as a wide-spread tool for physics
research is a relatively new phenomenon, cross fertilization
between the two disciplines dates back much farther.
Especially statistical physicists made important contributions
to our theoretical understanding of learning (as the term
“statistical” unmistakably suggests).
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The connection between statistical mechanics and learning
theory started when statistical learning from examples took
over the logic and rule based AI, in the mid-1980s. Two
seminal papers marked this transformation, Valiant’s theory of
the learnable (Valiant, 1984), which opened the way for
rigorous statistical learning in AI, and Hopfield’s neural-
network model of associative memory (Hopfield, 1982),
which sparked the rich application of concepts from spin
glass theory to neural-network models. This was marked by
the memory capacity calculation of the Hopfield model by
Amit, Gutfreund, and Sompolinsky (1985) and the following
works. A much tighter application to learning models was
made by the seminal work of Elizabeth Gardner who applied
the replica trick (Gardner, 1987, 1988) to calculate volumes in
the weights space for simple feed-forward neural networks for
both supervised and unsupervised learning models.
Gardner’s method enabled one to explicitly calculate learn-

ing curves, i.e., the typical training and generalization errors as
a function of the number of training examples for specific one-
and two-layer neural networks (Györgyi and Tishby, 1990;
Sompolinsky, Tishby, and Seung, 1990; Seung, Sompolinsky,
and Tishby, 1992). These analytic statistical-physics calcula-
tions demonstrated that the learning dynamics can exhibit
much richer behavior than predicted by the worst-case dis-
tribution free provably approximately correct (PAC) bounds
(Valiant, 1984). In particular, learning can exhibit phase
transitions from poor to good generalization (Györgyi,
1990). These rich learning dynamics and curves can appear
in many machine learning problems, as was shown in various
models; see, e.g., the recent review by Zdeborová andKrzakala
(2016). The statistical physics of learning reached its peak in
the early 1990s, but had a rather minor influence on machine
learning practitioners and theorists, who were focused on
general input-distribution-independent generalization bounds,
characterized by, e.g., the Vapnik-Chervonenkis dimension or
the Rademacher complexity of hypothesis classes.

B. Theoretical puzzles in deep learning

Machine learning in the new millennium was marked by
much larger scale learning problems, in input or pattern sizes
which moved from hundreds to millions in dimensionality, in
training data sizes, and in the number of adjustable param-
eters. This was dramatically demonstrated by the return of
large scale feed-forward neural-network models, with many
more hidden layers, known as deep neural networks. These
deep neural networks were essentially the same feed-forward
convolution neural networks proposed already in the 1980s.
But somehow with the much larger scale input and big and
clean training data (and a few more tricks and hacks), these
networks started to beat the state of the art in many different
pattern recognitions and other machine learning competitions,
from roughly 2010 forward. The amazing performance of
deep learning, combined with the same old SGD error-back-
propagation algorithm, took everyone by surprise.
One of the puzzles is that the existing learning theory

(based on the worst-case PAC-like generalization bounds) is
unable to explain this phenomenal success. The existing
theory does not predict why deep networks, where the number
or dimension of adjustable parameters or weights is much

higher than the number of training samples, have good
generalization properties. This lack of theory was coined in
a classical article (Zhang et al., 2016), where they showed
numerically that state-of-the-art neural networks used for
classification are able to classify perfectly randomly generated
labels. In such a case the existing learning theory does not
provide any useful bound on the generalization error. Yet in
practice we observe good generalization of the same deep
neural networks when trained on the true labels.
Continuing with the open question, we do not have a good

understanding of which learning problems are computation-
ally tractable. This is particularly important since, from the
point of view of computational complexity theory, most of the
learning problems we encounter areNP hard in the worst case.
Another open question that is central to current deep learning
concerns the choice of hyperparameters and architectures that
is so far guided by a lot of trial and error combined with
impressive experience of the researchers. At the same time as
applications of ML are spreading into many domains, the field
calls for more systematic and theory-based approaches. In
current deep learning, basic questions such as what is the
minimal number of samples we need in order to be able to
learn a given task with a good precision is entirely open.
At the same time the current literature on deep learning is

flourishing with interesting numerical observations and experi-
ments that call for an explanation. For a physics audience the
situation could perhaps be compared to the state of the art in
fundamental small-scale physics just before quantum mechan-
ics was developed. The field is full of unexplained experiments
that are evading existing theoretical understanding. This clearly
is the perfect time for some physics ideas to study neural
networks to resurrect and revisit some of the current questions
and directions in machine learning.
Given the long history of works done on neural networks in

statistical physics, we do not aim at a complete review of this
direction of research. We focus in a selective way on recent
contributions originating in physics that, in our opinion, are
having an important impact on current theory of learning and
machine learning. For the purpose of this review we are also
putting aside a large volume of work done in statistical physics
on recurrent neural networks with biological applications
in mind.

C. Statistical physics of unsupervised learning

1. Contributions to understanding basic unsupervised methods

One of the most basic tools of unsupervised learning
across the sciences is methods based on low-rank decom-
position of the observed data matrix. Data clustering, principal
component analysis (PCA), independent component analysis
(ICA), matrix completion, and other methods are examples in
this class.
In mathematical language the low-rank matrix decompo-

sition problem is stated as follows: We observe n samples of
p-dimensional data xi ∈ Rp, i ¼ 1;…; n. Denoting X the
n × p matrix of data, the idea underlying low-rank decom-
position methods assumes that X (or some componentwise
function of X) can be written as a noisy version of a rank r
matrix where r ≪ p; r ≪ n, i.e., the rank is much lower than
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the dimensionality and the number of samples, therefore the
name low rank. A particularly challenging, yet relevant and
interesting regime is when the dimensionality p is comparable
to the number of samples n, and when the level of noise is
large in such a way that perfect estimation of the signal is not
possible. It turns out that the low-rank matrix estimation in the
high-dimensional noisy regime can be modeled as a statistical-
physics model of a spin glass with r-dimensional vector
variables and a special planted configuration to be found.
Concretely, this model can be defined in the teacher-student

scenario in which the teacher generates r-dimensional latent
variables u�i ∈ Rr, i ¼ 1;…; n, taken from a given probability
distribution Puðu�i Þ, and r-dimensional latent variables
v�j ∈ Rr, j ¼ 1;…; p, taken from a given probability distri-
bution Pvðv�i Þ. Then the teacher generates components of the
data matrix X from some given conditional probability
distribution PoutðXijju�i · v�jÞ. The goal of the student is then
to recover the latent variables u� and v� as precisely as
possible from the knowledge of X, and the distributions Pout,
Pu, and Pv.
Spin glass theory can be used to obtain a rather complete

understanding of this teacher-student model for low-rank
matrix estimation in the limit p; n → ∞, n=p ¼ α ¼ Ωð1Þ;
r ¼ Ωð1Þ. One can compute with the replica method what is
the information-theoretically best error in estimation of u�,
and v� the student can possibly achieve, as done decades ago
for some special choices of r, Pout, Pu, and Pv in Biehl and
Mietzner (1993), Barkai and Sompolinsky (1994), and Watkin
and Nadal (1994). The importance of these early works in
physics is acknowledged in some of the landmark papers on
the subject in statistics (Johnstone and Lu, 2009). However,
the lack of mathematical rigor and limited understanding of
algorithmic tractability caused the impact of these works in
machine learning and statistics to remain limited.
A resurrection of interest in the statistical-physics approach

to low-rank matrix decompositions came with the study of
the stochastic block model for detection of clusters or
communities in sparse networks. The problem of community
detection was studied heuristically and algorithmically exten-
sively in statistical physics; for a review see Fortunato
(2010). However, the exact solution and understanding of
algorithmic limitations in the stochastic block model came
from the spin glass theory by Decelle et al. (2011a, 2011b).
These works computed (nonrigorously) the asymptotically
optimal performance and delimited sharply regions of
parameters where this performance is reached by the belief
propagation (BP) algorithm (Yedidia, Freeman, and Weiss,
2003). Second-order phase transitions appearing in the
model separate a phase where clustering cannot be performed
better than by random guessing from a region where it can be
done efficiently with BP. First-order phase transitions and
one of their spinodal lines then separate regions where
clustering is impossible, possible but not doable with the
BP algorithm, and easy with the BP algorithm. Decelle et al.
(2011a, 2011b) also conjectured that when the BP algorithm
is not able to reach the optimal performance on large
instances of the model, then no other polynomial algorithm
will. These works attracted a large amount of follow-up work
in mathematics, statistics, machine learning, and computer-
science communities.

The statistical-physics understanding of the stochastic
block model and the conjecture about belief propagation
algorithm being optimal among all polynomial ones inspired
the discovery of a new class of spectral algorithms for sparse
data (i.e., when the matrix X is sparse) (Krzakala et al., 2013).
Spectral algorithms are basic tools in data analysis (Ng,
Jordan, and Weiss, 2002; Von Luxburg, 2007), based on
the singular value decomposition of the matrix X or functions
of X. Yet for sparse matrices X, the spectrum is known to
have leading singular values with localized singular vectors
unrelated to the latent underlying structure. A more robust
spectral method is obtained by linearizing the belief propa-
gation, thus obtaining a so-called nonbacktracking matrix
(Krzakala et al., 2013). A variant on this spectral method
based on algorithmic interpretation of the Hessian of the
Bethe free energy also originated in physics (Saade,
Krzakala, and Zdeborová, 2014).
This line of statistical-physics-inspired research is merging

into the mainstream in statistics and machine learning. This is
largely thanks to recent progress in (a) our understanding of
algorithmic limitations, due to the analysis of approximate
message passing (AMP) algorithms (Rangan and Fletcher,
2012; Javanmard and Montanari, 2013; Matsushita and
Tanaka, 2013; Bolthausen, 2014; Deshpande and
Montanari, 2014) for low-rank matrix estimation that is a
generalization of the Thouless-Anderson-Palmer equations
(Thouless, Anderson, and Palmer, 1977) well known in the
physics literature on spin glasses; and (b) progress in proving
many of the corresponding results in a mathematically
rigorous way. Some of the influential papers in this direction
(related to low-rank matrix estimation) are Deshpande and
Montanari (2014), Barbier et al. (2016), Lelarge and Miolane
(2016), and Coja-Oghlan et al. (2018) for the proof of the
replica formula for the information-theoretically optimal
performance.

2. Restricted Boltzmann machines

Boltzmann machines and, in particular, restricted
Boltzmann machines are another method for unsupervised
learning often used in machine learning. Apparent from the
very name of the method, it had a strong relation with
statistical physics. Indeed the Boltzmann machine is often
called the inverse Ising model in the physics literature and
used extensively in a range of area; for a recent review on the
physics of Boltzmann machines, see Nguyen, Zecchina, and
Berg (2017).
Concerning restricted Boltzmann machines, there are a

number of studies in physics clarifying how these machines
work and what structures they can learn. A model of a random
restricted Boltzmann machine, where the weights are imposed
to be random and sparse and not learned, was studied by
Tubiana and Monasson (2017) and Cocco et al. (2018). Rather
remarkably for a range of potentials on the hidden unit this
work unveiled that even the single layer RBM is able to
represent compositional structure. Insight from this work was
more recently used to model protein families from their
sequence information (Tubiana, Cocco, and Monasson, 2018).
An analytical study of the learning process in a RBM, that is

most commonly done using the contrastive divergence
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algorithm based on a Gibbs sampling (Hinton, 2002), is very
challenging. The first steps were studied by Decelle, Fissore,
and Furtlehner (2017) at the beginning of the learning process
where the dynamics can be linearized. Another interesting
direction coming from statistical physics is to replace the
Gibbs sampling in the contrastive divergence training algo-
rithm by the Thouless-Anderson-Palmer equations (Thouless,
Anderson, and Palmer, 1977). This was done by Gabrié,
Tramel, and Krzakala (2015) and Tramel et al. (2018), where
such training was shown to be competitive and applications of
the approach were discussed. A RBM with random weights
and their relation to the Hopfield model was clarified by
Mézard (2017) and Barra et al. (2018).

3. Modern unsupervised and generative modeling

The dawn of deep learning brought exciting innovations
into unsupervised and generative-models learning. A physics
friendly overview of some classical and more recent concepts
was given by Wang (2018).
Autoencoders with linear activation functions are closely

related to the PCA. VAEs are variants much closer to a
physicist mind set where the autoencoder is represented via a
graphical model, and in trained using a prior on the latent
variables and variational inference (Kingma and Welling,
2013; Rezende, Mohamed, and Wierstra, 2014). VAEs with
a single hidden layer are closely related to other widely used
techniques in signal processing such as dictionary learning
and sparse coding. A dictionary learning problem was studied
with statistical-physics techniques by Krzakala, Mézard, and
Zdeborová (2013), Sakata and Kabashima (2013), and
Kabashima et al. (2016).
GANs, a powerful set of ideas, emerged with the work of

Goodfellow et al. (2014) aiming to generate samples (e.g.,
images of hotel bedrooms) that are of the same type as those
in the training set. Physics-inspired studies of GANs are
starting to appear; the work on a solvable model of GANs by
Wang, Hu, and Lu (2018) is an intriguing generalization of
the earlier statistical-physics works on online learning in
perceptrons.
We also want to mention the autoregressive generative

models (Larochelle and Murray, 2011; Uria et al., 2016;
Papamakarios, Murray, and Pavlakou, 2017). The main
interest in autoregressive models stems from the fact that
they are a family of explicit probabilistic models for which
direct and unbiased sampling is possible. Applications of
these models have been realized for both statistical (Wu,
Wang, and Zhang, 2018) and quantum physics problems
(Sharir et al., 2019).

D. Statistical physics of supervised learning

1. Perceptrons and generalized linear models

The arguably most basic method of supervised learning is
linear regression, where one aims to find a vector of
coefficients w so that its scalar product with the data point
Xiw corresponds to the observed predicate y. This is most
often solved by the least squares method, where jjy − Xwjj22 is
minimized over w. In the Bayesian language, the least squares
method corresponds to assuming Gaussian additive noise ξ so

that yi ¼ Xiwþ ξi. In a high-dimensional setting it is
almost always indispensable to use regularization of the
weights. The most common ridge regularization corresponds
in the Bayesian interpretation to Gaussian prior on the
weights. This probabilistic thinking can be generalized by
assuming a general prior PWð·Þ and a generic noise repre-
sented by a conditional probability distribution PoutðyijXiwÞ.
The resulting model is called a generalized linear regression
or a generalized linear model. Many other problems of
interest in data analysis and learning can be represented
as a GLM. For instance, sparse regression simply
requires that PW has large weight on zero; for the perceptron
with threshold κ the output has a special form PoutðyjzÞ ¼
Iðz > κÞδðy − 1Þ þ Iðz ≤ κÞδðyþ 1Þ. In the language of neu-
ral networks, the GLM represents a single layer (no hidden
variables) fully connected feed-forward network.
For generic noise or activation channel Pout traditional

theories in statistics are not readily applicable to the regime of
very limited data where both the dimension p and the number
of samples n grow large, while their ratio n=p ¼ α remains
fixed. Basic questions such as how does the best achievable
generalization error depend on the number of samples remain
open. Yet this regime and related questions are of great interest
and understanding them well in the setting of a GLM seems to
be a prerequisite to understand more involved deep learning
methods.
A statistical-physics approach can be used to obtain specific

results on the high-dimensional GLM by considering data to
be a random independent identically distributed (iid) matrix
and modeling the labels as being created in the teacher-student
setting. The teacher generates a ground-truth vector of weights
w so that wj ∼ Pw, j ¼ 1;…; p. The teacher then uses this
vector and data matrix X to produce labels y taken from
PoutðyijXiw�Þ. The students then knows X, y, Pw, and Pout and
is supposed to learn the rule the teacher uses, i.e., ideally to
learn the w�. Already this setting with random input data
provides interesting insight into the algorithmic tractability of
the problem as the number of samples changes.
This line of work was pioneered by Elizabeth Gardner

(Gardner and Derrida, 1989) and actively studied in physics in
the past for special cases of Pout and PW (Györgyi and Tishby,
1990; Sompolinsky, Tishby, and Seung, 1990; Seung,
Sompolinsky, and Tishby, 1992). The replica method can
be used to compute the mutual information between X and y in
this teacher-student model, which is related to the free energy
in physics. One can then deduce the optimal estimation error
of the vector w� as well as the optimal generalization error.
Remarkable progress was recently made by Barbier et al.
(2019), where it was proven that the replica method yields the
correct results for the GLM with random input for generic
Pout and PW . Combining these results with the analysis of the
approximate message passing algorithms (Javanmard and
Montanari, 2013), one can deduce cases where the AMP
algorithm is able to reach the optimal performance and
regions where it is not. The AMP algorithm is conjectured
to be the best of all polynomial algorithms for this case. The
teacher-student model could thus be used by practitioners to
understand how far from optimality are general-purpose
algorithms in cases where only a limited number of samples
is available.
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2. Physics results on multilayer neural networks

Statistical-physics analysis of learning and generalization
properties in deep neural networks is a challenging task.
Progress has been made in several complementary directions.
One of the influential directions involved studies of linear

deep neural networks. While linear neural networks do not
have the expressive power to represent generic functions, the
learning dynamics of the gradient descent algorithm bears a
strong resemblance to the learning dynamics on nonlinear
networks. At the same time the dynamics of learning in deep
linear neural networks can be described via a closed form
solution (Saxe, McClelland, and Ganguli, 2013). The learning
dynamics of linear neural networks is also able to reproduce a
range of facts about generalization and overfitting as observed
numerically in nonlinear networks; see, e.g., Advani and
Saxe (2017).
Another special case that has been analyzed in great detail is

called the committee machine; for a review see, e.g., Engel
and Van den Broeck (2001). A committee machine is a fully
connected neural network learning a teacher rule on random
input data with only the first layer of weights being learned,
while the subsequent ones are fixed. The theory is restricted
to the limit where the number of hidden neurons k ¼ Oð1Þ,
while the dimensionality of the input p and the number of
samples n are both diverge, with n=p ¼ α ¼ Oð1Þ. Both the
stochastic gradient descent (aka online) learning (Saad and
Solla, 1995a, 1995b) and the optimal batch-learning gener-
alization error can be analyzed in closed form in this case
(Schwarze, 1993). Recently the replica analysis of the
optimal generalization properties was rigorously established
(Aubin et al., 2018). A key feature of the committee
machine is that it displays the so-called specialization phase
transition. When the number of samples is small, the optimal
error is achieved by a weight configuration that is the same
for every hidden unit, effectively implementing simple
regression. Only when the number of hidden units exceeds
the specialization threshold can the different hidden units
learn different weights resulting in improvement of the
generalization error. Another interesting observation about
the committee machine is that the hard phase where good
generalization is achievable information theoretically but not
tractably gets larger as the number of hidden units grows. The
committee machine was also used to analyze the conse-
quences of overparametrization in neural networks (Goldt
et al., 2019a, 2019b).
Another remarkable limit of two-layer neural networks was

analyzed in a recent series of works (Mei, Montanari, and
Nguyen, 2018; Rotskoff and Vanden-Eijnden, 2018). In these
works the networks are analyzed in the limit where the
number of hidden units is large, while the dimensionality
of the input is kept fixed. In this limit the weights interact only
weakly—leading to the term mean field—and their evolution
can be tracked via an ordinary differential equation analogous
to those studied in glassy systems (Dean, 1996). A related, but
different, treatment of the limit when the hidden layers are
large is based on linearization of the dynamics around the
initial condition leading to a relation with Gaussian processes
and kernel methods (Jacot, Gabriel, and Hongler, 2018; Lee
et al., 2018).

