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Monte Carlo methods are utilized as computational tools in many areas of chemical physics. In 
this paper, we present the theoretical basis for a dynamical Monte Carlo method in terms of 
the theory of Poisson processes. We show that if: ( 1) a “dynamical hierarchy” of transition 
probabilities is created which also satisfy the detailed-balance criterion; (2) time increments 
upon successful events are calculated appropriately; and (3) the effective independence of 
various events comprising the system can be achieved, then Monte Carlo methods may be 
utilized to simulate the Poisson process and both static and dynamic properties of model 
Hamiltonian systems may be obtained and interpreted consistently. 

1. INTRODUCTION 
Monte Carlo methods are utilized as computational 

tools in many areas of chemical physics.‘*’ Although this 
technique has been largely associated with obtaining static, 
or equilibrium properties of model systems, Monte Carlo 
methods may also be utilized to study dynamical phenome- 
na. Often, the dynamics and cooperativity leading to certain 
structural or configurational properties of matter are not 
completely amenable to a macroscopic continuum descrip- 
tion. On the other hand, molecular dynamics simulations 
describing the trajectories of individual atoms or molecules 
on potential energy hypersurfaces are not computationally 
capable of probing large systems of interacting particles at 
long times. Thus, in a dynamical capacity, Monte Carlo 
methods are capable of bridging the ostensibly large gap ex- 
isting between these two well-established dynamical ap- 
proaches, since the “dynamics” of individal atoms and mole- 
cules are modeled in this technique, but only in a 
coarse-grained way representing average features which 
would arise from a lower-level result. 

The application of the Monte Carlo method to the study 
of dynamical phenomena requires a self-consistent dynami- 
cal interpretation of the technique and a set of criteria under 
which this interpretation may be practically extended. In 
recent publications,3t4 certain inconsistencies have been 
identified which arise when the dynamical interpretation of 
the Monte Carlo method is loosely applied. These studies 
have emphasized that, unlike static properties, which must 
be identical for systems having identical model Hamilto- 
nians, dynamical properties are sensitive to the manner in 
which the time series of events characterizing the evolution 
of a system is constructed. In particular, Monte Carlo stud- 
ies comparing dynamical properties simulated away from 
thermal equilibrium have revealed differences among var- 
ious sampling algorithms.3” These studies have under- 
scored the importance of utilizing a Monte Carlo sampling 
procedure in which transition probabilities are based on a 
reasonable dynamical model of a particular physical phe- 
nomenon under consideration, in addition to satisfying the 
usual criteria for thermal equilibrium. Unless transition 
probabilities can be formulated in this way, a relationship 

between Monte Carlo time and real time cannot be clearly 
demonstrated. In many Monte Carlo studies of time-depen- 
dent phenomena, results are reported in terms of integral 
Monte Carlo steps, which obfuscate a definitive role of time. 
Ambiguities surrounding the relationship of Monte Carlo 
time to real time preclude rigorous comparison of simulated 
results to theory and experiment, needlessly restricting the 
technique. Within the past few years, the idea that Monte 
Carlo methods can be utilized to simulate the Poisson pro- 
cess has been advanced in a few publications”* and some 
Monte Carlo algorithms which are implicitly based on this 
assumption have been utilized.lS4 This is an attractive pros- 
pect, since within the theory of Poisson processes, the rela- 
tionship between Monte Carlo time and real time can be 
clearly established. 

In this paper, we shall focus on dynamical interpreta- 
tion of the Monte Carlo method. We shall show that if three 
criteria are met, namely, that transition probabilities reflect 
a “dynamical hierarchy” in addition to satisfying the de- 
tailed-balance criterion, that time increments upon success- 
ful events are formulated correctly in terms of the micro- 
scopic kinetics of the system, and that the effective 
independence of various events can be achieved, then the 
Monte Carlo method may be utilized to simulate effectively 
a Poisson process. Within the theory of Poisson processes, 
both static and dynamic properties of Hamiltonian systems 
may be consistently simulated with the benefit that an exact 
correspondence between Monte Carlo time and real time can 
be established in terms of the dynamics of individual species 
comprising the ensemble. We shall demonstrate the formal- 
ism by considering the approach to and the attainment of 
Langmuir adsorption-desorption equilibrium in a lattice- 
gas system. We shall also discuss straightforward extension 
of the methodology to more complicated systems of interact- 
ing particles. 

