Cholesky Decomposition

Let an $N \times N$ matrix, $\mathbf{A} = [a_{ij}]$, be symmetric, $a_{ij} = a_{ji}$, and positive definite, *i.e.*, $\mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v} > 0$ for any *N*-element column vector \mathbf{v} . Cholesky decomposition constructs a lower triangular matrix, $\mathbf{L} = [l_{ij}] \ (l_{ij} = 0 \text{ for } i < j)$, which "takes the square root of" \mathbf{A} : $\mathbf{L} \mathbf{L}^{\mathrm{T}} = \mathbf{A}$ (1)

$$\sum_{k=1}^{n} l_{ik} l_{jk} = a_{ij} \ (i, j \ge k).$$
For a diagonal element, $i = j$, Eq. (2) reads
$$(2)$$

$$\sum_{k=1}^{i} l_{ik}^2 = \sum_{k=1}^{i-1} l_{ik}^2 + l_{ii}^2 = a_{ii}$$
(3)
or

$$l_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2}.$$
(4)

For
$$j > i$$
, Eq. (2) reads
 $\sum_{k=1}^{i} l_{ik} l_{jk} = \sum_{k=1}^{i-1} l_{ik} l_{jk} + l_{ii} l_{ji} = a_{ij}$
(5)

or

$$l_{ji} = \frac{1}{l_{ii}} \left(a_{ij} - \sum_{k=1}^{i-1} l_{ik} l_{jk} \right) (j = i+1, \dots, N).$$
(6)

Equations (4) and (6) constitutes a recursion as follows. First, $l_{11} = \sqrt{a_{11}}$ from Eq. (4) and $l_{j1} = \frac{1}{l_{11}}(a_{12})$ (j = 2, ..., N) from Eq. (6), which determines the first column of L. Next, $l_{22} = \sqrt{a_{22} - l_{21}^2}$ and $l_{j2} = \frac{1}{l_{22}}(a_{ij} - l_{21}l_{j1})$ (j = 3, ..., N) to determines the second column. This procedure can be repeated by incrementing column index *i* at each iteration, since the right-hand sides of Eq. (4) and (6) only contain l_{ji} for lower columns that have already been computed. This can be implemented as the following algorithm.

Algorithm 1: Cholesky decomposition.

for
$$i = 1:N$$

 $l_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2}$
for $j = i+1:N$
 $l_{ji} = \frac{1}{l_{ii}} (a_{ij} - \sum_{k=1}^{i-1} l_{ik} l_{jk})$

Application 1: Orthonormalization

Cholesky decomposition can be used to orthonormalize a basis set of an *N*-dimensional vector space $\{|\psi_i\rangle|i = 1, ..., N\}$. Let $\mathbf{S} = [s_{ij} = \langle \psi_i | \psi_j \rangle]$ be an $N \times N$ overlap matrix. Then, matrix $\mathbf{S}^T \mathbf{S}$ is positive definite and can be Cholesky-decomposed as

$$\mathbf{S}^{\mathrm{T}}\mathbf{S} = \mathbf{L}\mathbf{L}^{\mathrm{T}}.\tag{7}$$

Now consider $\mathbf{0} = \mathbf{S}(\mathbf{L}^{-1})^{\mathrm{T}},$

then

$$\mathbf{Q}^{\mathrm{T}}\mathbf{Q} = \mathbf{L}^{-1}\mathbf{S}^{\mathrm{T}}\mathbf{S}(\mathbf{L}^{-1})^{\mathrm{T}} = \mathbf{L}^{-1}\mathbf{L}\mathbf{L}^{\mathrm{T}}(\mathbf{L}^{-1})^{\mathrm{T}} = \mathbf{L}^{-1}\mathbf{L}(\mathbf{L}^{-1}\mathbf{L})^{\mathrm{T}} = \mathbf{I}.$$
(9)
Namely, $\mathbf{Q} = \mathbf{S}(\mathbf{L}^{-1})^{\mathrm{T}}$ is orthonormal.