3. Information bottleneck

An information bottleneck (Tishby, Pereira, and Bialek,
2000) is another concept stemming in statistical physics that
has been influential in the quest for understanding the theory
behind the success of deep learning. The theory of the
information bottleneck for deep learning (Tishby and
Zaslavsky, 2015; Shwartz-Ziv and Tishby, 2017) aims to
quantify the notion that layers in neural networks are trading
off between keeping enough information about the input so
that the output labels can be predicted, while forgetting as
much of the unnecessary information as possible in order to
keep the learned representation concise.
One of the interesting consequences of this information-

theoretic analysis is that the traditional capacity, or expres-
sivity dimension of the network, such as the Vapnik-
Chervonenkis dimension, is replaced by the exponent of
the mutual information between the input and the compressed
hidden layer representation. This implies that every bit of
representation compression is equivalent to doubling the
training data in its impact on the generalization error.
The analysis of Shwartz-Ziv and Tishby (2017) also

suggests that such representation compression is achieved
by SGD through diffusion in the irrelevant dimensions of the
problem. According to this, compression is achieved with any
units nonlinearity by reducing the signal-to-noise ratio of the
irrelevant dimensions, layer by layer, through the diffusion
of the weights. An intriguing prediction of this insight is that
the time to converge to good generalization scales like a
negative power law of the number of layers. The theory also
predicts a connection between the hidden layers and the
bifurcations, or phase transitions, of the information bottle-
neck representations.
While the mutual information of the internal representations

is intrinsically hard to compute directly in large neural
networks, none of these predictions depend on explicit
estimation of mutual information values.
A related line of work in statistical physics aims to provide

reliable scalable approximations and models where the mutual
information is tractable. The mutual information can be
computed exactly in linear networks (Saxe et al., 2018). It
can be reliably approximated in models of neural networks
where, after learning the matrices of weights are close enough
to be rotationally invariant, this is then exploited within the
replica theory in order to compute the desired mutual
information (Gabrié et al., 2018).

4. Landscapes and glassiness of deep learning

Training a deep neural network is usually done via SGD in
the nonconvex landscape of a loss function. Statistical physics
has experience in studies of complex energy landscapes and
their relation to dynamical behavior. Gradient descent algo-
rithms are closely related to the Langevin dynamics that is
often considered in physics. Some physics-inspired works
(Choromanska et al., 2015) became popular but were some-
what naive in exploring this analogy.
Interesting insight on the relation between glassy dynamics

and learning in deep neural networks was presented by Baity-
Jesi et al. (2018). In particular, the role of overparametrization
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in making the landscape look less glassy is highlighted and
contrasted with the underparametrized networks.
Another intriguing line of work that relates learning in

neural networks to properties of landscapes was explored by
Baldassi et al. (2015, 2016). This work is based on the
realization that in the simple model of binary perceptron
learning dynamics ends in a part of the weight space that has
many low-loss close-by configurations. It goes on to suggest
that learning favors these wide parts in the space of weights
and argues that this might explain why algorithms are attracted
to wide local minima and why by doing so their generalization
properties improve. An interesting spin-off of this theory is a
variant of the stochastic gradient descent algorithm suggested
by Chaudhari et al. (2016).

E. Applications of ML in statistical physics

When a researcher in theoretical physics encounters deep
neural networks where the early layers are learning to
represent the input data at a finer scale than the later layers,
she immediately thinks about a renormalization group as used
in physics in order to extract macroscopic behavior from
microscopic rules. This analogy was explored for instance by
Bény (2013) and Mehta and Schwab (2014). Analogies
between the renormalization group and the principle compo-
nent analysis were reported by Bradde and Bialek (2017).
A natural idea is to use neural networks in order to learn

new renormalization schemes. The first attempts in this
direction appeared by Koch-Janusz and Ringel (2018) and
Li and Wang (2018). However, it remains to be seen whether
this can lead to new physical discoveries in models that were
not previously well understood.
Phase transitions are boundaries between different phases

of matter. They are usually determined using order parame-
ters. In some systems it is not a priori clear how to determine
the proper order parameter. A natural idea is that neural
networks may be able to learn appropriate order parameters
and locate the phase transition without a priori physical
knowledge. This idea was explored by Carrasquilla andMelko
(2017), Tanaka and Tomiya (2017a), Van Nieuwenburg, Liu,
and Huber (2017), and Morningstar and Melko (2018) in a
range of models using configurations sampled uniformly from
the model of interest (obtained using Monte Carlo simula-
tions) in different phases or at different temperatures and using
supervised learning in order to classify the configurations to
their phases. Extrapolating to configurations not used in the
training set plausibly leads to determination of the phase
transitions in the studied models. These general guiding
principles have been used in a large number of applications
to analyze both synthetic and experimental data. Specific
cases in the context of many-body quantum physics are
detailed in Sec. IV.C.
A detailed understanding of the limitations of these meth-

ods in terms of identifying previously unknown order param-
eters, as well as understanding whether they can reliably
distinguish between a true thermodynamic phase transition
and a mere crossover, is yet to be clarified. Experiments
presented on the Ising model by Mehta et al. (2018) provide
some preliminary thoughts in that direction. Some underlying
mechanisms were discussed by Kashiwa, Kikuchi, and

Tomiya (2019). A kernel based learning method for learning
phases in frustrated magnetic materials that is more easily
interpretable and able to identify complex order parameters
was introduced and studied by Greitemann, Liu, and Pollet
(2019) and Liu, Greitemann, and Pollet (2019).
Disordered and glassy solids where identification of the

order parameter is particularly challenging were also studied.
In particular, Ronhovde et al. (2011) and Nussinov et al.
(2016) used multiscale network clustering methods to identify
spatial and spatiotemporal structures in glasses, Cubuk et al.
(2015) learned to identify structural flow defects, and
Schoenholz et al. (2017) argued to identify a parameter that
captures the history dependence of the disordered system.
In an ongoing effort to go beyond the limitations of

supervised learning to classify phases and identify phase
transitions, several directions toward unsupervised learning
are beginning to be explored; for instance, in Wetzel (2017)
for the Ising and XY models, and in Wang and Zhai (2017,
2018) for frustrated spin systems. The work of Martiniani,
Chaikin, and Levine (2019) explored the direction of iden-
tifying phases from simple compression of the underlying
configurations.
Machine learning also provides an exciting set of tools to

study, predict, and control nonlinear dynamical systems. For
instance, Pathak et al. (2017, 2018) used recurrent neural
networks called echo-state networks or reservoir computers
(Jaeger and Haas, 2004) to predict the trajectories of a chaotic
dynamical system and of models used for weather prediction.
Reddy et al. (2016, 2018) used reinforcement learning to teach
an autonomous glider to literally soar like a bird, using
thermals in the atmosphere.

F. Outlook and challenges

The described methods of statistical physics are quite
powerful in dealing with high-dimensional datasets and
models. The largest difference between traditional learning
theories and the theories coming from statistical physics is that
the latter are often based on toy generative models of data.
This leads to solvable models in the sense that quantities of
interest such as achievable errors can be computed in a closed
form, including constant terms. This is in contrast with the
mainstream learning theory that aims to provide worst-case
bounds on error under general assumptions on the setting (data
structure or architecture). These two approaches are comple-
mentary and ideally will meet in the future once we under-
stand the key conditions under which practical cases are close
to worst cases, and what are the right models of realistic data
and functions.
The next challenge for the statistical-physics approach is to

formulate and solve models that are in some kind of
universality class of the real settings of interest, meaning that
they reproduce all important aspects of the behavior that is
observed in practical applications of neural networks. For this
we need to model the input data no longer as iid vectors, but
for instance as output from a generative neural network as in
Gabrié et al. (2018), or as perceptual manifolds as in Chung,
Lee, and Sompolinsky (2018). The teacher network that is
producing the labels (in a supervised setting) needs to suitably
model the correlation between the structure in the data and the
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label. We need to find out how to analyze the (stochastic)
gradient descent algorithm and its relevant variants. Promising
works in this direction that rely on the dynamic mean-field
theory of glasses are Mannelli et al. (2018, 2019). We need to
generalize the existing methodology to multilayer networks
with extensive widths of hidden layers.
Returning to the direction of using machine learning for

physics, the full potential of ML in the research of nonlinear
dynamical systems and statistical physics is yet to be
uncovered. The previously mentioned works certainly provide
an exciting appetizer.

III. PARTICLE PHYSICS AND COSMOLOGY

A diverse portfolio of ongoing and planned experiments is
well poised to explore the Universe from the unimaginably
small world of fundamental particles to the awe inspiring scale
of the Universe. Experiments like the Large Hadron Collider
(LHC) and the Large Synoptic Survey Telescope (LSST)
deliver enormous amounts of data to be compared to the
predictions of specific theoretical models. Both areas have
well-established physical models that serve as null hypoth-
eses: the standard model of particle physics and ΛCDM
cosmology, which includes cold dark matter and a cosmo-
logical constant Λ. Interestingly, most alternate hypotheses
considered are formulated in the same theoretical frameworks,
namely, quantum field theory and general relativity. Despite
such sharp theoretical tools, the challenge is still daunting as
the expected deviations from the null are expected to be
incredibly small and revealing such subtle effects requires a
robust treatment of complex experimental apparatuses.
Complicating the statistical inference is that the most high-
fidelity predictions for the data do not come in the form of
simple closed-form equations, but instead in complex com-
puter simulations.
Machine learning is making waves in particle physics and

cosmology as it offers a suite of techniques to confront these
challenges and a new perspective that motivates bold new
strategies. The excitement spans the theoretical and exper-
imental aspects of these fields and includes both applications
with immediate impact as well as the prospect of more
transformational changes in the longer term.

A. The role of the simulation

An important aspect of the use of machine learning in
particle physics and cosmology is the use of computer
simulations to generate samples of labeled training data
fXμ; yμgnμ¼1. For example, when the target y refers to a
particle type, particular scattering process, or parameter
appearing in the fundamental theory, it can often be specified
directly in the simulation code so that the simulation directly
samples X ∼ pð·jyÞ. In other cases, the simulation is not
directly conditioned on y, but provides samples ðX; ZÞ ∼ pð·Þ,
where Z are latent variables that describe what happened
inside the simulation, but which are not observable in an
actual experiment. If the target label can be computed from
these latent variables via a function yðZÞ, then labeled training
data fXμ; yðZμÞgnμ¼1 can also be created from the simulation.
The use of high-fidelity simulations to generate labeled

training data has not only been the key to early success of
supervised learning in these areas, but also the focus of
research addressing the shortcomings of this approach.
Particle physicists have developed a suite of high-fidelity

simulations that are hierarchically composed to describe
interactions across a large range of length scales. The
components of these simulations include Feynman diagram-
matic perturbative expansion of quantum field theory, phe-
nomenological models for complex patterns of radiation, and
detailed models for interaction of particles with matter in the
detector. While the resulting simulation has high fidelity, the
simulation itself has free parameters to be tuned and a number
of residual uncertainties in the simulation must be taken into
account in downstream analysis tasks.
Similarly, cosmologists can simulate the evolution of the

Universe at different length scales using general relativity and
relevant nongravitational effects of matter and radiation that
become increasingly important during structure formation.
There is a rich array of approximations that can be made in
specific settings that provide enormous speedups compared to
the computationally expensive N-body simulations of billions
of massive objects that interact gravitationally, which become
prohibitively expensive once nongravitational feedback
effects are included.
Cosmological simulations generally involve deterministic

evolution of stochastic initial conditions due to primordial
quantum fluctuations. The N-body simulations are expensive,
so there are relatively few simulations, but they cover a large
spacetime volume that is statistically isotropic and homo-
geneous at large scales. In contrast, particle physics simu-
lations are stochastic throughout from the initial high-energy
scattering to the low-energy interactions in the detector.
Simulations for high-energy collider experiments can run
on commodity hardware in a parallel manner, but the physics
goals require large numbers of simulated collisions.
Because of the critical role of the simulation in these fields,

much of the recent research in machine learning is related to
simulation in one way or another. The goals of these recent
works are as follows:

• develop techniques that are more data efficient by
incorporating domain knowledge directly into the ma-
chine learning models;

• incorporate the uncertainties in the simulation into the
training procedure;

• develop weakly supervised procedures that can be
applied to real data and do not rely on the simulation;

• develop anomaly detection algorithms to find anomalous
features in the data without simulation of a specific
signal hypothesis;

• improve the tuning of the simulation, reweight or adjust
the simulated data to better match the real data, or use
machine learning to model residuals between the sim-
ulation and the real data;

• learn fast neural-network surrogates for the simulation
that can be used to quickly generate synthetic data;

• develop approximate inference techniques that make
efficiently use of the simulation; and

• learn fast neural-network surrogates that can be used
directly for statistical inference.
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B. Classification and regression in particle physics

Machine learning techniques have been used for decades in
experimental particle physics to aid particle identification and
event selection, which can be seen as classification tasks.
Machine learning has also been used for reconstruction,
which can be seen as a regression task. Supervised learning
is used to train a predictive model based on a large number of
labeled training samples fXμ; yμgnμ¼1, where X denotes the
input data and y the target label. In the case of particle
identification, the input features X characterize localized
energy deposits in the detector and the label y refers to
one of a few particle species (e.g., electron, photon, pion,
etc.). In the reconstruction task, the same type of sensor data
X is used, but the target label y refers to the energy or
momentum of the particle responsible for those energy
deposits. These algorithms are applied to the bulk data
processing of the LHC data.
Event selection refers to the task of selecting a small subset

of the collisions that are most relevant for a targeted analysis
task. For instance, in the search for the Higgs boson,
supersymmetry, and dark matter data analysts must select a
small subset of the LHC data that is consistent with the
features of these hypothetical “signal” processes. Typically
these event selection requirements are also satisfied by so-
called “background” processes that mimic the features of the
signal due to either experimental limitations or fundamental
quantum mechanical effects. Searches in their simplest form
reduce to comparing the number of events in the data that
satisfy these requirements to the predictions of a background-
only null hypothesis and signal-plus-background alternate
hypothesis. Thus, the more effective the event selection
requirements are at rejecting background processes and accept
signal processes, the more powerful the resulting statistical
analysis will be. Within high-energy physics, machine learn-
ing classification techniques have traditionally been referred
to as multivariate analysis to emphasize the contrast to
traditional techniques based on simple thresholding (or
“cuts”) applied to carefully selected or engineered features.
In the 1990s and early 2000s simple feed-forward neural

networks were commonly used for these tasks. Neural net-
works were largely displaced by boosted decision trees as the
go to for classification and regression tasks for more than a
decade (Breiman et al., 1984; Freund and Schapire, 1997; Roe
et al., 2005). Starting around 2014, techniques based on deep
learning emerged and were demonstrated to be significantly
more powerful in several applications [for a recent review of
the history, see Guest, Cranmer, and Whiteson (2018) and
Radovic et al. (2018)].
Deep learning was first used for an event-selection task

targeting hypothesized particles from theories beyond the
standard model. It not only outperformed boosted decision
trees, but also did not require engineered features to achieve
this impressive performance (Baldi, Sadowski, and Whiteson,
2014). In this proof-of-concept work, the network was a deep
multilayer perceptron trained with a very large training set
using a simplified detector setup. Shortly after, the idea of a
parametrized classifier was introduced in which the concept of
a binary classifier was extended to a situation where the y ¼ 1
signal hypothesis is lifted to a composite hypothesis that is

parametrized continuously, for instance, in terms of the mass
of a hypothesized particle (Baldi, Cranmer et al., 2016).

