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ABSTRACT

Time-dependent density-functional response theory (TD-DFRT) is pre-
sented from the point of view of quantum chemistry. The extension of
density-functional theory (DFT) into the time-domain is reviewed from the
point of view of Runge, Gross, and Kohn. The basic working equations
of TD-DFRT are then derived in a form analogous to the time-dependent
Hartree-Fock (TDHF) equations used for molecular calculations. This is
the first practical formulation of TD-DFRT for molecular applications, and
the equations are presented in a more general form than has been the case
for either atoms or solids. In particular, the present TD-DFRT equations
anticipate applications to open-shell molecules based on spin-unrestricted
DFT equations with fractional occupation numbers, and are general enough
to accept time-dependent exchange-correlation functionals beyond the adi-
abatic approximation. The use of auxiliary function techniques to eliminate
the four-center integrals that arise in TD-DFRT is discussed. The simple
example of Hy is used to illustrate the TD-DFRT method and its relation-
ship to TDHF and to the usual ad hoc ASCF-based DFT treatment of
excited states. The TD-DFRT method set forth here provides a powerful
DFT technique for the calculation of such optical properties as dynamic
polarizabilities and electronic excitation spectra, and can be readily ex-
tended to treat a number of other properties such as hyperpolarizabilities
and intermolecular forces.
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I. Introduction

Density functional theory (DFT) has become increasingly popular in the quantum chem-
istry community due to the rather good quality of results for a wide variety of molecular
properties, combined with its computational efficiency. However, molecular applications of
DFT have been limited to the calculation of static properties, thus excluding many prob-
lems in molecular optics and electronic spectroscopy which involve time-dependent fields,
because none of the previously existing molecular algorithms could handle time-dependent
DFT. The present chapter gives a molecular algorithm for time-dependent density functional
response theory.

The popular Kohn-Sham formulation of DFT provides a computationally convenient,
time-independent, Hartree-Fock (HF) like theory in which the HF exchange energy is re-
placed by an exchange-correlation functional. However, unlike the HF approximation, DFT
leads to the exact ground state energy and density in the limit that the exchange-correlation
functional becomes exact. Since no practical exact form of the exchange-correlation func-
tional is known, 1t must be approximated in practice. These approximations have now
reached the stage that properties calculated from DFT are often more comparable to those
obtained from second-order Mgller—Plesset than from the HF approximation. The advan-
tages of DFT over other ab initio methods become even more pronounced when the multi-
plicative nature of the DFT exchange-correlation potential is exploited to simplify compu-
tations. This advantage is realized in fully numerical atomic DFT calculations, and in DFT
algorithms for solids which use plane wave bases and fast Fourier transform techniques,
as well as in molecular DFT codes which use auxiliary functions to eliminate the need to
calculate costly four-center integrals, thereby obtaining a nominal scaling of N3 with the
size of the basis set, as opposed to the nominal scaling of N* for HF. Thus, when efficiently
implemented, DFT can be used to study larger molecules than is possible with other ab
wnitio methods.

However, the Hohenberg-Kohn-Sham formulation of DFT is time-independent, and thus
does not cover the treatment of problems involving time-dependent fields, as are encountered
in many problems in molecular optics and spectroscopy. Although time-independent DFT
has been used to calculate excitation energies via a ASCF (Aself-consistent-field)-based ap-
proach, this is difficult to justify formally and entails practical difficulties as well. In the first
instance, such a calculation basically assumes that the same functional used to determine
the ground state energy and charge density can be used to calculate the excited state energy
and charge density. ASCF excitation energies are then calculated by simply performing two
DFT SCF calculations, one with the ground and the other with an excited state configu-
ration, and then taking the energy difference. Since a Hohenberg—Kohn theorem can be
derived for the lowest state of each symmetry, this approach may be partially justified for
these states provided any symmetry-dependence of the exchange-correlation functional is
ignored (see Ref. [1] pp. 204-205.) However, the problem of justifying the ASCF method
becomes severe for spin and spatial multiplets which have different energies but the same
charge density. In this case, it is clear that the energy is not a functional of the excited-
state charge density alone. The usual ad hoc solution [2,3] is to assume that the ASCF
procedure only applies to excited states which are well described by a single-determinant
wave function. First-order expressions for multiplet energies are then sought, on the basis
of an assumed zero-order form of the excited-state wave functions, in terms of the ener-
gies of single-determinant states, together with a mininum number of electron-repulsion
integrals when the energies of single-determinant states are not sufficient. (See Section VI
for an example of this ASCF-based DFT approach to excited states.) This procedure has
been partially automated [3] and a similar method has been used for estimating oscillator



strengths [4]. Aside from the problems of justification and the need to make assumptions
about the form of the excited state wave function, other principal problems with the method
include the need to calculate bielectronic integrals which are not normally present in DFT,
the need to converge one or more separate SCF calculations for each excited state, and
the problem that symmetry breaking may occur (see, for example, the case of acetylene
in Ref. [5]) which can make state assignment difficult if not impossible. Even though con-
vergence and symmetry breaking problems may be reduced by using the transition state
method [6] to estimate ASCF excitation energies, the remaining problems mean that this
approach is at best cumbersome for calculating electronic excitation spectra.

The DFT calculation of static electrical response properties is much more straightfor-
ward. In this case, there is no problem with the formal justification. Since the exact ground
state charge density i1s obtained, in the limit of the exact exchange-correlation functional,
properties such as polarizabilities and hyperpolarizabilities which depend on the response
of the charge density to an applied static electric field also become exact in this limit. This
is in contrast to the algorithmically similar HF theory which is fundamentally approximate.
Of course, in practice, the quality of static response properties calculated using DFT de-
pends upon the quality of the approximate exchange-correlation functional used. A number
of studies of molecular dipole polarizabilities and hyperpolarizabilities [5,7-14] along with
previous work on atoms and solids (reviewed in Ref. [15]), have found that modern DFT
gives results for these properties that are often significantly better than HF results.

Calculations of static electric response properties can be carried out in either of two
different fashions. In the finite field method, the energy or dipole moment is calculated
as a function of the strength of a perturbing potential introduced into the SCF orbital
Hamiltonian. Polarizabilities and hyperpolarizabilities are then calculated by numerical
differentiation or by fitting of the field-induced energy or dipole moment. This is a simple
method to implement but requires careful attention to numerical errors in order to obtain
accurate hyperpolarizabilities [10]. The alternative to the finite field method is to take
the necessary derivatives with respect to the field strength analytically. This leads to the
coupled Kohn-Sham (CKS) equations, which are identical to the static density-functional
response theory equations. This is more involved to program but is numerically more stable
than the finite-field method. The calculations of the dipole polarizabilities of rare gas and
other closed shell atoms by Stott and Zaremba [16] and by Mahan [17] are often cited
as the first implementations of static density-functional response theory, although earlier
work based upon the Xa method was carried out by Ahlberg and Goscinski [18]. Most
static density-functional response theory calculations have been for atoms or other systems
with spherical symmetry and have been carried out with one of two algorithms. Both the
Green-function method of Stott and Zaremba [16] and the modified Sternheimer method
of Mahan [17] were developed specifically for systems with spherical symmetry, and neither
is suitable for density-functional calculations of molecular response properties. However,
the CKS equations also arise in the calculation of analytic second derivatives of molecular
potential energy surfaces. Formal equations for this purpose have been presented by Fournier
[19], Dunlap and Andzelm [20], and Komornicki and Fitzgerald [21]. Colwell, Murray,
Handy and Amos have presented CKS equations in the context of calculating molecular
dipole polarizabilities and hyperpolarizabilities and have implemented them in CADPAC
(the Cambridge Analytical Derivative Package) [13]. All of these approches are restricted
to treating the response to a static field.

The calculation of dynamic response properties rests upon the extension of DFT into the
time domain. A formal foundation for this extension has been laid by many workers, most
notably Ghosh and Deb [22,23], Bartolotti [24,25], and Runge, Gross, Kohn, and others
[26-30], who have shown how many of the important concepts of time-independent DFT



can be generalized in a rigorous manner to treat problems involving local, time-dependent
external potentials. This allows the treatment of time-dependent electric fields as well as
some magnetic effects. Thus it is adequate for treating many problems in optics and spec-
troscopy where magnetic field effects are small. The formal development of time-dependent
DFT actually postdated the first applications of time-dependent density-functional response
theory (TD-DFRT), which was first done simply as an ad hoc extension of static density-
functional response theory, somewhat in the spirit of the time-dependent Hartree—Fock
(TDHF) approximation. Because of its flexibility and its simplicity, TD-DFRT remains the
most important method for implementing time-dependent DFT and constitutes a powerful
method for calculating not only dynamic polarizabilities and hyperpolarizabilities, but also
excitation spectra and a number of other properties as well. The earliest application of
TD-DFRT is probably that of Zangwill and Soven [31] who used the method to calculate
rare gas photoabsorption cross-sections. This was soon followed by atomic TD-DFRT cal-
culations of other photoabsorption spectra [32] and van der Waals coefficients [33] and by
solid state TD-DFRT calculations of frequency-dependent dielectric constants [34,35]. The
method is now well-established for atoms and solids; and a review has been given by Mahan
and Subbaswamy [15]. The method has also become popular for studying the optical prop-
erties of metal clusters [36] where it is applied either in the context of the jellium sphere
model [37-41] or the spherically-averaged pseudopotential model [42-44].