(8)

To implement Eq. (8) in a program, let us transpose it as

$$\mathbf{Q}^{\mathrm{T}} = \mathbf{L}^{-1} \mathbf{S}^{\mathrm{T}}.$$
(10)
By denoting the *i*-th row vectors of **Q** and **S** as **q**_i and **s**_i, respectively,

$$\mathbf{q}_{i} = \mathbf{L}^{-1} \mathbf{s}_{i} \ (i = 1, ..., N),$$
(11)
which amounts to solving a linear system of equations.

 $\mathbf{L}\mathbf{q}_i = \mathbf{s}_i \ (i = 1, ..., N).$ (12)

The lower triangular linear system, Eq. (12), can be solved by recursion. By dropping the row-vector index for simplicity as, $\mathbf{Lq} = \mathbf{s}$, the recursion reads:

$$q_{1} = \frac{s_{1}}{l_{11}}$$

$$q_{i} = \frac{1}{l_{ii}} \left(s_{i} - \sum_{j=1}^{i-1} l_{ij} q_{j} \right) (i = 2, ..., N)$$
(13)

Application 2: Low-Rank Approximation

Let us rewrite Cholesky decomposition in Eq. (2) as

$$a_{ij} = \sum_{k=1}^{\min(i,j)} l_{ik} l_{jk}.$$
(14)

A low-rank approximation of matrix A can be obtained by truncating the k-sum in Eq. (14) at $k \le m \ll N$. This is achieved by swapping rows and columns at each Cholesky iteration so that the largest diagonal element is placed at the top of the currently considered submatrix [cf. G. H. Golub and C. F. van Loan, *Matrix Computation, 2nd Ed.* (Johns Hopkins Univ. Press, 1989) Sec. 4.2.9]. This is implemented in the following pivoted Cholesky algorithm and truncating the iteration when the largest remaining diagonal element falls below a prescribed threshold δ . Upon the termination of the algorithm, *m* is the rank of the approximation and the resulting rank-*m* approximation of A is given by

 $a_{ij} \cong \sum_{k=1}^{\min{(i,j,m)}} l_{ik} l_{jk}.$

Algorithm 2: Pivoted Cholesky decomposition.

(15)

for
$$i = 1:N$$

 $q = \underset{k \in [i,N]}{\operatorname{argmax}} a_{kk}$
if $a_{qq} < \delta$
 $m = i - 1$
break
 $a_{i,:} \leftrightarrow a_{q,:}$ // Swap *i*-th and *m*-th rows
 $a_{.,i} \leftrightarrow a_{.,q}$ // Swap *i*-th and *m*-th columns
 $l_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2}$
for $j = i+1:N$
 $l_{ji} = \frac{1}{l_{ii}} (a_{ij} - \sum_{k=1}^{i-1} l_{ik} l_{jk})$

Numerical Recipes Program for Cholesky Decomposition

Source Codes

- Cholesky decomposition: https://aiichironakano.github.io/phys516/src/TB/choldc.c
- Driver: https://aiichironakano.github.io/phys516/src/TB/cholesky.c

Compile and Run

```
$ cc -o cholesky cholesky.c choldc.c -lm
$ ./cholesky
A
1.000000e+00 2.000000e-01 1.000000e-01
2.000000e-01 1.000000e+00 3.000000e-01
1.000000e-01 3.000000e-01 1.000000e+00
L
L
1.000000e-01 9.797959e-01
1.000000e-01 2.857738e-01 9.530652e-01
L•Lt
1.000000e+00 2.000000e-01 1.000000e-01
2.000000e-01 1.000000e-01
1.000000e-01 3.000000e-01 1.000000e+00
```

Numerical Recipes Section 2.9: Cholesky Decomposition

https://aiichironakano.github.io/phys516/c2-9.pdf