II. DYNAMICAL INTERPRETATION OF THE MONTE 
CARLO METHOD 

Under a dynamical interpretation,’ the Monte Carlo 
method provides a numerical solution to the Master equa- 
tion 
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mu,t) - = 2 W(cr’-u)P(a’,t) - c W(u-+o’)P(a,t), dt -’ a’ 
(1) 

where u and u’ are successive states of the system, P( u,t) is 
the probability that the system is in state u at time t, and 
W( u’ -+ a) is the probability per unit time that the system 
will undergo a transition from state u’ to state u. The solu- 
tion of the Master equation is achieved computationally by 
choosing randomly among various possible transitions to a 
model system and accepting particular transitions with ap- 
propriate probabilities. Upon each successful transition (or, 
in some instances, each attempted transition), time is typi- 
cally incremented in integral units of Monte Carlo steps 
which are related to some unit time r. At steady state, the 
time derivative of Eq. ( 1) is zero and the sum of all transi- 
tions into a particular state u equals the sum of all transitions 
out of state u. In addition, the detailed-balance criterion 

W(u’+o)P(u’,eq) = W(u-+u’)P(u,eq), 
in which 

(2) 

P( a,eq ) = Z - ‘e - H(“)‘kBT, (3) 

must be imposed for each pair of exchanges, so that the 
Monte Carlo transition probabilities can be constructed to 
guarantee that the system will attain a thermal equilibrium 
consistent with the model Hamiltonian. In Eq. (3), Zis the 
partition function and N is the Hamiltonian of the system. 
The detailed-balance criterion does not, however, uniquely 
specify these probabilities. When static properties of model 
Hamiltonian systems are sought, Eqs. (2) and (3) are the 
only standards which must be met in addition to the necessi- 
ty of a sampling procedure which is sufficiently random to 
prevent statistical bias. Dynamical properties require that a 
more definite relationship between the Monte Carlo time 
step and the transition probabilities is established. We shall 
show that this relationship can be established and implemen- 
ted, once transition probabilities are formulated as rates with 
physical meaning, through the theory of Poisson processes. 

In a dynamical interpretation of the Monte Carlo meth- 
od, it can be assumed that time resolution is accomplished on 
a scale at which no two events occur simultaneously. Once 
this perspective has been adopted, the task of the Monte 
Carlo algorithm is to create a chronological sequence of dis- 
tinct events separated by certain interevent times. Since the 
microscopic dynamics yielding the exact times of various 
events are not modeled in this approach, the chain of events 
and corresponding interevent times must be constructed 
from probability distributions weighting appropriately all 
possible outcomes. The distributions governing transitions 
and interevent times available to a system at any time t can be 
developed from considerations fully consistent with the me- 
soscopic genre. On a course-grained, mesoscopic level, it 
must be assumed that the totality of microscopic influences 
underlying various transitions of a system dictate certain 
distinctive events E={e,,e2,...,en 1, which can be character- 
ized by average transition rates Rsir,,r,,...,r,, 1. In the ab- 
sence of microscopic detail, it can be held that any particular 
transition which becomes possible at time c can potentially 
occur at any later time t + At with a uniform probability 
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which is based on its rate and is independent of the events 
before time t. Let us consider the ramifications of these 
premises for a stationary process with two states represent- 
ing “forward” and “reverse” transitions. This process may 
correspond, e.g., to the time-dependent occupancy or va- 
cancy of one “site” among many in the adsorption-desorp- 
tion equilibrium of a gas-phase molecule with a solid, single- 
crystalline surface. Adopting a frequency definition of 
probability, the average rate t of, say, the forward transition 
(which becomes intermittently available via the reverse 
transition) can be interpreted as a time density of events. 
Sampling small, identical time intervals S of a larger time 
increment, t = na, the average rate is the ratio of the number 
of time intervals containing events ns to the total number of 
intervals sampled n per unit time S in the limit S-0 and 
n-co, 

