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Preface

Neural networks have become a powerful tool in various domains of scientific
research and industrial applications. However, the inner workings of this tool remain
unknown, which prohibits us from a deep understanding and further principled design
of more powerful network architectures and optimization algorithms. To crack the
black box, different disciplines including physics, statistics, information theory, non-
convex optimization and so on must be integrated, which may also bridge the gap
between the artificial neural networks and the brain. However, in this highly inter-
disciplinary field, there are few monographs providing a systematic introduction of
theoretical physics basics for understanding neural networks, especially covering
recent cutting-edge topics of neural networks.

In this book, we provide a physics perspective on the theory of neural networks,
and even neural computation in models of the brain. The book covers the basics of
statistical mechanics, statistical inference, neural networks, and especially classic
and recent mean-field analysis of neural networks of different nature. These mathe-
matically beautiful examples of statistical mechanics analysis of neural networks are
expected to inspire further techniques to provide an analytic theory for more complex
networks. Future important directions along the line of scientific machine learning
and theoretical models of brain computation are also reviewed.

We remark that this book is not a complete review of both fields of artificial neural
networks and mean-field theory of neural networks, instead, a biased-viewpoint of
statistical physics methods toward understanding the black box of deep learning,
especially for beginner-level students and researchers who get interested in the mean-
field theory of learning in neural networks.

This book stemmed from a series of lectures about the interplay between statistical
mechanics and neural networks. These lectures were given by the author in his PMI
(physics, machine and intelligence) group during the years from 2018 to 2020. The
book is organized into two parts—basics of statistical mechanics related to the theory
of neural networks, and theoretical studies of neural networks including cortical
models.

The first part is further divided into nine chapters. Chapter 1 gives a brief history
of neural network studies. Chapter 2 introduces multi-spin interaction models and
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viii Preface

the cavity method to compute the partition function of disordered systems. Chapter 3
introduces the variational mean-field methods including the Bethe approximation
and belief propagation algorithms. Chapter 4 introduces the Monte Carlo simulation
methods that are used to acquire low-energy configurations of a statistical mechan-
ical system. Chapter 5 introduces high-temperature expansion techniques. Chapter 6
introduces the spin glass model where the Nishimori line was discovered. Chapter 7
introduces the random energy model which is an infinite-body interaction limit of
multi-spin disordered systems. Chapter 8 introduces a statistical mechanical theory
of the Hopfield model that was designed for associative memory of random patterns
based on the Hebbian local learning rule. Chapter 9 introduces the concepts of replica
symmetry and replica symmetry breaking in the spin glass theory of disordered
systems.

The second part is divided into nine chapters. Chapter 10 introduces the Boltz-
mann machine learning (also called the inverse Ising problem in physics or maximum
entropy method in statistics) and the statistical mechanics of the restricted Boltz-
mann machine learning. In this chapter, a variational mean-field theory for learning
a generic RBM of discrete synapses is also introduced in depth. Chapter 11 intro-
duces the simplest model of unsupervised learning. Chapter 12 introduces the nature
of unsupervised learning with RBM (only two hidden neurons are considered),
i.e., the unsupervised learning process can be understood in terms of a series of
continuous phase transitions, including both weight-reversal symmetry breaking and
hidden-neuron-permutation symmetry breaking. Chapter 13 introduces a single-layer
discrete perceptron and its mean-field theory. Chapter 14 introduces the mean-field
model of multi-layered perceptron and its analysis via the cavity method. In this
chapter, a mean-field training algorithm of multi-layered perceptron with discrete
synapses is introduced, together with mean-field training from an ensemble perspec-
tive. Chapter 15 introduces the mean-field theory of dimension reduction in deep
random neural networks. Chapter 16 introduces the chaos theory of random recur-
rent neural networks. In this chapter, the excitatory-inhibitory balance theory of
cortical circuits is also introduced, together with the backpropagation through time
for training a generic RNN. Chapter 17 introduces how the statistical mechanics
technique can be applied to compute the asymptotic behavior of the spectral density
for the Hermitian and the non-Hermitian random matrices. Finally, perspectives on a
statistical mechanical theory toward deep learning and even other interesting aspects
of intelligence are provided, hopefully inspiring future developments of the interdis-
ciplinary fields across physics, machine learning and theoretical neuroscience and
other involved disciplines.

I am grateful for the students’ efforts in drafting the lecture notes, including
preparing figures. Here, I list their contributions to associated chapters. These
students in my PMI group are Zhenye Huang (Chaps. 4 and 10), Zijian Jiang
(Chaps. 2, 13 and 16), Chan Li (Chaps. 11, 15 and 16), Jianwen Zhou (Chaps. 5, 8 and
17), Wenxuan Zou (Chaps. 3, 6 and 14) and Tianqi Hou (Chap. 12). I also thank the
other PMI members, Ziming Chen, Yiming Jiao, Junbin Qiu, Mingshan Xie, Xianbo
Xu and Yang Zhao for their reading feedbacks on the draft. I also would like to
thank Haijun Zhou, K. Y. Michael Wong, Yoshiyuki Kabashima and Taro Toyoizumi
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for their encouragements and supports during my Ph.D. and Post-doctoral research
career. I finally acknowledge the financial support from the National Natural Science
Foundation of China (Grant No. 11805284 Grant No. 12122515).

Guangzhou, China Haiping Huang
December 2021
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Chapter 1 ®)
Introduction Check for

Neural network studies stemmed from the curiosity about how the brain works and
even biological mechanisms of high-level intelligence [1]. This original curiosity
has a very long history that is also a history of humans’ endeavors to understand
the brain. A modern artificial neural model was proposed by McCulloch and Pitts in
1943 [2], and the neuron of complex biological processes was abstractly modeled as
a non-linear transfer function of simply weighted sum of inputs. A few years later,
Donald Hebb proposed the Hebbian learning rule [3], i.e., “cells that fire together,
wire together”. This rule forms the basics of a later development, i.e., the abstract
model of associative memory, the so-called Hopfield model [4, 5], where the Hebbian
rule was used to construct the effective coupling between neurons in the model that
can realize the retrieval of a memory item (e.g., a random pattern the Hebbian rule
uses), under a less noisy neural dynamics from an initial state where the memory
item is corrupted by a few bits. The Hebbian rule, despite its simplicity, plays a
significant important role in the current status of both experimental and theoretical
neuroscience studies [6].

Based on the McCulloch-Pitts model of artificial neurons, Frank Rosenblatt intro-
duced the first perceptron model of supervised classification tasks [7]. At that time,
this model can only be used to classify linearly separable patterns [8]. However,
this abstract model plays an important role in neuroscience studies, as the percep-
tron model was popular in modeling the learning behavior of the cerebellar Purk-
inje cells [9, 10]. The perceptron model can also be easily generalized to multi-
layer feedforward neural networks, which are able to separate non-linearly separable
patterns, due to the highly nested non-linear layer-wise computations. This nested
non-linearity makes an analytic understanding of inner workings challenging in the
academic community [11, 12]. However, the backpropagation of the error from top
layers was shown to work in practical training of multi-layer neural networks [13],
which establishes the algorithmic foundation of deep learning.

Fukushima introduced neocognitron in 1980, using the biological concept of sim-
ple and complex cells observed in visual pathways of a cat’s visual cortex [14]. When
© Higher Education Press 2021 1
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these neural computations are organized in a hierarchical way, the position-shift
invariance can be achieved. This neocognitron model inspired the further develop-
ment of multi-layer neural computation, for example, the powerful architecture—
convolution neural network (CNN) proposed in 1990s [15], where the computation
of simple cells corresponds to convolution while computation of complex cells cor-
responds to pooling, showing the power of multi-layer neural networks in practice,
e.g., in solving computer vision tasks [16].

In 1985, Hinton and Sejnowski introduced the Boltzmann machine [17], where
the model parameters, e.g., coupling and fields of an Ising model, can be learned
directly from the data samples, matching only the first two moments of the data
statistics [18]. This framework has a recently renewed interest in system neuro-
science [19], being known as an inverse Ising problem in physics [20] with a wide
application in different interdisciplinary fields ranging from neural activity modeling
and protein structure prediction to financial data analysis [21]. Paul Smolensky later
introduced the original two-layer neural network with stochastic activations [22],
the so-called restricted-Boltzmann machine (RBM) [22, 23], where neurons in a
traditional Boltzmann machine are divided into visible and hidden groups. In 2006,
Hinton and Salakhutdinov proposed efficient methods to train a deep belief net-
work composed of layer-wise stacking of RBMs [24], initializing the deep learning
revolutionary in both academic and industrial neural network studies.

Another type of neural network architecture has salient features in its recurrent
computation, incorporating temporal information. There appeared extensive research
interests in algorithmic issues around 1990 [25-28]. However, training the recurrent
neural network (RNN) is typically challenging, due to vanishing/exploding gradients
of the objective function [29]. In the current deep learning era, many smart techniques
are being proposed to tackle this challenge. In particular, Hochreiter and Schmidhuber
introduced the long short-term memory (LSTM), using various kinds of information-
gating mechanisms [30], to avoid the training difficulty of RNNs. The RNN structure
is also considered as a canonical model of perception, learning, memory, action and
other high-level cognition [31-33].

In the history of artificial neural networks, still a lot of important topics are not
covered in the above retrospect. For complete reviews, we refer interested readers to
several recent reviews of neural networks [34-36]. On the other side, the statistical
mechanics plays a key role in understanding the emergent behavior of artificial neural
networks, even real neuronal networks [37].

The first statistical mechanical theory of neural networks was published in 1985;
providing a complete phase diagram of the Hopfield network [38, 39] and explain-
ing low temperature and low memory load are necessary to guarantee a successful
retrieval of one of the embedded random patterns (akin to memory items). The
analytic techniques are rooted in studies of disordered systems, such as spin glass
systems [40, 41]. One powerful technique is the replica trick, which introduces many
copies of the original model, and the original complex spin-to-spin interactions are
decoupled into overlaps between replicas, while the overlaps are exactly the order
parameters of the statistical mechanical model. This technique was later generalized
to the perceptron model, inventing the concept of the Gardner volume to determine
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the capacity of a perceptron system [42, 43]. The Gardner method is still popular as
a powerful physics tool in the theoretical neuroscience community [10].

In 1988, Sompolinsky et al. developed another powerful physics method for ana-
lyzing the recurrent dynamics of RNNs with random weights [44]. This method treats
the behavior of areal RNN as an effective mean-field limit of a homogeneous system,
whose first two moments of neural dynamics statistics are recursively established,
resulting in a mean-field calculation of the Lyapunov exponent determining whether a
transition-to-chaos is possible. This framework can be derived under the path-integral
representation of the dynamics [45, 46] and is still popular in analyzing more com-
plex RNNs with structured connectivity. The mean-field study of a random RNN was
later generalized to neuronal networks of excitatory and inhibitory cells [47, 48], sat-
isfying biological Dale’s rule (a biological neuron cannot produce both excitatory and
inhibitory synapses). In this study, the excitatory—inhibitory balance condition [49,
50], i.e., feedback inhibition cancels with strong excitatory recurrent inputs, can be
identified in the mean-field limit, leading to a mechanistic explanation of the irregular
asynchronous neural activity observed in cortical circuits. Brunel further studied the
emergent behavior of spiking activity of a sparsely connected excitatory—inhibitory
neural network [51]. These theoretical paradigms still benefit the computational and
theoretical community even now. Therefore, the statistical physics methods, includ-
ing equilibrium phase diagram analysis and non-equilibrium mean-field theory, are
very promising in exploring the black box of deep neural networks, which may
further connect to other branches, e.g., random matrix theory [52], etc.

In this book, we will provide our personal selections of statistical mechanical tech-
niques applied to neural networks studies, and an in-depth introduction of these sta-
tistical physics methods, especially applications in simple toy models where learning
mechanisms can be revealed in a mathematically concise way, even with theoretical
predictions of new emergent behavior.
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Chapter 2 ®
Spin Glass Models and Cavity Method ek

Spin glasses are magnets with two-spin interactions of random signs (Mézard et al.,
in Spin Glass Theory and Beyond. World Scientific, Singapore, 1987 [1]), e.g., an
alloy with randomly localized magnetic moments. In spin glass models, the ran-
domness emerges in spin interactions. For example, in the Sherrington—Kirkpatrick
model (Sherrington and Kirkpatrick in Phys. Rev. Lett. 35(26):1792, 1975 [2]), all
two-spin interactions follow independently a Gaussian distribution with variance
N~12 (N is the system size); in the Edwards—Anderson model (Edwards and Ander-
sonin J. Phys. F: Metal Phys. 5(5):965, 1975 [3]), the spins sit on a finite-dimensional
lattice, and in the Bethe lattice model (Viana and Bray in J. Phys. C: Solid State Phys.
18(15):3037, 1985 [4]; Mézard and Parisi in Eur. Phys. J. B 20:217, 2001 [5]), the
spins locate at a random lattice of finite connectivity for each spin. All these models
belong to the category of multi-spin interaction models, originally studied in physics,
later widely explored in the context of optimization problems in computer science,
machine learning and computational neuroscience.

2.1 Multi-spin Interaction Models

Before going into details of the underlying physics, we would like to give a few
seminal applications of the spin glass models. The first one is the random K-SAT
problem. The random K-SAT problem is finding a solution, say an assignment of
N Boolean variables, to satisfy a random formula composed of logical AND of M
clauses. Each clause is expressed as a logical OR function of K randomly selected
distinct variables (either directed or negated with equal probability) from the variable
set. For example, one short formula is given by

F=@E3VxiVI)AEXI VisVXe)A(XgV X7V Xs). (2.1)
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6 2 Spin Glass Models and Cavity Method

From a physics viewpoint, the random K-SAT can be treated as a spin glass
problem with a focus on the typical case analysis.! If x; is TRUE, then we transform
it to an Ising spin with value 1 (spin up); otherwise, it is transformed to —1 (spin
down). Given a configuration of spins, the number of violated clauses can be defined
as an energy function in statistical physics [6],

mo,[

M K J
E(o) = Z]’[ L (2.2)

where i ;" is the jth variable appearing in the mth clause. The quenched disorder J jm
is 1 if the Boolean variable in the formula appears negated and —1 otherwise. Hence,
the constraint satisfaction problem reduces to a physics problem of finding minima
of the energy function.

