Eigensystems

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Quantitative & Computational Biology University of Southern California

Email: anakano@usc.edu

- Matrix diagonalization methods in the context of quantum mechanics
- Matrix decompositions
 - **Vector space: projection & rotation**

Eigenvalue Problem

• Eigenvalue problem in *N*-dimensional vector space

λŢ

$$\begin{array}{c} \text{real symmetric} \\ N \times N \text{ matrix} \end{array} \longrightarrow A|n\rangle = \lambda_n |n\rangle \longleftarrow \qquad n\text{-th eigenvector} \\ |n\rangle = x^{(n)} \in \mathbb{R}^N \end{array}$$

n-th eigenvalue

or more explicitly

$$\sum_{j=1}^{N} A_{ij} x_j^{(n)} = \lambda_n x_i^{(n)}$$

i-th element of the *n*-th eigenvector

Orthonormal Basis

- The basis set $\{|n\rangle|n = 1, ..., N\}$ can be made orthonormal, *i.e.*, $\langle m|n\rangle = \sum_{i=1}^{N} x_i^{(m)} x_i^{(n)} = \delta_{mn}$
- Orthogonal matrix: $U = [x^{(1)} x^{(2)} \dots x^{(N)}]$ or $U_{in} \equiv x_i^{(n)}$ $U^T U = I \quad \because \sum_{i=1}^N x_i^{(m)} x_i^{(n)} = \sum_{i=1}^N \bigcup_{i=1}^{U_{mi}^T} U_{in} = (U^T U)_{mn} = \delta_{mn}$

(Proof: orthogonality)

For Hermitian matrix:

•
$$\lambda_m \neq \lambda_n$$
 $\langle m|A|n \rangle = \lambda_n \langle m|n \rangle$ $(A^{\dagger})_{ij} = A_{ji}^* = A_{ij}$
-) $\langle m|A|n \rangle = \lambda_m \langle m|n \rangle$ complex conjugate
 $0 = (\lambda_n - \lambda_m) \langle m|n \rangle$ $(m|n)$ $(m|n) = \langle n|A|n \rangle = \langle n|A^{\dagger}|n \rangle = \lambda_n^* \langle n|n \rangle$
 $\lambda_n \langle n|n \rangle = \langle n|A|n \rangle = \langle n|A^{\dagger}|n \rangle = \lambda_n^* \langle n|n \rangle$
 $0 = (\lambda_n - \lambda_n^*) \langle n|n \rangle \Leftrightarrow \lambda_n = \lambda_n^*$

• $\lambda_m = \lambda_n$ (degenerate): use Gram-Schmidt orthogonalization procedure

1. Orthogonal projection:
$$|n'\rangle \leftarrow |n\rangle - |m\rangle\langle m|n\rangle = (1 - |m\rangle\langle m|)|n\rangle$$

 $\langle m|n'\rangle = \langle m|n\rangle - \overline{\langle m|m\rangle} \langle m|n\rangle = 0$
2. Normalization: $|n'\rangle \leftarrow |n'\rangle/\langle n'|n'\rangle^{1/2}$
 $\langle n'|n'\rangle = 1$
 $|m\rangle \langle m|n\rangle = |m\rangle \cos\theta$
Directional cosine

Completeness

• Arbitrary *N*-dimensional vector can be represented as a linear combination of (linearly independent) *N* vectors

$$|\psi\rangle = \sum_{n=1}^{N} |n\rangle\langle n|\psi\rangle$$

2D example (just Cartesian coordinates) $|2\rangle\langle 2|\psi\rangle$

i.e., $\sum_{n=1}^{N} |n\rangle \langle n| = 1$ or equivalently $\sum_{n=1}^{N} x_i^{(n)} x_j^{(n)} = \delta_{ij}$

$$\psi_i = \sum_{n=1}^N x_i^{(n)} \sum_{j=1}^N x_j^{(n)} \psi_j = \sum_{j=1}^N \sum_{n=1}^N x_i^{(n)} x_j^{(n)} \psi_j$$

• Orthogonal matrix

$$U^{T}U = UU^{T} = I$$

$$\therefore U^{-1} = U^{T}$$

$$\delta_{ij} = \sum_{n=1}^{N} x_{i}^{(n)} x_{j}^{(n)} = \sum_{n=1}^{N} U_{in} \widetilde{U_{jn}^{T}} = (UU^{T})_{ij}$$

:. Column-aligned eigenvectors, $U = [x^{(1)} x^{(2)} \dots x^{(N)}]$, can be made an orthogonal matrix

Orthogonal Transformation

$$\sum_{i=1}^{N} x_i^{(m)} \times \left(\sum_{j=1}^{N} A_{ij} x_j^{(n)} = \lambda_n x_i^{(n)} \right)$$
$$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \frac{U_{mi}^T}{x_i^{(m)}} A_{ij} \frac{U_{jn}}{x_j^{(n)}} = \lambda_n \sum_{i=1}^{N} x_i^{(m)} x_i^{(n)} = \frac{\Xi \Lambda_{mn}}{\lambda_n \delta_{mn}}$$
orthogonality