r= lim 2. (4) &.o,r-cc t 
In the limit S-O, each interval will contain, at most, one 
event. Also, consistent with our premise is that each time 
interval has an equal probability r8 of containing an event. 
Let Ne,t be a random variable counting the number of events 
which have occurred within a time t. Then, the probability 
that n, events will occur in time t is 

PWe,t =n,) = 
0 
f- (rS)“‘(l -rS)“-“‘, (5) 

c 
and in the limit S + 0, 

f’(N,, =n,) =(rt)“‘e-“. 
n,! 

From Fq. (6), the expected number of events occurring 
within a time t is (N,,,) = rt, from which the rate is recov- 
ered through division by t. In Eqs. (4)-(61, it is seen that a 
mathematical adaption of these very basic assumptions leads 
to the characterization of a stationary series of random, inde- 
pendent events occurring with an average rater in terms of a 
Poisson process. 9*10 It can be shown that a Poisson process is 
consistent with the Master equation.” Additional features 
are attributable to the Poisson process and the most signifi- 
cant of these for the purpose at hand is characterization of 
the probability density of times t, between successive 
events” 

f,,(t) = re-“. (7) 
From the probability density, the mean time period between 
successive events is calculated as (t, ) = l/r. 

A particularly useful feature of the Poisson process is 
that an ensemble of independent Poisson processes will be- 
have as one, large Poisson process such that statistical prop- 
erties of the ensemble can be formulated in terms of the dy- 
namics of individual processes. Considering N-independent 
forward-reverse Poisson processes (or, keeping with the 
previous analogy, the adsorption-desorption equilibrium of 
an entire system of independent molecules), each with some 
arbitrary, but finite rate ri, let N,,, be a random variable 
counting the overall number of events in the ensemble which 
have occurred within a time interval t. The quantity N,,, is 
then the sum of random variables counting the number of 
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events which have occurred in each of the individual pro- 
cesses, i.e., 

Neat = 5 New (8) 
i=l 

The overall probability of n, events in time t is given by the 
convolution of the individual probability mass functions 
characterizing each of the individual processes 

Here, 19 is the fractional surface coverage of A. The absence 
of adsorbate-adsorbate interactions in our example allows 
Eq. ( 12) to be solved readily for the approach to and the 
attainment of adsorption-desorption equilibrium once r, 
and rD are known in terms of the intensive and extensive 
properties of the system. With the initial condition 
@t=O) =o, 

e(t) = yr (l-e-“~+rq (13) r 
A D 

RN,,, = n,1 = P(N,,,,)*P(N,,,,)*...*P(N,,,) , (9) 
and the probability mass function characterizing the overall 
distribution of events is obtainable by the method of charac- and, in the limit as t+ ~0, 

teristic functions’* 
rA + rD “r 

P(N,,, =n,) =@& --It 
n,! 

, 

where 

A= 2 ri. 
i= I 

(11) 

A final point which should be emphasized is that the 
basic premises leading to Eqs. (6)) (7), and ( 10) are equally 
applicable to systems which are nonstationary and evolving 
toward equilibrium. In the nonstationary Poisson process, 
the overall rate simply becomes a function of time. Thus, if 
the Monte Carlo algorithm can be made to simulate the Pois- 
son process, then the relationship between Monte Carlo time 
and real time can be given a firm basis in both static and 
dynamic situations. In the following section, we shall dem- 
onstrate, through an example of the approach to the attain- 
ment of Langmuirian adsorption equilibrium, the criteria 
which must be applied so that the Poisson process may be 
effectively simulated with Monte Carlo methods. 

