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Preview of CSCI 653 lecture

Objectives: Space-time multiresolution algorithms

> Tree codes: fast multipole method



https://aiichironakano.github.io/cs653-lecture.html

Top 10 Algorithms in History

In putting together this issue of Computing in Science &
Engineering, we knew three things: it would be difficult to list
just 10 algorithms; it would be fun to assemble the authors and
read their papers; and, whatever we came up with in the end, it
would be controversial. We tried to assemble the 10

algorithms with the greatest influence on the development and
practice of science and engineering in the 20th century.
Following is our list (here, the list 1s in chronological order;
however, the articles appear in no particular order):  accept/reject

- ~ attempt
@ Metropolis Algorithm for Monte Carlo 7, = min(p—m, 1) &mn
® Simplex Method for Linear Programming "
@ Krylov Subspace Iteration Methods

@ The Decompositional Approach to Matrix Computations

222?559166 @® The Fortran Optimizing Compiler
CSCl 653 @® QR Algorithm for Computing Eigenvalues

@ Quicksort Algorithm for Sorting
@ Fast Fourier Transform
® Integer Relation Detection

Fast Multipole Method IEEE CiSE 2(1), 22 ('00)




Data Locality in MD

e Spatial locality: Atoms closer to each other interact more
tightly

e Temporal locality: Computations performed in consecutive
MD time steps are similar

!

e Efficient simulation algorithms
> Reduced computational complexity

> Better utilization of hardware memory hierarchy
(intranode)

> Minimized communication overhead (internode)



Molecular Dynamics: N-Body Problem

* Newton’s equations of motion
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e Reliable interatomic potential
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* N-body problem
Long-range electrostatic interaction — O(N?)

Evaluate V(%) = XV, — atx = X;G=1,..,N)
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* O(N) space-time multiresolution MD (MRMD) algorithm

1. Fast multipole method (FMM) [Greengard & Rokhlin, '87]
2. Symplectic multiple time stepping (MTS) [Tuckerman et al., '92]



Clustering in the Fast Multipole Method

* Encapsulate far-field information in terms of
multipoles at the source
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* Well-defined error bound
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L. Greengard & V. Rokhlin, J. Comput. Phys. 73, 325 ('87)




Hierarchical Abstraction
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2D example ——f]‘s—e ot: an octree

e Larger clusters for longer distances to keep the error constant

* Recursively subdivide the simulation box to form an octree in
3D or quadtree in 2D



O(N) Algorithm

Upward Pass Downward Pass

multipole-to-local

local-to-local

multipole-to-multipole

multipole-to-local

1. Upward pass computes multipoles for all cells: M-to-M translation

2. Downward pass translates multipoles to local terms for all cells
e Constant (189 in 3D) interactive (cousin) cells per destination cell
contribute to M-to-L translation  Within parent’s neighbor but not my neighbor
e Inheritance from the parent cell: L-to-L translation (& delegation)

3. Direct interactions for the nearest-neighbor leaf cells
See lecture notes for the MM, ML & LL formula in 2D



Parallel Implementation of FMM

Upper levels:

Global to all processors
Overhead: O(log P)

Lower levels:
Spatial decomposition

Computation: O(/NV/P)
| Data

Al

+-
A4 caching
Coarse grain: /'7Z ~ (N/P)?3
N/P ~10% P<103 /D-
¥ © Data
N/P >> log P, (N/P)*3 migration

S. Ogata et al., Comput. Phys. Commun. 153, 445 ('03)



https://aiichironakano.github.io/phys516/Ogata-FMM-CPC03.pdf

FMMP Code Dissemination

Program Library

Computer programs in physics and physical chemistry
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SCALABLE AND PORTABLE IMPLEMENTATION OF THE FAST
MULTIPOLE METHOD ON PARALLEL COMPUTERS.

S. OGATA, T.J. CAMPBELL, R.K. KALIA, A. NAKANO, P. VASHISHTA, S.
VEMPARALA.

PROGRAM SUMMARY

Title of program: FMMP

Catalogue identifier: ADRX

Journal reference: Comput. Phys. Commun. 153(2003)445 [Article index]
Distribution format: tar gzip file

Operating system: LINUX with MPICH. IBM SP, SGI Origin

Number of lines in distributed program, including test data, etc: 3179
Keywords: Fast multipole method, Parallel computation, Stress calculation, Periodic
boundary condition, Coulomb interaction, Electrostatics.

Programming language used: Fortran, C

Computer: 1BM SP3 .

Nature of problem:
Parallel computations of Coulomb potentials, forces, and stress tensors for a collection
of charged particles.

Method of solution:

i http://www.cpc.cs.qub.ac.uk
Typical running time: Cata|Og ue | D AD RX

Proportional to the number of charged points.

Unusual features:
None

Additional comments:
The code has been parallelized using MPI Standard.



O(N) Psuedo-charge Method for Calculating
Stresses in Coulombic Systems
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Attach information of particle position to the particle charge:
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Stress tensor is obtained by numerical differentiation:
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No need for multipole translation operators for the
stress tensor, which are unknown

S. Ogata et al., Comput. Phys. Commun. 153, 445 ('03)