Analogously, the random K-XOR SAT formula can be written as

M K
F=/N\|Pxz|Owm|. (2.3)
m=1

where the symbol @ denotes the logical XOR operation, and y,, is quenched random
Boolean value. This formula corresponds to a linear system, with an efficient solver of
the Gaussian elimination procedure. In physics, the diluted Ising p-spin model with
coupling £1 belongs to the class of random K-XOR problem. Similar to the random
K-SAT Problem, one can easily write down the associated energy function [7]

M
Jm i
E(o) = Z ﬁ, (2.4)

m=1

where J,, is an Ising-mapping of the Boolean variable y,,.

The above two constraint satisfaction problems belong to multi-spin interaction
models in physics. Physicists are interested in studying the mean-field limit N — oo
and M — oo but keeping the ratio M/N constant. One expects that rich phase
transitions emerge due to complex interactions among spin variables. Next, we will
illustrate how the cavity method can be used to compute the free energy function
of this class of models. Cavity method was first proposed to reproduce the replica
results of the Sherrington—Kirkpatrick model [8], and further reformulated in the
study of neural networks [9], and was finally proposed at the concise physics level and
systematic mathematical level on the Bethe lattice, a broad class of glass models of
finite connectivities [5]. We will also explore the core physics assumption behind the
cavity method in detail in a multi-spin interaction model. The multi-spin interaction
models like the above two cases can be analogously treated.

! The computational complexity is defined in the worst-case setting.



2.1 Multi-spin Interaction Models 7

The multi-spin interaction model can be also defined in the context of information
transmission, for which we shall give a concrete example. Let us consider the case
that we want to send a message to a receiver, and the message may be perturbed
during transmission because of the noise in the channel. It is a highly non-trivial
task for the receiver to retrieve the original message from the perturbed one. One
solution is to introduce redundancy to the original message at the sender site. Then the
receiver can correct some transmission errors according to the redundancy. In 1948,
Claude Shannon proved that error-free transmission is possible when the code rate
is below the channel capacity, which establishes a fundamental bound for designing
engineering practical codes [10]. Numerous efforts have been devoted to design the
codes approaching Shannon’s bound (channel capacity). Among them, the Sourlas
code is the first one in physics [11], which relates error-correcting codes to a spin
glass model.

It is easy to figure out how to construct a Sourlas code. Supposed that we have
an N-bit binary original message & € {£-1}", and then encode them into an M-bit

transmitted message J* = {J?, J?, ..., JY}. The ath bit of JO is the product of a
subset da of randomly selected original message bits,
1=11& 2.5)
i€da

We then denote J, as the ath bit of the received message, which may not be equal to
the transmitted message due to the channel noise flipping message bits. We further
assume that each bit of transmitted messages can be independently flipped with the
same probability p. Hence, the conditional probability of a received message given
a transmitted one reads

P(J I = p8(Ja + I + (1 = p)§(Ja — JD). (2.6)

To decode the sent message, we write the computational task as a statistical
mechanics problem with the following Hamiltonian [12]:

M
Ho)=-Y J.[]o (2.7)
a=1

i€da

where o; is the dynamical binary spin variable for decoding the original message
{&;}. What we need to do is computing the posterior probability P (o |J) which is
given by
exp(—BH (o
Poly) = 2L, 28)
V4

where f is the inverse temperature, and Z is the partition function. This decoding
process amounts now to searching for the ground state of the statistical mechanics

problem. The energy of the model takes a minimal value if [ [, _,, 0; = J,. According
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to the canonical ensemble theory, all emergent properties of the decoding process
are included in the partition function that is mathematically formulated as follows:

Z =" exp(—-BH(0)). (2.9)
{oi}

2.2 Cavity Method

In this section, we apply the cavity approximation to compute the partition func-
tion. Notice that a direct calculation of Eq. (2.9) involves in summing up 2V terms,
which is computationally impossible once N > 30. The cavity method can reduce
the computational cost down to the order of O(N) for a sparsely connected factor
graph model. Let us explain this in detail as follows.

The model can be represented by a factor graph [13], illustrating how spins interact
with each other (see Fig. 2.1). Because we aim at analyzing the Boltzmann distri-
bution, i.e., the posterior [Eq. (2.8)], we use the probabilistic language, for the goal
of computing the marginal probability as well. To achieve this, we should modify
the original graph that allows strong correlations among variables. If we add one
function node a to the original system (see Fig. 2.2), the Hamiltonian of the new
system can be written as the sum of the Hamiltonian of the original system and the
change caused by the newly added function node. More precisely,

H™ = HY — J, ]‘[ o;. (2.10)

i€da

It then proceeds that

Fig. 2.1 Factor graph representation of a random construction of the Sourlas codes. Circles are
spin variables (variable nodes) {o;}, and squares are received message (function nodes) {J,}. In the
figure, we only show three message bits, and each square is connected to them. In fact, the square
can be connected to other different message bits (not shown), thereby forming a sparse random
graph, where the degree of variable nodes follows a Poisson distribution
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Fig. 2.2 Addition of the function node a to original system (outside the shadow part). We call the
shadow part a cavity, and the nodes {i, j, k, [} serve as the boundary of the cavity

Znew Z exp <_’3Hold + BJ, 1_[ O'i>

{(,i}iN:] i€da

_ old
— ZOld Z %exp (ﬁJa l_[ Ui) A

{J,}l?\’zl i€da

@2.11)

— old . . . ey . . .
It is easy to see that % is exactly the joint probability distribution of {o;}

in the old system. One can find that exp(8J, [ [; cgq 0i) only relates to {o;|i € da},
and then we can divide the configuration sum into two parts: one involves in only
variable nodes with direct connections to the newly added functional node a, and the
other involves in the rest. We then have

N
i=1

old)

w exp(—BH
=z %0 3 = el [ [
{oilicda} {o;|i¢da} i€da
_ Hold
= z°ud Z exp(,BJaHoi) Z —exp( p ).

Zold
{o;licda} i€da {oili¢oa}

2.12)

The last summation in Eq. (2.12) is exactly the marginal probability distribution of
{oi|i € da} in the old system. Compared with the new system, the old system has a
cavity in the position where the function node a is added to the new system. Therefore,
we denote the marginal probability as a cavity distribution Peayity({0;]7 € da}) and
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call {o;|i € da} as the boundary of the cavity. It is reasonable to assume that variable
nodes on the boundary of the cavity are weakly correlated, because of the weak
couplings in a fully connected system or the sparsely connected topology of a sparse
model. This assumption is exact if the underlying factor graph is a tree. Thus, the
Peavity({oi]i € da}) can be factorized as

Peaviry({0i]i € da}) ~ [ | givsal00), 2.13)
ieda

where g;_, , denotes the distribution of o; without the presence of the function node a.
Letus then define a cavity magnetizationm;_,, = q;—,(0; = +1) — gi—4(0; = —1),
and thus, g;_,,(0;) = ”(’+ Then Z"Y can be rewritten as

1+oim;
gnew Zold Z eXp(,BJa 1_[ o) l—[ + [2 i—a
{ojlicda} i€da i€da

= z°d cosh(,BJa)(l + tanh(8J,) 1_[ mi—w)'

i€da

(2.14)

According to the free energy definition /' = —1/8 In Z, the free energy shift due
to adding the function node a is given by

~BAF, =1n T Znew —In |:cosh(,3J )(1 + tanh(B8J,,) ]_[m%)} (2.15)

i€eda

Similarly, if we add one variable node i and its neighboring function nodes {b|b €
di} to the system (see Fig. 2.3),” the partition function of the new system reads

ZneWZZZCXp _ﬂHOId+,BZJb l_[Uj

ood o bedi  jedb
=Y > exp | -pHM+BY Joi [] o (2.16)
ood  o; bedi Jjeab\i
1d exp(— ,3H01d)
=zM) 2 e (B hoi [] oi ]
gold o bedi jeab\i

where j € db\i denotes the set of variable nodes with connections to the function
node b, yet the node i is excluded. The subset of nodes {o;|j € 0b\i, b € i} is the
boundary of the cavity (see Fig. 2.3). We can first sum over the configuration of all

2 This operation will make the definition of cavity probabilities reasonable.
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Fig. 2.3 Adding a variable node i together with its neighboring function nodes {a, b, c} to the
original system (outside the cavity). The subset {j, k, [, m, n ...} denotes the boundary of the cavity

'

variable nodes that are not at the boundary of the cavity (except i), akin to what we
have done in Eq. (2.12). Using Eq. (2.13), we then arrive at the following result:

Znew — zold > > Peavity ({01 € 0b\i: b € di}) exp(Z Bhvoi ] a,)

{o]j€db\i;bedi} oi bedi jeab\i

~ 7ol Z Z l_[ 1_[ qj_ﬂ,((rj)exp(z BJIpo; 1_[ Gj)

{0;1j€db\isbedi} oi bedi jedb\i bedi jeab\i
= ZO]dZ Z l_[ 1_[ qjﬁb(aj)exp<z BJpoi l_[ Gj)

oi {o0;]j€db\i;bedi} bedi jedb\i bedi jedb\i
=z 11 X 11 qj—»b(aj)exp(ﬁ-]bai I1 Uj)

i bedi {oj|jedb\i} jedb\i jedb\i

l+omip

SN Y T S eg(pa T o)

i bedi {oj|jedb\i} jedb\i jedb\i

1d
=2z° (l_[ Ab—n + l_[ Ah—n) ’
bedi bedi

(2.17)
where
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l4+omi_yp
A= > 1 5 exp | By x (+1) x [] o
{0j1j€db\i} jedb\i jeab\i 2.18)
= cosh(BJ;) | 1+ tanh(BJ}) ]"[ misp |,
jeab\i
_ l—l—ajmj_>b
Ay, = Z l_[ fexp BJp x (—1) x 1_[ off
{o;]1j€db\i} jedb\i j€ab\i
e /e (2.19)

= cosh(BJ,) [ 1 —tanh(BJ,) [] mj-s
jedb\i

Hence, the free energy shift due to adding the variable node i together with its
neighboring function nodes {b € di} is given by

Znew
—BAF =In—r =In []‘[ AL+ A,;i] . (2.20)

bedi bedi

Finally, the total free energy is given by
F=Y AF+Y AF,—) |dalAF, (2.21)

where |0a| is the number of variable nodes connecting to the function node a. The last
term of Eq. (2.21) is to ensure that each node’s contribution to the total free energy
has been counted only once. Once we have access to {m;_,;}, we can calculate the
free energy function. In the next section, we explain how to calculate {m;_,,}.

2.3 From Cavity Method to Message Passing Algorithms

According to the cavity assumption, the cavity magnetization {m;_,,} can be itera-
tively constructed, because the local structure of a random factor graph is statistically
homogeneous. Note that m;_,, is the expectation value of o; without the contribu-
tion from the function node a, which is expected from the definition of the cavity
operation. Hence, m;_,, can be rewritten as follows:

D, 0iexp(—=BHi-q(0))
mi—q = ’
> o Xp(—=BH;—q(0))

(2.22)
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where H;_,, denotes the Hamiltonian without the interaction a, which reads

Hi_,= cavity — Z Jpoi l_[ gj (2.23)

bedi\a jeab\i

where Heayity is the Hamiltonian of the cavity system where the variable node i
together with its neighboring function nodes b € di (except a) are all removed from
the original system.

Similar to what we have done in Sect. 2.2, we can sum over all possible configu-
rations of variable nodes not on the boundary of the cavity at first, and we, thus, get
the marginal distribution of the boundary nodes in the cavity system. We then have

25 0i exp(=BHi—a(0))
. _ anvily
Mia = 5 o pHi-a(0)
R ST (2.24)

_ >0, 2= i Peavity (B) eXp(ZbeBi\a BJvoi Hjeab\i o})
Za,- 25 Peavity(B) exP(Zbeai\a BJyoi njeab\i o)

)

where Zc,iy denotes the partition function related to Hcayiry, and B = {o}|j €
ab\i; b € di\a}, which denotes the boundary of the cavity. Then we factorize the
cavity probability according to the cavity approximation:

Paiy@B ~ [T T] ai-slon- (2.25)

bedi\a jedb\i

Using the same techniques as in Eq. (2.17), we finally arrive at

+ —
_ nbeai\a Ab—>i - l_[beai\a Ab—)i

Mi_qg = —. (2.26)
Hbeai\a A;)r—n‘ + Hheai\a Ab—>i

If we define the conjugate cavity magnetization as
iy = tanh(BI) [T mjs. (2.27)

Jjeab\i

we can then write Eq. (2.26) into the following form:
'ia(1+’/;l—>i)_ ia(l_"cl—ﬂ)

My, = Hbed \ b Hbea \ b (2.28)

Hbeai\a(l + nA’lb—>i) + nbeai\a(l - nA’lb—n‘) ’

The above expression can be transformed into the language of cavity fields, e.g.,
a cavity local field h;_, , and cavity bias u,_,; as also defined in the seminal work [5].
We can then use these fields or biases to parameterize the cavity probability:
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eXP(,Bhi—mUi)

Gi—a(0j) =

2cosh BhiLg
eXP(ﬁuaeiGi) (229)
pa—)i(ai) =T 5
2 cosh Bu,_;
where p,_,;(0;) = % It then proceeds that
mi_q = tanh Bh; ..,
N (2.30)
My—; = tanh ,BM[H,-.
Therefore, Egs. (2.27) and (2.28) turn out to be
1
hi—m = - Z ﬁub—>i y
p bedi\a
(2.31)
1
U, .; = — tanh~! [tanh(ﬂja) ]_[ tanh(Bh j%)].
’3 jeda\i

Equation (2.31) is the very message passing equation in the Sourlas-code scenario.
In essence, the cavity method is a probabilistic iterative method. One can iteratively
solve these equations, until a fixed point of messages ({m;_.,}) is reached. These
messages are then used to evaluate the full magnetization m; as follows:

m; = tanh (Z ,BMZ,H,‘> , (2.32)

bedi

and the sent message can be decoded by the maximizer of the posterior marginal
(MPM), i.e., 0; = argmax,, P;(0;), where P;(0;) = H% In addition, the free
energy and other thermodynamic quantities of interest can be evaluated according to
the derived formulas. The computational complexity is clearly of the order of O(N)
for a sparsely connected factor graph and the order O(N?) in the case that all variable
nodes connect to each function node. We remark that this procedure is quite general
and can be adapted to learning problems of a variety of neural networks, which we
shall introduce in the remaining chapters.