III. ADSORPTION-DESORPTION EQUILIBRIUM 
Adsorption equilibrium of a gas-phase species A with a 

solid, single-crystalline surface occurs when the chemical 
potentials of gas-phase and chemisorbed A are equal. From a 
kinetic point of view, adsorption equilibrium (steady state) 
is established when the net rate of chemisorption of gas- 
phase A is equal to the net rate of desorption of chemisorbed 
A to the gas phase. Within the context of a lattice-gas model 
in which adsorption is unactivated, each chemisorbed A 
molecule requires one adsorption site. We assume that che- 
misorbed A molecules do not interact appreciably with one 
another and envision a collection of gas-phase molecules 
whose temperature, pressure, and intrinsic partition func- 
tions dictate a series of independent arrivals of molecules to a 
surface containing a uniform and periodic array of adsites. 
The arrivals occur at random, uncorrelated times and can be 
characterized by an average rate r,. A similar scenario is 
applicable to molecules chemisorbed on the surface-the to- 
tality of microscopic influences (e.g., surface phonons and 
electron-hole pair creation) acting on an ensemble of che- 
misorbed molecules induces desorption events which occur 
with an average rate r, . The appropriate kinetic expression 
for this balance is 

-$-=r,(l-0) -r,t9. (12) 
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(14) 

Equation ( 14) reflects the detailed balance of the simple 
adsorption-desorption model. If the rates are cast in terms of 
appropriate partition functions,‘3-‘5 then both the desired 
kinetics and thermal equilibrium of the system are ensured. 
To maintain generality, we shall retain generic rate expres- 
sions for the elementary steps. It should be stressed, how- 
ever, that both kinetic and equilibrium behavior can and 
should be incorporated in the rates of elementary steps indi- 
genous to a particular system, so that both aspects of the 
system can be modeled consistently. 

Figure 1 depicts the general features of one algorithm 
for simulating as a Poisson process the adsorption equilibri- 
um of a gas-phase species A with a two-dimensional lattice 
containing N sites. A trial in this algorithm begins when one 
of the N sites is selected randomly. If the site is vacant, ad- 
sorption occurs with probability W, ; and desorption occurs 
with probability W, if the site is occupied. Time is advanced 
by an increment ri upon successful realization of an event at 
trial i and, for illustrative purposes, we shall also count the 
overall number of trials T, which accumulate over repetition 
of the algorithm. We shall show that through a proper defini- 
tion of W, and W, , the utilization of an appropriate ri , and 
the random selection process, the Monte Carlo algorithm of 
Fig. 1 simulates the Poisson process and provides the correct 

FIG. 1. A flow diagram for simulating as a Poisson process the approach to 
and the attainment of Langmuirian adsorption equilibrium. 7’is the (inte- 
gral) number of trials, f represents real time, ris a uniform random number 
between 0 and 1, W, is the transition probability for event i [i = A (adsorp- 
tion) or D (desorption) 1, and rr is the real time increment at trial T. 
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solution to Eq. (12) for the N-site ensemble. 
The first criterion which must be met to simulate effec- 

tively the Poisson process is that the transition probabilities 
W,, and W, must be chosen so that the Monte Carlo simula- 
tion obeys detailed balance, as specified, e.g., by Eq. ( 14). To 
demonstrate the manner in which this is achieved, let us first 
consider the discrete stochastic process of the Monte Carlo 
algorithm of Fig. 1. By performing this algorithm, we simu- 
late a sequence of independent Bernoulli trials in which the 
probability per trial of a successful adsorption event is WA 
( 1 - 19~ ), the probability per trial of a successful desorption 
event is W, 8, and the total probability of success per trial is 
WA ( 1 - 6Ji ) + W, 19~ < 1. Here, 19~ is the fractional cover- 
age of A at trial i, which for Mi occupied lattice sites is given 
by ei = M,/N. When the system has reached steady state, 
(8, ) + t9, the simulated equilibrium fractional surface cover- 
age of A. In general, 0, will be different from 0, the contin- 
uum equilibrium fractional surface coverage, since the con- 
tinuum coverage should arise from time-weighted (and not 
trial-weighted) Bi. However, in systems which are suffi- 
ciently large, 8, should approach 8, (uide infra) . The statis- 
tics of the equilibrium system may be obtained readily. Let 
NA,r be a random variable counting the number of success- 
ful adsorption events in T trials. Then the average probabili- 
ty of nA successful adsorption events in T trials is given by 