1. Jet physics

The most copious interactions at hadron colliders such as
the LHC produce high-energy quarks and gluons in the final
state. These quarks and gluons radiate more quarks and gluons
that eventually combine into color-neutral composite particles
due to the phenomena of confinement. The resulting colli-
mated spray of mesons and baryons that strikes the detector is
collectively referred to as a jet. Developing a useful charac-
terization of the structure of a jet that is theoretically robust
and that can be used to test the predictions of quantum
chromodynamics (QCD) has been an active area of particle
physics research for decades. Furthermore, many scenarios for
physics beyond the standard model predict the production of
particles that decay into two or more jets. If those unstable
particles are produced with large momentum, then the result-
ing jets are boosted such that the jets overlap into a single fat
jet with nontrivial substructure. Classifying these boosted or
fat jets from the much more copiously produced jets from
standard model processes involving quarks and gluons is an
area that can significantly improve the physics reach of the
LHC. More generally, identifying the progenitor for a jet is a
classification task that is often referred to as jet tagging.
Shortly after the first applications of deep learning for event

selection, deep convolutional networks were used for the
purpose of jet tagging, where the low-level detector data lend
itself to an imagelike representation (Baldi, Bauer et al., 2016;
de Oliveira et al., 2016). While machine learning techniques
have been used within particle physics for decades, the
practice has always been restricted to input features X with
a fixed dimensionality. One challenge in jet physics is that the
natural representation of the data is in terms of particles, and
the number of particles associated with a jet varies. The first
application of a recurrent neural network in particle physics
was in the context of flavor tagging (Guest et al., 2016). More
recently, there has been an explosion of research into the use
of different network architectures including recurrent net-
works operating on sequences, trees, and graphs [see
Larkoski, Moult, and Nachman (2017) for a recent review
on jet physics]. This includes hybrid approaches that leverage
domain knowledge in the design of the architecture. For
example, motivated by techniques in natural language
processing, recursive networks were designed that operate
over tree structures created from a class of jet clustering
algorithms (Louppe et al., 2017). Similarly, networks have
been developed motivated by invariance to permutations on
the particles presented to the network and stability to details of
the radiation pattern of particles (Komiske, Metodiev, and
Thaler, 2018, 2019). Recently, comparisons of the different
approaches for specific benchmark problems were organized
(Kasieczka et al., 2019).
In addition to classification and regression, machine learn-

ing techniques were used for density estimation and modeling
smooth spectra where an analytical form is not well motivated
and the simulation has significant uncertainties (Frate et al.,
2017). The work also allows one to model alternative signal
hypotheses with a diffuse prior instead of a specific concrete
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physical model. More abstractly, the Gaussian process in this
work is being used to model the intensity of an inhomo-
geneous Poisson point process, which is a scenario that is
found in particle physics, astrophysics, and cosmology. One
interesting aspect of this line of work is that the Gaussian
process kernels can be constructed using compositional rules
that correspond to the causal model physicists intuitively use
to describe the observation, which aids in interpretability
(Duvenaud et al., 2013).

2. Neutrino physics

Neutrinos interact very feebly with matter; thus the experi-
ments require large detector volumes to achieve appreciable
interaction rates. Different types of interactions, whether they
come from different species of neutrinos or background
cosmic ray processes, leave different patterns of localized
energy deposits in the detector volume. The detector volume is
homogeneous, which motivates the use of convolutional
neural networks.
The first application of a deep convolutional network in the

analysis of data from a particle physics experiment was in the
context of the NOνA experiment, which uses scintillating
mineral oil. Interactions in NOνA lead to the production of
light, which is imaged from two different vantage points.
NOνA developed a convolutional network that simultaneously
processed these two images (Aurisano et al., 2016). Their
network improves the efficiency (true positive rate) of select-
ing electron neutrinos by 40% for the same purity. This
network has been used in searches for the appearance of
electron neutrinos and for the hypothetical sterile neutrino.
Similarly, the MicroBooNE experiment detects neutrinos

created at Fermilab. It uses a 170 ton liquid-argon time
projection chamber. Charged particles ionize the liquid argon
and the ionization electrons drift through the volume to three
wire planes. The resulting data are processed and represented
by a 33-megapixel image, which is dominantly populated
with noise and only very sparsely populated with legitimate
energy deposits. The MicroBooNE Collaboration used the
Faster R-CNN algorithm (Ren et al., 2015) to identify and
localize neutrino interactions with bounding boxes (Acciarri
et al., 2017). This success is important for future neutrino
experiments based on liquid-argon time projection chambers,
such as the deep underground neutrino experiment (DUNE).
In addition to the relatively low-energy neutrinos produced

at accelerator facilities, machine learning has also been used to
study high-energy neutrinos with the IceCube observatory
located at the south pole. In particular, 3D convolutional and
graph neural networks have been applied to a signal classi-
fication problem. In the latter approach, the detector array is
modeled as a graph, where vertices are sensors and edges are a
learned function of the sensors’ spatial coordinates. The graph
neural network was found to outperform both a traditional-
physics-based method as well as a classical 3D convolutional
neural network (Choma et al., 2018).

3. Robustness to systematic uncertainties

Experimental particle physicists are keenly aware that the
simulation, while incredibly accurate, is not perfect. As a
result, the community has developed a number of strategies

falling roughly into two broad classes. The first involves
incorporating the effect of mismodeling when the simulation
is used for training. This involves propagating the underlying
sources of uncertainty (e.g., calibrations, detector response,
the quark and gluon composition of the proton, or the impact
of higher-order corrections from perturbation theory, etc.)
through the simulation and analysis chain. For each of these
sources of uncertainty, a nuisance parameter ν is included,
and the resulting statistical model pðXjy; νÞ is parametrized
by these nuisance parameters. In addition, the likelihood
function for the data is augmented with a term pðνÞ
representing the uncertainty in these sources of uncertainty,
as in the case of a penalized maximum likelihood analysis.
In the context of machine learning, classifiers and regressors
are typically trained using data generated from a nominal
simulation ν ¼ ν0, yielding a predictive model fðXjν0Þ.
Treating this predictive model as fixed, it is possible to
propagate the uncertainty in ν through fðXjν0Þ using the
model pðXjy; νÞpðνÞ. However, the downstream statistical
analysis based on this approach is not optimal since the
predictive model was not trained taking into account the
uncertainty on ν.
In machine learning literature, this situation is often referred

to as a covariate shift between two domains represented by the
training distribution ν0 and the target distribution ν. Various
techniques for domain adaptation exist to train classifiers
that are robust to this change, but they tend to be restricted
to binary domains ν ∈ ftrain; targetg. To address this
problem, an adversarial training technique was developed
that extends domain adaptation to domains parametrized by
ν ∈ Rq (Louppe, Kagan, and Cranmer, 2016). The adversarial
approach encourages the network to learn a pivotal quantity,
where p(fðXÞjy; ν) is independent of ν, or equivalently
p(fðXÞ; νjy) ¼ p(fðXÞjy)pðνÞ. This adversarial approach
has also been used in the context of algorithmic fairness,
where one desires to train a classifier or regressor that is
independent of (or decorrelated with) specific continuous
attributes or observable quantities. For instance, in jet physics
one often wants a jet tagger that is independent of the jet
invariant mass (Shimmin et al., 2017). Previously, a different
algorithm called uboost was developed to achieve similar
goals for boosted decision trees (Stevens and Williams, 2013;
Rogozhnikov et al., 2015).
The second general strategy used within particle physics to

cope with systematic mismodeling in the simulation is to
avoid using the simulation for modeling the distribution
pðXjyÞ. In what follows, let R denote an index over various
subsets of the data satisfying corresponding selection require-
ments. Various data-driven strategies have been developed to
relate distributions of the data in control regions pðXjy; R ¼
0Þ to distributions in regions of interest pðXjy; R ¼ 1Þ. These
relationships also involve the simulation, but the art of this
approach is to base those relationships on aspects of the
simulation that are considered robust. The simplest example is
estimating the distribution pðXjy; R ¼ 1Þ for a specific
process y by identifying a subset of the data R ¼ 0 that is
dominated by y and pðyjR ¼ 0Þ ≈ 1. This is an extreme
situation that is limited in applicability.
Recently, weakly supervised techniques were developed

that involve identifying regions where only the class
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proportions are known or assuming that the relative proba-
bilities pðyjRÞ are not linearly dependent (Metodiev,
Nachman, and Thaler, 2017; Komiske et al., 2018). The
techniques also assume that the distributions pðXjy; RÞ are
independent of R, which is reasonable in some contexts and
questionable in others. The approach has been used to train jet
taggers that discriminate between quarks and gluons, which is
an area where the fidelity of the simulation is no longer
adequate and the assumptions for this method are reasonable.
This weakly supervised, data-driven approach is a major
development for machine learning for particle physics,
although it is limited to a subset of problems. For example,
this approach is not applicable if one of the target categories y
corresponds to a hypothetical particle that may not exist or be
present in the data.

4. Triggering

Enormous amounts of data must be collected by collider
experiments such as the LHC, because the phenomena being
targeted are exceedingly rare. The bulk of the collisions
involves phenomena that have previously been studied and
characterized, and the data volume associated with the full
data stream is impractically large. As a result, collider
experiments use a real-time data-reduction system referred
to as a trigger. The trigger makes the critical decision of which
events to keep for future analysis and which events to discard.
The ATLAS and CMS experiments retain only about 1 out of
every 100 000 events. Machine learning techniques are used to
various degrees in these systems. Essentially, the same particle
identification (classification) tasks appear in this context,
although the computational demands and performance in
terms of false positives and negatives are different in the
real-time environment.
The LHCb experiment has been a leader in using machine

learning techniques in the trigger. Roughly 70% of the data
selected by the LHC trigger is selected by machine learning
algorithms. Initially, the experiment used a boosted decision
tree for this purpose (Gligorov and Williams, 2013), which
was later replaced by the MatrixNet algorithm developed by
Yandex (Likhomanenko et al., 2015).
The trigger systems often use specialized hardware and

firmware, such as field-programmable gate arrays (FPGAs).
Recently, tools were developed to streamline the compilation
of machine learning models for FPGAs to target the require-
ments of these real-time triggering systems (Duarte et al.,
2018; Tsaris et al., 2018).

5. Theoretical particle physics

While the bulk of machine learning in particle physics and
cosmology is focused on the analysis of observational data,
there are also examples of using machine learning as a tool in
theoretical physics. For instance, machine learning has been
used to characterize the landscape of string theories (Carifio
et al., 2017), to identify the phase transitions of QCD (Pang
et al., 2018), and to study the anti–de Sitter/conformal field
theory (AdS/CFT) correspondence (Hashimoto et al., 2018a,
2018b). Some of this work is more closely connected to the
use of machine learning as a tool in condensed matter or
many-body quantum physics. Specifically, deep learning has

been used in the context of lattice QCD (LQCD). In
exploratory work in this direction, deep neural networks were
used to predict the parameters in the QCD Lagrangian from
lattice configurations (Shanahan, Trewartha, and Detmold,
2018). This is needed for a number of multiscale action-
matching approaches, which aim to improve the efficiency of
the computationally intensive LQCD calculations. This prob-
lem was set up as a regression task, and one of the challenges
is that there are relatively few training examples. Additionally,
machine learning techniques are being used to reduce the
autocorrelation time in the Markov chains (Tanaka and
Tomiya, 2017b; Albergo, Kanwar, and Shanahan, 2019). In
order to solve this task with few training examples it is
important to leverage the known spacetime and local gauge
symmetries in the lattice data. Data augmentation is not a
scalable solution given the richness of the symmetries. Instead
they performed feature engineering that imposed gauge
symmetry and spacetime translational invariance. While this
approach proved effective, it would be desirable to consider a
richer class of networks that are equivariant (or covariant) to
the symmetries in the data (such approaches are discussed in
Sec. III.F). A continuation of this work is being supported by
the Argon Leadership Computing Facility. The new Intel-Cray
system Aurora will be capable of over 1 exaflop and
specifically is aiming at problems that combine traditional
high performance computing with modern machine learning
techniques.

C. Classification and regression in cosmology

1. Photometric redshift

Because of the expansion of the Universe the distant
luminous objects are redshifted, and the distance-redshift
relation is a fundamental component of observational cosmol-
ogy. Very precise redshift estimates can be obtained through
spectroscopy; however, such spectroscopic surveys are expen-
sive and time consuming. Photometric surveys based on
broadband photometry or imaging in a few color bands give
a coarse approximation to the spectral energy distribution.
Photometric redshift refers to the regression task of estimating
redshifts from photometric data. In this case, the ground truth
training data come from precise spectroscopic surveys.
The traditional approaches to photometric redshift are based

on template fitting methods (Benítez, 2000; Feldmann et al.,
2006; Brammer, van Dokkum, and Coppi, 2008). For more
than a decade cosmologists have also used machine learning
methods based on neural networks and boosted decision trees
for photometric redshift (Firth, Lahav, and Somerville, 2003;
Collister and Lahav, 2004; Carrasco Kind and Brunner, 2013).
One interesting aspect of this body of work is the effort that
has been placed to go beyond a point estimate for the redshift.
Various approaches exist to determine the uncertainty on the
redshift estimate and to obtain a posterior distribution.
While the training data are not generated from a simulation,

there is still a concern that the distribution of the training data
may not be representative of the distribution of data that the
models will be applied to. This type of covariate shift results
from various selection effects in the spectroscopic survey and
subtleties in the photometric surveys. The dark energy survey
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considered a number of these approaches and established a
validation process to evaluate them critically (Bonnett et al.,
2016). Recently there has been work to use hierarchical
models to build in additional causal structure in the models
to be robust to these differences. In the language of machine
learning, these newmodels aid in transfer learning and domain
adaptation. The hierarchical models also aim to combine the
interpretability of traditional template fitting approaches and
the flexibility of the machine learning models (Leistedt
et al., 2018).

2. Gravitational lens finding and parameter estimation

One of the most striking effects of general relativity is
gravitational lensing, in which a massive foreground object
warps the image of a background object. Strong gravitational
lensing occurs, for example, when a massive foreground
galaxy is nearly coincident on the sky with a background
source. These events are a powerful probe of the dark matter
distribution of massive galaxies and can provide valuable
cosmological constraints. However, these systems are rare;
thus a scalable and reliable lens finding system is essential to
cope with large surveys such as LSST, Euclid, and WFIRST.
Simple feed-forward, convolutional, and residual neural net-
works have been applied to this supervised classification
problem (Estrada et al., 2007; Marshall et al., 2009; Lanusse
et al., 2018). In this setting, the training data came from
simulation using a pipeline for images of cosmological strong
(PICS) lensing (N. Li et al., 2016) for the strong lensing ray
tracing and LENSPOP (Collett, 2015) for mock LSST observ-
ing. Once identified, characterizing the lensing object through
maximum likelihood estimation is a computationally intensive
nonlinear optimization task. Recently, convolutional networks
have been used to quickly estimate the parameters of the
singular isothermal ellipsoid density profile, commonly used
to model strong lensing systems (Hezaveh, Perreault
Levasseur, and Marshall, 2017).

3. Other examples

In addition to the previous examples, in which the ground
truth for an object is relatively unambiguous with a more
labor-intensive approach, cosmologists are also leveraging
machine learning to infer quantities that involve unobservable
latent processes or the parameters of the fundamental cos-
mological model.
For example, 3D convolutional networks have been trained

to predict fundamental cosmological parameters based on the
dark matter spatial distribution (Ravanbakhsh et al., 2017);
see Fig. 1. In this proof-of-concept work, the networks were
trained using computationally intensive N-body simulations
for the evolution of dark matter in the Universe assuming
specific values for the ten parameters in the standard ΛCDM
cosmology model. In real applications of this technique to
visible matter, one would need to model the bias and variance
of the visible tracers with respect to the underlying dark matter
distribution. In order to close this gap, convolutional networks
have been trained to learn a fast mapping between the dark
matter and visible galaxies (X. Zhang et al., 2019), allowing
for a trade-off between simulation accuracy and computa-
tional cost. One challenge of this work, which is common to

applications in solid state physics, lattice field theory, and
many-body quantum systems, is that the simulations are
computationally expensive and thus there are relatively few
statistically independent realizations of the large simulations
Xμ. As deep learning tends to require large labeled training
datasets, various types of subsampling and data augmentation
approaches have been explored to ameliorate the situation. An
alternative approach to subsampling is the so-called backdrop,
which provides stochastic gradients of the loss function even
on individual samples by introducing a stochastic masking in
the backpropagation pipeline (Golkar and Cranmer, 2018).
Inference on the fundamental cosmological model also

appears in a classification setting. In particular, modified
gravity models with massive neutrinos can mimic the pre-
dictions for weak-lensing observables predicted by the stan-
dard ΛCDM model. The degeneracies that exist when
restricting the Xμ to second-order statistics can be broken
by incorporating higher-order statistics or other rich repre-
sentations of the weak lensing signal. In particular, Peel et al.
(2018) constructed a novel representation of the wavelet
decomposition of the weak lensing signal as input to a
convolutional network. The resulting approach was able to
discriminate between previously degenerate models with
83%–100% accuracy.
Deep learning has also been used to estimate the mass of

galaxy clusters, which are the largest gravitationally bound
structures in the Universe and a powerful cosmological probe.
Much of the mass of these galaxy clusters comes in the form
of dark matter, which is not directly observable. Galaxy
cluster masses can be estimated via gravitational lensing,
x-ray observations of the intracluster medium, or through a
dynamical analysis of the cluster’s galaxies. The first use of
machine learning for a dynamical cluster mass estimate was
performed using support distribution machines (Póczos et al.,
2012) on a dark-matter-only simulation (Ntampaka et al.,
2015, 2016). A number of non-neural-network algorithms

FIG. 1. Dark matter distribution in three cubes produced using
different sets of parameters. Each cube is divided into small
subcubes for training and prediction. Note that although cubes in
this figure are produced using very different cosmological
parameters in our constrained sampled set, the effect is not
visually discernible. From Ravanbakhsh et al., 2017.
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including Gaussian process regression (kernel ridge regres-
sion), support vector machines, gradient boosted tree regres-
sors, and others have been applied to this problem using the
MACSIS simulations (Barnes et al., 2016) for training data.
This simulation goes beyond the dark-matter-only simula-
tions and incorporates the impact of various astrophysical
processes and allows for the development of a realistic
processing pipeline that can be applied to observational data.
The need for an accurate, automated mass estimation pipeline
is motivated by large surveys such as eBOSS, DESI,
eROSITA, SPT-3G, ActPol, and Euclid. They found that
compared to the traditional σ −M relation the predicted-to-
be-true mass ratio using machine learning techniques is
reduced by a factor of 4 (Armitage, Kay, and Barnes,
2019). Most recently, convolutional neural networks have
been used to mitigate systematics in the virial scaling relation,
further improving dynamical mass estimates (Ho et al.,
2019). Convolutional neural networks have also been used
to estimate cluster masses with synthetic (mock) x-ray
observations of galaxy clusters, where they found the scatter
in the predicted mass was reduced compared to traditional
x-ray luminosity based methods (Ntampaka et al., 2018).