In contrast to the electrical and optical response properties just mentionned, the full
formal treatment of (static or dynamic) magnetic response properties, such as nuclear mag-
netic resonance (NMR) chemical shifts, in DFT is more involved. In this case, a fundamental
extension of the DFT formalism to the case of nonlocal (velocity-dependent) external po-
tentials is required. This formal extension has been developed in the form of current-density
functional theory (CDFT) (see Ref. [45] for a review). Practical CDFT response equations
have been given for the static case by Colwell and Handy [46], and an indication of the
CDFT treatment in the dynamic case is given in the present chapter (at the end of Sec. IT).
The CDFT response equations reduce to the (static or dynamic) density-functional response
theory equations with an external vector potential if the current-density terms are neglected.
It is interesting to note that at this level of approximation the coupling cancels out in the
linear response to a magnetic field, leaving only the “independent particle” term. The results
for NMR chemical shifts are already quite good in the independent particle approximation
[47], and the agreement with experiment can be further improved using only a small ad hoc
correction [48]. Tt will be very interesting to see tests of current-density functionals, as well
as the size of the current-density contributions, when these results become available.

The present paper focuses on electrical response properties and optical properties, specif-
ically dynamic polarizabilities and excitation spectra. By definition, electrical response
properties are independent of the magnetic field*. For the optical properties, the magnetic
field of the photon is negligible for most practical purposes, and will be neglected here, as
it is in most other ab initio methods for treating optical properties. Since magnetic fields
are not being treated, a rigorous development of TD-DFRT can be given without recourse
to current-density functional theory.

The algorithms used for the applications of TD-DFRT mentionned above depend strongly
upon the type of system studied. Atomic applications are based on time-dependent exten-
sions of either the Green-function [31] or modified Sternheimer [17] methods previously
mentionned in the context of static calculations. (A good introduction to the two methods

*For example, o = [3[[(5, é)/a‘ﬂézézo :



can be found in Ref. [15].) These are also the methods used for the models of metal cluster
optical properties mentionned above. They rely heavily on the use of spherical symmetry to
reduce the three-dimensional problem to the solution of one-dimensional differential equa-
tions. Nevertheless the same basic algorithm has also been applied to calculate the time-
dependent response properties of (nonsphericalized) Ny and CyHsy by using single-center
expansions [49,50]. However, due to the notorious unsuitability of single-center expansions
for molecular calculations, this approach is of no practical utility. Algorithms used for solids
[34,35] are also quite specialized and cannot be adopted directly for molecules.

The present paper lays out, in some detail, a TD-DFRT method for molecular applications.
The method is in some ways analogous to molecular implementations of TDHF but differs
in some important respects, notably the computational advantages of DFT, and the fact
that TD-DFRT becomes exact in the limit of the exact exchange-correlation functional
while the TDHF method is always an approximation. Furthermore, the usual derivation of
TDHF is done in terms of an N-electron wavefunction, so this approach is inappropriate for
DFT. Thus a different tack is taken in the present work, and the TD-DFRT equations are
derived using a functional-derivative approach. The same functional-derivative technique
can also be used to derive the TDHF equations. The present work provides a formally well-
founded and convenient method for DFT calculations of spectra and other dynamic response
properties. Although only dynamic polarizabilities and excitation spectra are discussed here,
other properties including hyperpolarizabilities and van der Waals coefficients may also be
obtained. We are implementing this method as a post-deMon program DynaRho [51].

This chapter presents TD-DFRT with a view toward practical molecular applications.
Thus it includes a review not only of the formal foundations, but also of the auxiliary-
function technique used in our implementation of TD-DFRT in a molecular code, as well
as a simple example where the equations can be solved analytically. Although the reader
is assumed to be familiar with time-independent DFT and second-quantization, the paper
i1s intended to be relatively self-contained. A review of the formal foundations of time-
dependent DFT is given in the next section. This is followed by a review of the usual
wavefunction formulation of time-dependent response theory in Section III. This sets the
stage for a derivation of the basic working equations of TD-DFRT in a form suitable for
molecular applications, in Section IV. The use of auxiliary functions to simplify the evalu-
ation of integrals appearing in TD-DFRT is discussed in Section V. The formalism and its
relation to TDHF and to the ASCF-based treatment of excited states in DFT is illustrated
for Ha in Section VI. Section VII gives a summary.

II. Formal foundations

The classic Hohenberg—Kohn—Sham formulation of density functional theory is restricted
to the time-independent case. Thus the treatment of time-dependent systems requires a
generalization of the basic formalism of DFT to the time-dependent case. This development
has been pursued by a number of authors [22-30,52,53], providing time-dependent analogs
of the Hohenberg—Kohn theorems and Kohn—-Sham equation. The brief synopsis of the
essential elements of the time-dependent theory given here is based primarily on the work
of Runge and Gross [27] and Gross and Kohn [30]. The extension, due to Ghosh and Dhara
[64], of time-dependent DFT to treat time-dependent magnetic fields via current-density
functional theory is also briefly discussed.

Consider an N-electron system described by the Schrodinger equation (in hartree atomic
units),



H(t)¥(t) = i%\l!(t), (2.1)
with Hamiltonian
Ht)=T+U+ V(1) (2.2)
where
1
& 2
T=-3 z_; V; (2.3)
is the kinetic energy,
1
U= (2.4)
— |ri —
1<J
is the electron repulsion, and
N
V()= v(rit) (2.5)
i=1

is the external potential, assumed constant for ¢ < t;. Thus we may think of a system
interacting with a time-dependent field switched on at time #;. Note that, as usual in
DFT, the restriction to external potentials which are multiplicative operators precludes
a full treatment of magnetic effects, for which current-density functional theory is more
appropriate. The focus here is on electric fields. The first problem is to obtain (time-
dependent) expectation values as functionals of the time-dependent charge density. To this
end, Runge and Gross [27] showed that the time-dependent charge density, p, determines
the wave function up to a time-dependent phase factor®,

(1) = e OU[p, o) 1), (2.6)

where ¥y denotes the initial condition ¥(#g). More specifically, they showed that the ex-
ternal potential, v(xr,?), is determined by the charge density, p, up to a spatially constant
time-dependent function ¢(t), provided that p arises from a system with initial state ¥g
and that the external potential (i) can be represented as the electric potential due to a
normalizable charge distribution, and () has a time dependence which can be expressed in
a Taylor’s series about ¢ = #;. Equation (2.6) follows as a consequence. The proof of the
Runge-Gross theorem proceeds by first showing that the external potential 1s determined
by the current density, and then showing that the current density can be eliminated in favor
of the charge density alone, provided a suitable boundary condition is satisfied. Although
Xu and Rajagopal [55] pointed out a difficulty with the elimination of the current density
in Runge and Gross’s original formulation of this theorem [27], the clarification of condition

(i) above by Gross and Kohn [30] and Dhara and Ghosh [56] has resolved this problem.

'In this notation, functionals are distinguished by the use of square brackets while the
independent variables of a function appear in parentheses. Thus ¥[p, ¥g](¢) indicates that
¥ is both a functional of the functions p(r,?) and ¥y(r), and a function of ¢.



Gross and Kohn [30] also note that the conditions of the Runge—Gross theorem are not
strictly satisfied in time-dependent response theory, because of the difficulty of expanding
v(r,t) about ¢y = —oo, as should be done when the perturbation is turned on adiabatically
starting at ¢ = —oo. In addition, the restriction to an electric potential due to a normal-
izable charge distribution excludes the ezact representation of a uniform field. However,
these remarks only concern idealizations involved in the theory, not the physical systems
it is intended to model. Thus they do not constitute limitations on the applicability of a
response formulation of time-dependent DFT to physical fields (e.g. due to a large but finite
charged plate) introduced at some finite time in the distant past.

If it 1s further assumed, as is usual in response theory, that the initial state ¥y is a station-
ary ground state, then ¥q is completely determined by the initial charge density, po = p(%0),
according to the first Hohenberg—Kohn theorem [57], provided ¥q is also nondegenerate.
(Of course, any initial degeneracy can usually be lifted by a small perturbation, so the de-
generacy question is not a major concern.) Hence ¥y can be eliminated from Eq. (2.6) so
that ¥ is then determined up to a phase factor by p alone. For an operator O(t) which may
be a function of time but which contains no derivative or integral operators on ¢, this phase
factor cancels out on taking the expectation value. Thus expectation values are functionals
only of p,

(FOIOM(1) = Olpl(1), (2.7)

analogous to the time-independent case.
The role of the second Hohenberg—Kohn theorem, in the time-independent case, is filled,
in the time-dependent theory, by a variational principle involving the action,

A= / 1(\Il(t)|i% — H()[W(1)) di . (2.8)

to

The true time-dependent density is the one which makes the action stationary,

_ 6A B t1 (5\If(t/) ii_ o / e
0= Sp(xr,1) _/t <5p(1‘,t) ot H)[¥(t')) dt’' +c.c. . (2.9)

The expectation value in Eq. (2.8) is not of the form required for the phase factor to cancel
out as in Eq. (2.7). Nevertheless, it is easy to see that in this case the effect of the phase
factor is simply to contribute an additive constant,

A= /t 1<‘I’[P](t)|i% — H(O)[W[p)(1)) dt + 6(t1) — é(Lo) = Ap] + const . (2.10)

Thus the time-dependent density determines the action, up to an additive constant. Of
course, when the variational condition (2.9) is used, the additive constant is immaterial, so
this provides the analog of the second Hohenberg—Kohn theorem, for the the time-dependent
theory.