P(N,,,,=n,)=(T/n,)[W,(l--8,)]“” 

X[I- wA(i-es)lT-+, (15) 
for O(n, <T. From Eq. ( 15), the expected number of ad- 
sorption events in T trials is given by 

(N~.~) = w,u -e,u-. (16) 
Similar results may be obtained for desorption events and 
the overall statistics of both adsorption and desorption. 

When steady state has occurred in the simulation, the 
average rate of adsorption [obtained from Eq. ( 16) ] is equal 
to the average rate of desorption, i.e., 

W,(I -es) = w,e,. (17) 
Detailed balance is satisfied at equilibrium (steady state) if 
WA and W, are defined in a way which allows the physical 
model represented by Eq. ( 14) to be recovered from Eq. 
( 17). The transition probabilities satisfying this relationship 
are not unique and, as noted previously, in the traditional 
equilibrium application of the Monte Carlo method, these 
probabilities are often formulated without regard for the be- 
havior of the system away from equilibrium. To simulate 
dynamical phenomena, an additional criterion is necessary 
so that transition probabilities reflect unique transition rates 
(and, hence, simulate dynamics). These probabilities should 
be formulated so that a dynamical hierarchy of transition 
rates is established in terms of appropriate models for the 
rates of microscopic events comprising the overall process. 
Generally stated, a dynamical hierarchy of transition proba- 
bilities is created when these probabilities are defined, for a 
transition i, as 

wi = ri/&., 9 (18) 
where ri is the rate at which event i occurs and gm,, &sup 
{ti}. A dynamical hierarchy is not achieved, e.g., in the stan- 

dard Metropolis algorithmI applied to systems approach- 
ing equilibrium, because all transitions of the system to low- 
er or equivalent energy states are considered to have a 
probability of unity. The Kawasaki transition probabili- 
ties “-19 on the other hand, create a dynamical hierarchy 
among transition rates. However, it has been pointed out3s4 
that this hierarchy is not appropriate for most physical pro- 
cesses. In the algorithm of Fig. 1, e.g., the transition proba- 
bilities could be constructed through normalization of the 
rates of adsorption and desorption by the larger of the two. 
If, say, r, > rD, then transition probabilities could be defined 

WA=1 and W,=z, 
rA 

(19) 

(i.e., iL,, = r, ). With these definitions, the relative fre- 
quencies of adsorption and desorption events in the Monte 
Carlo simulation will satisfy the detailed-balance criterion 
[ Eq. ( 14) 1 with 0, + 8, (uide infra). Furthermore, with this 
choice of transition probabilities, the success-to-trial ratio 
will be optimized for an algorithm such as the one depicted 
in Fig. 1. It should be noted, however, that while this partic- 
ular algorithm is reasonably effective if the time scales of 
various processes in the system are similar, its efficiency de- 
clines as the stiffness of the system increases. In stiff systems, 
where the majority of events are generally confined to a mi- 
nority of sites, many trials will have to be attempted before a 
successful event is selected. Other, more efficient algorithms 
are availableL~20~2’ and should be utilized to simulate these 
systems. Regardless of the implementation, the relative fre- 
quencies with which various events are performed must 
comply with the detailed-balance condition for both the dy- 
namics and the equilibrium of the physical system if any 
meaningful comparison of the simulation of a physical sys- 
tem is intended. 