D. Inverse problems and likelihood-free inference

As stressed repeatedly, both particle physics and cosmology
are characterized by well-motivated, high-fidelity forward
simulations. These forward simulations are either intrinsically
stochastic, as in the case of the probabilistic decays and
interactions found in particles physics simulations, or they are
deterministic, as in the case of gravitational lensing or N-body
gravitational simulations. However, even deterministic phys-
ics simulators usually are followed by a probabilistic descrip-
tion of the observation based on Poisson counts or a model for
instrumental noise. In both cases, one can consider the
simulation as implicitly defining the distribution pðX; ZjyÞ,
where X refers to the observed data, Z are unobserved latent
variables that take on random values inside the simulation, and
y are parameters of the forward model such as coefficients in a
Lagrangian or the ten parameters of ΛCDM cosmology. Many
scientific tasks can be characterized as inverse problems where
one infers Z or y from X ¼ x. The simplest cases that we
considered are classification where y takes on categorical
values and regression where y ∈ Rd. The point estimates
ŷðX ¼ xÞ and ẐðX ¼ xÞ are useful, but in scientific applica-
tions we often require uncertainty on the estimate.
In many cases, the solution to the inverse problem is ill

posed, in the sense that small changes inX lead to large changes
in the estimate. This implies the estimator will have high
variance. In some cases the forward model is equivalent to a
linear operator and the maximum likelihood estimate ŷMLEðXÞ
or ẐMLEðXÞ can be expressed as amatrix inversion. In that case,
the instability of the inverse is related to the matrix for the
forward model being poorly conditioned. While the maximum
likelihood estimate may be unbiased, it tends to be high
variance. Penalized maximum likelihood, ridge regression
(Tikhonov regularization), and Gaussian process regression
are closely related approaches to the bias-variance trade-off.
Within particle physics, this type of problem is often

referred to as unfolding. In that case, one is often interested

in the distribution of some kinematic property of the collisions
prior to the detector effects, and X represents a smeared
version of this quantity after folding in the detector effects.
Similarly, estimating the parton density functions that describe
quarks and gluons inside the proton can be cast as an inverse
problem of this sort (Forte et al., 2002; Ball et al., 2015).
Recently, both neural networks and Gaussian processes with
more sophisticated, physically inspired kernels have been
applied to these problems (Frate et al., 2017; Bozson, Cowan,
and Spanò, 2018). In the context of cosmology, an example
inverse problem is to denoise the Laser Interferometer
Gravitational-Wave Observatory (LIGO) time series to the
underlying waveform from a gravitational wave (Shen et al.,
2019). Generative adversarial networks have even been used
in the context of inverse problems where they were used to
denoise and recover images of galaxies beyond naive decon-
volution limits (Schawinski et al., 2017). Another example
involves estimating the image of a background object prior to
being gravitationally lensed by a foreground object. In this
case, describing a physically motivated prior for the back-
ground object is difficult. Recently, recurrent inference
machines (Putzky and Welling, 2017) have been introduced
as a way to implicitly learn a prior for such inverse problems,
and they have successfully been applied to strong gravitational
lensing (Morningstar et al., 2018, 2019).
A more ambitious approach to inverse problems

involves providing detailed probabilistic characterization
of y given X. In the frequentist paradigm one aims to
characterize the likelihood function LðyÞ ¼ pðX ¼ xjyÞ,
while in a Bayesian formalism one characterizes the pos-
terior pðyjX ¼ xÞ ∝ pðX ¼ xjyÞpðyÞ. The analogous situa-
tion happens for inference of latent variables Z given X. Both
particle physics and cosmology have well-developed
approaches to statistical inference based on detailed model-
ing of the likelihood, Markov chain Monte Carlo (MCMC)
(Foreman-Mackey et al., 2013), Hamiltonian Monte Carlo,
and variational inference (Lang, Hogg, and Mykytyn, 2016;
Jain, Srijith, and Desai, 2018; Regier et al., 2018). However,
all of these approaches require that the likelihood function is
tractable.

1. Likelihood-free inference

Somewhat surprisingly, the probability density or like-
lihood pðX ¼ xjyÞ that is implicitly defined by the simulator
is often intractable. Symbolically, the probability density can
be written pðXjyÞ ¼ R

pðX; ZjyÞdZ, where Z are the latent
variables of the simulation. The latent space of state-of-the-art
simulations is enormous and highly structured, so this integral
cannot be performed analytically. In simulations of a single
collision at the LHC, Z may have hundreds of millions of
components. In practice, the simulations are often based on
Monte Carlo techniques and generate samples ðXμ; ZμÞ ∼
pðX; ZjyÞ from which the density can be estimated. The
challenge is that if X is high dimensional it is difficult to
accurately estimate those densities. For example, naive histo-
gram-based approaches do not scale to high dimensions and
kernel density estimation techniques are only trustworthy to
around five dimensions. Adding to the challenge is that the
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distributions have a large dynamic range, and the interesting
physics often sits in the tails of the distributions.
The intractability of the likelihood implicitly defined by the

simulations is a foundational problem not only for particle
physics and cosmology, but many other areas of science as
well including epidemiology and phylogenetics. This has
motivated the development of so-called likelihood-free infer-
ence algorithms, which only require the ability to generate
samples only from the simulation in the forward mode.
One prominent technique is approximate Bayesian compu-

tation (ABC). In ABC one performs Bayesian inference using
the MCMC likelihood or a rejection sampling approach in
which the likelihood is approximated by the probability
p(ρðX; xÞ < ϵ), where x is the observed data to be condi-
tioned on, ρðx0; xÞ is some distance metric between x and the
output of the simulator x0, and ϵ is a tolerance parameter. As
ϵ → 0, one recovers exact Bayesian inference; however, the
efficiency of the procedure vanishes. One of the challenges for
ABC, particularly for high-dimensional x, is the specification
of the distance measure ρðx0; xÞ that maintains reasonable
acceptance efficiency without degrading the quality of the
inference (Beaumont, Zhang, and Balding, 2002; Marjoram
et al., 2003; Sisson, Fan, and Tanaka, 2007; Sisson and Fan,
2011; Marin et al., 2012). This approach to estimating the
likelihood is quite similar to the traditional practice in particle
physics of using histograms or kernel density estimation to
approximate p̂ðxjyÞ ≈ pðxjyÞ. In both cases, domain knowl-
edge is required to identify a useful summary in order to
reduce the dimensionality of the data. An interesting extension
of the ABC technique utilizes universal probabilistic pro-
gramming. In particular, a technique known as inference
compilation is a sophisticated form of importance sampling
in which a neural network controls the random number
generation in the probabilistic program to bias the simulation
to produce outputs x0 closer to the observed x (Le, Baydin, and
Wood, 2017).
The term ABC is often used synonymously with the more

general term likelihood-free inference; however, there are a
number of other approaches that involve learning an approxi-
mate likelihood or likelihood ratio that is used as a surrogate
for the intractable likelihood (ratio). For example, neural
density estimation with autoregressive models and normaliz-
ing flows (Larochelle and Murray, 2011; Rezende and
Mohamed, 2015; Papamakarios, Murray, and Pavlakou,

2017) have been used for this purpose and scale to
higher dimensional data (Cranmer and Louppe, 2016;
Papamakarios, Sterratt, and Murray, 2018). Alternatively,
training a classifier to discriminate between x ∼ pðxjyÞ and
x ∼ pðxjy0Þ can be used to estimate the likelihood ratio
r̂ðxjy; y0Þ ≈ pðxjyÞ=pðxjy0Þ, which can be used for inference
in either the frequentist or Bayesian paradigm (Cranmer,
Pavez, and Louppe, 2015; Brehmer, Louppe et al., 2018;
Hermans, Begy, and Louppe, 2019).

2. Examples in particle physics

Thousands of published results within particle physics,
including the discovery of the Higgs boson, involve statistical
inference based on a surrogate likelihood p̂ðxjyÞ constructed
with density estimation techniques applied to synthetic data-
sets generated from the simulation. These typically are
restricted to one- or two-dimensional summary statistics or
no features at all other than the number of events observed.
While the term likelihood-free inference is relatively new, it is
the core to the methodology of experimental particle physics.
More recently, a suite of likelihood-free inference tech-

niques based on neural networks have been developed and
applied to models for physics beyond the standard model
expressed in terms of effective field theory (EFT) (Brehmer
et al., 2018a, 2018b). EFTs provide a systematic expansion of
the theory around the standard model that is parametrized by
coefficients for quantum mechanical operators, which play the
role of y in this setting. One interesting observation in this
work is that even though the likelihood and likelihood ratio
are intractable, the joint likelihood ratio rðx; zjy; y0Þ and the
joint score tðx; zjyÞ ¼ ∇y logpðx; zjyÞ are tractable and can be
used to augment the training data (see Fig. 2) and dramatically
improve the sample efficiency of these techniques (Brehmer,
Louppe et al., 2018).
In addition, an inference compilation technique has been

applied to the inference of a tau-lepton decay. This proof-of-
concept effort required developing probabilistic programming
protocol that can be integrated into existing domain-specific
simulation codes such as SHERPA and GEANT4 (Casado et al.,
2017; Baydin et al., 2018). This approach provides Bayesian
inference on the latent variables pðZjX ¼ xÞ and deep
interpretability as the posterior corresponds to a distribution
over complete stack traces of the simulation, allowing any
aspect of the simulation to be inspected probabilistically.

FIG. 2. A schematic of machine learning based approaches to likelihood-free inference in which the simulation provides training data
for a neural network that is subsequently used as a surrogate for the intractable likelihood during inference. From Brehmer et al., 2018b.
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Another technique for likelihood-free inference that was
motivated by the challenges of particle physics is known as
adversarial variational optimization (AVO) (Louppe,
Hermans, and Cranmer, 2017). AVO parallels generative
adversarial networks, where the generative model is no longer
a neural network, but instead the domain-specific simulation.
Instead of optimizing the parameters of the network, the goal
is to optimize the parameters of the simulation so that the
generated data matches the target data distribution. The main
challenge is that, unlike neural networks, most scientific
simulators are not differentiable. To get around this problem,
a variational optimization technique is used, which provides a
differentiable surrogate loss function. This technique is being
investigated for tuning the parameters of the simulation, which
is a computationally intensive task in which Bayesian opti-
mization has also recently been used (Ilten, Williams, and
Yang, 2017).

3. Examples in cosmology

Within cosmology, early uses of ABC include constraining
a thick disk formation scenario of the MilkyWay (Robin et al.,
2014) and inferences on rate of morphological transformation
of galaxies at high redshift (Cameron and Pettitt, 2012), which
aimed to track the Hubble parameter evolution from type-Ia
supernova measurements. These experiences motivated the
development of tools such as COSMOABC to streamline the
application of the methodology in cosmological applications
(Ishida et al., 2015).
More recently, likelihood-free inference methods based on

machine learning have also been developed, motivated by the
experiences in cosmology. To confront the challenges of ABC
for high-dimensional observations X, a data compression
strategy was developed that learns summary statistics that
maximize the Fisher information on the parameters (Alsing,
Wandelt, and Feeney, 2018; Charnock, Lavaux, and Wandelt,
2018). The learned summary statistics approximate the
sufficient statistics for the implicit likelihood in a small
neighborhood of some nominal or fiducial parameter value.
This approach is closely connected to that of Brehmer, Louppe
et al. (2018). Recently, these approaches were extended to
learn summary statistics that are robust to systematic uncer-
tainties (Alsing and Wandelt, 2019).

E. Generative models

An active area in machine learning research involves
using unsupervised learning to train a generative model to
produce a distribution that matches some empirical distri-
bution. This includes GANs (Goodfellow et al., 2014), VAEs
(Kingma and Welling, 2013; Rezende, Mohamed, and
Wierstra, 2014), autoregressive models, and models based
on normalizing flows (Larochelle and Murray, 2011;
Rezende and Mohamed, 2015; Papamakarios, Murray, and
Pavlakou, 2017).
Interestingly, the same issue that motivates likelihood-free

inference, the intractability of the density implicitly defined by
the simulator also appears in GANs. If the density of a GAN
were tractable, GANs would be trained via standard maximum
likelihood, but because their density is intractable a trick was

needed. The trick is to introduce an adversary, i.e., the
discriminator network used to classify the samples from the
generative model and samples taken from the target distribu-
tion. The discriminator is effectively estimating the likelihood
ratio between the two distributions, which provides a direct
connection to the approaches to likelihood-free inference
based on classifiers (Cranmer and Louppe, 2016).
Operationally, these models play a similar role as traditional

scientific simulators, although traditional simulation codes
also provide a causal model for the underlying data generation
process grounded in physical principles. However, traditional
scientific simulators are often very slow as the distributions
of interest emerge from a low-level microphysical descrip-
tion. For example, simulating collisions at the LHC involves
atomic-level physics of ionization and scintillation.
Similarly, simulations in cosmology involve gravitational
interactions among enormous numbers of massive objects
and may also include complex feedback processes that
involve radiation, star formation, etc. Therefore, learning a
fast approximation to these simulations is of great value.
Within particle physics early work in this direction included

GANs for energy deposits from particles in calorimeters
(Paganini, de Oliveira, and Nachman, 2018a, 2018b), which
is being studied by the ATLAS Collaboration (Ghosh, 2018).
In cosmology, generative models have been used to learn the
simulation for cosmological structure formation (Rodríguez
et al., 2018). In an interesting hybrid approach, a deep neural
network was used to predict the nonlinear structure formation
of the Universe as a residual from a fast physical simulation
based on linear perturbation theory (He et al., 2018).
In other cases, well-motivated simulations do not always

exist or are impractical. Nevertheless, having a generative
model for such data can be valuable for the purpose of
calibration. An illustrative example in this direction comes
from Ravanbakhsh et al. (2016); see Fig. 3. They point out
that the next generation of cosmological surveys for weak
gravitational lensing relies on accurate measurements of the
apparent shapes of distant galaxies. However, shape meas-
urement methods require a precise calibration to meet the
accuracy requirements of the science analysis. This calibration
process is challenging as it requires large sets of high-quality
galaxy images, which are expensive to collect. Therefore, the
GAN enables an implicit generalization of the parametric
bootstrap.

F. Outlook and challenges

While particle physics and cosmology have a long history
in utilizing machine learning methods, the scope of topics that
machine learning is being applied to has grown significantly.
Machine learning is now seen as a key strategy to confronting
the challenges of the upgraded high-luminosity LHC
(Apollinari et al., 2015; Albertsson et al., 2018) and is
influencing the strategies for future experiments in both
cosmology and particle physics (Ntampaka et al., 2019).
One area, in particular, that has gathered a great deal of
attention at the LHC is the challenge of identifying the tracks
left by charged particles in high-luminosity environments
(Farrell et al., 2018), which has been the focus of a recent
kaggle challenge.
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In almost all areas where machine learning is being applied
to physics problems, there is a desire to incorporate domain
knowledge in the form of hierarchical structure, compositional
structure, geometrical structure, or symmetries that are known
to exist in the data or the data-generation process. Recently,
there was a spate of work from the machine learning
community in this direction (Cohen and Welling, 2016;
Bronstein et al., 2017; Cohen et al., 2018, 2019; Kondor,
2018; Kondor, Lin, and Trivedi, 2018; Kondor and Trivedi,
2018). These developments are being closely followed by
physicists and are already being incorporated into contempo-
rary research in this area.