The action functional can be rewritten as

Alp] = B[] —/tl/v(r,t)p(r,t) drdt (2.11)

where the functional B is independent of the external potential v. A time-dependent Kohn—
Sham equation can then be derived in a manner analogous to that for the time-independent



case by assuming the existence of a potential veg(r,?), for an independent particle system,
whose orbitals 1;(r, ) yield the same charge density p(r,?) as for the interacting system,

0= filei(e P, (2.12)

where the f; are orbital occupation numbers. The question of whether such a potential exists
is known as the “time-dependent v-representability problem.” As in the time-independent
case, this problem is not entirely resolved, although veg(r,?) can be shown to exist [29] for
adiabatically introduced perturbations whose frequency does not exceed the HOMO-LUMO
gap of the unperturbed system [see the remark after Eq. (4.7)]. Mearns and Kohn [29]
give examples which suggest that ves(r,t) will also exist for higher frequency perturbations
as well, except at isolated frequencies. Assuming ves(r,t) does exist, then the universal
functional B can be written as

Zﬁ/ (wi(t ———v i (1) /// r|;’1_r‘;“|’ PELOPED) (ot — A, ]

(2.13)

thereby defining the exchange-correlation action functional Ay, which plays a role analogous
to the exchange-correlation energy functional in the time-independent theory. Minimizing
the action (2.11) subject to the condition (2.12), results in the time-dependent Kohn—-Sham
equation

—%W + veﬁv(r,t)] Yi(r,t) = i%d;i(r,t) , (2.14)
where
veﬂv(r,t):v(r,t)—l—/ |i(i’3| dr’ + vye(r, 1) (2.15)
and
6Axc[p]
Uge(r,1) = Sprl) (2.16)

Although the functional Ay, is unknown, in the limit of an external potential which varies
slowly in time it must reduce to

t1
Ao = / Exe[pi] dt, (2.17)
to

where Ey. is the exchange-correlation functional of time-independent Kohn—Sham theory,
and p; denotes p evaluated at the time ¢. This 1s known as the “adiabatic approximation.”
Notice that, whereas Ay, is a functional of a function p over both time and space, Fy. 1s a
functional of a function p; over only space (since ¢ is fixed).

The adiabatic approximation is a local approximation in time. Like the familiar local
density approximation from time-independent DFT, which is a local approximation in space,
the adiabatic approximation works well beyond its domain of rigorous justification. For this
reason, and due to its relative simplicity, the adiabatic approximation has come to be the



work horse of time-dependent DFT. In the adiabatic approximation, the first derivative of

AXC I

6Axc[p] ~ 6EXC[pf]
dp(r,t) — dpi(r)

is just the familiar exchange-correlation potential of time-independent DFT evaluated with
the density at a particular time. (Note the difference in notation between the right and left
hand sides.) Since vy (?) is then determined solely by the density p(¢) at the same time,
the adiabatic approximation neglects all retardation effects and assumes an instantaneous
reaction of the self-consistent field to temporal changes in p. This is particularly obvious
from the second derivative of Ay. which gives the response of the exchange-correlation
potential to a change in the charge density,

6vxc[p](r,t) Y, 6“)«:[%](1')
76p(r’,t’) 8(t t)iépt(r’) . (2.19)

While the adiabatic approximation is a physically reasonable first approximation, and is
useful in practical applications, it is also important to develop functionals which go beyond
this approximation.

In practical applications, the derivative of the exchange-correlation potential is used to
find the response of the charge density (see Section IV). Conversely, for a given system,
it is possible to invert this procedure. Gross and Kohn [28,30] have done this, using the
response of the charge density to obtain an expression for the derivative of wvy. for the
homogeneous electron gas. They have suggested that this result could be used for other
systems in an approximation of dvy./8p which goes beyond the adiabatic approximation to
include retardation effects.

The extension of TD-DFT to handle time-dependent magnetic fields by way of CDFT
has been treated by Ghosh and Dhara [54]. In the presence of a magnetic field, Eq. (2.14)
becomes

vxe[p](x, 1) = = vxe[pe](x), (2.18)

R

{% ‘—iV + %aeﬂ‘(t) + Ueﬂ‘(r,t)} Yi(r,t) = i%d)i(r,t) , (2.20)
where
ity = L+ B0 el o
and
verr(r, t) = v(r,t) / . v+ 6;;)(((;‘[2)] + % [a®(x,t) — aZq(r,1)] (2.22)

Here, a is the external vector potential and the exchange-correlation action-functional Ay,
depends on both the charge density p and the current density

=—— Zﬁ (x, )V (x,t) — ¢i(r, 1) Vi (x, )] + %p(r,t)aeﬁv(r,t). (2.23)

Eq. (2.20) can also be written in the form

10



[—%vz + aeﬂ(r,t)] Yi(r,t) = i%d)i(r,t), (2.24)

where

R / 6AXC|:p’ ]
ue[p, j](r, ) (r,1) / v — r/| 6p(1‘ 1)

1

— o [Voaunlp e 0]+ e (2.25)
The orbital equation (2.24), and the fact that both the charge and current densities are trivial
functions of the density matrix, means that the development of TD-DFRT in Section IV
can be generalized to include time-dependent current-density functional response theory
(TD-CDFRT). Naturally, this is computationally more demanding. In particular, terms
involving derivatives with respect to the current density and derivatives of the current
density with respect to the density matrix have to be introduced, and simplifications due
to the multiplicative nature of the TD-DFRT effective potential are lost in TD-CDFRT.
Nevertheless, the effective potential, teg, divides into external and self-consistent field parts,
a coupling matrix can be defined in a manner analogous to Eq. (4.8), and the remaining
development is very similar to that given in Section IV. In the adiabatic approximation,
the TD-CDFRT coupling matrix is frequency independent, so the static result of Colwell
and Handy [46] could be taken over directly. Note, however, that Colwell and Handy
follow Vignale, Rasolt, and Geldart [45] in using only the paramagnetic component of the
current density, and neglecting the second term in Eq. (2.21) which results from a current-
current interaction [54]. Given the close interrelationship between time-dependent electric
and magnetic fields, it will be a more challenging problem how to combine current-density
functionals and time-dependent functionals beyond the adiabatic approximation without
overcounting. Since the present paper is not concerned with magnetic fields, the details of
a time-dependent current-density functional theory will not be further pursued here.

III. Time-dependent response theory

Basic time-dependent response theory is reviewed in this section in an effort to keep the
present article more or less self-contained. Much of this material is also treated in standard
texts on many-body physics such as Ref. [58]. The second-quantized notation used here
is based upon an underlying basis set of time-independent orthonormal spin-orbitals ¥,
where the Roman and Greek indices refer to space and spin respectively. These orbitals
will eventually be taken to be the molecular orbitals of the unperturbed molecule. The
corresponding annihilation operators are denoted by a;,.

Time-dependent response theory concerns the response of a system initially in a stationary
state, generally taken to be the ground state ¥ unless otherwise specified, to a perturbation

8Vappi (1) Zév?ﬁfl awa]U (3.1)

ijo

turned on slowly beginning at time ¢ = ¢y sometime in the distant past. The assumption that
the perturbation is turned on slowly (i.e. the adiabatic assumption) is important since oth-
erwise transient contributions occur which depend upon the time at which the perturbation
was turned on. The linear response of the density matrix

11



8Pijo(t) = (6Wo(t)]a} i [Wo(1)) + (Wo(t)]a] o 5Wo(1)) (3.2)
is conveniently expressed in terms of the generalized susceptibility y by
+oo |
Poo) =32 [ Nijosurlt =050y () ar (53
kir Y~
Introducing the Fourier transform convention
+eo 1 +eo
fwr= [ e, =g [ et e, (3.0
and making use of the convolution theorem,
+oo
o= [ - = b = ) fw). (35)

allows Eq. (3.3) to be rewritten as

2]0 ZXZ]O‘ le 6Ukppl( ) (36)

klT

To derive a formula for the generalized susceptibility, assume that the system is initially
in its ground stationary state, ¥y, and introduce the perturbation

S(t) = e M6, 000(1) (3.7)

where 7 is a positive infinitesimal. The infinitesimal enforces the adiabatic approximation
in such a way that 6w(?;) = é9(¢1). Equation (3.2) is then used with standard time-
dependent perturbation theory [59] to calculate the reponse of the density matrix at time
t1. In particular, setting g = —oo,

§Wo(ty) = =iy Wr(ly / Wy (1) 6w (t)|Wo(t)) dt . (3.8)
I#0
where the
\If[(t) = 6_iEIt\If] (39)
are the stationary states of the unperturbed Hamiltonian. Thus Eq. (3.2) becomes
Pijo(t1) Z/ —i0(h - t)Z[N’o|d}adw|‘1’1>(‘1’1|d27dh|‘1’0>6_Z(EI_E”_Z”)(“_”

kir U~ T#0

— (Wola}, |w1><%|d}aaw|wo>e—i<ED‘E””>(“‘”] }MZ?F@) dt, (3.10)

where

1 for t; >t
Ot —1) = { 0 for t; <t (3.11)
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is the Heaviside function. Comparison with Eq. (3.3) shows that the term in curly brackets is
Xijokir(t1 —t). Taking its Fourier transform gives the sum-over-states (SOS) representation
of the generalized susceptibility!,