References

1. M. Mézard, G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Sin-
gapore, 1987)

D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett. 35(26), 1792 (1975)

S.F. Edwards, P.W. Anderson, J. Phys. F: Metal Phys. 5(5), 965 (1975)

L. Viana, A.J. Bray, J. Phys. C: Solid State Phys. 18(15), 3037 (1985)

N

B w



References 15

® NN

11.
12.
13.

M. Mézard, G. Parisi, Eur. Phys. J. B 20, 217 (2001)

M. Mézard, R. Zecchina, Phys. Rev. E 66(5), 056126 (2002)

S. Franz, M. Leone, F. Ricci-Tersenghi, R. Zecchina, Phys. Rev. Lett. 87(12), 127209 (2001)
M. Mézard, G. Parisi, M.A. Virasoro, Europhys. Lett. (EPL) 1(2), 77 (1986)

M. Mezard, J. Phys. A 22(12), 2181 (1989)

C.E. Shannon, Bell Syst. Tech. J. 27(3), 379 (1948)

N. Sourlas, Nature 339(6227), 693 (1989)

H. Huang, H. Zhou, Phys. Rev. E 80, 056113 (2009)

F. Kschischang, B. Frey, H.A. Loeliger, IEEE Trans. Inf. Theory 47(2), 498 (2001)



Chapter 3 ®
Variational Mean-Field Theory s
and Belief Propagation

In the previous chapter, we have introduced the cavity method and its application to
computing the approximate free energy of a multi-spin interaction model, and the
approximation is equivalent to the Bethe approximation, which we shall provide an
in-depth introduction in this chapter. In this chapter, we apply the variational method
together with the mean-field approximation (MFA) and Bethe approximation (BA)
to construct the free energy of the multi-spin interaction model. We show that the
belief propagation (BP) algorithm in computer science can be derived under the
variational framework, which is in fact equivalent to the cavity method in physics.
Furthermore, we emphasize that BA is a more accurate approximation, which reduces
to MFA when the coupling is relatively weak or when a high-temperature limit is
performed. Finally, we give a brief introduction of the inverse Ising model, where
model parameters (couplings and fields) can be learned by using the mean-field
methods. Besides being a useful tool in statistical physics, the BP algorithm is also
an efficient way to solve many important inference problems in areas of computer
science, modern coding and learning in neural networks—one focus of this book.

3.1 Variational Method

The variational method is an important technique for statistical inference problems.
With the target function we want to optimize and some constraints the problem should
satisfy, we can apply the variation of model parameters on the target function. We
take a simple example of the derivation of the Boltzmann distribution in statistical
physics. The entropy of a system in statistical physics can be defined by

S=—kZP,1nP,, (3.1)

where k indicates the Boltzmann constant, 7 is the index of a thermodynamic state
and P, is the to-be-determined distribution of the state r. According to the theory of
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thermodynamics, the systemis in equilibrium when the entropy reaches its maximum,
and the distribution must meet the following two constraints:

Y P =1, (3.2)

Y E.P =y, (3.3)

which correspond to the normalization of a probability measure and a target mean
energy level u of the system, respectively. Hence, we can use the Lagrange multiplier

method:
L=S+A1<ZP,—1)+AZ<ZE,P,—M), (3.4)

r

where A and A, are the Lagrange multipliers for the two constraints, respectively.
Then, the equilibrium requires that % = 0, and we finally arrive at

e PE
Pr = s

Z
Z = Ze‘ﬁE",
r

(3.5)

where the inverse temperature 8 = kLT can be deduced from the second law of ther-
modynamics, and Z is the partition function, namely the normalization constant
to enforce the first constraint. In the following, we assume k = 1 for optimization
problems in a high-dimensional parameter space.

In sum, from the Lagrange multiplier method with a little knowledge from the
equilibrium thermodynamics, we derive the well-known Boltzmann distribution,
where the inverse temperature clearly tunes the energy level of the system [1].

3.2 Variational Free Energy

The behavior of the free energy contributes to the emergent behavior of a thermody-
namic system. However, calculating the free energy in a brute-force way is intractable
due to the O(2") computational complexity. To overcome the barrier, the variational
method provides an effective way to construct an approximate free energy. We take
an example of the above-mentioned multi-spin interaction model which is captured
by the following Boltzmann distribution:

e PEX)

V4

7 — Z e PE®)
X

P(x) =

’

(3.6)
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where x = {x1, x7, ..., Xy} represents the state of N spins in the system. The energy
E(x) is given by
E@) ==Y Jo[] 3.7)
a i€da

where a is the index of the interaction, and i € da specifies the set of spins that
participate in the ath interaction where we use x, to represent these spins. J, is the
coupling strength of the ath interaction. The inverse temperature here can be set to
an arbitrary value, and in an equivalent way, the temperature can be absorbed into
the coupling J,. We, thus, set 8 = 1 without loss of generality. We further define
falxy) = e’ [licaa ¥ which denotes the contribution of the ath interaction to the
Boltzmann measure. Thus, we can rewrite the distribution P(x) and energy E(x)
into the following forms:

1
P@) = — [T fatxa), (3.8)

E@) =~ Inf,(x). (3.9)

These expressions facilitate the following derivation of BP algorithm.
The Helmholtz free energy reads

Fp=—-—InZ. (3.10)
As we mentioned above, an exact computation of the Helmholtz free energy is impos-
sible for alarge-size system. Instead, we introduce a trial probability distribution b(x)
and write the free energy, which is called the Gibbs free energy with some parameters
(e.g., magnetizations) to be optimized:

Fb)=UWb)—-HD), (3.11)

where we define U () as the variational internal energy:

Ub) = Zb(x)E(x), (3.12)

and H (D) as the variational entropy:

H®) = —Zb(x)lnb(x). (3.13)

It is then necessary to compute the difference between the Gibbs free energy and the
Helmholtz free energy, as given by
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F(b) — Fy = Z b(x)E(x) + Z b(x)Inb(x) +1nZ

= Zb(x)(— InZ—-1nPx))+ Zb(x) Inb(x) +1InZ (3.14)

—Zb( )ln

where D(b||P) is the Kullback—Leibler divergence between two probability distri-
butions b(x) and P(x), which is always non-negative and is zero only if b(x) =
P(x), Vx. Therefore, F(b) > Fy and F(b) = Fy only if b(x) = P(x), Vx.

The above analysis shows that the trial probability distribution b(x) yielding a
lower Gibbs free energy will have a smaller distance from the true distribution P (x).
That is to say, we transform the original free energy estimation problem to a (Gibbs)
free energy minimization problem. To obtain a more accurate free energy, we must
find a b(x) to minimize the Gibbs free energy F(b), which is exactly what the
variational method wants to do. To proceed, we have to specify the trial probability
b(x) by introducing the so-called variational parameters, which can be physics-
relevant quantities. In the next sections, we introduce two kinds of approximations
for b(x), which are mean-field and the Bethe approximations.

= D(b|[|P),

3.2.1 Mean-Field Approximation

The mean-field approximation for b(x) is written in a factorized form:
14+ m;x;
bur(x) = ]_[b () = ]_[— (3.15)

where m is the magnetization vector of spins x. This approximation is the naive one
that assumes each spin behaves independently of each other. Note that x; can only
take two values %1 (e.g., spin up and down, respectively). Given the form of by, g (x),
we can compute the mean-field internal energy and mean-field entropy as follows:

Umr =Y burx)E(x)

X

- ;]?[bi(m (—Xa:Ju i];[axi)
- _ZJ,;<]_[ xi>

icda

——Zla l_[ml,

i€da

(3.16)

and
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HMF_—ZbMF(x)lnbMF(x)
:_Zl—[1+mx, 1—[1+;n,-x,~
=—ZZH‘+’"’” =5
YY1 1+':4/x11+;n,-x,~ lnl—l—;n,'xi

i X x\xg j(#i)
14+mix;  14+mx;
oy,
- 2 2
X
=>5.
i

(3.17)

where S; is defined as the entropy of spin x;, and the symbol \ indicates the operation
of exclusion. Thus, the mean-field free energy can be derived as follows:

Fyr=Uyr — Hyr

--Y nm,+zzl+mxf L S

icda

The normalization constraint is automatically satisfied by the factorized form of
the naive mean-field distribution [Eq. (3.15)]. The magnetization now becomes the
variational parameter for the trial probability by, r(x). To minimize the upper bound
of the Helmholtz free energy, we have to compute 3; L and set the gradient to zero:

doF, i 1 i i
- =—Za:Ja I1 m]+zx ﬂ+%

jeaa\i

L] m,.+§1n‘+’"f —o,

e I —m;
a jeada\i

(3.19)

and finally, we derive the recursive-form of m;:

=tanh(z Jo 11 m,> (3.20)

acdi jeda\i

To obtain the fixed-point (equilibrium) values of m, we can run these equations until
a stationary point is reached. Using these equilibrium magnetizations, we can obtain
the value of the Gibbs free energy [2].

However, the spin-independence assumption of the naive mean-field method may
not be accurate, especially when a low-temperature thermodynamic phase is of inter-
est. We need to consider the correlations among the spins in a short-range region of
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O Variable node

Function node

Fig. 3.1 Regions in a factor graph. Solid circles are defined as regions, while the dashed circle is
not a valid region

the factor graph, which is precisely the concept of the Bethe approximation, which
we shall explore in the next section.

3.2.2 Bethe Approximation

The Bethe approximation [3] is an extension of the classic mean-field method, taking
into account correlations between nearest neighboring sites. To introduce the Bethe
approximation, we first define the concept of region in the factor graph. As Fig. 3.1
shows, the region is defined by a set of function nodes and all the variable nodes
connected to these functional nodes. Note that the function node set can be empty.
Variable nodes and functional nodes represent spins and interactions in the multi-
spin interaction model. In this setting, we can introduce the region energy Eg(xr),
the region internal energy Ug(bg), the region entropy Hg(bg) and the region free
energy Fr(bg) as follows:

Er(xg) =—)_In fo(xa), (3.21)
o

Ur(br) =Y br(xg)Eg(x), (3.22)

Hy(bg) = — Y br(xr)Inbg(xg), (3.23)

Fr(bg) = URZZM — Hg(bg), (3.24)

where x  are the variable nodes in the region R, and by (x g) is the joint distribution
of x g. The basic idea of a region-based free energy approximation is to break up the
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factor graph into regions and then sum up their contributions to approximate the true
free energy, where all the variable nodes and function nodes should be summed up
only once. Because overlaps between different regions cannot be avoided in a non-
naive approximation, counting numbers C (an integer that may be zero or negative)
must be introduced to avoid double calculation. Given a region set R, the total internal
energy Ug and entropy Hg can be written as

Ug =Y _ CrUr(bg), (3.25)
ReR

Hg =) CrHg(bg), (3.26)
ReR

with the following two constraints for counting numbers:

Zﬂ[a € RICg = 1, (3.27)
ReR
> lli € RICk =1, (3.28)
ReR

where I[a € R] = 1 when the function node a is in the region R, and takes zero
otherwise. I[i € R] has a similar meaning for variable nodes.

In the Bethe approximation, the factor graph is broken into two kinds of regions
(see Fig. 3.2), which are a large region R; with one functional node and the variable
nodes connected to it, and a small region Rg with only one variable node. Under this
division, counting numbers can be derived as Cg, = 1 and Cr; = 1 — d;, where d; is
the number of the function nodes connected to the variable node i in the small region.
These counting numbers can also be derived from the identity Cx = 1 — 3 g5z, Cs>
where S(R) denotes the region set that is the set of super-regions of R. If the set
of variable and function nodes in R; are a subset of nodes in R,, then R, is the
super-region of R; [4]. Thus, we can compute the Bethe internal energy Ug,. and
the Bethe entropy Hp,pe as follows:

Large Region Small Region

O Variable node
O Function node

Fig. 3.2 Region division in the Bethe approximation
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Uethe = — Z ba(¥a) In fu(X4), (3.29)

Hpohe = ZZb (x)Inb, (xa)—i-Z(d — 1)219 () Inb;(x;), (3.30)

a X

where we replace bg, (xg,) and bg,(x g,) with b,(x,) and b; (x;), respectively. The
Bethe free energy is then given by

Fpethe = — Zzb (xq)In fa(xu) + Zzb (xa) Inby(x,)

a Xa

—Z(d —1)Zb(x,)lnb(x)

(3.31)

which is the target function to minimize later. By taking into account the nearest-
neighbor correlations, the trial probability distribution can also be written in a com-
pact form [4, 5]:

[ 1 ba(x4)

bBA(x) == —l_li bi(xi)di71 ’

(3.32)

which is automatically normalized and exact when the factor graph is a tree, but still
a good approximation when the factor graph is not tree-like. A rigorous proof is hard,
but the approximation should be compared with simulations in practice. Inserting
the form of bg4 (x) into the Gibbs free energy, one can derive the same form as that
in Eq. (3.31).