IV. MANY-BODY QUANTUM MATTER

The intrinsic probabilistic nature of quantum mechanics
makes physical systems in this realm an effectively infinite
source of big data and an appealing playground for ML
applications. A paradigmatic example of this probabilistic
nature is the measurement process in quantum physics.
Measuring the position r of an electron orbiting around the
nucleus can be only approximately inferred from measure-
ments. An infinitely precise classical measurement device can
be used only to record the outcome of a specific observation of
the electron position. Ultimately, a complete characterization
of the measurement process is given by the wave function
ΨðrÞ, whose square modulus defines the probability PðrÞ ¼
jΨðrÞj2 of observing the electron at a given position in space.
While in the case of a single electron both theoretical
predictions and experimental inference for PðrÞ are efficiently
performed, the situation becomes dramatically more complex
in the case of many quantum particles. For example, the
probability of observing the positions of N electrons
Pðr1;…; rNÞ is an intrinsically high-dimensional function
that can seldom be exactly determined for N much larger
than a few tens. The exponential hardness in estimating
Pðr1;…; rNÞ is itself a direct consequence of estimating the
complex-valued many-body amplitudes Ψðr1;…; rNÞ and is
commonly referred to as the quantum many-body problem.
The quantum many-body problem manifests itself in a variety
of cases. These most chiefly include the theoretical modeling
and simulation of complex quantum systems, most materials
and molecules, for which only approximate solutions are often
available. Other important manifestations of the quantum
many-body problem include the understanding and analysis

of experimental outcomes, especially in relation with complex
phases of matter. In the following, we discuss some of the ML
applications focused on alleviating some of the challenging
theoretical and experimental problems posed by the quantum
many-body problem.

A. Neural-network quantum states

Neural-network quantum states (NQSs) are a representation
of the many-body wave function in terms of artificial neural
networks (ANNs) (Carleo and Troyer, 2017). A commonly
adopted choice is to parametrize wave-function amplitudes as
a feed-forward neural network:

ΨðrÞ ¼ gðLÞðWðLÞ � � � gð2ÞðWð2Þgð1ÞðWð1ÞrÞÞÞ; ð3Þ

with similar notation to what was introduced in Eq. (2).
Early works mostly concentrated on shallow networks and

most notably RBMs (Smolensky, 1986). RBMs with hidden
units in f�1g and without biases on the visible units formally
correspond to FFNNs of depth L ¼ 2, and activations
gð1ÞðxÞ ¼ log coshðxÞ, gð2ÞðxÞ ¼ expðxÞ. An important differ-
ence with respect to RBM applications for unsupervised
learning of probability distributions is that when used as
NQS RBM states are typically taken to have complex-valued
weights (Carleo and Troyer, 2017). Deeper architectures have
been consistently studied and introduced in more recent work,
for example, NQS based on fully connected and convolutional
deep networks (Choo et al., 2018; Saito, 2018; Sharir et al.,
2019); see Fig. 4 for a schematic example. A motivation to use
deep FFNN networks, apart from the practical success of deep
learning in industrial applications, also comes from more
general theoretical arguments in quantum physics. For exam-
ple, it has been shown that deep NQS can sustain entangle-
ment more efficiently than RBM states (D. Liu et al., 2017;
Levine et al., 2019). Other extensions of the NQS represen-
tation concern representation of mixed states described by
density matrices, rather than pure wave functions. In this
context, it is possible to define positive-definite RBM para-
metrizations of the density matrix (Torlai and Melko, 2018).
One of the specific challenges emerging in the quantum

domain is imposing physical symmetries in the NQS repre-
sentations. In the case of a periodic arrangement of matter,
spatial symmetries can be imposed using convolutional
architectures similar to what is used in image classification

FIG. 3. Samples from the GALAXY-ZOO dataset vs generated samples using a conditional generative adversarial network. Each
synthetic image is a 128 × 128 colored image (here inverted) produced by conditioning on a set of features y ∈ ½0; 1�37. The pair of
observed and generated images in each column corresponds to the same y value. From Ravanbakhsh et al., 2016.
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tasks (Choo et al., 2018; Saito, 2018; Sharir et al., 2019).
Selecting high-energy states in different symmetry sectors was
also demonstrated (Choo et al., 2018). While spatial sym-
metries have analogous counterparts in other ML applications,
satisfying more involved quantum symmetries often needs a
deep rethinking of ANN architectures. The most notable case
in this sense is the exchange symmetry. For bosons, this
amounts to imposing the wave function to be permutationally
invariant with respect to the exchange of particle indices. The
Bose-Hubbard model has been adopted as a benchmark for
ANN bosonic architectures with state-of-the-art results having
been obtained (Saito, 2017, 2018; Saito and Kato, 2018; Teng,
2018). The most challenging symmetry is, however, certainly
the fermionic one. In this case, the NQS representation needs
to encode the antisymmetry of the wave function (exchanging
two particle positions, for example, leads to a minus sign). In
this case, different approaches have been explored, mostly
expanding on existing variational ansatz for fermions. A
symmetric RBM wave function correcting an antisymmetric
correlator part has been used to study two-dimensional
interacting lattice fermions (Nomura et al., 2017). Other
approaches have tackled the fermionic symmetry problem
using a backflow transformation of Slater determinants (Luo
and Clark, 2018), or directly working in first quantization
(Han, Zhang, and E, 2018). The situation for fermions is
certainly the most challenging for ML approaches at the
moment, owing to the specific nature of the symmetry. On the
applications side, NQS representations have been used so far
along three main different research lines.

1. Representation theory

An active area of research concerns the general expressive
power of NQS, as also compared to other families of
variational states. Theoretical activity on the representation
properties of NQS seeks to understand how large and how
deep should be neural networks describing interesting inter-
acting quantum systems. In connection with the first numeri-
cal results obtained with RBM states, the entanglement has
been soon identified as a possible candidate for the expressive
power of NQS. RBM states, for example, can efficiently
support volume-law scaling (Deng, Li, and Das Sarma,
2017b), with a number of variational parameters scaling only

polynomially with system size. In this direction, the language
of tensor networks has been particularly helpful in clarifying
some of the properties of NQS (J. Chen et al., 2018; Pastori,
Kaubruegger, and Budich, 2018). A family of NQS based on
RBM states has been shown to be equivalent to a certain
family of variational states known as correlator product states
(Clark, 2018; Glasser et al., 2018). The question of determin-
ing how large are the respective classes of quantum states
belonging to the NQS form, Eq. (3), and to computationally
efficient tensor network is, however, still open. Exact repre-
sentations of several intriguing phases of matter, including
topological states and stabilizer codes (Deng, Li, and Das
Sarma, 2017a; Huang and Moore, 2017; Glasser et al., 2018;
Kaubruegger, Pastori, and Budich, 2018; Lu, Gao, and Duan,
2018; Zheng et al., 2018), have also been obtained in closed
RBM form. Not surprisingly, given its shallow depth, RBM
architectures are also expected to have limitations, on general
grounds. Specifically, it is not in general possible to write all
possible physical states in terms of compact RBM states (Gao
and Duan, 2017). In order to lift the intrinsic limitations of
RBMs, and efficiently describe a large family of physical
states, it is necessary to introduce deep Boltzmann machines
(DBM) with two hidden layers (Gao and Duan, 2017). Similar
network constructions have been introduced also as a possible
theoretical framework, alternative to the standard path-integral
representation of quantum mechanics (Carleo, Nomura, and
Imada, 2018).

2. Learning from data

Parallel to the activity on understanding the theoretical
properties of NQS, a family of studies in this field is
concerned with the problem of understanding how hard it
is, in practice, to learn a quantum state from numerical data.
This can be realized using either synthetic data (for example,
coming from numerical simulations) or directly from
experiments.
This line of research has been explored in the supervised

learning setting to understand how well NQS can represent
states that are not easily expressed (in closed analytic form) as
ANNs. The goal is then to train a NQS network jΨi to
represent, as close as possible, a certain target state jΦiwhose
amplitudes can be efficiently computed. This approach has
been successfully used to learn ground states of fermionic,
frustrated, and bosonic Hamiltonians (Cai and Liu, 2018).
Those represent interesting study cases, since the sign or phase
structure of the target wave functions can pose a challenge to
standard activation functions used in FFNN. Along the same
lines, supervised approaches have been proposed to learn
random matrix product state wave functions both with shallow
NQS (Borin and Abanin, 2019), and with generalized NQS
including a computationally treatable DBM form (Pastori,
Kaubruegger, and Budich, 2018). While in the latter case these
studies have revealed efficient strategies to perform the
learning, in the former case hardness in learning some random
matrix product state (MPS) has been shown. At present, it is
speculated that this hardness originates from the entanglement
structure of the random MPS; however, it is unclear if this is
related to the hardness of the NQS optimization landscape or
to an intrinsic limitation of shallow NQS.

σ

FIG. 4. (Top) Example of a shallow convolutional neural
network used to represent the many-body wave function of a
system of spin 1=2 particles on a square lattice. (Bottom) Filters
of a fully connected convolutional RBM found in the variational
learning of the ground state of the two-dimensional Heisenberg
model. Adapted from Carleo and Troyer, 2017.
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Besides supervised learning of given quantum states,
data-driven approaches with NQS have largely concentrated
on unsupervised approaches. In this framework, only mea-
surements from some target state jΦi or density matrix are
available, and the goal is to reconstruct the full state, in NQS
form, using such measurements. In the simplest setting, one is
given a dataset of M measurements rð1Þ;…; rðMÞ distributed
according to Born’s rule prescription PðrÞ ¼ jΦðrÞj2, where
PðrÞ is to be reconstructed. In cases when the wave function is
positive definite, or when only measurements in a certain basis
are provided, reconstructing PðrÞ with standard unsupervised
learning approaches is enough to reconstruct all the available
information on the underlying quantum state Φ. This
approach, for example, has been demonstrated for ground
states of stochastic Hamiltonians (Torlai et al., 2018) using
RBM-based generative models. An approach based on deep
VAE generative models has also been demonstrated in the case
of a family of classically hard to sample from quantum states
(Rocchetto et al., 2018), for which the effect of network depth
has been shown to be beneficial for compression.
In the more general setting, the problem is to reconstruct a

general quantum state, either pure or mixed, using measure-
ments from more than a single basis of quantum numbers.
Those are especially necessary to reconstruct also the complex
phases of the quantum state. This problem corresponds to a
well-known problem in quantum information, known as
quantum state tomography (QST), for which specific NQS
approaches have been introduced (Torlai et al., 2018; Torlai
and Melko, 2018; Carrasquilla et al., 2019). Those are
discussed more in detail, in the dedicated Sec. V.A, also in
connection with other ML techniques used for this task.

3. Variational learning

Finally, one of the main applications for the NQS repre-
sentations is in the context of variational approximations for
many-body quantum problems. The goal of these approaches
is, for example, to approximately solve the Schrödinger
equation using a NQS representation for the wave function.
In this case, the problem of finding the ground state of a given
quantum Hamiltonian H is formulated in variational terms
as the problem of learning NQS weights W minimizing
EðWÞ ¼ hΨðWÞjHjΨðWÞi=hΨðWÞjΨðWÞi. This is achieved
using a learning scheme based on variational Monte Carlo
optimization (Carleo and Troyer, 2017). Within this family of
applications, no external data representative of the quantum
state is given; thus they typically demand a larger computa-
tional burden than supervised and unsupervised learning
schemes for NQS.
Experiments on a variety of spin (Deng, Li, and Das Sarma,

2017a; Choo et al., 2018; Glasser et al., 2018; Liang et al.,
2018), bosonic (Saito, 2017, 2018; Choo et al., 2018; Saito
and Kato, 2018), and fermionic (Nomura et al., 2017; Han,
Zhang, and E, 2018; Luo and Clark, 2018) models have shown
that results competitive with existing state-of-the-art
approaches can be obtained. In some cases, improvement
over existing variational results have been demonstrated, most
notably for two-dimensional lattice models (Carleo and
Troyer, 2017; Nomura et al., 2017; Luo and Clark, 2018)

and for topological phases of matter (Glasser et al., 2018;
Kaubruegger, Pastori, and Budich, 2018).
Other NQS applications concern the solution of the time-

dependent Schrödinger equation (Carleo and Troyer, 2017;
Czischek, Gärttner, and Gasenzer, 2018; Schmitt and Heyl,
2018; Fabiani and Mentink, 2019). In these applications, one
uses the time-dependent variational principle of Dirac and
Frenkel (Dirac, 1930; Frenkel, 1934) to learn the optimal time
evolution of network weights. This can be suitably general-
ized also to open dissipative quantum systems, for which a
variational solution of the Lindblad equation can be realized
(Hartmann and Carleo, 2019; Nagy and Savona, 2019;
Vicentini et al., 2019; Yoshioka and Hamazaki, 2019).
In the great majority of the variational applications

discussed here, the learning schemes used are typically
higher-order techniques than standard SGD approaches.
The stochastic reconfiguration (SR) approach (Sorella,
1998; Becca and Sorella, 2017) and its generalization to
the time-dependent case (Carleo et al., 2012) have proven
particularly suitable to variational learning of NQS. The SR
scheme can be seen as a quantum analogous of the natural-
gradient method for learning probability distributions
(Amari, 1998) and builds on the intrinsic geometry asso-
ciated with the neural-network parameters. More recently, in
an effort to use deeper and more expressive networks than
those initially adopted, learning schemes building on first-
order techniques have been more consistently used (Kochkov
and Clark, 2018; Sharir et al., 2019). These constitute two
different philosophies of approaching the same problem. On
the one hand, early applications focused on small networks
learned with very accurate but expensive training techniques.
On the other hand, later approaches have focused on deeper
networks and cheaper, but also less accurate, learning
techniques. Combining the two philosophies in a computa-
tionally efficient way is one of the open challenges in
the field.

B. Speed up many-body simulations

The use of ML methods in the realm of the quantum many-
body problems extends well beyond neural-network repre-
sentation of quantum states. A powerful technique to study
interacting models is quantum Monte Carlo (QMC)
approaches. These methods stochastically compute properties
of quantum systems through mapping to an effective classical
model, for example, by means of the path-integral represen-
tation. A practical issue often resulting from these mappings is
that providing efficient sampling schemes of high-dimen-
sional spaces (path integrals, perturbation series, etc.) requires
a careful tuning, often problem dependent. Devising general-
purpose samplers for these representations is therefore a
particularly challenging problem. Unsupervised ML methods
can, however, be adopted as a tool to speed up Monte Carlo
sampling for both classical and quantum applications. Several
approaches in this direction have been proposed and leverage
the ability of unsupervised learning to well approximate the
target distribution being sampled from in the underlying
Monte Carlo scheme. Relatively simple energy-based gen-
erative models have been used in early applications for
classical systems (Huang and Wang, 2017; Liu, Qi et al.,
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2017). “Self-learning,” Monte Carlo techniques were then
generalized also to fermionic systems (Liu, Shen et al., 2017;
Nagai et al., 2017; C. Chen et al., 2018). Overall, it was found
that such approaches are effective at reducing the autocorre-
lation times, especially when compared to families of less
effective Markov chain Monte Carlo techniques with local
updates. More recently, state-of-the-art generative ML models
have been adopted to speed up sampling in specific tasks.
Notably, Wu, Wang, and Zhang (2018) used deep autore-
gressive models that may enable a more efficient sampling
from hard classical problems, such as spin glasses. The
problem of finding efficient sampling schemes for the under-
lying classical models is then transformed into the problem of
finding an efficient corresponding autoregressive deep net-
work representation. This approach was also generalized to
the quantum cases in Sharir et al. (2019), where an autore-
gressive representation of the wave function is introduced.
This representation is automatically normalized and allows
one to bypass the Markov chain Monte Carlo technique in the
variational learning previously discussed.
While exact for a large family of bosonic and spin systems,

QMC techniques typically incur in a severe sign problem
when dealing with several interesting fermionic models, as
well as frustrated spin Hamiltonians. In this case, it is tempting
to use ML approaches to attempt a direct or indirect reduction
of the sign problem. While only in its first stages, this family
of applications has been used to infer information about
fermionic phases through hidden information in the Green’s
function (Broecker et al., 2017).
Similarly, ML techniques can help reduce the burden of

more subtle manifestations of the sign problem in dynamical
properties of quantum models. In particular, the problem of
reconstructing spectral functions from imaginary-time corre-
lations in imaginary time is also a field in which ML can be
used as an alternative to traditional maximum-entropy tech-
niques to perform analytical continuations of QMC data
(Arsenault et al., 2017; Fournier et al., 2018; Yoon, Sim,
and Han, 2018).

C. Classifying many-body quantum phases

The challenge posed by the complexity of many-body
quantum states manifests itself in many other forms.
Specifically, several elusive phases of quantum matter are
often hard to characterize and pinpoint both in numerical
simulations and in experiments. For this reason, ML schemes
to identify phases of matter have become particularly popular
in the context of quantum phases. In the following we review
some of the specific applications to the quantum domain,
while a more general discussion on identifying phases and
phase transitions is found in Sec. II.E.