A second criterion which must be satisfied to simulate 
the Poisson process is proper correspondence of Monte 
Carlo time to real time. To this end, it should be noted that 
the Poisson process is, in actuality, a continuous-time ver- 
sion of the discrete Bernoulli process which is simulated by 
the Monte Carlo algorithm when time is measured in terms 
of trials, By replacing the discrete interevent times with ap- 
propriate continuous values, the Monte Carlo algorithm 
produces a chain of events which is a Poisson process. The 
continuous interevent times are constructed through the de- 
velopments leading to Eqs. (7)-( 11). Upon each trial i at 
which an adsorption or desorption event is realized, time 
should be advanced with an increment ri selected from an 
exponential distribution with parameter 

ri = (N- Mi)rA f Afir,. (20) 
Here, Mi is the number of sites occupied at trial i (i.e., 
ei = Mi /N) . The selection of a time increment in this way 
yields consistency with Eq. (7)) which provides the distribu- 
tion of interevent times for the Poisson process. Over many 
successful trials at steady state, the average time between 
successive events is 

(to)=q (N-&f,; +&f.r . (21) I A I D 

Here, h is the fraction of successful trials at which Mi sites 
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are occupied. Equation (2 1) represents a time weighting of 
various configurations of the simulated N-site ensemble 
which is consistent with that dictated by the detailed-bal- 
ance criterion for the equilibrium ensemble. A finite-size lat- 
tice can approximate the continuum ensemble to the extent 
that its size allows resolution of the ensemble. In general, the 
simulated ensemble at a particular point in time [character- 
ized, in our simple example, by t9, (t) ] could fluctuate about 
the true continuum ensemble at that time [8(t), in our ex- 
ample ] without ever achieving exactly the continuum value. 
Thus, time-weighted averages (which correspond to ther- 
modynamic averages at equilibrium if the detailed-balance 
criterion for thermal equilbrium is fulfilled) must be com- 
puted to estimate the true continuum ensemble at any point 
in time to within the desired degree of accuracy. 

When time is incremented according to the procedure 
delineated above and transition probabilities are chosen to 
satisfy the detailed-balance criterion, the correct macroscop- 
ic rates of adsorption and desorption can be measured from 
the simulation at steady state. Let us consider, e.g., the rate 
of adsorption. Over Ssuccessful trials resulting in either ad- 
sorption or desorption, (N,,s) adsorption events will have 
occurred, on the average, where 

W4s) = [ w (yy ;;Iy,B, ] s A -s 

= [ T W”fl? r)J;lxei] s* (22) 

The corresponding amount of time which has passed during 
the S successes At is 

A i IA(N-Mj) + rD”i 1 S. 

Defming the rate of adsorption as the number of adsorption 
events occurring per site per unit time and utilizing the defin- 
ition of IV,, and W, in Eq. ( 19) [or any definition satisfying 
Eq. ( 18) 1, the simulated rate of adsorption (R, ) becomes 
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a lattice sufficiently large to represent the full system ensem- 
ble and to simulate independent events. Nevertheless, if 
transition probabilities are chosen to satisfy the detailed-bal- 
ance criterion and if time is incremented in a procedure anal- 
ogous to that outlined in Eqs. (20) and (2 1) in these situa- 
tions, the time series can be interpreted in terms of a Poisson 
process of one of the events (analogous to the continuum 
rate-limiting step approximation), and accurate ensemble 
averages can be obtained through time averaging. For exam- 
ple, in the single-site adsorptiondesorption process intro- 
duced previously, successive adsorptions and desorptions 
are correlated. Nevertheless, a Poisson process can be con- 
structed consisting of one of the events, e.g., adsorption oc- 
curring with a rate r, ( 1 - 8). The criterion of a random 
selection of lattice sites for potential events prevents correla- 
tions from developing among specific sites and is usually 
achieved by utilization of an adequate random number gen- 
erator. In certain applications, the intersite correlations in- 
duced by an inadequate random number generator may lead 
to erroneous results.” The selection of an appropriate ran- 
dom number generator is, therefore, an issue requiring care- 
ful consideration. 