(Wolal o [W1)(Wrlal arr [Wo)  (Wolal, anr W) (W a] i Wo)
Xijo kir (W) = Z .

s w—(Fr— Ey) +in w4 (Fr— Ey) +in
(3.12)
A special case is that of a single particle system with Schrodinger equation
hbig = €igtbio . (3.13)

If the particle is initially in orbital t,,, and the unperturbed stationary states are taken
as the orthonormal basis set underlying the second-quantized notation, then according to

formula (3.12),

ijoklr = 65,700,,0; 10; —L LR 14
Xijo,kl (w) ST AL A S (cio — Eja) ) (3.14)

where the infinitesimal has been set equal to zero. Since the response of the density matrix of
a system of N independent particles with (possibly fractional) occupation numbers f;, is the
occupation-number weighted sum of the response of the density matrices for the individual
orbitals, assuming that no change in occupation number is induced by the perturbation, the
generalized susceptibility is

0; m 6i,m
Xz’ja,klr(w) = meuéa,réa,uéi,kéj,lm
mu X jo
fja - fia
=68, 706; 16; . 3.15
) & ]JW_(QU_EJ'U) ( )

SOS expressions can also be derived for particular response properties. Chief among
these is the dynamic dipole polarizability a(w). For simplicity of notation, consider the
(2, z)-component. This may be defined by introducing a perturbation,

YAs an interesting aside, the first Hohenberg—Kohn theorem [57] says that the charge den-
sity, p, of a system with a nondegenerate ground state determines the external potential up
to an additive constant. Hence p also determines the N-electron hamiltonian and so the
transition energies, Et — Fy, and wave functions, ¥y and ¥, up to unimportant phase fac-
tors, with the result that the generalized susceptibility itself may be regarded as a universal
functional of the unperturbed charge density. In a sense, the ultimate objective of TD-DFRT
is just to find a practical representation of this functional. The treatment of TD-DFRT given
in Sec. IV comes very close to this. In fact, yv;1(r,r;w) = (xs);7 (v, v;w) — Ky [p](r, v/;w)
where ys 1s the generalized susceptibility for the Kohn—Sham reference system of nonin-
teracting particles and KJp] is the coupling matrix defined in Sec. IV. However, this
expression does not yet give the full generalized susceptibility since it only holds for the
response of the true charge density, but not the density matrix, to a local perturbation:

bpo(r;w) =3 [ Xor(r,x;w)bv, (v, w)dy’ .
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Svappl(t) = 2E:(1) (3.16)
and expanding the z-component of the dipole moment to first order in the function &,(t),
+oo
pa(t) = pig +/ g (t—tHE)dt' + - -+, (3.17)

— 00

where the first term on the right hand side refers to the permanent dipole moment. Then,
from the convolution theorem, the Fourier transform of «,,(¢) is given by

_ Optar (W)
gz (w) = &)

(3.18)

where ép1,(w) is the linear response of the dipole moment [i.e. the integral in Eq. (3.17).]
Since

Spp(w) = — Zl‘]’ig(spijo- = - Z TiioXijokir(W)zpir & (W), (3.19)

ijo ijoklT
1t follows that

agr(w) = — Z TiioXijokir (W) 2Zhir - (3.20)

ijoklT
Making use of the expression (3.12) and the fact that
(Wo|2|Wr)(Wr|2[Wo) = (Wol2[Wr){¥s|2|Wo) (3.21)

then leads to the SOS expression

2(Er = Fo)(Wolz|W¥r)(¥r|z|Wo)
rz = s 3.22
« (W) ZI: (EI . E0)2 _ w2 ( )
where once again the infinitesimal has been set equal to zero. This expression is interesting
because it shows that the spectroscopic oscillator strengths,

fr = 51 = Bo) (ol ) + | (Wolal 1) + (Wl w) ) (3.23)

and excitation energies,
wIIE[—EQ, (324)
are the poles and residues of the mean polarizability,

a(w) = %tr a(w) = Z #

7 ek (3.25)
Evidently this formula could be used to obtain the mean dynamic polarizability in cases
where accurate values of excitation energies and oscillator strengths are available. However,
considering the difficulty of calculating accurate transition energies and oscillator strengths
for all the continuum as well as bound states, it is much easier to calculate the polarizability
directly. Thus, in the next section, the converse approach is taken: A TD-DFRT expression
for the dynamic polarizability is derived, and the SOS formula (3.25) is used to obtain the
excitation energies and oscillator strengths from the dynamic polarizability.
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IV. Density-functional response theory

Since the (exact) Kohn—Sham orbitals yield the true charge density, any property which
depends only on the density, or the response of the density, 1s obtained exactly, in principle,
within the Kohn—Sham formalism. In particular, this includes electrical response properties
such as polarizabilities, as well as excitation energies and oscillator strengths which can
be obtained from the pole structure of the dynamic polarizability. At the same time, the
quasi-independent particle nature of the Kohn—Sham equation means that formally exact
response properties can be obtained while taking advantage of the simple, diagonal form
of the generalized susceptibility for an independent particle system. This is the approach
taken in time-dependent density functional response theory (TD-DFRT), using the time-
dependent Kohn—-Sham equation as a starting point. The resulting equations resemble
those of the time-dependent Hartree-Fock (TDHF) approximation [60], since Hartree—Fock
is also a quasi-independent particle formalism. In fact, as will be seen in Subsection IV B,
the TDHF equations can be derived by the same functional derivative method used here,
though this is not the usual approach. But, unlike Kohn—-Sham theory, Hartree-Fock does
not yield the true charge density, so that even exact solutions of the TDHF equations can
produce only approximate response properties.

In this section, the TD-DFRT equations are derived in a form suitable for general molec-
ular applications. This will be done in the spin-unrestricted formalism, starting from the
time-dependent Kohn—Sham equation

1 0
[—§V2 + vgﬂ(r,t)] Yig(r,t) = iad)w(r,t) , (4.1)
where the effective potential,
o Z1 o
vig(r, 1) = — Z — + Ovappi(r, 1) + vicr (T, 1), (4.2)
T "

is the sum of the external potential, including the nuclear attraction and any applied field,
8vappi (1, 1), and a self-consistent field (SCF) term,

p p(x',t p
USCF(ra t) = / (/ I‘)| dI‘/ —+ vxc[pTa pl](l‘, t) ) (43)

v’ —
which depends upon the spin-up and spin-down charge densities,

p(x,t) = pr(x, 1) + py(r,1), (4.4)
po(r,t) = Z fw|¢w(r,t)|2 ) (4.5)

where the f;, are the (possibly fractional) orbital occupation numbers.

A. Linear Response of the Density Matrix

The perturbation introduced into the Kohn-Sham hamiltonian by turning on an applied
field évappi(r, 1) is, to linear order,

6vgﬁ”(ra t) = 6Uapp1(r’ t) —+ 6U§CF(I" t) ) (4'6)
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where $vd-p(x,1) is the linear response of the self-consistent field arising from the change in
the charge density. Thus the quasi-independent particle nature of the Kohn—Sham equation
means that the independent-particle form of the generalized susceptibility, Eq. (3.15), can
be used, together with the perturbation §vZz(w), to write down the linear response of the
Kohn—Sham density matrix to the applied field. In the basis of the unperturbed molecular
orbitals (MOs),
_ fja - fz’a eff
iPyofe) = s sit o). (@)
Note that 6 P;;,(w) = 0 for f;o = fj». The linear response of the Kohn—Sham density matrix
gives the linear response of the true density but not of the true density matrix. Although it
would be a lengthy aside to show it here, Eq. (4.7) can be used to prove v-representability
when |(.d| < €LUMO — €HOMO [29]
Equation (4.7) is complicated by the fact that v r(w) depends upon the response of
the density matrix,

ZS]%F Z [\2]0 le 6Pkl7-( ) ) (48)
klr

where the coupling matrix,
Kijonir (W)
+oo
:/ e+iw(t—t )avzya ( ) d(t _ t/)

¢S] aPle( )
4o (SUSCF o ( )
_ iw(t—t") tjo P 1" oy
_/_Oo vt {Z// th“ 8;k17()ddt}d( t')
= [Wio¥, [Vl ] (4.9)

T ' 8% Ay
e tw(t—t") * T . / * I‘/ " I‘/ o
+ /_Oo + {// 1/)20( )1/)]0( )(Spg(l‘,t)(spT( B t/) 1/)167'( )1/)17'( )d d } d(t 1 ) ,

where the functional derivative is evaluated using the unperturbed spin-up and spin-down
charge densities, and the inner product

// IMOVICOIN (4.10)

has been introduced. By using the coupling matrix, Eq. (4.7) can be rewritten as

w — (€ro — €15)

frr—=f1-#0
|: fla_fka

85.76; 1051 - Kija,klr(w)] 6 Prir(w) = v prl(w)a (4.11)

klT

where fio # fj». Solving this equation for éP(w) then allows response properties to be
calculated. For example, the dynamic polarizability is given by Eq. (3.20)

fic—Ffie>0

ap:(w) = =2 > jis (RedPij,) (w) / E(w), (4.12)

ijo

where (ReéPj;,) (w) denotes the Fourier transform of the real part of §P;;,(t), and 61}?]1?1
is given by Eq. (3.16).
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B. Properties of the Coupling Matrix

It follows from Eq. (4.9) that the coupling matrix satisfies the relation
Kijorir(w) = [Kririjo(-w)] (4.13)
When the MOs are real, as is the usual case in quantum chemical calculations,
Kijonir(w) = Kijopr (W) = Kjiopr (W) = Kjiopir(w) . (4.14)

This results from the fact that the self-consistent field potential in DFT is local. However,
even when the MOs are real, K may not be real, because Ay, may be complex. Although
a complete discussion of this point would take us too far afield, it is worth noting that it
is related to how the continuum is treated. If the continuum is treated as in Section III,
Ay should be real. But if the lifetimes of continuum states are of interest, Ay. should be
treated as complex. Here, Ay. will be assumed real, and lifetimes will not be discussed.