• Matrix eigenvalue problem = find an orthogonal transformation matrix

Spectral $U^T A U = \Lambda$ decomposition $\Lambda_{mn} = \lambda_m \delta_{mn}$

$$A \to P_1^T A P_1 \to \overbrace{P_2^T P_1^T}^{U} A \overbrace{P_1 P_2}^{U} \to \cdots$$
$$U = P_1 P_2 \cdots$$

Rotation

- General real symmetric 2×2 matrix: $H = \begin{bmatrix} \varepsilon_1 & \delta \\ \delta & \varepsilon_2 \end{bmatrix}$
- General orthonormal matrices: $|u\rangle = \begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix} = \cos\theta |1\rangle + \sin\theta |2\rangle; |v\rangle = \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix}$

Eigenvalue solution

for λ_+ and $\varepsilon_1 > \varepsilon_2$

Jacobi Transformation

• Successive 2D rotations to eliminate off-diagonal (*i*, *j*)–(*j*, *i*) pairs

Carl Jacobi (1804-1851)

Householder Transformation

• Eliminate an entire row (but the first 2 elements) at a time

• The outcome is a tridiagonal matrix

Alston Householder (1904-1993)

Projection Matrix

• Let an *N*-dimensional vector $v \in \Re^N$ & the projection matrix

$$P = I - \frac{2\nu\nu^{T}}{\nu^{T}\nu} = I - \frac{2|\nu\rangle\langle\nu}{\langle\nu|\nu\rangle}$$

then *P* is symmetric & orthonormal, *i.e.*,

$$P^T P = P P^T = I$$

(Proof)

$$P_{ij} = \delta_{ij} - \frac{2v_i v_j}{\sum_{k=1}^N v_k^2} \qquad \text{symmetric w.r.t. } i \leftrightarrow j$$

$$PP = \left(I - \frac{2vv^T}{v^T v}\right) \left(I - \frac{2vv^T}{v^T v}\right)$$

$$= I - \frac{4vv^T}{v^T v} + \frac{4vv^T vv^T}{v^T vv^T v} \qquad \text{Mirror imag}$$

$$= I - \frac{4vv^T}{v^T v} + \frac{4vv^T}{v^T v}$$

$$(1 - 2|v'\rangle\langle v'|)|\psi$$

$$= I$$

Mirror image: reflect twice = do nothing

Householder Matrix

• For
$$x \in \mathbb{R}^N$$
, let $v = x \neq ||x||_2 e_1$ where
 $e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \end{bmatrix}$ & the vector 2-norm is $||x||_2 = \sqrt{x^T x} = \sqrt{\sum_{i=1}^N x_i^2}$

then the Householder matrix below, when multiplied, eliminates all the elements of x but one:

$$Px = \left(I - \frac{2\nu\nu^T}{\nu^T\nu}\right)x = \mp ||x||_2 e_1$$

(Proof)

 $v^{T}v = (x^{T} \pm ||x||_{2}e_{1}^{T}) (x \pm ||x||_{2}e_{1}) = ||x||_{2}^{2} \pm 2||x||_{2}x_{1} + ||x||_{2}^{2} = 2||x||_{2}(||x||_{2} \pm x_{1})$

$$Px = x - \frac{2vv^{T}}{2\|x\|_{2}(\|x\|_{2}\pm x_{1})}x$$

= $x - \frac{(x\pm\|x\|_{2}e_{1})(x^{T}\pm\|x\|_{2}e_{1}^{T})x}{\|x\|_{2}(\|x\|_{2}\pm x_{1})}$
= $x - \frac{(x\pm\|x\|_{2}e_{1})\|x\|_{2}(\|x\|_{2}\pm x_{1})}{\|x\|_{2}(\|x\|_{2}\pm x_{1})}$
= $x - x \mp \|x\|_{2}e_{1} = \mp \|x\|_{2}e_{1}$

Tridiagonalization

• Householder matrix can be used for tridiagonalization: Let

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & & & \\ \vdots & & & \\ a_{N1} & & \end{bmatrix} = \begin{bmatrix} a_{11} & A_{12} = A_{21}^T \\ A_{21} & A_{22} \end{bmatrix}$$
$$v \quad (\in \mathbb{R}^{N-1}) = A_{21} + \operatorname{sign}(a_{21}) \|A_{21}\|_2 e_1$$

then

$$\overline{P}A_{21} = \left(I_{N-1} - \frac{2vv^{T}}{v^{T}v}\right)A_{21} = -\operatorname{sign}(a_{21})||A_{21}||_{2}e_{1} = ke_{1}$$

$$PAP = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & \\ \vdots & \overline{P} & \\ 0 & & \end{bmatrix} \begin{bmatrix} a_{11} & A_{21}^{T} & \\ A_{21} & A_{22} & \\ A_{21} & A_{22} & \\ \vdots & \overline{P} & \\ 0 & & \end{bmatrix} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & \\ \vdots & \overline{P} & \\ 0 & & \end{bmatrix} \begin{bmatrix} a_{11} & k & 0 & \cdots & 0 \\ \vdots & \overline{P} & \\ 0 & & \\ 0 & & \\ \vdots & \overline{P} & \\ 0 & & \end{bmatrix} = \begin{bmatrix} a_{11} & k & 0 & \cdots & 0 \\ k & & \\ 0 & & \overline{P}A_{22}\overline{P} & \\ \vdots & & \\ 0 & & \end{bmatrix}$$