Thus, through the example of the lattice gas, we have 
outlined the basic elements comprising a formalism through 
which Monte Carlo simulations may be utilized to simulate 
dynamical phenomena within the context of the lattice-gas 
model. We have utilized this methodology to simulate the 
adsorptiondesorption algorithm of Fig. 1. Simulations 
were run on 128X 128 square lattices with r, = 1.0 
(site s) - ’ and r, = 2.0 (site s) - I. Transition probabilities 
were defined by normalization of each rate by the rate of 
desorption (i.e., W, = l/2, IV, = 1.0). Figure 2 depicts 
the fractional surface coverage of adsorbate as a function of 
time for an initially empty surface for both the transient ana- 
lytical (exact) solution of Eq. ( 13) and the Monte Carlo 
simulation. The Monte Carlo curve is the result of one run 

(K4) =p”u -eiv, =r,(l---8,), 
i 

where 

(24) 

Af;:/[r" (N- Mi) + r&f,] 

4i = ~jif;./[r"(N-il!f,) +rDMj] 

Ari 
=- 

(to> 

(25) 

provides the time weighting of each configuration character- 
ized, in this simple system, by 19~. A similar result can be 
obtained for the desorption events. 

/ 1.2 I , I 

A final and perhaps more subtle criterion which must be 
fulfilled for the Poisson process to be simulated effectively is 
that independence of events comprising the time sequence of 
the process is achieved. Strictly speaking, the formalism 
which we have presented is valid only when independent 
events are simulated. In general, the independence of succes- 
sive trials is ensured both by utilization of a system which is 
sufficiently large that single site and intersite correlations are 
lost, and by random selection of sites on which potential 
events may occur. The former condition is not always possi- 
ble to achieve, particularly if the system is stiff. In such sys- 
tems, it may not always be feasible computationally to define 

0.0 0.5 1 .o 1:5 2.0 2.5 

t s 

FIG. 2. The transient solution of Eq. (12) for the initial condition of an 
empty surface [ 0( t = 0) = 0] provided by both the analytical form of Eq. 
(13) and the MonteCarlo algorithm of Fig. 1 with r, = 1.0 (sites)-’ and 
r,, = 2.0 (site s) - ’ ( WA = l/2 and W, = 1). The inset depicts the rate of 
adsorption measured from the Monte Carlo simulation at steady-state and 
the continuum steady-state rate. 
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only. There is excellent agreement between the two solutions 
in the approach to equilibrium and the steady-state frac- 
tional surface coverage. The inset of Fig. 2 depicts both the 
analytical (exact) and Monte Carlo steady-state rate of ad- 
sorption (desorption) . The rate of adsorption on a per site 
basis was measured as the reciprocal of the variable amount 
of time At required for 50 adsorption events (i.e., r, = 50/ 
NAt, and N is the size of the lattice). It can be seen that this 
rate fluctuates about the predicted continuum rate of r, 
= 0.666... (site s) - ‘. Of course, the amplitude of the fluctu- 

ation depends on the number of events averaged. The mean 
rate measured from the simulation over the depicted time 
interval of 2.0 s was 0.67 f 0.06 adsorptions/site/s. 