In the adiabatic approximation, the replacement

8 Axe 5t —1') 8 Fye
St — X
8po(x,t)8p,(x, 1) 8po(x)bpr(x)

results in a coupling matrix which is no longer a function of w, and which is real when the
MOs are real.

Since the equations of TD-DFRT and TDHF are very similar, it is interesting to compare
the properties of the coupling matrix in the two cases. With the exception of the last
line of Eq. (4.9), the equations of the previous subsection are also valid within the HF
approximation. Thus the only difference between the TD-DFRT and TDHF equations is
that the (local) exchange-correlation potential, vy, of DFT is replaced by the (nonlocal)
HF exchange operator ¥, with the result that the second term in the derivative (4.9) is
different. Thus in order to derive the TDHF equations by the same method that has been
used here for TD-DFRT, it remains only to evaluate the derivative 0% ,/0Pgi-, which
yields the TDHF coupling matrix,

[{UU,MT = [1/)i01/);0|1/)k71/)77] - 6U,T[¢i0’l/}20|¢j7¢77] . (416)

Note that the TDHF coupling matrix is independent of w, hermitian, and

(4.15)

[(ija,le == [(‘;‘ia,lkT . (417)

Furthermore K is real when the MOs are real, but even in this case,
Kijortr # Kijokr - (4.18)

The TD-DFRT and TDHF coupling matrices are most similar when the adiabatic approx-
imation i1s made in TD-DFRT, since in this case the TD-DFRT coupling matrix is also
independent of w, and real when the MOs are real. However, the TD-DFRT coupling ma-
trix has more symmetry than the TDHF coupling matrix [compare Eqgs. (4.18) and (4.14)],
due to the fact that the DFT involves only local potentials. Thus, in the adiabatic ap-
proximation, the TD-DFRT equations are computationally simpler than are the TDHF
equations. Although the adiabatic approximation will be used in Sections V and VI, the
treatment given in the present section will continue to be more general.
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C. Separation of Real and Imaginary Parts of §P

Since only the particle-hole (ph), fi» > fj», and hole-particle (hp), fir < fj-, elements
8P;j, of the response of the density matrix are nonzero [see Eq. 4.7], it is convenient to treat
only these elements, and to divide § P into particle-hole and hole-particle parts. (Although
the “particle” | “hole” terminology is not particularly apt in the case of fractional occupation
numbers, it remains both unambiguous, with the above definition, and convenient.) Since
O P is hermitian, the ph and hp parts will be related by complex conjugation. This will lead
to a reduction, by a factor of 2, in the dimension of the matrix equations to be solved, as
well as facilitate the separation of equations for the real and imaginary parts of § P, which
1s useful not only because it allows the computations to be done with real arithmetic when
Axe, and thus K| is real, but also because often only the real part of 6P is needed [see e.g.
Eq. (4.12)]. This separation of particle and hole parts is also used in TDHF [60].

Start by ordering the orbital basis t;, such that i < j < f;s > f;5. Now consider only
fiec > fjo. Then 6F;;, are ph matrix elements, and §Pj;, are hp matrix elements, and
similarly for 6v%PP!. Note that Eq. (4.11) involves both ph and hp matrix elements. It can
be written as two equations, the first giving the ph part of §v*PP!,

frr—fi->0 w — (Gk s )
[%;@,k@',l# - Kija,klr(w)] 8 Pyir(w)
kT flT - fkT
fer=f1->0
— Y Kijourr (@) Py (w) = 807 () (4.19)
klr

and the second giving the hp part of §v?PP!,

frr=f1->0 w — (6[ . )
Z |:6a,7-6i,k6j,l# - sz’a,lkr(w)] 8 Pirr(w)
Elr fkT - flT
frr=f1->0
— > Kjiokir ()8 P (w) = 805 (). (4.20)
klr

If the MOs are real, then by using the symmetry property (4.14) [or (4.17) in the TDHF
case], these two equations can be combined into a single matrix equation,

{['l;t((::)) ft((i))] Y [g —Oc ]} [;558)] = [Zfﬁ”lg“;] : (4.21)

appl w
where

€kr — €7 -

Aijorir(W) = 5,76 10 1 ———— — Kijorir(w), (4.22)
fkT - flT
Bijorir(w) = —Kijoer (W), (4.23)
80,765 1651

Cijoklr = 2 4.24
jo,kl fkq— _flr ( )

6]3(w) denotes the Fourier transform of 6ﬁ(t) (s0 6 Pipr(w) = 6P (w), but note that this
does not equal [ Py (w)]*), and similarly for 617prl(w). Note that, in each block, the rows
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are labeled by ijo with fi» > f;, and the columns are labeled by kir with fz. > fir. A
suitable unitary transformation of Eq. (4.21) gives

(M5 a2a] =<2 T hare) ]

_ Re 6Uappi(w)
T | =i Im 6Tappi(w)

] . (4.25)

which can be used to obtain separate equations for the real and imaginary parts of 6ﬁ,

{l4@) + B(w)] - w*C[AW) - B) ™' ¢} (Res P) ()
= (Re 6¥app1) (W) + 1wl [A(w) — B(w)]_l (Im 6¥app1) (w) , (4.26)
and
{[A@) = B)] - w*C [Aw) + B ¢} (1msF) ()
= (Im 6¥app1) (W) — iwC [A(w) + B(w)]_1 (Re 6Tapp1) (w) . (4.27)

These equations are equally valid for the TDHF approximation and for TD-DFRT. However,
[A(w) — B(w)] is a diagonal w-independent matrix in TD-DFRT, but is not diagonal in the
TDHF approximation due to the lower symmetry of K [see Eqgs. (4.18) and (4.14)]. Thus
computations are considerably simpler in TD-DFRT where, for real perturbations, the real
part of the response of the density matrix is given by

frr—Ffir>0

€ko — €l -
E [50,752',1@5]',17; _fl — 2Kijo kir(w)
Y ko lo
bp.70; 105 a
W2 794,k 051 (Re § Py ) (w) = (SUZ.JP;DI (w). (4.28)

(fkT - flT)(EkT - €lT)

D. Excitation Energies and Oscillator Strengths

The interaction of a molecule with light can be modeled as the interaction with an electric
field varying sinusoidally in time. Excitation energies and oscillator strengths can then be
obtained from the poles and residues of the dynamic polarizability. Since the perturbation
is real in this case, and the polarizability involves only the real part of §P [see Eq. (4.12)],
it suffices to solve Eq. (4.26). The solution can be expressed as

(Reaﬁ) (W) =872 {01 — Q)} T $™V 25 (W), (4.29)
where
Sw)=-C(A-B)'cC (4.30)
and
Qw) =-8"12(A+B)s /2. (4.31)



This solution also holds for TDHF, but in TD-DFRT & and € simplify considerably to
become

05.70i 1051
(fkT - flT)(ElT - Ek‘T)

Sijokir = >0, (4.32)

and

Qijorir(w) = b5:8; 1bj1 (€10 — rr)’

+ 2\/(fia — fio) (€0 = €i0) Kijo pir (W) (frr — fir)(€tr — €xr) - (4.33)

Combining Eqs. (4.12) and (4.29) gives a formula for the dynamic polarizability,
g (w) = 281872 {Q(w) — w1} T 8727 (4.34)

The excitation energies and oscillator strengths may be obtained by comparing this with
the SOS formula for the polarizability [see Eqs. (3.22) - (3.25)]. Since a(w) has poles at
the excitation energies, wy, it follows that the excitation energies are the solutions of the
pseudoeigenvalue problem,

Qw)F; = wiF; . (4.35)

It is also clear from the SOS formula (3.22) that a(w) is an even function of w, thus Q(w)
and K (w) must also be even functions of w, and hence [Eq. (4.13)] are hermitian matrices.