Before using the Lagrange multiplier method, we first formulate the probability
constraints as follows:

Y bi(x) =1, Vi; (3.33)
Y ba(xa) =1, Va; (3.34)
> balxa) = bi(x). ¥, a). (3.35)
Xa\X;

Finally, the Lagrange objective function reads

- Zzba(xa) In fa(xa) + Z Zba(xa)ln ba(xa)

a Xaq a X

=i = DY bl i) + > k(Y i) — 1) (3.36)
3 (D baxa) = 1)+ 30D praid (Y buxa) = i),

ia Xx; Xq\Xi
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[]

P_.(x) b,(x,)
O« g

a i b.(x;)
[]

i Pi~>a (xi)

O Variable node
[:] Function node

Fig. 3.3 Message passing process in the BP algorithm. (Left Panel) cavity probabilities converge
to a variable node; (Right panel) cavity probabilities converge to a function node

After performing the variation on L, we can obtain the form of the spin distribution
b; (x;) and joint distribution b, (x,) [4]:

1
bi(x;) = Z ale_[m Pysi(xi), (3.37a)
ba(xy) = —fa @) [T [T Po—iCe (3.37b)
i€da bedi\a

where we define P,_,;(x;) and P;_.,(x;) as the messages passing between the func-
tional nodes and variable nodes in two directions as illustrated in Fig. 3.3. These two
messages obey the following iterative equations:

Posi) = Y faxa) [] Pimalx) (3.382)
,je()a\t jeada\i

Prate) = — [ Pooiri). (3.38b)
Zi—a bedi\a

Note that Eq. (3.38a) is compatible with the marginal probability constraint used to
write the constrained Bethe free energy, while Eq. (3.38b) follows directly from the
result of b; (x;) by just excluding the function node a. Finally, the (joint) marginal
probabilities b; (x;), b,(x,) can be interpreted as beliefs and written in an explicit
form as

bi(xi) o [ | Pacsi (), (3.39)
aedi
ba(xa) & fuxa) [ ] Pivalxi), (3.39b)

icda
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which is consistent with Eq. (3.37).

Equation (3.38) is also called the belief propagation (BP) algorithm in computer
science, where we can perform the iteration of the messages { P, ; (x;), Pi—4(x;)} to
their fixed point and calculate the beliefs b; (x;) and b, (x,). The fixed points of the BP
algorithm correspond to stationary points of the constrained Bethe free energy [6].
Depending on specific settings, the number of stationary points may be different,
being finite or exponentially large. For example, if the factor graph is loopy, or the
model has a complex low-temperature phase, the BP iteration may not converge, or
oscillate among several solutions. Note that the cavity method allows an extension
to handling the case of exponentially many states (in physics, corresponding to one-
step replica symmetry breaking, see Chap. 9). The probability distributions of cavity
fields over the states are then required to be introduced. We will provide an in-depth
discussion about this point in Chap. 9.

The messages P;_,,(x;) here can be interpreted as the probability distribution of
the variable node i with the removal of function node a, which is similar to the
definition in the cavity method. Actually, we can prove that the BP equations are
equivalent to the cavity equations as follows. First, we substitute the expression of
Py_.;(x;) into P;_,,(x;) in the BP equation, and we obtain

Pat)=—— [T X2 ftew) [T Piosx)

Zisa bedi\a x;:j€db\i jEdb\i (3.40)
_ 1 3 e an [T Ttmjopxj
5 )
Zisa bedia x;:j€db\i jeab\i

We then define A} = 3", gy e Micmi % T o B where we take x; =
+1. A, follows the similar definition with x; = —1. Thus, Z;—, = [[,cpi\4 Af +
[Ipcoia Ap - After a few algebra operations, A} and A; can be written, respectively,

as

Af =coshJ, [ 1+tanh g, [T mj-s |, (3.41)
jeab\i

A, =cosh J, | 1 —tanh J, ]_[ mi_y |, (3.42)
jeab\i

which is exactly the same as that derived by the cavity method in the previous chapter.
According to the definition, we can then derive m;_,,:
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Mmi—q = Z Piq(xi)
X

~ esina Ay = Tpesina A
= " b
[Treona Ap + [pesina Ap
. [Tpeaia( +tanh Jp [T copm; mjsb) — [lpesina (1 — tanh Jp [T;cop; mj—b)

 yeonad + tanh Jp TT;com; mj—0) + Tpesina (1 = tanh Jp TTjcop mj—b)
(3.43)

After introducing an auxiliary variable u,_,; through tanhu,_; =
tanh Jp, HjeBb\i m j_.p, we finally obtain

miq=tanh | Y u,_; |, (3.44a)
bedi\a

tanhuy; = tanh J, [ m;p, (3.44b)
jeob\i

which is the standard cavity equation when g = 1.

The Bethe approximation is merely a pair approximation of a more general
method—<cluster variational method [5]. The cluster variational method is able to
treat arbitrary large clusters of correlated sites, and yet, the computational complex-
ity increases. Recent developments also include loop corrections for probabilistic
inference on factor graphs [7, 8].

3.2.3 From the Bethe to Naive Mean-Field Approximation

In the naive mean-field approximation, we use a factorized form of the trial proba-
bility distribution that neglects the correlation among spins. In contrast, the Bethe
approximation considers a short-range correlation among spins, where it is expected
that in a high temperature, even these short-range correlations become unimportant,
and thus, the naive mean-field approximation will be recovered. More precisely, we
take an example of a two-body interaction model. Suppose our model is a two-body
interaction model with inverse temperature $. In this setting, the mean-field iteration
equations are given by

m; = tanh(,B 3 J,-_,-mj). (3.45)

jedi

Next, we derive this equation from the Bethe approximation.
In the Bethe approximation, the cavity iteration equations are given by
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Miq =tanh Y u ., (3.46a)
bedi\a
tanhuy_; = tanh BJ, [] mjzs. (3.46b)
jEab\i

where m;_,, can be derived as

m;_,q = tanh Z Upsi
bediva

= tanh (Z Up—i — Ha»i) (3.47)

bedi
= tanh(tanh™ (m;) —uq_;)
_omi - tanh BJ, ]_[jeaa\i Mj_q
1 —mitanh BJ, [T o Misa

tanh x+tanh y

where we have used the identity tanh(x + y) = 0 anh 5

body interaction, we have

. Considering the two-

m; — tanh ﬂJijmj_>,-

, (3.48a)

Mivj = 1 — m; tanhﬁ.l,'jmjﬁi
= St i (3.48b)
I 1 —m; tanh ﬂ.]ijmiﬁj

We can then eliminate m;_, ; and m ;_,; in the cavity equation, by obtaining the non-
cavity functions of m;_.; and m;_, ; as a function of single magnetizations. We first
have the following expressions based on Eq. (3.48) [9]:

mi*)j :f(m[,mj,tanhﬁJij), (349)

mj; =f(mj,m,-,tanh,3J,-j), (3.50)
=2 — /(1 —)2 —4t(a — bt)(b — at)

fla,b,t) = 20— an . 3.51)

Thus, we can write a non-cavity version of m; as follows:
m; = tanh ( Z tanh™'(f (m j, m;, tanh BJ;;) tanh ﬁJ,-j)). (3.52)
jeoi

Since we assume fJ;; is weak (e.g., in a high-temperature phase), we can perform
the Taylor expansions like tanh ™' x & x, tanhx ~ x, (1 + x)* ~ | +ax + %a(a —
1)x2, when x is a small quantity, and we finally get



3.2 Variational Free Energy 29

m; = tanh (Z(,Bjijmj — ﬁzll%-(l — m?)mi)): (3.53)

jeoi

where the second term in the summation is called the Onsager reaction term, a
characteristic of a high-temperature expansion solution of a spin glass model [10,
11], which we shall introduce in more details later. Neglecting the second-order term
of couplings, one recovers the naive mean-field equation.

3.3 Mean-Field Inverse Ising Problem

In the previous sections, we describe how to find the statistical physics solutions of an
equilibrium thermodynamic problem under some approximations, which is exactly
a direct problem. However, if we acquire data samples from an unknown model,
we can predict the model parameters, e.g., couplings and fields, from these raw data
samples, which is called the inverse problem. The direct problem can provide insights
into the inverse problem. Let us explain this in more details.

An Ising model considering only up to pairwise interactions is described by

H(o) =) Jjoi0; — Z hio;, (3.54a)
i<j
P(o) = E i< oY hioi (3.54b)

Note that 8 has been absorbed into the model parameters in the current setting. Given
measured magnetizations m; = (0;)qaa and correlation functions C;; = (0;0;)data —
m;m j, what we want to estimate is the coupling constants and external fields {J;;, A;},
which is a typical unsupervised learning problem. This is exactly the Boltzmann
machine learning [12]. It starts from a set of initial parameters {J;;, h;} and then
updates the parameters by an increment:

AJij =n((0i0})data — (0i 0 )1sing) (3.55a)
Ah; =n({07)data — {03 )1sing)» (3.55b)

where 7 is a predefined learning rate. The iteration runs until the model average and
data average match with each other within a certain accuracy. The model average
can be estimated by the Monte Carlo algorithms, which we shall introduce in the
following chapter. However, when the system size is large, the mean-field method is
relatively fast.

To carry out the inference, we first compute the magnetization:

dlog Z(J%, i< lijoioi+2; hioi
i = —g S Za, , (3.56)
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and then we apply the fluctuation-response theorem [13]:

ami eZi</‘ J[ja,a_,erZ,. hioi
TP DL A
(N (]

Z eXi<j J50i0 T hoi Z eXi<j J50i0 T2 hoi (3.57)
_ o o
' z ! Z
{o} {o}

=Cij = (0i0})data — MM

The symbol with the superscript * indicates the current estimates of the model
parameters. These steps amount to the expectation step of a standard Expectation-
Maximization procedure [14]. The updating procedure in Eq. (3.55) corresponds to
the M step.

Using the above relationship C;; = 9mi and the naive mean-field equation m; =

3h;
tanh(h; + Zk#i Jixmy), we get

Cij =1~ miz)[&'j +> Jikaj],
ki (3.58)
C =P +PJC,

where P is a diagonal matrix with P;; = (1 — miz)Si ;. Finally, we obtain the naive
mean-field (nMF) solution of the inverse Ising problem:

M= @) - (). (3.59)

The external fields can then be reconstructed based on the predicted couplings. The
naive mean-field solution is the simplest one among other mean-field methods,
including high-temperature expansion, small-correlation expansion and the Bethe
approximation [2, 15].
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Chapter 4 ®
Monte Carlo Simulation Methods Chack or

A few systems in equilibrium physics can be analytically solved. It is, therefore,
necessary to develop numerical techniques to estimate the equilibrium properties
of a physics system. For example, given the Hamiltonian of the Ising model, it still
requires O(2") time complexity to directly compute expected energy, where N is the
number of spins. To either check how accurate a crude approximation is, e.g., mean-
field approximation or the Bethe approximation, or estimate the typical energy level
of a statistical mechanics model that cannot be analytically solved, we rely on the
Monte Carlo simulation techniques, including their variants, which are widely used
not only in the physics field itself but also in the machine learning community. For
example, the Gibbs sampling is performed with the classical Monte Carlo methods or
its variants with the help of importance sampling. In this chapter, we will introduce
the basic knowledge about the sampling method and its applications to standard
physics models.

4.1 Monte Carlo Method

The main idea of the Monte Carlo method is simple. For example, calculating a
multi-dimensional integral can be carried out by drawing a set of samples according
to a predefined distribution. We first introduce the standard steps to implement the
Monte Carlo method:

e Transforming the original problem of interest to a statistical problem, like calcu-
lating the expectation of some random variables under a specific distribution.

e Sampling random variables from the specific distribution.

e Using the samples from the second step to compute any quantity of interest and
obtaining the result of the problem.

We give here a representative example of estimating an integral or a sum:
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(A) = / A®) f(x)dx,

4.1)
(A) =) AXPp®X).

To calculate the above expectations, one can sample random variables from the
distribution f(x) or p(x) and then obtain a sample collection {x;, Xo, X3, ..., X3} of
the size M. Finally, {A(x;), A(X2), A(X3), ..., A(Xp)} can be obtained. As A(X;) is
independently estimated, the law of large number implies that

lim P ! XM:A( ) — (A) 1,V 0 “4.2)
— i) — < =1, > V. .
am P (a7 24 [)= e
Thus, the expectation can be estimated as
(A) ~ - > AX) (4.3)
>~ — X;). .
M —
As the collected samples {xi, X, X3, ..., X)r} are independent and identically dis-

tributed, the statistical error due to the samplin,g?’ is related to the variance of A and
can be estimated to be of the order of O(M~2) [1]. Moreover, the Monte Carlo
estimator is unbiased. Given a large number of the Monte Carlo samples, the empir-
ical estimation converges to the true expectation we want to compute [2]. Interested
readers can figure out the procedure as the above description to estimate the integral
f fooo x2Dx, where Dx indicates the random variable x is a standard Gaussian variable.
The Monte Carlo estimation can be compared with the analytic result of 1. As the
number of random samples increases, the estimation will approach the exact result.
In the remaining chapters, we will also show this kind of method is also very effec-
tive and popular to solve the saddle-point equations of the replica method applied to
solve a variety of neural network models.

