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• Matrix diagonalization methods in the 
context of quantum mechanics

• Matrix decompositions
• Vector space: projection & rotation
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Eigenvalue Problem
• Eigenvalue problem in N-dimensional vector space

or more explicitly

real symmetric
N´N matrix n-th eigenvector

n-th eigenvalue

i-th element of the n-th eigenvector



Orthonormal Basis
• The basis set { ⟩𝑛 𝑛 = 1,… , 𝑁} can be made orthonormal, i.e.,
𝑚 𝑛 = ∑&#$% 𝑥&
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• Orthogonal matrix: U = [x(1) x(2) ... x(N)] or 𝑈&! ≡ 𝑥&
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(Proof: orthogonality)
• lm ≠ ln

• lm = ln (degenerate): use Gram-Schmidt orthogonalization procedure
1. Orthogonal projection: | ⟩𝑛2 ← | ⟩𝑛 − | ⟩𝑚 𝑚 𝑛 = 1 − | ⟩𝑚 ⟨𝑚| | ⟩𝑛

⟨𝑚| ⟩𝑛2 = ⟨𝑚| ⟩𝑛 − ⟨𝑚| ⟩𝑚
$

𝑚 𝑛 = 0
2. Normalization: | ⟩𝑛2 ← ⁄| ⟩𝑛2 ⟨𝑛′| ⟩𝑛2 $/4

⟨𝑛′| ⟩𝑛′ = 1

complex conjugate
(real eigenvalue)

For Hermitian matrix:

⟨𝑛|𝐴| ⟩𝑚 = 𝜆)⟨𝑛| ⟩𝑚
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• Arbitrary N-dimensional vector can be represented as a linear combination 
of (linearly independent) N vectors

i.e., ∑!#$% | ⟩𝑛 ⟨𝑛| = 1 or equivalently ∑!#$% 𝑥&
(!)𝑥"

(!) = 𝛿&"

• Orthogonal matrix
𝑈*𝑈 = 𝑈𝑈* = 𝐼
∴ 𝑈D$ = 𝑈*

\ Column-aligned eigenvectors, U = [x(1) x(2) ... x(N)], can be made an 
orthogonal matrix

Completeness
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2D example
(just Cartesian coordinates)
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Orthogonal Transformation

• Matrix eigenvalue problem = find an orthogonal transformation matrix

• Grand strategy: Nudge the matrix A towards diagonal form by a sequence of 
orthogonal transformations (successive elimination of off-diagonal elements) 

orthogonality

Spectral
decomposition
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Rotation

• General real symmetric 2×2 matrix: 𝐻 = 𝜀$ 𝛿
𝛿 𝜀4

• General orthonormal matrices: ⟩|𝑢 = cos𝜃
sin𝜃 = cos𝜃 ⟩1 + sin𝜃 ⟩2 ; ⟩|𝑣 = −sin𝜃

cos𝜃

• Eigenvalue solution  
𝑈 = 𝑢 𝑣 = cos𝜃 −sin𝜃

sin𝜃 cos𝜃

𝜆 − 𝜀! −δ
−δ 𝜆 − 𝜀"

cos𝜃
sin𝜃 = 0

0 det 𝜆𝐼 − 𝐻 = 𝜆 − 𝜀! −δ
−δ 𝜆 − 𝜀"

= 𝜆 − 𝜀! 𝜆 − 𝜀" − 𝛿" = 0

𝜆± =
𝜀! + 𝜀" ± (𝜀! − 𝜀")"+4𝛿"

2

𝜃 = tan$!
−𝜀! + 𝜀" + (𝜀! − 𝜀")"+4𝛿"

2𝛿
%→' 𝛿

𝜀! − 𝜀"
for 𝜆- and 𝜀$ > 𝜀.