More information can be extracted from the comparison with the SOS formula by using
the spectral expansion,

_ R o
(Qw) — w?1} 1:Zw% LT (4.36)

w
I

Note that Ry # 1 if the pseudoeigenvectors Fy are normalized to 1 (unless 2 is independent

of w). Instead, it is convenient to renormalize the ﬁ[ such that Ry = 1. The value of Ry is
most easily determined for nondegenerate states, in which case

_ Ry = =
Qw) —w?1) = Fr P 4,
(o)~ 1) = SR (437)
near w = wy. Then
2
1~ At 1-9Qw) = o 90 (w) -
RI = FI WFI — FI 1-— 3w2 - FI (438)

as w — wy. Renormalizing the pseudoeigenvectors such that

7 {1 - [agg)]w:w }ﬁ; =1 (4.39)

then yields Ry = 1. Henceforth ﬁ[ will always refer to these renormalized pseudoeigenvec-
tors.
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Rewriting Eq. (4.34) using the spectral expansion in terms of the renormalized ﬁ[, and
comparing with the SOS formula (3.22) shows that

FSTV2F = wi (|2 )) (4.40)

so that the oscillator strengths are just given by

=3

According to the Thomas—Reiche-Kuhn (TRK) sum rule [61], the sum of the oscillator
strengths should equal the number of electrons. This can be used to guage the quality of
the basis set, when working with frequency-independent approximations for K. When € is
independent of w, the renormalized Fy form a complete orthonormal set,

S FFf=1. (4.42)

512 512
FSTE| 4+ |fsT R +

o2
sz—l/ZF,‘ ) . (4.41)

It then follows that

S fr= g (Fls 'z +yts g+ 71s717) (4.43)

independent of how the coupling matrix is approximated as long as it is frequency inde-
pendent. Since the TRK sum rule applies to a system of independent particles, the expres-
sion (4.43) must converge to the number of electrons, in the limit of a complete basis set,
for any frequency-independent K.

E. The assignment problem

Having calculated the excitation energies, wy, and oscillator strengths, fr, it remains to
assign the states ¥y;. Up to this point, no assumption has been made as to the form of
the ground or excited state wavefunctions. However, for purposes of making assignments,
it is convenient, if not strictly necessary, to make some approximations. The first of these
is that Wq is a single determinant, ®, of Kohn—-Sham orbitals. (This assumption should be
appropriately modified for open shell systems.) Equation (4.40) can then be rewritten as

fic—Ffie>0 fic—Fije>0

S n (STR)  =ulS g (@lala ). (4.44)
— ijo —

ijo ijo

The second assumption is that the

Tijo = /1/%(1‘)92‘1/)]'0(1‘) dr (4.45)
are linearly independent so that

H@lal ol = (S7F)

\/ fza f]t7 €io — EiU)Figa . (446)
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This would have been obtained without any assumptions in a theory encompassing non-
local external potentials and the response of the true density matrix. However, strictly
speaking, DFT is limited to densities and local external potentials. As a result, Eq. (4.46)
requires the assumption of linear independence of the z;;,, or, more precisely, of the prod-
ucts ¥;,(r)¥;,(r) appearing in the calculation of the matrix elements of local operators.
This 1s probably reasonable when the MO basis 1s not too large, but linear dependencies
among the products {¢;,(r)Y;,(r)} become likely as the MO basis approaches completion
[62]. Nevertheless, Eq. (4.46) fixes the coefficients

O T LA L |
cija = TFZ']'U (447)

of the singly excited configurations in the expansion

fic—Ffie>0
U= >l a0 (4.48)
ijo

which is adequate for making a qualitative assignment. Notice that multideterminantal
excited states have arisen from solutions of the pseudoeigenvalue problem (4.35). Naturally,
this assignment method could be made more rigorous by using a better expression for ¥q
and by taking linear dependencies between MO product functions explicitly into account.
However we have not yet found this to be necessary in making qualitative assignments for
simple closed shell systems.

V. Auxiliary-function method

One of the important advantages of DFT is that it involves only local potentials and thus
is less computationally demanding than other ab initio methods. Part of the advantage of
the locality of vy, comes from additional symmetry, which is reflected, for example, in the
TD-DFRT coupling matrix (in the adiabatic approximation), as opposed to the TDHF cou-
pling matrix [see Eqgs. (4.14) and (4.18)], and considerably simplifies the construction of €.
Another advantage of the locality of vy 1s that it lends itself readily to an auxiliary function
method which allows the costly four-center integrals to be eliminated [63,64]. Since practical
auxiliary basis sets are incomplete, this gain in computational efficiency does entail some
reduction in accuracy. This generally shows up primarily as a systematic shift in absolute
energies, which does not have a large effect on most properties of practical interest since
these usually involve energy differences. Not all DFT programs use an auxiliary function
approach, notably the DFT options implemented in HF programs such as GAUSSIAN [65]
and CADPAC [66], evaluate four-center integrals. However, the approach adopted here is to
capitalize on the computational advantages of DFT by using auxiliary functions, as is done
in DFT programs such as deMon (for densité de Moniréal) [67-69] and DGauss [70]. From
the practical point of view of the implementation and testing of TD-DFRT as a post-deMon
program, this has the additional advantage that the static polarizabilities thus obtained
should be the same as those obtained from deMon using the finite-field method (within the
numerical error of the latter).

In the static limit, the TD-DFRT equations, in the adiabatic approximation, reduce to
the coupled perturbed DFT equations. An auxiliary function treatment of the coupled per-
turbed DFT equations appropriate for implementation in deMon has been given by Fournier
[19], in the context of calculating analytic second derivatives of potential energy surfaces.
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The present section first reviews the auxiliary function method used in deMon, and then
shows how this can be used to eliminate the four-center integrals in the coupling matrix.

Two different auxiliary basis sets are used in deMon, one for handling the coulomb po-
tential and the other for the exchange-correlation potential. Consider first the coulomb
potential. Its matrix elements, in the atomic orbital basis set {x,}, are given by

(Ucoul)zyy = [XuXmP]a (51)

in terms of the inner product defined in Eq. (4.10). Expanding the density in the same basis
set [cf. Eq. (4.4)],

po(r) =D Xu(®)X5(r) Puvor , (5.2)

results in an expression for the coulomb matrix elements involving integrals over four centers.
These integrals are avoided in deMon by expanding the charge density in an auxiliary basis
set of atom-centered Gaussian-type orbitals, g?d,

plr) = gii(r)ar, (5.3)

where the tilde has been added to emphasize that this expansion may differ from the charge
density, p, since, in practice, the auxiliary basis is incomplete. The fitting coefficients, ay,
are normally determined by minimizing [p — p|p — p] subject to the constraint,

/ﬁ(r) dr = N . (5.4)

However, note that this constraint is automatically satisfied when p — p. Our tests do not
show significant differences in the polarizabilities calculated with or without this constraint,
with the auxiliary basis sets we normally use [71]. Minimizing [p — p|lp — p] without the
normalization constraint gives

ar =Y (5 651, (5.5)

J
where the overlap matrix
Sty = o7 le3]- (5.6)
Thus the matrix elements of the coulomb potential become
-1
Vs = > D ler1 (5N, D0 195 w1 Punvor - (5.7)
1J w'vlio!
Of course this is equivalent to
vion = D XS XWX Parvror (5.8)
' v ol

in the limit of a complete auxiliary basis set.
Now consider the exchange-correlation potential, whose matrix elements are
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R RCTAT AL (5.9

Since it is generally not possible to evaluate these integrals analytically, vy in Eq. (5.9) is
expanded in an auxiliary basis set of atom-centered Gaussian-type orbitals, ¢3¢,

We(r) = D g (e)b7 (5.10)

where, again, the tilde serves to emphasize that this expansion is, in practice, an approxi-
mation to vZ,. The fitting coeflicients are determined by minimizing {vxe — ¥xc|Uxe — Uxc }s
where the inner product

grid

{flg} = Zwif*(ri)g(ri) (5.11)

approximates (f|g) by quadrature with grid points, r;, and weights, w;. (Note, however,
that the number of grid points required for this fit is much smaller than the number that
would be needed to do the integral (5.9) numerically.) The minimization results in

by =D ()77 g5 I}, (5.12)

J
where the overlap matrix,
Sty =Aa i’} (5.13)
Thus the matrix elements of the exchange-correlation potential become
-1
Voo = D lgT ) (%) 7 5 o o} - (5.14)

IV

These auxiliary function expressions for the coulomb and exchange-correlation matrix ele-
ments can now be used to write down auxiliary function expressions for the matrix elements
of the coupling matrix, that do not involve four-center integrals. The adiabatic approxima-
tion is assumed in this section, so the coupling matrix is the same as for the static case.
The coupling matrix (4.9) is the sum of a coulomb term and an exchange-correlation term,

avcoul e
- o 1 i _ uvo uvo
[\uyo-yulylo-l = XZ?/L;N/V/U/ + IXZIC/U,N’V’U’ = aPNIVIUI + aPNIVIUI . (515)
Hence, using Eq. (5.7) for v;ﬁg ,
- -1
Koo = > D lei 1 (5°) 1 5 D o5 ] - (5.16)
IJ w' vl

Of course this is equivalent to

e 1
[XZ(ID/L(;,MIVIO'I = [XuXmXu’Xz/] (517)

C

in the limit of a complete auxiliary basis set. Similarly, using Eq. (5.14) for L

the derivative gives

and taking
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7 XC XC apU )
ANVU wvle! — § <XM|gI |XV> J{ 97 |/ 5p 8Pu/ L dr } (518)
17 o’ vio

or, using Eq. (5.2),

Xoi(r)dr}. (5.19)

[{Zia wvle! — Z(Xu|g)f(c|xl/> C I_J §
I,J

The integral shown in Eq. (5.19) is difficult to evaluate except in the local density approxi-
mation (LDA) where it is trivial,

SvZe(x) gy g UE(x)
X v (s () dr = =y, (r)x5 (). 5.20
[ S Y = G ) (5.20)
Hence
~XC xc xcy—1 xc 60)?(: *
K pvou'vie’ = § :(XN|gI |XV> (S )I,J {gJ |5p , |XN'XV’}’ (521)
1,0 7

in an obvious extension of the notation. Since small errors in the quadrature scheme can
result in loss of hermitivity, K*° is symmetrized before solving the excitation eigenvalue

problem (4.34).