4.2 Importance Sampling

In the Monte Carlo simulation, sampling a distribution is usually required, e.g.,
the Gaussian distribution as mentioned in the previous section. Unfortunately, most
distributions are very challenging to sample, e.g., the Boltzmann distribution in sta-
tistical physics. Here, we shall introduce some basic strategies to generate random
samples from distributions that are more complicated than the commonly used ones,
such as uniform, Poisson and Gaussian distributions.

By introducing a simple trial distribution, say g (x) that is easy to sample, we can
recast Eq. (4.1) as
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(A) =/wq(x)dx,
q(x)

A
(4) = Z%q(x»

4.4)

X

The expectations (A) y and (A), are then transformed to (%)q, and (%)q.

Therefore, we can first sample the distribution g (x) to get samples {x;, X, X3, ...,
Xy} and then calculate the expectations:

Ay ~ Zim AGD PO /9(%)

( T , (4.5)

where the factor % can be thought of as an importance weight of the sample
X; in computing the expectation. This estimation is, thus, called the importance
sampling [2]. When g (x;) = p(X;), the importance sampling turns out to be Eq. (4.3).
Choosing a trial distribution is important; otherwise, the Monte Carlo estimation
will become noisy with a large variance, being very slow to converge to a quantity
of satisfied accuracy. An annealed importance sampling is introduced to build a
suitable g (x) starting from a trivial one [po(x)]. A common scheme specifying the

intermediate distribution is given by

pi(x) = po(x)' P p,(x), (4.6)

where 0 = By < 1 < --- < B, = 1. In other words, p;(x) interpolates between
po(x) and p, (x) = p(x). The samples can then be sequentially generated by design-
ing an appropriate transition probability of two states. Interested readers can find the
original paper [3] for implementation details.

4.3 Markov Chain Sampling

To realize a sampling where a sequence of samples are generated, one can construct
a Markov chain during sampling. The Markov property implies that the next state of
a dynamics is only related to the current state, and the conditional probability can be
written as

P[S,+1|S|, -~7St] = P[Sz+1|sz]v 4.7)

where S, is the state at time . A Markov chain obeys the Markov property for
its dynamics. One can construct a time-homogeneous Markov chain by setting up
an initial distribution 7(Sy) together with the transition probability W (S — S’).
A stationary distribution 7 (S’) can, thus, be identified by satisfying the following
condition:
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7(S) = Z WS — S)Hn(S). (4.8)
S

The task of designing a Markov chain becomes simple if the detailed balance criterion
is obeyed [1], i.e.,
WS — SHn(S) = WS — S)n(S). 4.9)

The detailed balance criterion guarantees that the designed Markov chain converges
to the target distribution [Eq. (4.8)] [1].

4.4 Monte Carlo Simulations in Statistical Physics

In statistical physics, an equilibrium system is described by the Boltzmann distribu-
tion: 1
Pey(s) = Ee"”“”, (4.10)

where the partition function Z = 3", e #M® and H(s) is the system’s Hamiltonian.
Then the expectation or thermal average of an observable O(s) is given by

(0) = % Z O(s)e PH®) 4.11)

The partition function is usually intractable, making an analytic estimation of ther-
modynamic quantities impossible. The Markov Chain Monte Carlo (MCMC) is then
useful for estimating the quantities of interest. To illustrate the MCMC method, we
simulate the SK model as an example. The SK model is a fully connected mean-field
glass model, and the statistical mechanics properties were first studied analytically
in the seminal work [4]. The Hamiltonian is given by

1
H = -3 ; Jij0i0, (4.12)

where the spin 0; = %1, and the couplings follow independently a Gaussian distri-
bution of zero mean and variance 1/N. The model has a paramagnetic-to-spin glass
transition at the critical temperature 7 = 1. By using the MCMC method, we can
acquire the equilibrium properties of the SK model, which can be compared with the
theoretical analysis.

Next, we introduce two Monte Carlo techniques to numerically evaluate the model.
But we emphasize that both methods are generally applicable to other similar mod-
els, for which an exact computation of relevant thermodynamic quantities may be
impossible.
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4.4.1 Metropolis Algorithm

The detailed balance condition of the Boltzmann distribution can be written as fol-
lows:
Peg(s)W(s; — 8;) = Peq(s;))W(s; — s;), 4.13)

where W(s; — s;) is the transition probability from state s; to state s;. The ratio
between two transition probabilities can be rewritten as

W(si > s;) o —PAH:s)
W(Sj — S,‘) ’

(4.14)

where AH(s;,s;) = H(s;) — H(s;), and the Boltzmann distribution is used. Our
purpose is to find a transition probability matrix satisfying the detailed balance con-
dition. In fact, choosing the transition probability form is not unique, and there are
two frequently used forms. One is the Metropolis algorithm:

_ 17 Aq'{(Si,Sj) <O;
W(si — s;) = {eﬂAﬂ(s;,s‘,)’ AH(s;.s}) > 0. (4.15)
which can be also recast into the form W (s; — s;) = min (e A2HE5) 1), A pseudo-
code is given in Algorithm 4.1. Another popular choice is the heat-bath algorithm:

e PAH:s))

W(si — s;) = (4.16)

| + e PAHGS)”

It can be verified that the Metropolis dynamics is always more likely to accept an
attempt of spin changes that leads to a small change of energy. In addition, if we
define the transition probability as a function F (e #2%) it can be also verified that
the above two choices satisfy Fil(’/‘))c) = x for all x, compatible with the detailed
balance criterion.

For a fast sampling, we can flip just one single spin (rather than a small group of
spins) at each step of the Metropolis dynamics, and then, we can obtain the following
transition rule:

1
W(o; - —oi) = 5[1 — o; tanh Bh;], 4.17)

where h; = ) ki Jijo; is the local field acting on the spin o;. This rule is derived
from the heat-bath choice.

A random initial state is far from equilibrium with a high probability, and thus,
a Markov chain dynamics requires a relaxation time for the system to reach the
equilibrium state. This time scale is called the equilibration time ., . In practice, 7.4
is measured in the unit of the Monte Carlo sweep (MCS), in which one MCS equals to
N proposed single-spin-updates. To verify whether the system arrives at equilibrium,
it is necessary in practice to check the evolution of some observables, e.g., energy.
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Fig. 4.1 Evolutions of the energy density of the SK model with N = 500 and J;; ~ N(0, 1/N).
a Metropolis Monte Carlo simulation. b Parallel Tempering Monte Carlo. The dashed lines are the
corresponding predictions of replica theory. The time step is a measure in the unit of the Monte
Carlo step (MCS). Each step means a sweep of all spins for the proposed update. B defines the
inverse temperature

Algorithm 4.1 Metropolis Algorithm

Input: The number of samples M, temperature T', T4, 5t
Output: A collection of samples

1: Initialize configuration S randomly;

2: Initialize i = 0;

3: Initialize counter = 0;

4: while (i< M) do

5: generate a trial state S';

6:  compute W(S' — S|T);

7: if W > rand(0, 1) then

8: S=¢

9: if [(counter > 7,4) and (counter % 6¢==0))] then
10: Append S to the sample collection.

11: i=i+l

12:  counter = counter + 1
13: return the sample collection.

As shown in Fig. 4.1a, the energy of the SK model arrives at equilibrium at about 7.,
MCSs, which depends on the temperature. After the relaxation, the energy fluctuates
around a typical value, which could be predicted by theory. Therefore, samples can be
collected after 7, MCSs to estimate equilibrium values of thermodynamic quantities
of interest.

Even if the dynamics reaches a steady state, an independent sampling of the
equilibrium state requires a certain number of MCSs separating two consecutive
samplings. Therefore, we need to compute a time-dependent autocorrelation function
of any observable O:

Colt) = (O (10) O (10 4 1)) — (O(10))(O(to + l))’ 4.18)

(0%(19)) — {O(1p))*
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Fig. 4.2 The relaxation dynamics of the autocorrelation function for the same SK model defined
in Fig. 4.1

where (-) indicates a thermal average, and 7y denotes the starting time. In general,
Co(t) ~ exp (—1/Tauo), and Tayo 18 the corresponding time scale. The correlation
length diverges at a continuous phase transition, while the autocorrelation time also
diverges at the transition, which is also called the critical slowing down phenomenon.
In glass physics, the Edwards—Anderson order parameter gga = % Zi (:)? 51,
which can be treated as the long-time limit of the time-dependent autocorrela-
tion function gga = lim,_, o, C(¢), where C(¢) = % > :{0i(0)o;(1)). The Edwards—
Anderson order parameter can also be used to detect ergodicity breaking. A typical
example of the autocorrelation profile is shown in Fig. 4.2 for the SK model at
different temperatures.

4.4.2 Parallel Tempering Monte Carlo

When we are interested in a low-temperature phase for a spin glass model (e.g., the
Sherrington—Kirkpatrick model, the Hopfield model, etc.), the Metropolis algorithm
is easy to get trapped in a local minimum, once the Gibbs measure is decomposed
into an exponential (in the number of degrees of freedom) number of metastable
states. In general, there does not exist one efficient local dynamics method over-
coming this challenging fair-sampling problem. However, there do exist a variety of
sampling heuristics. One well-known example is the simulated annealing [6], where
the starting temperature for the Metropolis sampling is much higher than the target
low temperature, and the dynamics is run at each intermediate decreasing temper-
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ature for a certain number of MCSs, and finally, a ground state of lower energy is
expected to be reached by the annealing process.

The other more efficient one is the parallel tempering method [7], focusing on
overcoming energy barriers by simulating several copies of the original system at
different temperatures. In this method, M replicas without interaction, which means
replicas are independent, are used to construct an ensemble. The m'” replica has the
original Hamiltonian H(X,,) and obeys the Boltzmann distribution with an inverse
temperature $,,. The corresponding inverse temperatures satisfy 8,, < fB,,+ for con-
venience. Then the state of the ensemble can be described by an extended state
{X} = {X1, X2, ..., Xu}, and the partition function of the ensemble is given by

M M
Z=>) exp (— > BuH <Xm>> =[]z®Bw, (4.19)
{X} m=1

m=1

where Z (f,,) is the partition function of the original system with 8,,. The probability
of the extended state with a temperature set can be written as

M 1 M
PUX. 1) = [ Peg . ) = Z exp (— > BuH (Xm>> . @20)

m=1 m=1

To construct the detailed balance condition, we only consider exchanging config-
urations between two replicas. For example, the extended state {...; X, B,,; ...; X/,
Bn; ...} changes to {...; X', Bu;...; X, By; ...} with a transition probability
W (X', Bu; X, Bl X, Bn; X', B,). The detailed balance condition can, thus, be written
as

PUo..s X, Bus oo s X B o DW(X', Bus X, Bul X, By X' Bn)

) , , (4.21)
=P{...s X Bus oo X, Bus - DWX, By XU, Bul X, By X, Br)-
It is then easy to derive the ratio between the two transition probabilities:
WX/) m;X1 nX, m;X/v n
(X A bul //3 a = exp(—A), (4.22)
W(Xv ﬂma X/’ ﬂn|X ’ ﬂma X’ ﬁn)
where
A= (B = Bn) (HX) —H (X)) (4.23)

A reasonable choice of the transition probability can then be expressed as follows:

1, for A <0,

exp(—A), for A > 0. 4.24)

W(X/, ,Bm; X’ ﬂﬂ'x’ ,Bm; X/, ,Bn) = {

In sum, the parallel tempering Monte Carlo can be implemented by the following pro-
cedure. First, using the conventional MCMC method to simulate each replica in the
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ensemble for a certain number of MCSs. Then configurations of two neighboring tem-
peratures are exchanged with the transition probability W (X', B8,.; X, Bu+11X, Bm;
X', Bn+1). In general, arbitrary pairs of replicas (say, at two different temperatures
T, and T,,) with associated microscopic configurations can undergo temperature
switching [8]. We remark that the probability for the temperature exchange between
nonadjacent replicas decreases exponentially, yet essential to speed up crossing the
high energy barriers [8].
Finally, an expectation of any observable O can be obtained:

1 M
Op, = 77 0 (Xn(0). (4.25)
t=1

A pseudo-code for the parallel tempering method is shown in Algorithm 4.2.

Algorithm 4.2 Parallel tempering Monte Carlo

Input: The number of samples L, B,4x, Bmin, and the number of temperatures M.
Output: Sample collection.

1: Initialize B1 = Bmin, Bm = Bmax:

2: Linear initialization of B8: 8,, = B1 + (Bm — B1) [’(’4—:'1;
3: Initialize the extended state randomly: {X} = {X, X2,..., Xu};
4: Initialize 1 = 0;

5: Initialize counter = 0;
6

7

8

: while (i< L) do
Applying the MCMC (e.g., the Metropolis method) for each replica for a few MCSs
for B, in {B1, B2, ..., Bu—1} do

9: compute A= (/3m+1 - ,Bm) (H(Xm) - 7_((Xr71+1))~
10: if exp(—A) > rand(0, 1) then
11: Swap X, and X, 41.

12:  Append {X} to the sample collection.
13: i=i+l
14: return the sample collection.

