Cholesky Decomposition

Let an $N \times N$ matrix, $\mathbf{A}=\left[a_{i j}\right]$, be symmetric, $a_{i j}=a_{j i}$, and positive definite, i.e., $\mathbf{v}^{\mathrm{T}} \mathbf{A v}>0$ for any N-element column vector \mathbf{v}. Cholesky decomposition constructs a lower triangular matrix, $\mathbf{L}=\left[l_{i j}\right]\left(l_{i j}=0\right.$ for $\left.i<j\right)$, which "takes the square root of" \mathbf{A} :
$\mathbf{L L}^{\mathbf{T}}=\mathbf{A}$
or
$\sum_{k=1}^{N} l_{i k} l_{j k}=a_{i j}(i, j \geq k)$.
For a diagonal element, $i=j$, Eq. (2) reads
$\sum_{k=1}^{i} l_{i k}^{2}=\sum_{k=1}^{i-1} l_{i k}^{2}+l_{i i}^{2}=a_{i i}$
or
$l_{i i}=\sqrt{a_{i i}-\sum_{k=1}^{i-1} l_{i k}^{2}}$.
For $j>i$, Eq. (2) reads
$\sum_{k=1}^{i} l_{i k} l_{j k}=\sum_{k=1}^{i-1} l_{i k} l_{j k}+l_{i i} l_{j i}=a_{i j}$
or
$l_{j i}=\frac{1}{l_{i i}}\left(a_{i j}-\sum_{k=1}^{i-1} l_{i k} l_{j k}\right)(j=i+1, \ldots, N)$.
Equations (4) and (6) constitutes a recursion as follows. First, $l_{11}=\sqrt{a_{11}}$ from Eq. (4) and $l_{j 1}=\frac{1}{l_{11}}\left(a_{12}\right)(j=2, \ldots, N)$ from Eq. (6), which determines the first column of \mathbf{L}. Next, $l_{22}=$ $\sqrt{a_{22}-l_{21}^{2}}$ and $l_{j 2}=\frac{1}{l_{22}}\left(a_{i j}-l_{21} l_{j 1}\right)(j=3, \ldots, N)$ to determines the second column. This procedure can be repeated by incrementing column index i at each iteration, since the right-hand sides of Eq. (4) and (6) only contain $l_{j i}$ for lower columns that have already been computed. This can be implemented as the following algorithm.

Algorithm 1: Cholesky decomposition.

$$
\begin{aligned}
& \text { for } i=1: N \\
& \quad l_{i i}=\sqrt{a_{i i}-\sum_{k=1}^{i-1} l_{i k}^{2}} \\
& \quad \text { for } j=i+1: N \\
& \quad l_{j i}=\frac{1}{l_{i i}}\left(a_{i j}-\sum_{k=1}^{i-1} l_{i k} l_{j k}\right)
\end{aligned}
$$

Application 1: Orthonormalization

Cholesky decomposition can be used to orthonormalize a basis set of an N-dimensional vector space $\left\{\left|\psi_{i}\right\rangle \mid i=1, \ldots, N\right\}$. Let $\mathbf{S}=\left[s_{i j}=\left\langle\psi_{i} \mid \psi_{j}\right\rangle\right]$ be an $N \times N$ overlap matrix. Then, matrix $\mathbf{S}^{\mathrm{T}} \mathbf{S}$ is positive definite and can be Cholesky-decomposed as
$\mathbf{S}^{\mathrm{T}} \mathbf{S}=\mathbf{L L}^{\mathrm{T}}$.
Now consider
$\mathbf{Q}=\mathbf{S}\left(\mathbf{L}^{-1}\right)^{\mathrm{T}}$,
then
$\mathbf{Q}^{\mathrm{T}} \mathbf{Q}=\mathbf{L}^{-1} \mathbf{S}^{\mathrm{T}} \mathbf{S}\left(\mathbf{L}^{-1}\right)^{\mathrm{T}}=\mathbf{L}^{-1} \mathbf{L L}^{\mathrm{T}}\left(\mathbf{L}^{-1}\right)^{\mathrm{T}}=\mathbf{L}^{-1} \mathbf{L}\left(\mathbf{L}^{-1} \mathbf{L}\right)^{\mathrm{T}}=\mathbf{I}$.
Namely, $\mathbf{Q}=\mathbf{S}\left(\mathbf{L}^{-1}\right)^{\mathrm{T}}$ is orthonormal.
To implement Eq. (8) in a program, let us transpose it as
$\mathbf{Q}^{\mathrm{T}}=\mathbf{L}^{-1} \mathbf{S}^{\mathrm{T}}$.
By denoting the i-th row vectors of \mathbf{Q} and \mathbf{S} as \mathbf{q}_{i} and \mathbf{s}_{i}, respectively, $\mathbf{q}_{i}=\mathbf{L}^{-1} \mathbf{s}_{i}(i=1, \ldots, N)$,
which amounts to solving a linear system of equations,
$\mathbf{L} \mathbf{q}_{i}=\mathbf{s}_{i}(i=1, \ldots, N)$.
The lower triangular linear system, Eq. (12), can be solved by recursion. By dropping the rowvector index for simplicity as, $\mathbf{L q}=\mathbf{s}$, the recursion reads:
$q_{1}=\frac{s_{1}}{l_{11}}$
$q_{i}=\frac{1}{l_{i i}}\left(s_{i}-\sum_{j=1}^{i-1} l_{i j} q_{j}\right)(i=2, \ldots, N)$.