VI. H; as an illustrative example

The TD-DFRT treatment of section 1V is illustrated here for the simple textbook example
of Hy described by a minimal basis set. The resulting excitation energy and oscillator
strength expressions are compared with those obtained from HF, and from the usual ASCF-
based DFT approach.

The treatment is spin-restricted and the minimal basis set consists of an s-orbital on each
center. The molecular orbitals are completely determined by symmetry to be the o-bonding
combination,

sa(r) + sp(r)
2(1+ (salsg))

Yy(r) = (6.1)

and the o-antibonding combination,

o _5ar) —sp(r)
VT e P (62

so there is no degree of freedom to describe relaxation on excitation. The ground state of
H, is a singlet given by the single determinant

= |1/)g1/;g|a (63)

where 1, and 1/39 refer to the spin-up and spin-down spin orbitals, respectively. There is one
singlet excited state,

O = T(Wg%l + [Yuthyl), (6.4)
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and, neglecting all spin-couplings, three degenerate triplet excited states,

7 = ¢yt (6.5)

1 _ _

) = [yl (6.7)

@8:

According to Eqs. (4.33) and (4.35), the excitation energies are obtained by solving the
eigenvalue problem

(EU—E)Z_i_Q(Gu—E)[(7 2(€u_€)[(7 = o
Newme)KLg (et 4200 - iy, | T (68
where
6 g
Ko = Wotultor] + [ [ 000000100, 07 ) (6.9)

in the adiabatic approximation. Equation (6.8) has two solutions, one with

Fp = % [_11] : (6.10)

wr = y/(eu = €g)llew =€) + 2Ky g — Ky )]
:EU_Eg—i—I(TyT_[(Tyl (611)

L Bl sw]
= cm ot [ [ [ - S 0 v

corresponding to the transition to the triplet excited state ®3, and the other,

R

ﬁS:%[” , (6.12)

ws =/ (ew = e)l(ew — &)+ 20K 1 + K1)
=" _€g+[(T7T+A]T7l (6.13)

UT Ir UT Ir
=t 2ot 4 [ [ o) Fam+ S gy ) v

corresponding to the transition to the singlet excited state ®}. Note that, since all spin-
coupling has been ignored, the response theory yields only one of the triplet states, namely
®3, which results from the transition that conserves the spin azimuthal quantum number
Mg . However, inclusion of interactions that break the degeneracy of the triplet would result
in the response theory producing all three states. In the present case, only the singlet-singlet
transition has a nonzero oscillator strength [Eq. (4.41)],

fis = leu = e0) (Wl P+ (wlala) P + 10 l21)]7) (6.14)

The mean dynamic polarizability [Eq. (3.25) or (4.34)] is simply
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aw) = 22— (6.15)

In order to go beyond the adiabatic approximation, the derivative §vZ.(r)/ép-(x') in
Eq. (6.9) would be replaced by the Fourier transform of §Ay./8p,(x,1)ép-(x',") and K
would become w-dependent. In the present simple example this would change the exci-
tation energies, and would modify the F}, and thus the oscillator strengths, through the
renormalization (4.39).

As was noted in Sec. IV B, the TDHF coupling matrix is obtained in exactly the same
manner as the TD-DFRT coupling matrix, except that the derivative of the exchange-
correlation term in TD-DFRT is replaced by the derivative of the exchange operator in
TDHF. Thus the (ph,ph)-part of the TD-DFRT coupling matrix becomes the (ph,ph)-part
of the TDHF coupling matrix, if the replacement

/ g (1) (x) ﬁp((; Gy (Y () drd’ — =857 [, |t (6.16)

is made, and the orbital energies are replaced by the corresponding HF orbital energies (the
MOs are completely determined by symmetry in the present example). While it may at first
be surprising that the derivative of an exchange-correlation term in TD-DFRT corresponds
to a coulomb, not an exchange, integral in TDHF, the spin-dependent Kronecker delta
before the coulomb integral betrays the fact that this term arises in TDHF as the derivative
of an exchange term. Due to the lower symmetry of the TDHF coupling matrix [compare
Eq. (4.18) and (4.14)], the TDHF & and € do not have the same direct correspondence
with their TD-DFRT counterparts as does the (ph,ph)-part of K. In the present example,

the Fy remain unchanged, but the TDHF excitation energies are given by

\/(€u — ¢+ Ky)ew — ¢ + Ky — 2Kq,)

cw—eg+ Ky — Ky (6.17)
= ey — € — [Vgtg[buth]

= (@ H|97) — (D|H|®),

wipt

R

and

s \/(€u — ¢+ Kp)ew — ¢ + Ky p +2Kq)

w—e,+ Kiq+ Ky (6.18)
= ey — €+ 2[YgUultgbu] — [Ygthg [Yutd]

= (®g| H |®p) — (®|H|®),

€
©
I

R

with the oscillator strength [Eq. (4.41)]

4
§7 = glew =g+ Kpp) (12 10u) | + (0 919 1* + 10 2]4) *) - (6.19)
Note that although the exact expressions for the TDHF excitation energies in terms of the
coupling matrix elements differ from the corresponding TD-DFRT expressions by terms of
second order in K, , [compare the first lines of Eqs. (6.17) and (6.18) with those of (6.11) and
(6.13)], the first-order approximations [second lines of the same equations] do correspond.
Note also that the first-order approximation to the TDHF wy is just the familiar result
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obtained by ignoring orbital relaxation and taking energy differences of HF wavefunction
expressions (see e.g. Ref. [72]). Since the MOs are fixed by symmetry in the present example,
no relaxation can occur, so this energy difference is the same as the HF ASCF excitation
energy. This is not the same as the exact TDHF w; since TDHF includes a contribution
to the excitation energy due to coupling between the HF ground state and doubly-excited
configurations [60]. The ASCF HF oscillator strengths are obtained from Eq. (3.23), which
gives

4

F57 25 = Slew— g+ Kyg 4 Kp) (1005 1219)” + (g [919a)|” + (g 1210} ) - (6.20)
Note that this differs from the TDHF oscillator strength by a small exchange integral term.
This is simply a manifestation of the fact that oscillator strengths and excitation energies
are not automatically treated to the same level of approximation [73].

The approximate equality of the TDHF and ASCF HF excitation energies raises the
question as to whether the same might also be true of the TD-DFRT excitation energies
and those obtained from the usual ASCF-based DFT approach. This is, in fact, not the case,
as will now be shown. Rather, coulomb repulsion and exchange-correlation contributions
enter differently in the TD-DFRT and ASCF-based DFT approaches to excited states.

Although a ASCF-based approach is difficult to justify in DFT, except perhaps, for
the lowest state of a given symmetry (see Ref. [1] pp. 204-205), it has been the de facto
DFT treatment of excitation energies. This approach consists of a ASCF procedure in
which the energy difference is taken between two SCF calculations — one with the ground
state electron configuration and one with the excited state electron configuration. Then
a correction has to be made to deal with the fact that a simple ASCF procedure fails to
distinguish between spin and spatial multiplets which have the same density. This is the
case for the present example because both the ®} and ®3 wave functions have the same
density,

o) = 3 (o) + [0a)P) (6.21)

The usual ad hoc solution [2,3] to the multiplet problem is to assume that the SCF procedure
is only applicable to cases where the excited state is well described by a single determinant
wave function, such as for the ®3 and ®3, states. The energies of the ®3 and ®} states can
then be calculated from the relations

E[®7) = E[[ty¢ul] (6.22)
and
E[®g] = 2E[[¢,u]] — E[9], (6.23)
by replacing the energies
E[¥] = (V|H|¥), (6.24)

corresponding to single determinant wave functions, with the energies obtained from the
corresponding DFT SCF calculations. Note that this approach involves using energies from
DFT calculations on artificially specified single determinants, such as |1/)g1/;u|, which have
no physical existence as eigenstates of the system.

It is convenient for present purposes to estimate ASCF excitation energies with the help
of the transition state method [6]. This is also sometimes done in practical calculations, in
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order to avoid or reduce some of the well-known problems (convergence difficulties, symmetry
breaking) encountered in excited state DFT calculations. The transition state method
consists of estimating the energy required to excite an electron from the orbital ¢, with
spin ¢ to the orbital ), with spin 7, by doing an SCF calculation for a transition state
with half an electron excited. The ASCF excitation energy is approximated as the energy
difference between the two half-occupied orbitals. Keeping in mind that no orbital relaxation
can occur in the present simple example, and expanding the exchange-correlation potential
of the transition state to first-order in the change in the charge density then leads to

vle(r)
5/)()

{wwmm / )22 S))Id)g(r’)ﬁdrdr’}

s {tvdvad + [ |¢u<r>|26pj;ff§ e den’} (625

E[WW/’uH - [WW/{(JH €y — €g — / W’g |2 |1/)u(r/)|2 drdr’ — [1/)91/)g|1/’u1/)u]

and

E[Wﬂ/juu - E[Wﬂ/jgﬂ Zey — / W’g |2 6p ;Wu(r/”z drdr’ — [1/)91/)g|1/’u1/}u]