A high-temperature phase has a fast dynamics, while a low-temperature phase
has a very slow dynamics, due to the potential rugged energy landscape. To ensure
a proper acceptance ratio, the acceptance probability e~2 should be of order of one.
According to Eq. (4.23), one has

—A=8H Xnp1) — H (X)) ~ 52%1‘5, (4.26)

where § indicates the small inverse-temperature difference, and E = () is the mean
thermal energy and is an extensive quantity. To ensure the acceptance probability is
of order one, the difference between neighboring temperatures § should be of order

\/Lﬁ, implying that a number of order v/N of replicas are required [7]. In essence, the



42 4 Monte Carlo Simulation Methods

new configuration from the fast mixing chain allows the chains at a low temperature
to sample the state space more efficiently, compared with a pure Metropolis local
dynamics.
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Chapter 5 ®)
High-Temperature Expansion i

In this chapter, we introduce one important theoretical technique—high-temperature
expansion, to derive the Thouless—Anderson—Palmer (TAP) equation, a seminal equa-
tion in standard spin glass theory (Thouless et al. in Phil. Mag. 35(3):593, 1977
[1]; Plefka in J. Phys. A 15(6):1971, 1982 [2]; Georges and Yedidia in J. Phys. A:
Math. Gen. 24:2173, 1991 [3]). This technique is quite popular and useful even
in machine learning community, acting as a perturbation analysis to derive efficient
algorithms for inference and learning (Maillard et al. in J. Stat. Mech.: Theory Exper.
2019(11):113301, 2019 [4]).

5.1 Statistical Physics Setting

In statistical physics, given a Hamiltonian H, the corresponding partition function

is defined as
Z= Ze—f“‘”“), (5.1)

which is the normalization constant of the Boltzmann distribution. The inverse tem-
perature 8 = 1/T, and o denotes the configuration vector. The average of any ther-
modynamic quantity A(o) with respect to the Boltzmann distribution is given by

(4) =) A(0)P(0), (5:2)
[
where the Boltzmann distribution P (o) = # The internal energy E () is, thus,
defined as
E(B) = (H) =ZH(0)P(0)- (5.3)
[

According to the probabilistic interpretation, the entropy is defined as
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S(B) = _Zp(a)lnp(a). (5.4)
The Helmholtz free energy is, thus, defined by

1
FB)=EP) —TSP) = 3 InZ(p). (5.5)

In a complex system, like a neural network, the Boltzmann distribution is com-
monly hard to compute (including uniform sampling). However, the variational
method approximates the intractable distribution P (o) by Q(a) which belongs to
a family M of tractable distributions. The distribution Q is chosen such that it
minimizes a certain distance measure D(Q, P) within the family M. For example,
D(Q, P) can be chosen as the Kullback-Leibler (KL) divergence between Q and
P:

Qo) 0
KL(Q||P) = ZQ( n L < ;>Q, (5.6)
e—BH @)
where (- - - ) denotes an expectation with respect to Q. Inserting P (o) = Z
into Eq. (5.6), we get
KL(Ql|P) =InZ + BE[Q] — S[Q] =InZ + BF[Q], (5.7)
where the variational energy is then defined by
E[Q]=)_Q()H(0), (5.8)
and the entropy of the trial distribution Q is given by
=~ 0()In Q). (5.9)
The variational free energy is, thus, given by
F[Q] = E[Q] - TS[Q]. (5.10)

We remark that F[ Q] constructs an upper bound to the Helmholtz free energy, due
to the non-negativity of the KL divergence. The bound is tight once Q = P.
To proceed, we introduce the Gibbs free energy Gg(m) under the distribution Q
as follows:
Gp(m) = inn{F[Q]I<0>Q = mj. (5.11)
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The Helmholtz free energy is just a thermodynamic value equal to E — T' S at equi-
librium, but the Gibbs free energy is a function that gives the value of E — T'S when
some constraints (e.g., magnetizations) are applied. The advantage of working with
a Gibbs free energy instead of a direct computation of the Helmholtz free energy is
that it is much easier to apply intuitive approximations, as we explain below.

‘We then minimize the Gibbs free energy in the following steps. First, we constrain
the minimization in the family of distributions satisfying (¢') o = m for fixed m. By
adding a Lagrange multiplier A, we obtain

1
Gp(m, 1) = E[Q] -~ TSIQ] - 2 D hilloig —my)

=Y Q()H (o) - TS[Q] - %Z Y %0;0(0) + % > nim;

=Y Q(@)[H() - %Zm] —TS[Q]+ % > him.

(5.12)
Equation (5.12) is of the form of the variational free energy [Eq. (5.10)], where H (o)
is replaced by H(o) — )_; %a,-. Hence, the valid distribution is given by

e—ﬂH(G)-FZ,- Aioi

Ox(0) = Z—x’ (5.13)

where Z, = Y e PH(@+Li % This equation comes from the fact that the varia-
tional free energy takes a minimum when Q is the Boltzmann distribution P (o).
Inserting this distribution back into Eq. (5.12) yields

1 1
Gﬂ (m, )») = —E In Z e_ﬁH(UH_Z’ Ai0i + E Z )»imi
o i

1 (5.14)
— _—In Ze—ﬂﬂ(a)+2, hioi =Y dimi
o

The constraint (0)p = m has been enforced by the Lagrange multiplier A that is
determined by

BGg(m) = max —ane‘ﬁH(“HZ" hoi 4 Zkimi . (5.15)

The max operation is related to the property of the Hessian matrix. By using the
Lagrangian multiplier method, we carry out the derivatives:

3 (—BGp(m, 1))

o =(oi)g—m; =0 = m; = (0i)o, (5.16)
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3 (—BGp(m, 1)) 3 a; IA;
om; - Z 0% [=pFs 0] 5 =% = X]: pral
—Z ’(o,x— mj) — i (5.17)
= —)\,l-
= 0’

where —B Fg (X) ln Z, . Finally, we obtain
. 1
min, Gg(m) = F[P] = _E InZ. (5.18)

Note that Gg(m) is a convex function with a unique minimum at meq. In sum, the
approximate computation of G g(m) can be used to get an approximation for the true
free energy F[P] as well.

5.2 High-Temperature Expansion

In this section, we apply the high-temperature expansion to approximate the true
Helmbholtz free energy. We first introduce the seminal Sherrington—Kirkpatrick (SK)
model. This model was introduced in 1975 as a simple model of spin glass [5]. It is
actually an Ising model with disordered couplings. For simplicity, we ignore external
fields here. The Hamiltonian of the model is given by

N
H(o)=—Y_ Jjoi0;, (5.19)

i<j

where couplings J;; are independent and are Gaussian random variables for i < j
with mean J; (here we just assume J, to be 0) and variance J2/N. J; j acts as quenched
disorder for the model.

The Gibbs free energy is unfortunately intractable, making an optimization in the
magnetization space challenging as well. Therefore, we need to consider a perturba-
tion analysis of the free energy, e.g., in terms of high temperatures. The approximation
accuracy can be controlled by including higher orders of expansion.

We define a new partition function associated with the Hamiltonian as follows:

Zg=Y et (5.20)
o

where the modified Hamiltonian is given by
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~ )Ll' )Li
H()=H@)—) ff) (01 —my) ZJ,,o,o, > /(3’3) (0 —my),
i t;éj i

(5.21)
where we write A;(8) as an explicit function of the temperature, because A; is used
to enforce the magnetization that depends on the temperature. The relation between
the Gibbs free energy and the new partition function is

— BGp(m, L) =1n Zg. (5.22)

We then carry out the Taylor expansion at 8 = 0:

32 2
Lmzy B s

- 0 -
—Gm:an‘ —|——an‘ n
BGg(m) Blocs 8 B Y. o 2

ap

At f = 0, we obtain

i — Z e2i Mi(oi—m;)
=[[2 e (5.24)
= 1_[ e kM l_[ (2cosh A;) .

Because
d1n Zpo m; = tanh (};)
3—)»,- =—m; +tanh (};) =0 = {/\i — atanh (m;) ° (5.25)
then we can calculate the first term:
In Z,g|,3_0 = — Z atanh (m;) m; + Z In (2 cosh (atanh m;))
1 i L 1+m;
_—Z mln i Zln[ ""—l—eil‘”']
14+ m; 14+ m, 1 —m;
= — 1 In
Z —m; n + Z ( — ml g mi)
m; 1+m; m, 1 2
= ——1n +—= +
: ( 2" T2 ) Z V=) (L +my)

1+m,~ 1+m, 1—7’11,' 1—m,-
=—Z In + In .
- 2 2 2 2

(5.26)
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Here, we have used the mathematical identity: atanhm; = %ln }f—'rz The second

term is given by

dIn Zg 1 Z[ i oA i
— = == (—H)e P+ 3" = (0, —my) e
B |, Zs % — op
= — (H)ls_0 (5.27)
1
=§Zjijm,-mj.
i#j

Note that the thermal average is carried out under the Boltzmann measure of H (0),
and the correlation between two spins is negligible in the high-temperature limit.
The third term is given by

e Bl A He P 31nZg
=_|:Z Z H(—H-anﬁ(ai—mi))—; 7 : 8ﬂi|

= (uH).
(5.28)
Here, we have introduced a very useful operator u as follows [3]:
oy -3 2 )=H — (H) —k (5.29)
u = — — — (0, —m;) = — — .
i p
where k 1=, % (o; — m;). Because
dlnZ V4
D% _ 320 — (5.30)
am; Zlg

we have the following result:
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| 90dlnZy 9 0lnZ
Blseg 0B Oomi  Om; 0B
19
:—EJZJ[jmimj:—ZjijmJ‘.
Lt J (D)

We, thus, conclude that

ulp=o = —% Z Jijoio; + % Z Jijmimj + Z Z Jijmj(o; —m;)

i#]j i#] i jU#AD
1
= —EZJU‘ (O’,‘ —m,‘) (O'j —mj).
i

To proceed, we should first calculate the mean and variance of u:

and
(u?) = (u (H — (H) — k)) = (H) — (u)(H) — (ku) = (uH).

We can prove above Eqgs. (5.33) and (5.34) by using the following identity:

d 1 Y oA (B)
- I BH [ _ o m.
ap (0) = Zﬂ Ea Oe < H + Ei o (o; m,))

4 Yo ?e‘ﬂg ~dln Zg n 2o %T?eftm
75 op Zs
a0
-2 om
op
where O is any observable, and
d ao;
250 =0= <%> — (o) = (o),
((oi =mi)u) =0,
(ku) = 0.
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(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

Note that the full derivative vanishes due to the constrained magnetization [i.e., as a

52

constant, see also Eq. (5.11)]. Therefore, we can obtain i InZ B by calculating
=0

(1) Ip=o:
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Z JijJu ((0i —my) (o7 — mj) (ox — my) (01 — my))
i) kA

Z <(<’z ) (0 = mj)2>

t#/

= ZJZ 1—m?) (1 —m?),
1#]
(5.37)

where we have used the formula: ((0; — m;)?) = 1 — 2m? + m? = 1 — m?. Finally,
we obtain

l4m 14+m 1—m 1—m
_IBGﬂ(m)z—Z< RIS ST Sl LT m)

- 2 2 2 2
+%ﬂZJijmim] ZJZ (1—m}) (1 —m3) +O0(B).
i#] i#]

(5.38)
The first term on the right side of the above equation is called the mean-field varia-
tional entropy. The second term is the mean-field variational energy. The third term
corresponds to the Onsager reaction correction. All three terms construct the TAP

free energy for the SK model.
To minimize the free energy, we carry out the differentiation with respect to {m;},

0 (=BGpm))
= — atanh(m;) + B Z Jim; + Z T3 (1= m?) (=2m;) =0,
J (D) J(#t)
(5.39)
and finally obtain the self-consistent equation (the so-called TAP equation):
=tanh | B Y Jym; — B Ji(1—mi)m; |. (5.40)

J (D) J (D)

The first term on the right-hand side represents the standard mean-field approximation
of local fields. The second term is called the Onsager reaction field added to remove
the effects of self-response [6]. If we consider the external fields {A;}, the TAP
equation becomes

mit = rtanh ( Bhi+ B Y Jyml— B2 T (1= )miT ], (54D
7D J(FD)
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where we have put the correct time indexes for iteration [7]. In the thermodynamic
limit, the TAP approximation becomes exact for the SK model, as the terms O(8>)
vanish. The fixed points of TAP are the stationary points of the TAP free energy. At
low temperatures, the TAP equation have many solutions with m; # 0, which can be
interpreted as stable or metastable thermodynamic states [8, 9].

5.3 Properties of the TAP Equation

In this section, we study the behavior of the solution of the TAP equation [Eq. (5.40)
where external fields are added] around the spin glass transition point [6]. Because
Ji; are assumed to be independent random variables (for i < j) with zero mean and
the variance J2/N. The Onsager term of the TAP equation becomes

p? Z = p>T’m; — B Zfi?,mimi, (5.42)
J(#D) J (D)

when N — oo (the law of large numbers applies). Around the spin glass transition
point, we assume that the magnetizations {m;} are small, expand the right-hand side
of the TAP equation to the first order in m and finally arrive at

mi =By Jjmj+ Bhi — B> J°m;. (5.43)
J

We also assume that /; is not dominant. For the symmetric matrix J, we have J =
QAQT, where Q is the orthogonal matrix, and A = diag(A;, A2, ..., Ay) in which
{A;} are eigenvalues of the interaction matrix J. Let us write J;; in the following
form:

Jl] = Z Qin an)hrw (544)

To proceed, we define the A-magnetization and A-field by [6]

my, =Y Qumi, hy, =) Qinhi. (5.45)

Then we have the following result:
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ﬁZQ”‘LZ‘]llmJ _ﬁZQZHZZleQjm mm]
=BY m Z Qin Qim Z Qjmm;

(5.46)
= BAn Z anmj
J

= ﬁ)\nmkn s

where we have used the orthogonal condition: Zi QinQim = 8um. Then we can
rewrite Eq. (5.43) as
my, = Bmh + Bh;, — BT m,. (5.47)

We can, thus, conclude that the A-susceptibility can be expressed as [10]

am,, B

o, 1—Br+ (B (5:48)

Xn =

In addition, the eigenvalues of the random matrix J follow the well-known semi-circle
law! [11]:
4J2 — )2
2mJ?

p )= (5.49)

Itis easy to derive from Eq. (5.48) that the susceptibility corresponding to the largest
eigenvalue A = 2J diverges at T, = J, suggesting a continuous phase transition. The
location of this transition agrees exactly with that obtained from the replica result [5].