IV. GENERAL APPLICABILITY OF THE FORMALISM 

Monte Carlo simulations are preferable to macroscopic 
continuum approaches whenever structural or configura- 
tional properties of a system arise which cannot be approxi- 
mated analytically with a reasonable degree of accuracy. 
Such spatial organization occurs in a surprising number of 
simple systems2*23-27 in which molecules may be considered 
effectively to be hard spheres and potential energy surfaces 
are otherwise uniform. In systems such as these, the identifi- 
cation of characteristic time scales and their incorporation 
into a dynamical Monte Carlo algorithm is accomplished 
through a straightforward extension of the methodology. 
Hence, direct and unambiguous comparison of simulation 
results to theory is possible. Perhaps dynamical Monte Carlo 
simulations will be of the greatest utility when they are 
linked in a hierarchy with ab inifio quantum mechanics and 
molecular dynamics to model the dynamics of systems of 
molecules which interact with one another. When concen- 
tration-dependent potential energy surfaces have been delin- 
eated, events can be defined as a molecule’s crossing the sad- 
dle point between two potential energy minima and the 
subsequent redefinition of the potential energy surface (due 
to the local shift in concentration) which existed prior to 
barrier crossing. Average rate coefficients for barrier cross- 
ing of molecules in all possible configurations of the system 
can be calculated (for a lattice gas with localized interac- 
tions extending only a few molecular diameters, the number 
of distinct transitions will be limited) and incorporated into 
a dynamical Monte Carlo simulation aimed at discernment 
of global characteristics of the full system. Such calculations 
involving semiempirical assumptions regarding the depend- 
ence of the rate of barrier crossing on local concentration 
through localized interactions have been of utility in the in- 
sight they have provided to thermal desorption,28-32 the dy- 
namics of surface reactions,28*33-39 and diffusion. 14.6*7*28*40*4’ 

The methodology may now be generalized. Let us con- 
sider a system comprised of N species which, considering all 
possible spatial arrangements of the system and correspond- 
ing changes in the distribution oftransition rates, are capable 
of undergoing k transition events. The k transition events are 
characterized by rates R = {r,,r, ,..., k r } which are formulat- , 
ed to be consistent with average dynamics of barrier crossing 
on some form of potential energy surface. The N species can 

be partitioned among the various possible transition events 
asN={n n 1, 2,...,nk 1, where ni is the number of species capa- 
ble of undergoing a transition with a rate ri and 

N= + n;. 
i%l 

(26) 

Thus, a particular configuration of the system at a particular 
time can be characterized by the distribution of N over R. 
This distribution is constructed by a Monte Carlo algorithm 
which selects randomly among various possible events avail- 
able at each time step and which effects the events with ap- 
propriate transition probabilities W = {w1,w2,...,wk 1. The 
transition probabilities should be constructed in terms of R 
so that detailed balance is achieved at thermal equilibrium 
and a “dynamical hierarchy,” as expressed in Eq. ( 18)) of 
transition rates is preserved away from equilibrium. If a suf- 
ficiently large system is utilized to assure that the indepen- 
dence of various events is achieved, then the Monte Carlo 
algorithm effectively simulates the Poisson process, and the 
passage of real time can be maintained in terms of R and N. 
To accomplish this, at each trial i at which an event is real- 
ized, time should be updated with an increment 7i selected 
from an exponential distribution, i.e., 

1 fi = - ----In (W, 
Zi niri 

(27) 

where U is a uniform random number between 0 and 1. This 
procedure should ensure that a direct and unambiguous re- 
lationship between Monte Carlo time and real time is estab- 
lished. 

V. CONCLUSIONS 
In conclusion, we have outlined the basic elements com- 

prising a self-consistent dynamical interpretation of the 
Monte Carlo method. We have shown that if three criteria 
are met, namely, if ( 1) a dynamical hierarchy of transition 
probabilities is created which also satisfies the detailed-bal- 
ance criterion; (2) time increments upon successful events 
are calculated appropriately; and (3) the effective indepen- 
dence of various events comprising the system can be 
achieved, then Monte Carlo methods simulate a Poisson 
process, and both static and dynamic properties of model 
Hamiltonian systems may be obtained and interpreted con- 
sistently. We have demonstrated the methodology through 
the example of the approach to and the attainment of Lang- 
muirian adsorption equilibrium and discussed extension of 
the methodology to systems of interacting species. We anti- 
cipate that dynamical Monte Carlo simulations will contin- 
ue to be a valuable tool in the development of statistical me- 
chanical theory and in modeling applications. The 
formalism which we have proposed should, henceforth, 
eliminate any ambiguity surrounding the conduction and 
the interpretation of dynamical Monte Carlo simulations. 
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