1. Synthetic data

Following the early developments in phase classifications
with supervised approaches (Wang, 2016; Carrasquilla and
Melko, 2017; Van Nieuwenburg, Liu, and Huber, 2017), many
studies have since then focused on analyzing phases of matter
in synthetic data, mostly from simulations of quantum
systems. While we do not attempt here to provide an

exhaustive review of the many studies appearing in this
direction, we highlight two large families of problems that
have so far largely served as benchmarks for new ML tools in
the field.
The first challenging test bench for phase classification

schemes is the case of quantum many-body localization. This
is an elusive phase of matter showing characteristic finger-
prints in the many-body wave function itself, but not neces-
sarily emerging from more traditional order parameters [see,
for example, Alet and Laflorencie (2018) for a recent review
on the topic]. First studies in this direction have focused on
training strategies aiming at the Hamiltonian or entanglement
spectra (Schindler, Regnault, and Neupert, 2017; Hsu et al.,
2018; Huembeli et al., 2018; Venderley, Khemani, and Kim,
2018; Zhang, Wang, and Wang, 2019). These works have
demonstrated the ability to effectively learn the MBL phase
transition in relatively small systems accessible with exact
diagonalization techniques. Other studies have instead
focused on directly identifying signatures in experimentally
relevant quantities, most notably from the many-body dynam-
ics of local quantities (Doggen et al., 2018; van Nieuwenburg,
Bairey, and Refael, 2018). The latter schemes appear to be at
present the most promising for applications to experiments,
while the former have been used as a tool to identify the
existence of an unexpected phase in the presence of correlated
disorder (Hsu et al., 2018).
Another challenging class of problems is found when

analyzing topological phases of matter. These are largely
considered a nontrivial test for ML schemes, because these
phases are typically characterized by nonlocal order param-
eters. In turn, these nonlocal order parameters are hard to learn
for popular classification schemes used for images. This
specific issue is already present when analyzing classical
models featuring topological phase transitions. For example,
in the presence of a Berezinskii–Kosterlitz–Thouless-type
transition, learning schemes trained on raw Monte Carlo
configurations are not effective (Hu, Singh, and Scalettar,
2017; Beach, Golubeva, and Melko, 2018). These problems
can be circumvented devising training strategies using preen-
gineered features (Broecker, Assaad, and Trebst, 2017;
Cristoforetti et al., 2017; Wang and Zhai, 2017; Wetzel,
2017) instead of raw Monte Carlo samples. These features
typically rely on some important a priori assumptions on the
nature of the phase transition to be looked for, thus diminish-
ing their effectiveness when looking for new phases of matter.
Deeper in the quantum world, there has been research activity
along the direction of learning, in a supervised fashion,
topological invariants. Neural networks can be used, for
example, to classify families of noninteracting topological
Hamiltonians, using as an input their discretized coefficients,
in either real (Ohtsuki and Ohtsuki, 2016, 2017) or momen-
tum space (Sun et al., 2018; Zhang, Shen, and Zhai, 2018). In
these cases, it was found that neural networks are able to
reproduce the already known beforehand topological invari-
ants, such as winding numbers, Berry curvatures, and more.
The context of strongly correlated topological matter is, to a
large extent, more challenging than the case of noninteracting
band models. In this case, a common approach is to define a
set of carefully preengineered features to be used on top of the
raw data. One well-known example is the case of the so-called
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quantum loop topography (Zhang and Kim, 2017), trained on
local operators computed on single shots of sampled wave-
function walkers as, for example, done in variational
Monte Carlo techniques. It has been shown that this specific
choice of local features is able to distinguish strongly
interacting fraction Chern insulators and also Z2 quantum
spin liquids (Zhang, Melko, and Kim, 2017). Similar efforts
have been realized to classify more exotic phases of matter,
including magnetic skyrmion phases (Iakovlev, Sotnikov, and
Mazurenko, 2018) and dynamical states in antiskyrmion
dynamics (Ritzmann et al., 2018).
Despite the progress seen so far along the many direction

described here, it is fair to say that topological phases of
matter, especially for interacting systems, constitute one of the
main challenges for phase classification. While some good
progress has already been made (Huembeli, Dauphin, and
Wittek, 2018; Rodriguez-Nieva and Scheurer, 2018), future
research needs to address the issue of finding training schemes
not relying on preselection of data features.

2. Experimental data

Beyond extensive studies on data from numerical simu-
lations, supervised schemes have found their way also as a
tool to analyze experimental data from quantum systems. In
ultracold atom experiments, supervised learning tools have
been used to map out both the topological phases of non-
interacting particles and the onset of Mott insulating phases in
finite optical traps (Rem et al., 2018). In this specific case, the
phases were already known and identifiable with other
approaches. However, ML-based techniques combining a
priori theoretical knowledge with experimental data hold the
potential for genuine scientific discovery.
For example, ML can enable scientific discovery in the

interesting cases when experimental data has to be attributed
to one of the many available and equally likely a priori
theoretical models, but the experimental information at hand
is not easily interpreted. Typically interesting cases emerge,
for example, when the order parameter is a complex, and
only implicitly known, nonlinear function of the experimen-
tal outcomes. In this situation, ML approaches can be used as
a powerful tool to effectively learn the underlying traits of a
given theory and provide a possibly unbiased classification
of experimental data. This is the case for incommensurate
phases in high-temperature superconductors, for which
scanning tunneling microscopy images reveal complex
patters that are hard to decipher using conventional analysis
tools. Using supervised approaches in this context, recent
work (Y. Zhang et al., 2019) has shown that it is possible to
infer the nature of spatial ordering in these systems; also
see Fig. 5.
A similar idea was also used for another prototypical

interacting quantum systems of fermions, the Hubbard model,
as implemented in ultracold atom experiments in optical
lattices. In this case the reference models provide snapshots
of the thermal density matrix that can be preclassified in a
supervised learning fashion. The outcome of this study (Bohrdt
et al., 2018) is that the experimental results are with good
confidence compatible with one of the theories proposed, in
this case a geometric string theory for charge carriers.

In the last two experimental applications previously
described, the outcomes of the supervised approaches are
to a large extent highly nontrivial and hard to predict a priori
on the basis of other information at hand. The inner bias
induced by the choice of the theories to be classified is
however one of the current limitations that these kinds of
approaches face.

D. Tensor networks for machine learning

The research topics reviewed so far are mainly concerned
with the use of ML ideas and tools to study problems in the
realm of quantum many-body physics. Complementary to this
philosophy, an interesting research direction in the field
explores the inverse direction, investigating how ideas from
quantum many-body physics can inspire and devise new
powerful ML tools. Central to these developments are
tensor-network representations of many-body quantum states.
These are successful variational families of many-body wave
functions, naturally emerging from low-entanglement repre-
sentations of quantum states (Verstraete, Murg, and Cirac,
2008). Tensor networks can serve as both a practical and a
conceptual tool for ML tasks, both in the supervised and in the
unsupervised setting.
These approaches build on the idea of providing physics-

inspired learning schemes and network structures alternative
to the more conventionally adopted stochastic learning
schemes and FFNN networks. For example, MPS represen-
tations, a work horse for the simulation of interacting one-
dimensional quantum systems (White, 1992), have been
repurposed to perform classification tasks (Novikov,
Trofimov, and Oseledets, 2016; Stoudenmire and Schwab,
2016; Liu et al., 2018), and also recently adopted as explicit
generative models for unsupervised learning (Han et al.,
2018; Stokes and Terilla, 2019). It is worth mentioning that
other related high-order tensor decompositions, developed in
the context of applied mathematics, have been used for ML
purposes (Acar and Yener, 2009; Anandkumar et al., 2014).
Tensor-train decompositions (Oseledets, 2011), formally

FIG. 5. Example of machine learning approach to the classi-
fication of experimental images from scanning tunneling micros-
copy of high-temperature superconductors. Images are classified
according to the predictions of distinct types of periodic spatial
modulations. From Y. Zhang et al., 2019.
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equivalent to MPS representations, have been introduced in
parallel as a tool to perform various machine learning tasks
(Novikov, Trofimov, andOseledets, 2016; Izmailov,Novikov,
and Kropotov, 2017; Gorodetsky, Karaman, and Marzouk,
2019). Networks closely related to MPS have also been
explored for time-series modeling (Guo et al., 2018).
In the effort of increasing the amount of entanglement

encoded in these low-rank tensor decompositions, recent
works have concentrated on tensor-network representations
alternative to the MPS form. One notable example is the use
of tree tensor networks with a hierarchical structure (Shi,
Duan, and Vidal, 2006; Hackbusch and Kühn, 2009), which
have been applied to classification (D. Liu et al., 2017;
Stoudenmire, 2018) and generative modeling (Cheng et al.,
2019) tasks with good success. Another example is the use of
entangled plaquette states (Gendiar and Nishino, 2002;
Changlani et al., 2009; Mezzacapo et al., 2009) and string
bond states (Schuch et al., 2008), both showing sizable
improvements in classification tasks over MPS states
(Glasser, Pancotti, and Cirac, 2018).
On the more theoretical side, the deep connection between

tensor networks and complexity measures of quantum many-
body wave functions, such as entanglement entropy, can be
used to understand, and possibly inspire, successful network
designs for ML purposes. The tensor-network formalism has
proven powerful in interpreting deep learning through the lens
of renormalization group concepts. Pioneering work in this
direction has connected multiscale entanglement renormali-
zation ansatz tensor-network states (Vidal, 2007) to hierar-
chical Bayesian networks (Bény, 2013). In later analysis,
convolutional arithmetic circuits (Cohen, Sharir, and Shashua,
2016), a family of convolutional networks with product
nonlinearities, have been introduced as a convenient model
to bridge tensor decompositions with FFNN architectures. In
addition to their conceptual relevance, these connections can
help to clarify the role of inductive bias in modern and
commonly adopted neural networks (Levine et al., 2017).

E. Outlook and challenges

Applications of ML to quantum many-body problems have
seen fast-paced progress in the past few years, touching a
diverse selection of topics ranging from numerical simulation
to data analysis. The potential of ML techniques has already
surfaced in this context, showing improved performance with
respect to existing techniques on selected problems. To a large
extent, however, the real power of ML techniques in this
domain has been only partially demonstrated, and several
open problems remain to be addressed.
In the context of variational studies with NQSs, for

example, the origin of the empirical success obtained so far
with different kinds of neural-network quantum states is not
equally well understood as for other families of variational
states, like tensor networks. Key open challenges remain also
with the representation and simulation of fermionic systems,
for which efficient neural-network representations are still to
be found.
Tensor-network representations for ML purposes, as well as

complex-valued networks like those used for NQS, play an
important role to bridge the field back to the arena of computer

science. Challenges for the future of this research direction
consist of effectively interfacing with the computer-science
community, while retaining the interest and the generality of
the physics tools.
For what concerns ML approaches to experimental data, the

field is largely still in its infancy, with only a few applications
having been demonstrated so far. This is in stark contrast with
other fields, such as high-energy and astrophysics, in which
ML approaches have matured to a stage where they are often
used as standard tools for data analysis. Moving toward
achieving the same goal in the quantum domain demands
closer collaborations between the theoretical and experimental
efforts, as well as a deeper understanding of the specific
problems where ML can make a substantial difference.
Overall, given the relatively short time span in which

applications of ML approaches to many-body quantum matter
have emerged, there are however good reasons to believe that
these challenges will be energetically addressed, and some of
them solved, in the coming years.

V. QUANTUM COMPUTING

Quantum computing uses quantum systems to process
information. In the most popular framework of gate-based
quantum computing (Nielsen and Chuang, 2002), a quantum
algorithm describes the evolution of an initial state jψ0i of a
quantum system of n two-level systems called qubits to a final
state jψfi through discrete transformations or quantum gates.
The gates usually act only on a small number of qubits, and
the sequence of gates defines the computation.
The intersection of machine learning and quantum comput-

ing has become an active research area in the last couple of
years and contains a variety of ways to merge the two
disciplines [see also Dunjko and Briegel (2018) for a review].
Quantum machine learning asks how quantum computers can
enhance, speed up, or innovate machine learning (Biamonte
et al., 2017; Ciliberto et al., 2018; Schuld and Petruccione,
2018a) (see also Secs. IV and VII). Quantum learning theory
highlights theoretical aspects of learning under a quantum
framework (Arunachalam and de Wolf, 2017).
In this section we are concerned with a third angle, namely,

how machine learning can help us to build and study quantum
computers. This angle includes topics ranging from the use of
intelligent data mining methods to find physical regimes in
materials that can be used as qubits (Kalantre et al., 2019), to
the verification of quantum devices (Agresti et al., 2019),
learning the design of quantum algorithms (Bang et al., 2014;
Wecker, Hastings, and Troyer, 2016), facilitating classical
simulations of quantum circuits (Jónsson, Bauer, and Carleo,
2018), automated design on quantum experiments (Krenn
et al., 2016; Melnikov et al., 2018), and learning to extract
relevant information from measurements (Seif et al., 2018).
We focus on three general problems related to quantum

computing which were targeted by a range of ML methods:
the problem of reconstructing benchmarking quantum states
via measurements, the problem of preparing a quantum state
via quantum control, and the problem of maintaining the
information stored in the state through quantum error correc-
tion. The first problem is known as quantum state tomography,
and it is especially useful to understand and improve upon the
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limitations of current quantum hardware. Quantum control
and quantum error corrections solve related problems; how-
ever, usually the former refers to hardware-related solutions
while the latter uses algorithmic solutions to the problem of
executing a computational protocol with a quantum system.
Similar to the other disciplines in this review, machine

learning has shown promising results in all these areas and
will in the long run likely enter the toolbox of quantum
computing to be used side by side with other well-established
methods.

A. Quantum state tomography

The general goal of QST is to reconstruct the density matrix
of an unknown quantum state, through experimentally avail-
able measurements. QST is a central tool in several fields of
quantum information and quantum technologies in general,
where it is often used as a way to assess the quality and the
limitations of the experimental platforms. The resources
needed to perform full QST are however extremely demand-
ing, and the number of required measurements scales expo-
nentially with the number of qubits or quantum degrees of
freedom [see Paris and Rehacek (2004) for a review on the
topic, and O’Donnell and Wright (2016) and Haah et al.
(2017) for a discussion on the hardness of learning in state
tomography].
ML tools were identified several years ago as tools to

improve upon the cost of full QST, exploiting some special
structure in the density matrix. Compressed sensing (Gross
et al., 2010) is one prominent approach to the problem,
allowing one to reduce the number of required measurements
from d2 to O(rd logðdÞ2), for a density matrix of rank r and
dimension d. Successful experimental realization of this
technique has been, for example, implemented for a six-
photon state (Tóth et al., 2010) or a seven-qubit system of
trapped ions (Riofrío et al., 2017). On the methodology side,
full QST has more recently seen the development of deep
learning approaches, for example, using a supervised
approach based on neural networks having as an output the
full density matrix, or as an input possible measurement
outcomes (Xu and Xu, 2018). The problem of choosing an
optimal measurement basis for QST was also recently
addressed using a neural-network based approach that opti-
mizes the prior distribution on the target density matrix using
Bayes rule (Quek, Fort, and Ng, 2018). In general, while ML
approaches to full QST can serve as a viable tool to alleviate
the measurement requirements, they cannot however provide
an improvement over the intrinsic exponential scaling of QST.
The exponential barrier can typically be overcome only in

situations when the quantum state is assumed to have some
specific regularity properties. Tomography based on tensor-
network parametrizations of the density matrix has been an
important first step in this direction, allowing for tomography
of large, low-entangled quantum systems (Lanyon et al.,
2017). ML approaches to parametrization-based QST have
emerged in recent times as a viable alternative, especially for
highly entangled states. Specifically, assuming a NQS form
[see Eq. (3) in the case of pure states] QST can be
reformulated as an unsupervised ML learning task. A scheme
to retrieve the phase of the wave function, in the case of pure

states, was demonstrated by Torlai et al. (2018). In these
applications, the complex phase of the many-body wave
function is retrieved upon reconstruction of several probability
densities associated with the measurement process in a
different basis. Overall, this approach has allowed one to
demonstrate QST of highly entangled states up to about 100
qubits, unfeasible for full QST techniques. This tomography
approach can be suitably generalized to the case of mixed
states introducing parametrizations of the density matrix based
either on purified NQS (Torlai and Melko, 2018) or on deep
normalizing flows (Cranmer, Golkar, and Pappadopulo,
2019). The former approach was also demonstrated exper-
imentally with Rydberg atoms (Torlai et al., 2019). An
interesting alternative to the NQS representation for tomo-
graphic purposes was also recently suggested (Carrasquilla
et al., 2019). This is based on parametrizing the density matrix
directly in terms of positive-operator valued measure oper-
ators. This approach therefore has the important advantage of
directly learning the measurement process itself and has been
demonstrated to scale well on rather large mixed states. A
possible inconvenience of this approach is that the density
matrix is only implicitly defined in terms of generative
models, as opposed to explicit parametrizations found in
NQS-based approaches.
Other approaches to QST have explored the use of quantum

states parametrized as ground states of local Hamiltonians
(Xin et al., 2018), or the intriguing possibility of bypassing
QST to directly measure quantum entanglement (Gray et al.,
2018). Extensions to the more complex problem of quantum
process tomography are also promising (Banchi et al., 2018),
while the scalability of ML-based approaches to larger
systems still presents challenges.
Finally, the problem of learning quantum states from

experimental measurements also has profound implications
on the understanding of the complexity of quantum systems.
In this framework, the PAC learnability of quantum states
(Aaronson, 2007), experimentally demonstrated by Rocchetto
et al. (2017) and the “shadow tomography” approach
(Aaronson, 2017), showed that even linearly sized training
sets can provide sufficient information to succeed in certain
quantum learning tasks. These information-theoretic guaran-
tees come with computational restrictions and learning is
efficient only for special classes of states (Rocchetto, 2018).