Jacobi Transformation
• Successive 2D rotations to eliminate off-diagonal (i, j)-(j, i) pairs

Carl Jacobi
(1804-1851)
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Householder Transformation
• Eliminate an entire row (but the first 2 elements) at a time 

• The outcome is a tridiagonal matrix 

Alston Householder
(1904-1993)



Projection Matrix
• Let an N-dimensional vector  𝑣 ∈ ℜ% & the projection matrix

𝑃 = 𝐼 −
2𝑣𝑣*

𝑣*𝑣
= 𝐼 −

2| ⟩𝑣 |⟨𝑣
𝑣 𝑣

then P is symmetric & orthonormal, i.e.,
𝑃*𝑃 = 𝑃𝑃* = 𝐼

(Proof)
𝑃&" = 𝛿&" −

4L"L$
∑&'(
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𝑃𝑃 = 𝐼 − 4LL#

L#L
𝐼 − 4LL#

L#L

= 𝐼 − MLL#

L#L
+ MLL#LL#

L#LL#L

= 𝐼 − MLL#

L#L
+ MLL#

L#L

= 𝐼

symmetric w.r.t. i« j

Mirror image: reflect twice = do nothing



Householder Matrix
• For x (Î RN), let 𝑣 = 𝑥 ∓ 𝑥 4𝑒$ where

𝑒$ =
1
0
⋮ & the vector 2-norm is 𝑥 4 = 𝑥*𝑥 = ∑&#$% 𝑥&4

then the Householder matrix below, when multiplied, eliminates all the 
elements of x but one:

(Proof) 
𝑃𝑥 = 𝐼 −

2𝑣𝑣*

𝑣*𝑣
𝑥 = ∓ 𝑥 4𝑒$

𝑃𝑥 = 𝑥 − "((.

" ) / ) /±)0
𝑥

= 𝑥 − )± ) /*0 ).± ) /*0. )
) / ) /±)0

= 𝑥 − )± ) /*0 ) / ) /±)0
) / ) /±)0

= 𝑥 − 𝑥 ∓ 𝑥 "𝑒! = ∓ 𝑥 "𝑒!

𝑣+𝑣 = 𝑥+ ± 𝑥 "𝑒!+ 𝑥 ± 𝑥 "𝑒! = 𝑥 "
" ± 2 𝑥 "𝑥! + 𝑥 "

" = 2 𝑥 " 𝑥 " ± 𝑥!



Tridiagonalization
• Householder matrix can be used for tridiagonalization: Let

then
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Householder Transformation
• After (N-2) such transformations, all the off-diagonal elements but the 

diagonal & upper/lower sub-diagonal elements are eliminated 

• The outcome is a tridiagonal matrix (done in tred2() in Numerical Recipes)

⋯ ⋯ ⋯

⋮ ⋮
⋮

[  ][  ] tred2()



QR Decomposition
• Used for the diagonalization of a tridiagonal matrix
• Let A = QR, where Q is orthogonal & R is upper-triangular, Rij = 0 for i > j
• QR decomposition by Householder transformation 

• After (N−1) transformations, the matrix is upper-triangular

𝑃%D$⋯𝑃4𝑃$𝐴 = 𝑅
𝐴 = 𝑃$D$𝑃4D$⋯𝑃%D$D$ 𝑅 ≡ 𝑄𝑅

⋮

⋮



Orthogonal Transformation by QR

(QR algorithm)

(Theorem)
1. lims®¥As is upper-triangular
2. The eigenvalues appear on its diagonal

• tqli() in Numerical Recipes uses QL algorithm instead to obtain lower-
triangular matrix

• Fast — O(N) operations per iteration — for a tridiagonal matrix
• tqli() diagonalizes a tridiagonal matrix by a sequence of rotations to 

eliminate subdiagonal elements, in addition to eigenvalue-shift to 
accelerate the convergence 

Z 1. 𝑄O𝑅O ← 𝐴O
2. 𝐴OP$ ← 𝑅O𝑄O

𝑠 = 1,2, …

Top 10 algorithms in history
IEEE CiSE, Jan/Feb (’00)