An alternative way to see the stability condition of the paramagnetic phase is to
compute the Hessian matrix:

9*(BGp(m))

H. =
Y 8m,’81’l’lj

= —BJij + (B*J* + 1)5;;. (5.50)

m=0

The stability condition is that all the eigenvalues of the Hessian matrix should be
positive, leading to the same result as above. The susceptibility matrix x;; = ‘3%
; J
is related to the Hessian matrix as (H™!); =P Iy ;i = (0;0;). followed from the
linear response theory. The subscript ¢ denotes the connected two-point correlation.
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Chapter 6 ®)
Nishimori Line Check for

In this chapter, we introduce the Nishimori line as an important concept, i.e., Nishi-
mori temperature or constraint, on spin glass models of broad contexts. This concept
was first discovered in the traditional two-body interaction spin glass model [1, 2],
which demonstrated that on a special temperature, the model energy of a complex
glass model is analytic, and the replica symmetry breaking (RSB) phase (introduced
in Chap. 9) is not dominant for ground states, and thus, the underlying physics is
greatly simplified. The concept was later connected to the Bayes optimal setting of
statistical inference problems [3-6]. Thus, this concept is an important theoretical
perspective to understand the Bayesian learning process, one of the most popular
paradigms in the deep learning era. Here, we introduce the basic knowledge about
this concept first, and we leave more applications to later chapters of learning theory.

6.1 Model Setting

The original model Hidetoshi Nishimori used to derive the special temperature is
defined as follows:
H = —ZJUO',‘O'J‘, (61)

i<j

where J;; acts as a quenched disorder. The coupling distribution function is specified
as follows:

P(Jij) = pd(Jij — J)+ A = p)s(Ji; + J), (6.2)

where p denotes a ferromagnetic bias for the coupling, and J is a positive constant.
Each coupling is generated independently from this binomial distribution.

Let J;; = Jt;j, where 1;; = £1. For the sake of convenience, we then introduce
an auxiliary temperature §, to parameterize the original distribution P (J;;):
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eﬁ,ﬂ;,
P(J;j) = P(r;;) = Tcosh B, (6.32)
P
1 1—-p
Bp = zln( p ) (6.3b)

The form of B, ensures that the two forms of the coupling distribution are equiva-
lent. Readers can easily verify this point by considering both possible values of the
coupling.

6.2 Exact Result for Internal Energy

According to the model definition, the internal energy can be written as follows:

(H)eo =Y P@Y_ P@) -1 100

i<j
(6.4)
Z eﬂl’ Yiei i Z elg‘/ 2icj TijOi0; Z
- I .00, |,
- (2cosh B,)Ns . S P Xic; ioio; Z ijOi0;

where Np is the number of interactions (also called bonds in a lattice model). Note
that P(t) is factorized, as the {z;;} are independent. We further remark that the
Hamiltonian of the model is invariant under the following gauge transformation:
Tij = TijSiSj, (65)
o; —> 0;5;. (6.6)

Note that {s;} is also an Ising-valued configuration. Therefore, we apply this trans-
formation to the model internal energy as follows:

ePr i<y Tisis) ZG P iz ioios J Z

i<j lijoi0]
H = — =
(H)r.o ; (2 cosh ,Bp)NR Zo P XicjTijoio;
B _i Z Zs ePr D) TijSiS) ZG P’ i Tjoi0) | Zi<j Tij0i0; 6.7)
T2V & (2cosh )V S P Ti woe) '

_ : Z Zs Zo eﬂJZi<frijaiaj‘]Zi<j T;j0Oi0
2N 4~ (2cosh B,)Ns Zo ’

where 2V is introduced to cancel the sum operation __ e. Clearly, when 8J = B,,,
the partition functions Zg and Z, cancel with each other. Then, we have
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1
- - BJ 3ic; Tijoio;
(H)z o = o (200sh,6 7 E E e j J E ;0,0

l<j

1 1
— BJ Z,<,TIJU'U/
TN (2cosh,B )N 8/3 ZZ

_ i 6.8)
- 2N (2cosh,8 (2cosh B,)Vs 9 Z [T

o i<j Tj
1 1

— Np
= 3% @oowh B 98 Z(Z cosh B8,)

= —NpJ tanh §,.

Therefore, under the Nishimori temperature 8J = B, the internal energy for the
model has an analytical expression. In general, the internal energy does not have a
closed-form expression.

6.3 Proof of No RSB Effects on the Nishimori Line

In this section, we will prove that, using the gauge transformation, the distribution
of spin glass order parameters does not have a complex structure on the Nishimori
line (B,) and coincides exactly with the distribution of magnetizations.

The magnetization distribution is defined as follows:

ekP Z,<;'Ti/ ek Zl<] Tijoi0j

1
Pm ) k) = 1) - — i | 6.9
(x; k) Xt: (2 cosh k)N Xa: T (x v Xi:a’> 6.9)

where we have defined k = BJ and k, = B,. Double averages are performed in the

definition of the magnetization distribution: the one over ¢ is the thermal average, and

the other over t is the disorder average. Both averages are standard thermodynamic

operations in the spin glass theory. The disorder average is usually challenging.
Next, we apply the following gauge transformation:

Tij = TijSiSj, (6.10)
o; — 0;5;. (6.11)
Then, P, (x; k) changes to
ekp Licj TiSis ek 2i<j Tij%i0; 1
P,(x; k 1) - — S
(x5 k) = 2N ZZ (ZCOShk )Ns ~ Za ek Xi<j Tij0i; ( 0; S,
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This form of P, (x; k) can be further simplified to make the underlying physics more
transparent. A simple algebraic manipulation leads to

Ho s A |
Pn(x; k) = N ZZ (2coshk )Ns Xa: 5 Y ti/gfg/é‘ <x -5 IZgl.si)
B S

We then perform the second gauge transformation: v;; — T;;s/s;, 0y —

l J ?
o;s!, and s; — s;s], resulting in

i
ekr Lici T ekp Xiej TijSis;

Pn(xi ) = Z (2 cosh kp)NB Z 3, ekr Loy Tisis)

1<]

7;;0;0; 1
X Z —Z ekZK,TuUzU/ (X — N Zaisi)
=Y P())_P(0))_ P(s) (x - % Zais[)

=Pq(x; k, kp)’

(6.13)

where P (o) and P(s) are the Boltzmann measures with (rescaled) inverse tempera-
ture k and k,, respectively.

Under the Nishimori temperature, P, (x; k,) = P, (x; k,, k,) = P,;(x; k,). We,
thus, conclude that the distribution of spin glass order parameter (overlap g =
% Zi o;s;) shares the same form as the magnetization distribution. It is well known
that the magnetization distribution in statistical physics is simple, while the over-
lap distribution can be very complex (e.g., when replica symmetry breaking effects
dominate the phase space, like in the SK model). The two equivalent distributions
on the Nishimori line suggest an absence of spin glass phase for the ground states.
However, RSB may be needed to describe the metastable (out of equilibrium) states
of the system (e.g., in the study [7]). Altogether, on the Nishimori line, the system
never enters the glassy phase and the dominant thermodynamic phase is always a RS

type.
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Chapter 7 ®)
Random Energy Model Douck i

In this chapter, we briefly introduce the well-known random energy model (Derrida
in Phys. Rev. Lett. 45:79, 1980 [1]; Derrida in Phys. Rev. B 24(5):2613, 1981 [2]),
which is the infinite-body interaction limit of p-spin interaction models, but still cap-
tures characteristics of spin glasses (Gross and Mezard in Nuclear Phys. 240(4):431,
1984 [3]). Here, we focus on basic concepts and their connections to frozen phases
commonly observed in other constraint satisfaction problems, e.g., binary Perceptron
(introduced in Chap. 13).

7.1 Model Setting
We consider Ising-type spins, whose interaction follows the Hamiltonian:

He)=— Y Ji.i,0i 0, (7.1)

1<iy...i, <N

where the coupling follows the Gaussian distribution defined by

2 -1
P = | N Ty N 7.2
(Jiy..i,) = sz!exp T | (7.2)

where J is positive, and the scaling of variance ensures that extensive energy is
well-defined. A generalized Hopfied model with multi-body interactions can also be
included in this class of models [4]. In this scaling, it is easy to verify that p = 2
corresponds to the standard Sherrington—Kirkpatrick model.

We are interested in the distribution of the energy level E, to see if this distribution
becomes simple in the limit p — oo. In general, the distribution can be very complex.
According to the definition, we have
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P(E) = §(E — H(0))

dE . . A
= Eexp 1EE+i1E E Jiy..i, 06 - 03, 73
1<ij..i,<N (7.3)
dE T
— > o EE 1_[ & EJ,-IV__,-pcr,‘]ma,-],,
b4
1<ij.ip<N

where the quenched-disorder average (indicated by the over-bar) can be explicitly
calculated out as follows:

i EJi..ip0i; 0

PET; i 00
e ip-ip®iy p = / P(Jil...i,,)d*]i]...i,,e

a Eo,-] . ~-o,-p)2J2p! (7.4)
= exp AN .

Note that the total number of the products in Eq. (7.3) can be approximated by %!p
when N — oo. Therefore, we finally arrive at

pEy = [ 9E jieseties
21

1 2

NJ2

= — ¢ ,
~NmJ?

which is exactly a Gaussian distribution with zero mean and a fluctuation of the order
OWN).

The Gaussian distribution of energy levels in p-spin interaction models does not
imply any information about whether the energy levels are correlated or not. To
address this question, we derive the joint distribution of two energy levels, say E;
and E,, as follows:

(7.5)

P(E|, E3,q) = 8(E] — H(c1)8(E; — H(c?))

_ dE| By W(E|E|+E2Ep) g 1 1, 2 2
—[/ 4”726 LEITE2 52 exp | i | £y Z ]ilmipail "‘G[p+E2 Z ‘Ii]“.ipgl'l "'U,'l)

i1<---<ip i1<---<ip

dE\Ey y(f\E +EyE e e
:f/ 4728( EITE2ED) [T exp (1 Eljil--ip"ill ...(,l_lp +IE2Ji1".ipai21 .4.01,217),
T ip<-<ip

(7.6)
where we have defined the overlap between two configurations as g = % > O’il O’l-z.
To proceed, we must calculate the disorder average in the above expression of

P(E|, E;, q). The disorder average is carried out as follows:
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N A | IR S ) 2
exp [1 E\Ji..i,0; "0y, +1E3J; .,07 - 'Gi,,]

= / d.],'lm,‘p P(Jil...i,,) exXp (1 El Jil...i,)aill e Ul»i) =+ i EAQJilmipO'izl e Ul-zp) (77)

2J%plG E) G Ey)

= exp [(i ED?+GEy)? + T CARRN A A 'Uii)} ,

where we have used the fact that spin takes a binary value %1. Inserting the disorder
average into Eq. (7.6), we obtain

dE1Ey .
P(E],Ez,q):// #el(E]EH—EzEz)

x [T e |:(i EN?+GE)> +
ip<-<ip
aoa R 2 A A ) A
= // @61(51 E\+EyE) exp |:‘]N ((iE1)2 +G E2)2 +2¢PGEDG Ez))i| .
4r2 4
(7.8)
N

To arrive at the last equality, we have used the relationship p! Zi1<i2<-~<i,,

272pIG E) G E»)
TV = S CARRRL M SRR
ANP 1 p )4

Zil’ ooy ® for large N, together with the definition of the overlap ¢. Finally, calcu-
lating the Gaussian integral out in Eq. (7.8), we conclude that the joint distribution
parameterized by g and J is given by

P(Ey, E2,q) =

1 oxp 2E|ExqP — E? — E3
TJ2NY1 = ¢2P JZN(1 —g?P)

(7.9)
(E\ + E)? (Ey — E)? }

—1/2

2 2
=|NnJ“(1+qgP)NnJ=(1 —qP -
[ 7J°(1+¢")NaJ“(1—gq )] eXp|: 2J2ZN(14+gP) 2J2N(1 —qP)

Supposed that |g| < 1, we immediately have P(E|, E», q) Lt d P(E)P(E»),
where P(E) and P(E,) are the Gaussian distributions derived before. This implies
that the energy levels are uncorrelated, and each of them follows exactly the Gaussian
distribution.

7.2 Phase Diagram

The above mathematical results draw concise physics pictures of the infinite-body
interaction model. We can then easily compute the typical number of configurations
with predefined energy level E,

((E)) =2V P(E) = —eN<ln27<NL> > (7.10)
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One can then derive a critical energy level Eq = NJ+/In2, above which (in the
absolute value) no configurations exist. However, for |E| < Ey, there are expo-
nentially many configurations at the corresponding energy level. In the thermo-
dynamic limit, the entropy density (per spin) ;below the critical energy level is

given by s(E) = limy_, o W =In2— (?) , where € denotes the energy den-
sity. According to the thermodynamic relationship g—g = %, one can also obtain the
expression for the energy level € = — %, which also determines the critical temper-

ature T, = ﬁ where the entropy vanishes.