B. Controlling and preparing qubits

A central task of quantum control is the following: Given an
evolution UðθÞ that depends on parameters θ and maps an
initial quantum state jψ0i to jψðθÞi ¼ UðθÞjψ0i, which param-
eters θ� minimize the overlap or distance between the prepared
state and the target state jhψðθÞjψ targetij2? To facilitate analytic
studies, the space of possible control interventions is often
discretized, so that UðθÞ ¼ Uðs1;…; sTÞ becomes a sequence
of steps s1;…; sT . For example, a control field could be applied
at only two different strengths h1 and h2, and the goal is to find
an optimal strategy st ∈ fh1; h2g, t ¼ 1;…; T to bring the
initial state as close as possible to the target state using only
these discrete actions.
This setup directly generalizes to a reinforcement learning

framework (Sutton and Barto, 2018), where an agent picks
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“moves” from the list of allowed control interventions, such as
the two field strengths applied to the quantum state of a qubit.
This framework has proven to be competitive to state-of-the-
art methods in various settings, such as state preparation in
nonintegrable many-body quantum systems of interacting
qubits (Bukov et al., 2018), or the use of strong periodic
oscillations to prepare so-called “Floquet-engineered” states
(Bukov, 2018). A recent study comparing (deep) reinforce-
ment learning with traditional optimization methods such as
stochastic gradient descent for the preparation of a single qubit
state shows that learning is of advantage if the “action space”
is naturally discretized and sufficiently small (X.-M. Zhang
et al., 2019).
The picture becomes increasingly complex in slightly more

realistic settings, for example, when the control is noisy (Niu
et al., 2018). In an interesting twist, the control problem has
also been tackled by predicting future noise using a recurrent
neural network that analyzes the time series of past noise.
Using the prediction, the anticipated future noise can be
corrected (Mavadia et al., 2017).
An altogether different approach to state preparation with

machine learning tries to find optimal strategies for evapora-
tive cooling to create Bose-Einstein condensates (Wigley
et al., 2016). In this online optimization strategy based on
Bayesian optimization (Jones, Schonlau, and Welch, 1998;
Frazier, 2018), a Gaussian process is used as a statistical
model that captures the relationship between the control
parameters and the quality of the condensate. The strategy
discovered by the machine learning model allows for a cooling
protocol that uses 10 times fewer iterations than pure
optimization techniques. An interesting feature is that, con-
trary to the common reputation of machine learning, the
Gaussian process allows one to determine which control
parameters are more important than others.
Another angle is captured by approaches that “learn” the

sequence of optical instruments in order to prepare highly
entangled photonic quantum states (Melnikov et al., 2018).

C. Error correction

One of the major challenges in building a universal
quantum computer is error correction. During any computa-
tion, errors are introduced by physical imperfections of the
hardware. But while classical computers allow for simple
error correction based on duplicating information, the no-
cloning theorem of quantum mechanics requires more com-
plex solutions. The most well-known proposal of surface
codes prescribes to encode one “logical qubit” into a topo-
logical state of several “physical qubits.” Measurements on
these physical qubits reveal a “footprint” of the chain of error
events called a syndrome. A decoder maps a syndrome to an
error sequence, which, once known, can be corrected by
applying the same error sequence again and without affecting
the logical qubits that store the actual quantum information.
Roughly stated, the art of quantum error correction is therefore
to predict errors from a syndrome—a task that naturally fits
the framework of machine learning.
In the past few years, various models have been applied to

quantum error correction, ranging from supervised to unsu-
pervised and reinforcement learning. The details of their

application became increasingly complex. One of the first
proposals deploys a Boltzmann machine trained by a dataset
of pairs (error, syndrome), which specifies the probability p
(error, syndrome), which can be used to draw samples from
the desired distribution pðerrorjsyndromeÞ (Torlai and
Melko, 2017). This simple recipe shows a performance for
certain kinds of errors comparable to common benchmarks.
The relation between syndromes and errors can likewise be
learned by a feed-forward neural network (Krastanov and
Jiang, 2017; Varsamopoulos, Criger, and Bertels, 2017;
Maskara, Kubica, and Jochym-O’Connor, 2019). However,
these strategies suffer from scalability issues as the space of
possible decoders explodes and data acquisition becomes an
issue. More recently, neural networks have been combined
with the concept of renormalization group to address this
problem (Varsamopoulos, Bertels, and Almudever, 2018),
and the significance of different hyperparameters of the
neural network has been studied (Varsamopoulos, Bertels,
and Almudever, 2019).
Besides scalability, an important problem in quantum error

correction is that the syndrome measurement procedure could
also introduce an error, since it involves applying a small
quantum circuit. This setting increases the problem complex-
ity but is essential for real applications. Noise in the
identification of errors can be mitigated by doing repeated
cycles of syndrome measurements. To consider the additional
time dimension, recurrent neural-network architectures have
been proposed (Baireuther et al., 2018). Another avenue is to
consider decoding as a reinforcement learning problem
(Sweke et al., 2018), in which an agent can choose consecu-
tive operations acting on physical qubits (as opposed to logical
qubits) to correct for a syndrome and gets rewarded if the
sequence corrected the error.
While much of machine learning for error correction

focuses on surface codes that represent a logical qubit by
physical qubits according to some set scheme, reinforcement
agents can also be set up agnostic of the code (one could say
they learn the code along with the decoding strategy). This has
been done for quantum memories, a system in which quantum
states are supposed to be stored rather than manipulated
(Nautrup et al., 2018), as well as in a feedback control
framework which protects qubits against decoherence (Fösel
et al., 2018). Finally, beyond traditional reinforcement learn-
ing, novel strategies such as projective simulation can be used
to combat noise (Tiersch, Ganahl, and Briegel, 2015).
In summary, machine learning for quantum error correction

is a problem with several layers of complexity that, for
realistic applications, requires rather complex learning frame-
works. Nevertheless, it is a natural candidate for machine
learning and especially reinforcement learning.

VI. CHEMISTRY AND MATERIALS

Machine learning approaches have been applied to predict
the energies and properties of molecules and solids, with the
popularity of such applications increasing dramatically. The
quantum nature of atomic interactions makes energy evalu-
ations computationally expensive, so ML methods are par-
ticularly useful when many calculations are required. In recent
years, the ever-expanding applications of ML in chemistry and
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materials research include predicting the structures of related
molecules, calculating energy surfaces based on molecular
dynamics (MD) simulations, identifying structures that have
desired material properties, and creating machine-learned
density functionals. For these types of problems, input
descriptors must account for differences in atomic environ-
ments in a compact way. Much of the current work using ML
for atomistic modeling is based on early work describing the
local atomic environment with symmetry functions for input
into an atomwise neural network (Behler and Parrinello,
2007), representing atomic potentials using Gaussian process
regression methods (Bartók et al., 2010), or using sorted
interatomic distances weighted by the nuclear charge (the
“Coulomb matrix”) as a molecular descriptor (Rupp et al.,
2012). Continuing development of suitable structural repre-
sentations was reviewed by Behler (2016). A discussion of
ML for chemical systems in general, including learning
structure-property relationships, is found in the review by
Butler et al. (2018), with additional focus on data-enabled
theoretical chemistry reviewed by Rupp, von Lilienfeld, and
Burke (2018). In the next sections, we present recent examples
of ML applications in chemical physics.

A. Energies and forces based on atomic environments

One of the primary uses of ML in chemistry and materials
research is to predict the relative energies for a series of related
systems, most typically to compare different structures of the
same atomic composition. These applications aim to deter-
mine the structure(s) most likely to be observed experimen-
tally or to identify molecules that may be synthesizable as
drug candidates. As examples of supervised learning, these
ML methods employ various quantum chemistry calculations
to label molecular representations (Xμ) with corresponding
energies (yμ) to generate the training (and test) datasets
fXμ; yμgnμ¼1. For quantum chemistry applications, neural
network methods have had great success in predicting the
relative energies of a wide range of systems, including
constitutional isomers and nonequilibrium configurations of
molecules, by using many-body symmetry functions that
describe the local atomic neighborhood of each atom
(Behler, 2016). Many successes in this area have been derived
from this type of atomwise decomposition of the molecular
energy, with each element represented using a separate NN
(Behler and Parrinello, 2007); see Fig. 6(a). For example,

ANI-1 is a deep NN potential successfully trained to return the
density functional theory (DFT) energies of any molecule with
up to eight heavy atoms (H, C, N, O) (Smith, Isayev, and
Roitberg, 2017). In this work, atomic coordinates for the
training set were selected using normal mode sampling to
include some vibrational perturbations along with optimized
geometries. Another example of a general NN for molecular
and atomic systems is the deep potential molecular dynamics
method specifically created to run MD simulations after being
trained on energies from bulk simulations (Zhang, Han et al.,
2018). Rather than simply include nonlocal interactions via
the total energy of a system, another approach was inspired by
the many-body expansion used in standard computational
physics. In this case adding layers to allow interactions
between atom-centered NNs improved the molecular energy
predictions (Lubbers, Smith, and Barros, 2018).
These examples use translation- and rotation-invariant

representations of the atomic environments, thanks to the
incorporation of symmetry functions in the NN input. For
some applications, such as describing molecular reactions and
materials phase transformations, atomic representations must
also be continuous and differentiable. The smooth overlap of
atomic positions (SOAP) kernels addresses all of these require-
ments by including a similarity metric between atomic envi-
ronments (Bartók, Kondor, and Csányi, 2013). Recent work to
preserve symmetries in alternate molecular representations
addresses this problem in different ways. To capitalize on
known molecular symmetries for Coulomb matrix input, both
bonding (rigid) and dynamic symmetries have been incorpo-
rated to improve the coverage of training data in the configu-
rational space (Chmiela et al., 2018). This work also includes
forces in the training, allowing for MD simulations at the level
of coupled cluster calculations for small molecules, which
would traditionally be intractable. Molecular symmetries can
also be learned as shown in determining local environment
descriptors that make use of continuous-filter convolutions to
describe atomic interactions (Schütt et al., 2018). Further
development of atom environment descriptors that are com-
pact, unique, and differentiable will certainly facilitate new
uses for ML models in the study of molecules and materials.
However, machine learning has also been applied in ways

that are more closely integrated with conventional approaches
so as to be more easily incorporated in existing codes. For
example, atomic charge assignments compatible with classical
force fields can be learned, without the need to run a new

FIG. 6. Several representations are currently used to describe molecular systems in ML models, including (a) atomic coordinates, with
symmetry functions encoding local bonding environments, as inputs to element-based neural networks. From Gastegger, Behler, and
Marquetand, 2017. (b) Nuclear potentials approximated by a sum of Gaussian functions as input kernel ridge regression models for
electron densities. Adapted from Brockherde et al., 2017.
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quantum mechanical calculation for each new molecule of
interest (Sifain et al., 2018). In addition, condensed phase
simulations for molecular species require accurate intramo-
lecular and intermolecular potentials, which can be difficult to
parametrize. To this end, local NN potentials can be combined
with physically motivated long-range Coulomb and van der
Waals contributions to describe larger molecular systems (Yao
et al., 2018). Local ML descriptions can also be successfully
combined with many-body expansion methods to allow the
application of ML potentials to larger systems, as demon-
strated for water clusters (Nguyen et al., 2018). Alternatively,
intermolecular interactions can be fitted to a set of ML models
trained on monomers to create a transferable model for dimers
and clusters (Bereau et al., 2018).

B. Potential and free energy surfaces

Machine learning methods are also employed to describe
free energy surfaces (FES). Rather than learning the potential
energy of each molecular conformation directly as described,
an alternate approach is to learn the free energy surface of a
system as a function of collective variables, such as global
Steinhardt order parameters or a local dihedral angle for a set of
atoms. A compact ML representation of a FES using a NN
allows improved sampling of the high-dimensional spacewhen
calculating observables that depend on an ensemble of con-
formers. For example, a learned FES can be sampled to predict
the isothermal compressibility of solid xenon under pressure or
the expected nuclear magnetic resonance (NMR) spin-spin J
couplings of a peptide (Schneider et al., 2017). Small NNs
representing a FES can also be trained iteratively using data
points generated by on-the-fly adaptive sampling (Sidky and
Whitmer, 2018). This promising approach highlights the
benefit of using a smooth representation of the full configu-
rational space when using the ML models themselves to
generate new training data. As the use of machine-learned
FES representations increases, it is important to determine the
limit of accuracy for small NNs and how to use these models as
a starting point for larger networks or other ML architectures.
Once the relevant minima have been identified on a FES,

the next challenge is to understand the processes that take a
system from one basin to another. For example, developing a
Markov state model to describe conformational changes
requires dimensionality reduction to translate molecular coor-
dinates into the global reaction coordinate space. To this end,
the power of deep learning with time-lagged autoencoder
methods has been harnessed to identify slowly changing
collective variables in peptide folding examples (Wehmeyer
and Noé, 2018). A variational NN-based approach has also
been used to identify important kinetic processes during
protein folding simulations and provides a framework for
unifying coordinate transformations and FES surface explo-
ration (Mardt et al., 2018). A promising alternate approach is
to use ML to sample conformational distributions directly.
Boltzmann generators can sample the equilibrium distribution
of a collective variable space and subsequently provide a set of
states that represents the distribution of states on the FES (Noé
et al., 2019).
Furthermore, the long history of finding relationships

between minima on complex energy landscapes may also

be useful as we learn to understand why ML models exhibit
such general success. Relationships between the methods and
ideas currently used to describe molecular systems and the
corresponding were reviewed by Ballard et al. (2017). Going
forward, the many tools developed by physicists to explore
and quantify features on energy landscapes may be helpful in
creating new algorithms to efficiently optimize model weights
during training. (See also the related discussion in Sec. II.D.4.)
This area of interdisciplinary research promises to yield
methods that will be useful in both machine learning and
physics fields.

C. Material properties

Using learned interatomic potentials based on local envi-
ronments has also afforded improvement in the calculation of
material properties. Matching experimental data typically
requires sampling from the ensemble of possible configura-
tions, which comes at a considerable cost when using large
simulation cells and conventional methods. Recently, the
structure and material properties of amorphous silicon were
predicted using MD with a ML potential trained on DFT
calculations for only small simulation cells (Deringer et al.,
2018). Related applications of using ML potentials to model
the phase change between crystalline and amorphous regions
of materials such as GeTe and amorphous carbon were
reviewed by Sosso et al. (2018). Generating a computationally
tractable potential that is sufficiently accurate to describe
phase changes and the relative energies of defects on both an
atomistic and a material scale is quite difficult; however, the
recent success for silicon properties indicates that ML
methods are up to the challenge (Bartók et al., 2018).
Ideally, experimental measurements could also be incorpo-

rated in data-driven ML methods that aim to predict material
properties. However, reported results are too often limited to
high performance materials with no counter examples for the
training process. In addition, noisy data are coupled with a
lack of precise structural information needed for input into
the ML model. For organic molecular crystals, these chal-
lenges were overcome for predictions of NMR chemical
shifts, which are very sensitive to local environments, by
using a Gaussian process regression framework trained on
DFT-calculated values of known structures (Paruzzo et al.,
2018). Matching calculated values with experimental results
prior to training the ML model enabled the validation of a
predicted pharmaceutical crystal structure.
Other intriguing directions include identification of struc-

turally similar materials via clustering and using convex hull
construction to determine which of the many predicted
structures should be most stable under certain thermodynamic
constraints (Anelli et al., 2018). Using kernel PCA descriptors
for the construction of the convex hull has been applied to
identify crystalline ice phases and was shown to cluster
thousands of structures which differ only by proton disorder
or stacking faults (Engel et al., 2018); see Fig. 7. Machine-
learned methods based on a combination of supervised and
unsupervised techniques certainly promise to be fruitful
research areas in the future. In particular, it remains an exciting
challenge to identify, predict, or even suggest materials that
exhibit a particular desired property.
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D. Electron densities for density functional theory

In many of these examples, density functional theory
calculations have been used as the source of training data.
It is fitting that machine learning is also playing a role in
creating new density functionals. Machine learning is a natural
choice for situations such as DFT where we do not have
knowledge of the functional form of an exact solution. The
benefit of this approach to identifying a density functional was
illustrated by approximating the kinetic energy functional of
an electron distribution in a 1D potential well (Snyder et al.,
2012). For use in standard Kohn-Sham based DFT codes, the
derivative of the ML functional must also be used to find the
appropriate ground-state electron distribution. Using kernel
ridge regression without further modification can lead to noisy
derivatives, but projecting the resulting energies back onto the
learned space using the PCA resolves this issue (L. Li et al.,
2016). A NN-based approach to learning the exchange-
correlation potential has also been demonstrated for 1D
systems (Nagai et al., 2018). In this case, the ML method
makes direct use of the derivatives generated during the NN
training steps.
It is also possible to bypass the functional derivative entirely

by using ML to generate the appropriate ground-state electron
density that corresponds to a nuclear potential (Brockherde

et al., 2017), as shown in Fig. 6(b). Furthermore, this work
demonstrated that the energy of a molecular system can also
be learned with electron densities as an input, enabling
reactive MD simulations of proton transfer events based on
DFT energies. Intriguingly, an approximate electron density,
such as a sum of densities from isolated atoms, has also been
successfully employed as the input for predicting molecular
energies (Eickenberg et al., 2018). A related approach for
periodic crystalline solids used local electron densities from
an embedded atom method to train Bayesian ML models to
return total system energies (Schmidt et al., 2018). Since the
total energy is an extensive property, a scalable NN model
based on summation of local electron densities has also been
developed to run large DFT-based simulations for 2D porous
graphene sheets (Mills et al., 2019). With these successes, it
has become clear that for a given density functional, machine
learning offers new ways to learn both the electron density and
the corresponding system energy.
Many human-based approaches to improving the approxi-

mate functionals in use today rely on imposing physically
motivated constraints. So far including these types of restric-
tions on ML-based methods has met with only partial success.
For example, requiring that a ML functional fulfill more than
one constraint, such as a scaling law and size consistency,
improves overall performance in a system-dependent manner

FIG. 7. Clustering thousands of possible ice structures based on machine-learned descriptors identifies observed forms and groups
similar structures together. From Engel et al., 2018.