¥ % {wgwmw // wg(r)ﬁ‘s“’[ﬁ‘f;|¢g<r’>|2drdr'}

In the analogous HF equations, the terms corresponding to those in the curly brackets in
FEqgs. (6.25) and (6.26) vanish due to a cancelation of self-interaction errors in the coulomb
and exchange energies. To the extent that these terms can also be neglected in the corre-
sponding DFT equations, the singlet-triplet and singlet-singlet excitation energies are then
given by,

sz e — - [ [10,0P5 T ))wu( P dede’ = [yt lvu] . (6.27)
and
DFT ASCF nv _ (I‘) 6U () N2 r_
Ws //W)g [ 6PT( ) 5P1( ) |1/)U( )| drdr [¢g¢g|¢u¢u]
(6.28)

In non-DFT ASCEF treatments, oscillator strengths are obtained as the product of the ex-
citation energy and the transition moment [Eq. (3.23)]. The problem in DFT is of course that
this calculation of the transition moment requires the N-electron wave functions. Neverthe-
less, approximate oscillator strengths could be obtained in the ASCF-based DFT approach
by approximating the wave function by appropriate symmetry-dictated combinations of de-
terminants of Kohn-Sham orbitals [4]. In the present example this is straightforward since
the MOs are completely determined by symmetry, and gives
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TABLE I. Summary of approximate excitation energy and oscillator strength expressions

for H,
Excitation energies
wr
TD-DFRT e — e [[vam)ga(r) [2;%(% - i:{‘(fﬁ;] Yg(X ) (r) drdr’
ASCF-based DET KB _ (ks ff|wg<r>|2§§%zi‘$§|wu<r'>|2 drdr’ — [ g9, |¢u.] + SIT?

TDHF and ASCF HF eF — T — (gt |Puthal

u

ws
TD-DFRT & — e 2y gvulvgval + [ [ va(T)va(r) [22’:‘(&7; + 2:’1‘(% Yg(X)pu(r’) drdr’
ASCF-based DFT X = e [ ()2 [i:fgfﬁ; - ﬁ:{‘gfﬁ;] [ (B2 AL = [ 4 4 utpa] + SIT®
TDHF and ASCF HF T — I L ol gtpu | gtu] — (gt glthuthul
Oscillator strengths
fs = 2D (Hwglelwudl® + [waldlvu)l® + (gl 2lva)l?)
D
TD-DFRT RS (IS
ASCF-based DFT % = S — [ [ lug(m)? [222%5555 - ﬁ;%gi’f;] | (X)) dEdr’ — [ gtg|uthu] + SIT
TDHF el — T + [Wotulgdul = [We¥gltuiial
ASCF HF el — el T+ 2 gulibgul — [Wotgldutpul

*SIT = self-interaction terms (see text)

DFT ASCF ~~v 4 6/0;[C(I‘) 6/0;[C(I‘) / /
A 3{6“_69‘/ 0 2550 ~ S| e

- [%%I%%]} (gl | + (g lgleu) P + [(Wg 2[u) P) - (6.29)

However, in practical applications, the choice of orbitals to use in constructing the approxi-
mate excited state wavefunction is less clear, especially in cases where several excited state
configurations, each with a different set of relaxed orbitals, are important.

The excitation energy and oscillator strength expressions from all four methods discussed
are summarized in Table I. As would be expected, there is a correspondence between
the DFT and HF expressions, which is obtained by replacing the Kohn—-Sham exchange-
correlation potential, vyc, with the HF exchange operator ¥*. This is manifested here in
terms of a correspondence between matrix elements of the derivatives of vy. and X¥,

Ovxe )0
nro nro 6.30
OPyyr  OPuyrr (6.30)

which leads to both the previously noted correspondence (6.16), and
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ovZ (v
[ a0 = 0 ! = = ). (6:31)
The additional Ky ¢ term in the TDHF, as compared to the TD-DFRT, oscillator strength
arises from differences in & that come from the lower symmetry of the TDHF coupling
matrix. It is interesting to note that, unlike the HF case, although the TD-DFRT and ASCF-

based DFT excitation energy expressions are similar in structure, especially for exchange-
only DFT where

Sg(r) . Su(r)
5o () T Bpe(x)

they differ from one another in how the coulomb repulsion and exchange-correlation con-
tributions enter into the excitation energies. In particular, the ASCF-based DFT exci-
tation energy contains the coulomb integral in the same way as does HF but replaces
the exchange integral in the HF expressions with a term involving the derivative of the
exchange-correlation potential, whereas the TD-DFRT excitation energy contains the ex-
change integral in the same way as does HF but replaces the coulomb integral (which arises
as the derivative of an exchange term in the derivation of the TDHF equations) with a term
involving the derivative of the exchange-correlation potential.

Of course the observations in this section pertain to a highly simplified example, so some
differences from a more typical case should be expected. For example, the choice of orbitals
to use in ASCF-based DFT calculations of oscillator strengths is often somewhat ambiguous
in typical applications. Nevertheless; it is clear from the foregoing discussion that TD-DFRT
and the ASCF-based approach represent somewhat different approximations to excitation
energies. This raises some interesting questions, such as whether self-interaction errors in
the functionals might be more of a problem in the ASCF-based approach [see Eqgs. (6.25)
and (6.26)] than in TD-DFRT. Finally, it is evident that the ASCF-based DFT approach to
excited states i1s rather ad hoc. In contrast, TD-DFRT lies on a firmer formal foundation,
obeys the TRK sum-rule for oscillator strengths, and has the advantage of being a one-shot
automatic procedure as opposed to requiring the convergence of several SCF calculations,
some symmetry analysis to concoct energies for multideterminantal excited states, and oc-
casionally the calculation of additional electron repulsion integrals not normally present in
DFT calculations.

(6.32)

VII. Conclusion

The development of a general, time-dependent formulation of DFT has provided the for-
mal foundation upon which a density-functional treatment of a number of properties either
inaccessible or difficult to obtain using conventional time-independent DFT, can be based.
Although some formal problems remain to be solved, primarily regarding restrictions on its
rigorous domain of validity, the time-dependent theory already provides a reasonably solid
formal framework for practical computational treatments of a number of time-dependent
problems. In practice, the approach usually taken to the solution of the time-dependent
DFT equations is that of (linear) response theory. Several different algorithms have been
developed for atoms and for solids, each of which takes advantage of the nature of the sys-
tems it was intended to treat. The atomic algorithms use spherical symmetry in an essential
way, while the solids algorithms take advantage of fast Fourier transform techniques which
are well suited to a plane-wave basis. Thus none of these algorithms is suitable for molecular
systems.
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The present chapter has given an exposition of a time-dependent density functional re-
sponse theory algorithm for molecular calculations. This method is in some ways similar to
the time-dependent Hartree—Fock method which is well known in quantum chemistry, and
thus can take advantage of techniques developed for other ab initio molecular calculations.
Yet the derivation given here necessarily takes a different approach from that generally used
in deriving TDHF. Also, while the Hartree-Fock method is fundamentally approximate,
DFT becomes exact in the limit of the exact exchange-correlation functional. In addition,
computational advantages result from the fact that only local potentials are used in DFT,
and from the present use of an auxiliary function method to reduce the four-center integrals
that arise in the response theory to three-center integrals. The formulation presented here is
in a spin-unrestricted form and allows for fractional occupation numbers. It is also general
enough to include the case of functionals beyond the adiabatic approximation, thus pro-
viding for a practical forum for the testing and further development of such functionals in
the future. Although only dynamic polarizabilities and excitation spectra have been treated
here, the method is readily applicable to the calculation of other properties, such as hyper-
polarizabilities and van der Waals coefficients. An indication has also been given of how
the theory can be extended via current density functional theory to treat time-dependent
magnetic response properties.

One practical advantage of the present method for the calculation of excitation spectra is
that the spectrum (transition energies and oscillator strengths) is obtained all at once, as
the solution of a pseudo-eigenvalue problem, as opposed to the ASCF-based DFT approach
to excited states which involves doing separate calculations for each excited state. There
are other noteworthy differences between the ad hoc ASCF-based approach to spectra and
the present TD-DFRT method as well. For instance, as was illustrated for the simple,
minimal basis, Ha example, the ASCF-based approach (using the transition state method)
and TD-DFRT represent somewhat different approximations for the excitation energy and
oscillator strength. In addition, the “multiplet problem” of the ASCF-based approach is not
encountered in TD-DFRT which includes a multiconfigurational treatment of the excited
states in a natural way.

The method set forth here is presently being implemented as a post-deMon program Dy-
naRho (for “Dynamical Response of p”). The results so far, for the excitation spectra of
half a dozen small molecules, at different levels of approximation, are highly encouraging.
Preliminary results for the dynamic polarizability and excitation spectrum of N, a bench-
mark molecule for the calculation of electronic spectra, have been reported elsewhere [51],
at the level of the random phase approximation (RPA), which consists of including only
the coulomb term, and neglecting the exchange-correlation term, in the coupling matrix.
(Tt is only the response of the exchange-correlation potential that is neglected in the RPA,
exchange and correlation are still included in the calculation of the zero-order orbitals and
orbital energies.) At this level of approximation, the singlet-triplet excitations have no cou-
pling, but the singlet-singlet excitation energies of N4 are already better than those obtained
from TDHF. Results at the fully coupled level will be reported in a forthcoming paper [71].

In view of the computational advantages of the TD-DFRT approach, and the quality of
the results to date, this method promises to become a powerful, practical technique for the
investigation of the optical properties of larger molecules than is possible with other ab initio
methods.
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