Application 2: Low-Rank Approximation

Let us rewrite Cholesky decomposition in Eq. (2) as
$a_{i j}=\sum_{k=1}^{\min (i, j)} l_{i k} l_{j k}$.
A low-rank approximation of matrix \mathbf{A} can be obtained by truncating the k-sum in Eq. (14) at $k \leq$ $m \ll N$. This is achieved by swapping rows and columns at each Cholesky iteration so that the largest diagonal element is placed at the top of the currently considered submatrix [cf. G. H. Golub and C. F. van Loan, Matrix Computation, 2nd Ed. (Johns Hopkins Univ. Press, 1989) Sec. 4.2.9]. This is implemented in the following pivoted Cholesky algorithm and truncating the iteration when the largest remaining diagonal element falls below a prescribed threshold δ. Upon the termination of the algorithm, m is the rank of the approximation and the resulting rank- m approximation of \mathbf{A} is given by
$a_{i j} \cong \sum_{k=1}^{\min (i, j, m)} l_{i k} l_{j k}$.
Algorithm 2: Pivoted Cholesky decomposition.

$$
\begin{aligned}
& \text { for } i=1: N \\
& \quad q=\underset{k \in[i, N]}{\operatorname{argmax}} a_{k k} \\
& \text { if } a_{q q}<\delta \\
& \quad m=i-1 \\
& \quad \text { break } \\
& a_{i,:} \leftrightarrow a_{q,:} / / \text { Swap } i \text {-th and } m \text {-th rows } \\
& a_{:, i} \leftrightarrow a_{:, q} / / \text { Swap } i \text {-th and } m \text {-th columns } \\
& l_{i i}=\sqrt{a_{i i}-\sum_{k=1}^{i-1} l_{i k}^{2}} \\
& \text { for } j=i+1: N \\
& \quad l_{j i}=\frac{1}{l_{i i}}\left(a_{i j}-\sum_{k=1}^{i-1} l_{i k} l_{j k}\right)
\end{aligned}
$$

Numerical Recipes Program for Cholesky Decomposition

Source Codes

- Cholesky decomposition: https://aiichironakano.github.io/phys516/src/TB/choldc.c
- Driver: https://aiichironakano.github.io/phys516/src/TB/cholesky.c

Compile and Run

\$ cc -o cholesky cholesky.c choldc.c -lm
\$./cholesky
A
$1.000000 \mathrm{e}+002.000000 \mathrm{e}-011.000000 \mathrm{e}-01$
$2.000000 \mathrm{e}-011.000000 \mathrm{e}+003.000000 \mathrm{e}-01$
$1.000000 \mathrm{e}-013.000000 \mathrm{e}-011.000000 \mathrm{e}+00$

L

1.000000e+00
$2.000000 \mathrm{e}-019.797959 \mathrm{e}-01$
$1.000000 \mathrm{e}-012.857738 \mathrm{e}-019.530652 \mathrm{e}-01$

L•Lt
$1.000000 \mathrm{e}+002.000000 \mathrm{e}-011.000000 \mathrm{e}-01$
$2.000000 \mathrm{e}-011.000000 \mathrm{e}+003.000000 \mathrm{e}-01$
$1.000000 \mathrm{e}-013.000000 \mathrm{e}-011.000000 \mathrm{e}+00$
Numerical Recipes Section 2.9: Cholesky Decomposition
https://aiichironakano.github.io/phys516/c2-9.pdf