Householder Transformation

• After (*N*-2) such transformations, all the off-diagonal elements but the diagonal & upper/lower sub-diagonal elements are eliminated

$$PAP = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & \overline{P} & \\ 0 & & & \end{bmatrix} \begin{bmatrix} a_{11} & A_{21}^T & \\ A_{21} & A_{22} & \\ 0 & & & \end{bmatrix} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & \overline{P} & \\ 0 & & & \end{bmatrix} = \begin{bmatrix} a_{11} & k & 0 & \cdots & 0 \\ k & & & \\ 0 & & & \overline{P}A_{22}\overline{P} & \\ \vdots & & & \\ 0 & & & & \end{bmatrix}$$

• The outcome is a tridiagonal matrix (done in tred2() in *Numerical Recipes*)

QR Decomposition

- Used for the diagonalization of a tridiagonal matrix
- Let A = QR, where Q is orthogonal & R is upper-triangular, $R_{ij} = 0$ for i > j
- **QR decomposition by Householder transformation**

$$A = \begin{bmatrix} a_{11} \\ \vdots \\ a_{N1} \end{bmatrix} = \begin{bmatrix} A_1 & A_2 \end{bmatrix} \quad v \quad (\in \mathbb{R}^N) = A_1 + \operatorname{sign}(a_{11}) ||A_1||_2 e_1$$
$$PA_1 = \left(I_N - \frac{2vv^T}{v^T v} \right) A_1 = -\operatorname{sign}(a_{11}) ||A_1||_2 e_1 = ke_1$$
$$PA = \begin{bmatrix} PA_1 & PA_2 \\ 0 \end{bmatrix} = \begin{bmatrix} k \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{bmatrix} PA_2 \\ 0 \end{bmatrix} \begin{bmatrix} k \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} PA_2 \\ 0 \end{bmatrix} = \begin{bmatrix} k \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} PA_2 \\ 0 \end{bmatrix} = \begin{bmatrix} k \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} PA_2 \\ 0 \end{bmatrix} = \begin{bmatrix} k \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} PA_2 \\ 0 \end{bmatrix} = \begin{bmatrix} k \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} PA_2 \\ 0 \end{bmatrix} = \begin{bmatrix} k \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} PA_2 \\ 0 \end{bmatrix} = \begin{bmatrix} k \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} PA_2 \\ 0 \end{bmatrix} = \begin{bmatrix} k \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} PA_2 \\ 0 \end{bmatrix} = \begin{bmatrix} k \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} PA_2 \\ 0 \end{bmatrix} = \begin{bmatrix} k \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} PA_2 \\ 0 \end{bmatrix} = \begin{bmatrix} k \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} PA_2 \\ 0 \end{bmatrix} = \begin{bmatrix} k \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} PA_2 \\ 0 \end{bmatrix} = \begin{bmatrix} k \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} PA_2 \\ 0 \end{bmatrix} = \begin{bmatrix}$$

• After (*N*–1) transformations, the matrix is upper-triangular

$$P_{N-1} \cdots P_2 P_1 A = R$$
$$A = P_1^{-1} P_2^{-1} \cdots P_{N-1}^{-1} R \equiv QR$$

Orthogonal Transformation by QR

$$A = QR \quad A' = RQ$$
$$\blacksquare \quad R = Q^{-1}A = Q^{T}A$$
$$A \rightarrow A' = Q^{T}AQ$$

(QR algorithm)

$$\begin{cases} 1. Q_s R_s \leftarrow A_s \\ 2. A_{s+1} \leftarrow R_s Q_s \end{cases} \quad s = 1, 2, \dots$$

(Theorem)

- **1.** $\lim_{s\to\infty} A_s$ is upper-triangular
- 2. The eigenvalues appear on its diagonal
- tqli() in *Numerical Recipes* uses QL algorithm instead to obtain lowertriangular matrix
- Fast O(N) operations per iteration for a tridiagonal matrix
- tqli() diagonalizes a tridiagonal matrix by a sequence of rotations to eliminate subdiagonal elements, in addition to eigenvalue-shift to accelerate the convergence

Top 10 algorithms in history IEEE CiSE, Jan/Feb ('00)

- Metropolis Algorithm for Monte Carlo
- Simplex Method for Linear Programming
- Krylov Subspace Iteration Methods
- The Decompositional Approach to Matrix Computations
- The Fortran Optimizing Compiler
- QR Algorithm for Computing Eigenvalues
- Quicksort Algorithm for Sorting
- Fast Fourier Transform
- Integer Relation Detection
- Fast Multipole Method