Carleo Giuseppe et al.: Machine learning and the physical sciences

Rev. Mod. Phys., Vol. 91, No. 4, October–December 2019 045002-29



(Hollingsworth, Baker, and Burke, 2018). Obtaining accurate
derivatives, particularly for molecules with conformational
changes, is still an open question for physics-informed ML
functionals and potentials that have not been explicitly trained
with this goal (Snyder et al., 2012; Bereau et al., 2018).

E. Dataset generation

As for other applications of machine learning, comparison
of various methods requires standardized datasets. For quan-
tum chemistry, these include the 134 000 molecules in the
QM9 dataset (Ramakrishnan et al., 2014) and the COMP6
benchmark dataset composed of randomly sampled subsets of
other small molecule and peptide datasets, with each entry
optimized using the same computational method (Smith
et al., 2018).
In chemistry and materials research, computational data are

often expensive to generate, so the selection of training data
points must be carefully considered. The input and output
representations also inform the choice of data. Inspection of
ML-predicted molecular energies for most of the QM9 dataset
showed the importance of choosing input data structures that
convey conformer changes (Faber et al., 2017). In addition,
dense sampling of the chemical composition space is not
always necessary. For example, the initial training set of 22 ×
106 molecules used by Smith, Isayev, and Roitberg (2017)
could be replaced with 5.5 × 106 training points selected using
an active learning method that added poorly predicted
molecular examples from each training cycle (Smith et al.,
2018). Alternate sampling approaches can also be used to
more efficiently build up a training set. These range from
active learning methods that estimate errors from multiple
NN evaluations for new molecules (Gastegger, Behler, and
Marquetand, 2017) to generating new atomic configurations
based on MD simulations using a previously generated
model (Zhang et al., 2019). Interesting, statistical-physics-
based, insight into theoretical aspects of such active learning
was presented by Seung, Opper, and Sompolinsky (1992).
Further work in this area is needed to identify the atomic

compositions and configurations that are most important to
differentiating candidate structures. While NNs have been
shown to generate accurate energies, the amount of data
required to prevent overfitting can be prohibitively expensive
in many cases. For specific tasks, such as predicting the
anharmonic contributions to vibrational frequencies of the
small molecule formaldehye, Gaussian process methods were
more accurate and used fewer points than a NN, although
these points need to be selected more carefully (Kamath et al.,
2018). Balancing the computational cost of data generation,
ease of model training, and model evaluation time continues to
be an important consideration when choosing the appropriate
ML method for each application.

F. Outlook and challenges

Going forward, ML models will benefit from including
methods and practices developed for other problems in
physics. While some of these ideas are already being explored,
such as exploiting input data symmetries for molecular
configurations, there are still many opportunities to improve

model training efficiency and regularization. Some of the
more promising (and challenging) areas include applying
methods for exploration of high-dimensional landscapes for
parameter or hyperparameter optimization and identifying
how to include boundary behaviors or scaling laws in ML
architectures and/or input data formats. To connect more
directly to experimental data, future physics-based ML meth-
ods should account for uncertainties and/or errors from
calculations and measured properties to avoid overfitting
and improve transferability of the models.

VII. AI ACCELERATION WITH CLASSICAL AND
QUANTUM HARDWARE

There are areas where physics can contribute to machine
learning by othermeans than tools for theoretical investigations
and domain-specific problems. Novel hardware platforms may
help with expensive information processing pipelines and
extend the number crunching facilities of current computing
architectures. Such hardware helpers are also known as “AI
accelerators,” and physics research has to offer a variety of
devices that could potentially enhance machine learning.

A. Beyond von Neumann architectures

When we mention computers, we usually think of universal
digital computers based on electrical circuits and Boolean
logic. This is the so-called “von Neumann” paradigm of
modern computing. But any physical system can be inter-
preted as a way to process information, namely, by mapping
the input parameters of the experimental setup to measure-
ment results, the output. This way of thinking is close to the
idea of analog computing, which has been, or so it seems
(Lundberg, 2005; Ambs, 2010), dwarfed by its digital cousin
for all but a very few applications. In the context of machine
learning however, where low-precision computations have to
be executed over and over, analog and special-purpose
computing devices have found a new surge of interest. The
hardware can be used to emulate a full model, such as neural-
network inspired chips (Ambrogio et al., 2018), or it can
outsource only a subroutine of a computation, as done by
FPGAs and application-specific integrated circuits for fast
linear algebra computations (Jouppi et al., 2017; Markidis
et al., 2018).
In the following, we present selected examples from various

research directions that investigate how hardware platforms
from physics labs, such as optics, nanophotonics, and quan-
tum computers, can become novel kinds of AI accelerators.

B. Neural networks running on light

Processing information with optics is a natural and appeal-
ing alternative, or at least complement, to all-silicon com-
puters: it is fast, it can be made massively parallel, and
requires very low power consumption. Optical interconnects
are already widespread to carry information on short or long
distances, but light interference properties also can be lever-
aged in order to provide more advanced processing. In the
case of machine learning there is one more perk. Some of the
standard building blocks in optics labs have a striking

Carleo Giuseppe et al.: Machine learning and the physical sciences

Rev. Mod. Phys., Vol. 91, No. 4, October–December 2019 045002-30



resemblance with the way information is processed with
neural networks (Shen et al., 2017; Killoran et al., 2018;
Lin et al., 2018), an insight that is by no means new (Lu et al.,
1989). Examples for both large bulk optics experiments and
on-chip nanophotonics are networks of interferometers.
Interferometers are passive optical elements made up of beam
splitters and phase shifters (Reck et al., 1994; Clements et al.,
2016). If we consider the amplitudes of light modes as an
incoming signal, the interferometer effectively applies a
unitary transformation to the input; see Fig. 8, left.
Amplifying or damping the amplitudes can be understood
as applying a diagonal matrix. Consequently, by means of a
singular value decomposition, an amplifier sandwiched by
two interferometers implements an arbitrary matrix multipli-
cation on the data encoded into the optical amplitudes. Adding
a nonlinear operation, which is usually the hardest to precisely
control in the lab, can turn the device into an emulator of a
standard neural-network layer (Shen et al., 2017; Lin et al.,
2018), but at the speed of light.
An interesting question to ask is what if we use quantum

instead of classical light? For example, imagine the informa-
tion is now encoded in the quadratures of the electromagnetic
field. The quadratures are, much like position and momentum
of a quantum particle, two noncommuting operators that
describe light as a quantum system. We now have to exchange
the setup to quantum optics components such as squeezers and
displacers, and get a neural network encoded in the quantum
properties of light (Killoran et al., 2018). But there is more:
Using multiple layers and choosing the “nonlinear operation”
as a “non-Gaussian” component (such as an optical “Kerr
nonlinearity” which is admittedly still an experimental chal-
lenge), the optical setup becomes a universal quantum

computer. As such, it can run any computations a quantum
computer can perform—a true quantum neural network. There
are other variations of quantum optical neural nets, for
example, when information is encoded into discrete rather
than continuous-variable properties of light (Steinbrecher
et al., 2018). Investigations into what these quantum devices
mean for machine learning, for example, whether there are
patterns in data that can be easier recognized, have just begun.

C. Revealing features in data

One does not have to implement a full machine learning
model on the physical hardware, but can outsource single
components. An example we highlight as a second application
is data preprocessing or feature extraction. This includes
mapping data to another space where it is either compressed
or “blown up” in both cases revealing its features for machine
learning algorithms.
One approach to data compression or expansion with

physical devices leverages the statistical nature of many
machine learning algorithms. Multiple light scattering can
generate the very high-dimensional randomness needed for
so-called random embeddings; see Fig. 8, top right. In a
nutshell, the multiplication of a set of vectors by the same
random matrix is approximately distance preserving (Johnson
and Lindenstrauss, 1984). This can be used for dimensionality
reduction, i.e., data compression, in the spirit of compressed
sensing (Donoho, 2006) or for efficient nearest neighbor
search with locality sensitive hashing. This can also be used
for dimensionality expansion, where in the limit of a large
dimension it approximates a well-defined kernel (Saade et al.,
2016). Such devices can be built in free-space optics, with

FIG. 8. Illustrations of the methods discussed in the text. 1. Optical components such as interferometers and amplifiers can
emulate a neural network that layerwise maps an input x to φðWxÞ, where W is a learnable weight matrix and φ is a nonlinear
activation. Using quantum optics components such as displacement and squeezing, one can encode information into quantum
properties of light and turn the neural net into a universal quantum computer. 2. Random embedding with an optical processing
unit. Data are encoded into the laser beam through a spatial light modulator (here, a digital micromirror device), after which a
diffusive medium generates the random features. 3. A quantum computer can be used to compute distances between data points, or
“quantum kernels.” The first part of the quantum algorithm uses routines Sx, Sx0 to embed the data in Hilbert space, while the
second part reveals the inner product of the embedded vectors. This kernel can be further processed in standard kernel methods
such as support vector machines.
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coherent laser sources, commercial light modulators and
complementary metal-oxide-semiconductor (CMOS) sensors,
and a well-chosen scattering material; see Fig. 8, part 2.
Machine learning applications range from transfer learning for
deep neural networks, time series analysis, with a feedback
loop implementing so-called echo-state networks (Dong et al.,
2018), or change-point detection (Keriven, Garreau, and Poli,
2018). For large-dimensional data, these devices already out-
perform CPUs or GPUs both in speed and power consumption.

D. Quantum-enhanced machine learning

A fair amount of effort in the field of quantum machine
learning, a field that investigates intersections of quantum
information and intelligent data mining (Biamonte et al.,
2017; Schuld and Petruccione, 2018b), goes into applications
of near-term quantum hardware for learning tasks (Perdomo-
Ortiz et al., 2017). These so-called noisy intermediate-scale
quantum (NISQ) devices are not only hoped to enhance
machine learning applications in terms of speed, but may lead
to entirely new algorithms inspired by quantum physics. We
already mentioned one such example, a quantum neural
network that can emulate a classical neural net, but go
beyond. This model falls into a larger class of variational
or parametrized quantum machine learning algorithms
(McClean et al., 2016; Mitarai et al., 2018). The idea is to
make the quantum algorithm, and thereby the device imple-
menting the quantum computing operations, depend on
parameters θ that can be trained with data. Measurements
on the “trained device” represent new outputs, such as
artificially generated data samples of a generative model or
classifications of a supervised classifier.
Another idea of how to use quantum computers to enhance

learning is inspired by kernel methods (Hofmann, Schölkopf,
and Smola, 2008); see Fig. 8, bottom right. By associating the
parameters of a quantum algorithm with an input data sample
x, one effectively embeds x into a quantum state jψðxÞi
described by a vector in Hilbert space (Havlicek et al., 2018;
Schuld and Killoran, 2018). A simple interference routine can
measure overlaps between two quantum states prepared in this
way. An overlap is an inner product of vectors in Hilbert
space, which in the machine literature is known as a kernel, a
distance measure between two data points. As a result,
quantum computers can compute rather exotic kernels that
may be classically intractable, and it is an active area of
research to find interesting quantum kernels for machine
learning tasks.
Beyond quantum kernels and variational circuits, quantum

machine learning presents many other ideas that use quantum
hardware as AI accelerators, for example, as a sampler for
training and inference in graphical models (Adachi and
Henderson, 2015; Benedetti et al., 2017), or for linear algebra
computations (Lloyd, Mohseni, and Rebentrost, 2014).2

Another interesting branch of research investigates how
quantum devices can directly analyze the data produced by
quantum experiments, without making the detour of mea-
surements (Cong, Choi, and Lukin, 2018). In all these
explorations, a major challenge is the still severe limitations
in current-day NISQ devices which reduce numerical experi-
ments on the hardware to proof-of-principle demonstrations,
while theoretical analysis remains notoriously difficult in
machine learning.

E. Outlook and challenges

These examples demonstrate a way of how physics research
can contribute to machine learning, namely, by investigating
new hardware platforms to execute tiresome computations.
While standard von Neumann technologies struggle to keep
pace with Moore’s law, this opens a number of opportunities
for novel computing paradigms. In their simplest embodi-
ment, these take the form of specialized accelerator devices,
plugged into standard servers and accessed through custom
user interface. Future research focuses on the scaling up of
such hardware capabilities, hardware-inspired innovation to
machine learning, and adapted programming languages as
well as compilers for the optimized distribution of computing
tasks on these hybrid servers.

VIII. CONCLUSIONS AND OUTLOOK

A number of overarching themes become apparent after
reviewing the ways in which machine learning is used or has
enhanced the different disciplines of physics. First, it is clear
that the interest in machine learning techniques suddenly
surged in recent years. This is true even in areas such as
statistical physics and high-energy physics where the con-
nection to machine learning techniques has a long history. We
are seeing the research move from exploratory efforts on toy
models toward the use of real experimental data. We are also
seeing an evolution in the understanding and limitations of
these approaches and situations in which the performance can
be justified theoretically. A healthy and critical engagement
with the potential power and limitations of machine learning
includes an analysis of where these methods break and what
they are distinctly not good at.
Physicists are notoriously hungry for detailed understand-

ing of why and when their methods work. As machine
learning is incorporated into the physicist’s toolbox, it is
reasonable to expect that physicists may shed light on some of
the notoriously difficult questions machine learning is facing.
Specifically, physicists are already contributing to issues of
interpretability, techniques to validate or guarantee the results,
and principle ways to choose the various parameters of the
neural-network architectures.
One direction in which the physics community has much to

learn from the machine learning community is the culture and
practice of sharing code and developing carefully crafted,
high-quality benchmark datasets. Furthermore, physics would
do well to emulate the practices of developing user-friendly
and portable implementations of the key methods, ideally with
the involvement of professional software engineers.

2Many quantum machine learning algorithms based on linear
algebra acceleration have recently been shown to make unfounded
claims of exponential speedups (Tang, 2018), when compared against
classical algorithms for analyzing low-rank datasets with strong
sampling access. However, they are still interesting in this context
where even constant speedups make a difference.
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The picture that emerges from the level of activity and the
enthusiasm surrounding the first success stories is that the
interaction between machine learning and the physical sci-
ences is merely in its infancy, and we can anticipate more
exciting results stemming from this interplay between
machine learning and the physical sciences.
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Gabrié, M., E.W. Tramel, and F. Krzakala, 2015, in Advances in
Neural Information Processing Systems, pp. 640–648, http://papers
.nips.cc/paper/5788-training-restricted-boltzmann-machine-via-
the-thouless-anderson-palmer-free-energy.
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Nguyen, T. T., E. Székely, G. Imbalzano, J. Behler, G. Csányi, M.
Ceriotti, A. W. Götz, and F. Paesani, 2018, J. Chem. Phys. 148,
241725.

Nielsen, M. A., and I. Chuang, 2011, Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cambridge Uni-
versity Press, New York).

Nishimori, H., 2001, Statistical physics of spin glasses and infor-
mation processing: An introduction, Vol. 111 (Clarendon Press,
Oxford).

Niu, M. Y., S. Boixo, V. Smelyanskiy, and H. Neven, 2018,
arXiv:1803.01857.
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Uria, B.,M.-A. Côté, K. Gregor, I. Murray, andH. Larochelle, 2016, J.
Mach. Learn. Res. 17, 1 [http://jmlr.org/papers/v17/16-272.html].

Valiant, L. G., 1984, Commun. ACM 27, 1134.
van Nieuwenburg, E., E. Bairey, and G. Refael, 2018, Phys. Rev. B
98, 060301.

Van Nieuwenburg, E. P., Y.-H. Liu, and S. D. Huber, 2017, Nat. Phys.
13, 435.

Varsamopoulos, S., K. Bertels, and C. G. Almudever, 2018,
arXiv:1811.12456.

Varsamopoulos, S., K. Bertels, and C. G. Almudever, 2019,
arXiv:1901.10847.

Varsamopoulos, S., B. Criger, and K. Bertels, 2017, Quantum Sci.
Technol. 3, 015004.

Venderley, J., V. Khemani, and E.-A. Kim, 2018, Phys. Rev. Lett.
120, 257204.

Verstraete, F., V. Murg, and J. I. Cirac, 2008, Adv. Phys. 57, 143.
Vicentini, F., A. Biella, N. Regnault, and C. Ciuti, 2019, arXiv:
1902.10104.

Vidal, G., 2007, Phys. Rev. Lett. 99, 220405.
Von Luxburg, U., 2007, Stat. Comput. 17, 395.
Wang, C., H. Hu, and Y. M. Lu, 2018, arXiv:1805.08349.
Wang, C., and H. Zhai, 2017, Phys. Rev. B 96, 144432.
Wang, C., and H. Zhai, 2018, Front. Phys. 13, 130507.
Wang, L., 2016, Phys. Rev. B 94, 195105.
Wang, L., 2018, “Generative Models for Physicists,” https://
wangleiphy.github.io/lectures/PILtutorial.pdf.

Watkin, T., and J.-P. Nadal, 1994, J. Phys. A 27, 1899.
Wecker, D., M. B. Hastings, and M. Troyer, 2016, Phys. Rev. A 94,
022309.
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