Finally, the equilibrium property of the random energy model is summarized by
the free energy profile (F = E — T'S):

—Th2-L2 T>T.
F/N = neTar 1 7l (7.11)
—J+/In2 T <T,

This implies that below the critical temperature, the free energy of the system does
not depend on the temperature, due to the vanishing entropy for a system of dis-
crete degrees of freedom. The vanishing entropy suggests that the system enter a
frozen glassy phase—the transition is continuous in the thermodynamic sense (no
latent heat). This frozen glassy phase is also discovered in the Gallager codes [5, 6]
and binary Perceptron [7-9]. We finally remark that the one-step replica symmetry
breaking (see Chap. 9) was confirmed to be exact for the random energy model [3].
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Chapter 8 ®)
Statistical Mechanical Theory Qs

of Hopfield Model

Hopfield model is a well-known abstract model of associative memory in the
brain (Amari in Biolog. cybern. 26:175, 1977 [1]; Hopfield in Proc. Natl. Acad. Sci.
USA 79:2554, 1982 [2]). Its equilibrium properties were first analyzed in the seminal
paper (Amit et al. in Phys. Rev. Lett. 55(14):1530, 1985 [3]) by Amit, Gutfreund and
Sompolinsky. To obtain the phase diagram, the replica method developed originally
in spin glass theory was used and then became popular in neural network research.
This work also opened a new discipline—computational/theoretical neuroscience,
being an important branch of worldwide brain projects in this new century. In this
chapter, we will introduce in detail physics of this model, including phase transitions
in associative memory, by an in-depth application of the replica trick (Mézard et al.
in Spin Glass Theory and Beyond. World Scientific, Singapore, 1987 [4]).

8.1 Hopfield Model

In the Hopfield network, all neurons are connected with each other by real-valued
weights (see Fig. 8.1). Randomly generated patterns can be stored in this network
by assigning the weights w;; in a Hebbian way (i.e., cells that fire together, wire
together). After assigning all the weights, if one feeds a distorted pattern to the
network, the network dynamics can converge to the correct undistorted pattern by
locally updating the neural state.

In the Hopfield model, the state of neuron i at time step ¢ takes binary values (£1)

L e
S:(t) = HHAcHve 8.1)
1 active

The update rule takes the form
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64 8 Statistical Mechanical Theory of Hopfield Model

a Hopfield network. The
circles represent neurons,
and the lines with arrows
represent symmetric weights
between two neurons

(wij = wj;). Every neuron is
connected to all other
neurons

Fig. 8.1 Typical structure of w ..
tJ

Si(t+1) < sgn | > wySi) =6 |, (8.2)
J

1 x>0

where sgn(x) = 40  x = 0, and 6; is the firing bias of the neuron S;. In fact, this
-1 x<0

rule is a zero-temperature Monte Carlo dynamics of the model.

Now we need to choose the right weights {w;;} to ensure that the binary patterns
{E(“)} are attractors. If one feeds an input S(r = 0) close to one of stored patterns
(say &™) to the network, the network is expected to converge to £,

We consider a simple setting for the network, namely storing just one pattern, say
&', We can choose the weights according to the following Hebbian rule:

1
wij = ﬁglﬁ”g;‘), (8.3)

for i # j, and 6; = 0. Usually we set w;; = 0 for all i. To check this rule, we feed
the pattern £ to the network

N N

N

1 1
Y “wiEl = N Y o&VEVE = N Y& =g (8.4)
j=1

j=1 j=1

Therefore
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H‘

>

gp El/ g(spurious) S

Fig.8.2 The energy landscape of the Hopfield network. Minima in the energy function are attractors
in the state space. But not every attractor corresponds to a stored pattern. These metastable states
are referred to as spurious memories (e.g., a linear combination of several stored patterns [5])

N
sgn [ > wyg) | = = St >0 =¢". (8.5)

j=1

If we feed the reversed pattern —& D to the network
N
sen [ =Y wig) | =—£V = S¢>0=-¢". (8.6)
j=1

Therefore, if £V is an attractor, then —&" is an attractor as well. This is a general
property of the Hopfield model, as we shall show by writing down the Hamiltonian.

In equilibrium statistical physics, the Hamiltonian (the energy function) is defined
as

N
1
H=—E;wijs,~sj, (8.7)

where w;; = 1/N Z/Ij:l g j“ , which is symmetric, ensuring that an equilibrium
state exists. Note that the pattern entries are independently selected as P (£ = £1) =
1/2. Under the zero-temperature dynamics of the model, the Hamiltonian A remains
unchanged or decrease. To show this, neglecting the firing bias, we consider the
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update
S =sgn | > wyS; |, (8.8)
J

and thus either S; = Sy or S; = —S;. In the first case, H remains unchanged. In the

other case,
H —H=Y wySSj+ Y wulSiS=2Y wiSS;. (8.9)

J (k) i(F#k) J (k)

Because the sign of Zj wy; S} is the same as S; and S; = — S, it then follows that
H —H <0. (8.10)

Hence, either H remains unchanged or its value decreases in one update step. After
a sufficient number of updates, the energy function falls into a certain minimum,
which is expected to correspond to a stored pattern (Fig. 8.2). This derivation can
be cross-checked by implementing a zero-temperature Monte Carlo sampling on the
Hamiltonian of Hopfield model.

8.2 Replica Method

In the thermodynamic limit, the free energy has the self-averaging property, i.e.,
—Bf = (In Z), where Z is the partition function. As the number of degrees of free-
dom grows, the single-sample value of the free energy will converge sharply to the
quenched average value. However, the expression (In Z), namely the quenched aver-
age, is difficult to calculate in a direct way, whereas (Z), namely the annealed average,
is much easier to calculate. However, in most contexts of interest, (In Z) # In(Z).
In fact, the annealed average provides an upper bound to the quenched average, due
to the Jensen’s inequality. The replica trick can be used to make a transformation
of this calculation by introducing many copies of the original systems. Then the
original interaction system can be decoupled to an equivalent system where correla-
tions among replicas are considered, which greatly simplifies the original challenging
computation.
In mathematics, we have

z" -1

InZ = lim (8.11)
n—0 n

Then we calculate the expectation
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. (Z" -1 . In(Z™)
(InZ) = lim ——— = lim , (8.12)
n—0 n n—0 n
where (-) is the disorder average over &. Since Z" >~ 1+nlInZ + ---, we have

(Z") ~1+n(InZ)---. Therefore

fim W20 _ oy, A Andnz)) 2y (8.13)

n—0 n n—0 n n—0 n

where when n is small enough, we can take the expansion like Z" = ¢""? = 1 4
nln Z + ---. The averaged free energy per spin can thus be calculated by

. —In(Z")

We first assume that # is an integer (for the power), and after the calculation of
(Z"), we carry out the limit of (In Z) as n approaches 0. This seems hard to understand
in physics; whereas the results must be compared with physics simulations of the
model. In this sense, the cavity approximation is more physically transparent than
the replica trick, although in most (we are not sure if all is suitable) cases, both
methods yields the same result. We remark that the order of the two limits (n — 0
and N — o0) has been exchanged for the purpose of applying the Laplace method in
the thermodynamic limit. This operation is also not mathematically rigorous. But the
final result is usually in consistent with physics intuition and numerical simulations.

Next, we suppose that the network is able to store P random patterns (P =
aN, and « denotes the memory load). Note that H = —% Zle w;;S;S; and w;; =

v 25:1 £/'€". Therefore

Kl o gp
s,-s,S,-S,->

i gL
(z") = <Trexp N Z Z
= <Trexp % Zs;‘sf) > glse

J

- 5 (8.15)
= <Tr exp 'BTN Z % ZEiMS[p) >
i Pt i
BN (1 ?
fy[2zed)

where Tr means the summation over all configurations {S}, and (-) means the
quenched disorder average over the random patterns.
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To linearize the quadratic term, we apply the following Gaussian integral:

— \/E / emax’H2abx gy (8.16)
T

by carrying out the following substitutions:

b — % > ENSE
X — mg . (8.17)

BN
a— 5

It is then natural to introduce integrals over m/;

= (1 T1y S ams o | 55 oy s st

[BN BN
:<Tr/£! gdmgexp > Z +,BZm“Z$“Sp:|>

L oot
=<Tr/1_[,/'3—Ndmgexp —'B—NZZ(mg)z—i-
n=2 p
P S Sarst S oy s S Sl )
uz2 p P i

(8.18)
In the above equation, we have separated the first pattern from other patterns. We
further assume that only the first pattern (u = 1) is retrieved, and thus the overlap
mg ~ O(1) (the definition of the overlap will become clear in the following analysis).
We next consider those non-retrieved patterns (1 > 2). Because () ; Si“ Sip )e = 0and

2 o

<(Zl g/'s?) >E =N+ (3. &€/ S/ S7)g = N, the order of m% (u > 2) is given
by

1 1

To use an m/ of O(1), we rescale the original m/; — ;IL Then we get
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(Zn>:<\/%_n>n<Pl)<Tr/‘ l—[ dm“l_[\/ﬁdm exp __ZZ mu

p,pu>1 u=2 p
2
e my 2 8] - Y i)+ ﬁzm;zs,-‘sf> :
u=2 p P P i
(8.20)
For the part of u > 2 involving in non-condensed patterns, we have
<exp = ZZWH‘Z&”S‘) >
M>2 ? &pu>1
X EXp Z In cosh (,/ Zm“S") (8.21)
M>2i

=~ exp ZZZN<Zm“S") ,

[L>2 i

where we have used the formula (exp(A§))g=+1) = exp(—A) +exp(A) =

2 cosh(A) o exp(Incosh(A)), and taken the approximation In cosh x = % + ... as
x — 0.
We can then write down the following expressions:

3 () = mis,emt (8.22)
0,0

o

and
1
/’ _ 4 o
P (Sms) < A X S S
1
= ngﬁ Z NI (8.23)
p,0 i
= D mydpemy
p,0
To further simplify the formulas, we define
s _PNgrge._s5 8.24
Kpo = Opo NZii._ po — Bdpo, (8.24)

and in the matrix form
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K=1-8Q, (8.25)
where
1 L Qo
v 2. S5i8T p#o
Gpo = {f’ 2 7_é , (8.26)
p=0

and K, Q are symmetric n x n matrices with elements «,, and g, , respectively. I
is an identity matrix.
Thus, we need to introduce g, by an integral of a Dirac delta function, and obtain

(Z") Tr/ Hdea8 (q;w - %ZS;DSIU)
p,0 i
X 1_[ dm!) exp —% Z Z My K por Mgy (8.27)

n=2,p u=2 p,o

x </1_[dm:)exp [—%Z(mz)kk %thﬂz&ilsﬁ}> ,
P P p i

El
where we have neglected irrelevant prefactors. By using the multivariate Gaussian
integral
T "
dme MM — : 8.28
/ ,me V det(K) (8.28)
we get

/ 1_[ dmﬁ exp —% Zngkwmﬁ = L , (8.29)

- P-1
n>2,p u=2 p.o (detK) =
where C is a constant. Because det(eX) = ¢ K and det K = ¢™"K we have
P—1 P—1 il
(detK)™ 7 = 2 TnK _ =5 Trinll-4Q1 (8.30)

By using the Fourier representation of the Dirac delta function

1 +00 )
S(x) = — / ek gk | (8.31)
27 J_o

we obtain
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Tr/l_[dmi) ndqp[,S (qp(7 - ZSPS">
o 0.0
5 (8.32)
Q
x Tr/ l_[dm;) l_[dq/mdrp(, exp |:— er(,q,,(, % Z rpgSlfOSf':| T,
p p.o

i,p,o0

where the symbol 7 represents the other non-shown parts in Eq. (8.27), and we
have rescaled r,, — —'Ngﬁz
o= P/N.

Then we define the S;-dependent part as

oo (after the transformation, r,, ~ O(1)), and used

<Trexp ﬂzm})ZEilSip‘i‘aTﬂZerSfS? >
P 1

i i,p,o £

p.o

2
= <exp {ZlnTr exp <ﬂ ZmLEiISp + % er(;SpS”> }>
,» ; o (833)
2
=exp N<lnTrexp (ﬂ Zm})ElSp + % ergSpS")>
) .o

‘= exp {N (In Trexp(B He1)),, } ’

Sl

where we have used the fact that the sum over i is equivalent to taking the average
over the pattern configuration because of i.i.d properties of the random pattern, and
we have defined

1
BH: = Eaﬂz D reeSPST By myE's”, (8.34)
p.o P

where £! is just a typical entry of the random pattern vector.
Finally, we obtain

(Zn> S / l_[dm;7 l_[dqwdrpa exXp [_%aﬂz ero-Qpa:|
P p,0 p.0

—1 :BN 1\2 H
conl-E5 v a2 S vimon, |
P
(8.35)
Because we assume that N is large enough, we can use the Laplace’s method, which
is

b
/ MNOG x| Nre, (8.36)
a —Nf"(z0)
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where 7 is the maximum point. Thus, we can perform the approximation (Z") ~
eNFO) where F(6*) = maxy F(0). Here, we use @ to indicate the order parameter
set of the model.

Then the quenched disorder averaged free energy becomes

. In(Z™) . IneNFOD . F(6)
(InZ) = 11rr(1) = lim ———— = N lim , (8.37)
n— n

n n—0 n n—0

where 5
F (rpaa 9po» m;,) = _% erdq,oa - %Trln[l - BQ]
8 ne (8.38)
-3 Z (mll))2 + (lnTr eﬁHS‘)El .
p

We have taken the approximation P — 1 >~ P = aN as N is large enough. Note that
("po> Gpos m'lo) is the order parameter set of the model. Their physical meanings will
be clear in the following analysis.

To calculate the maximum of F (rp(,, 9po milo), we first calculate the derivatives
of F (rpa, Gpos m})) with respect to the order parameters.

First, we take a derivative with respect to g,

oF 0 Nap? B 5 u u

(8.39)
where the second term inside the bracket comes from the original formula [Eq. (8.27)]
in which the integral over {m/} is kept. Note that the magnetization is rescaled back.
We then obtain the conjugated order parameter

1
Fpo = — ) mymy (8.40)
n=2
p
where we need to use the rescaling m/; — % that is done before. r,, is thus
understood as the sum of effects of non-condensed patterns (only one retrieved pattern
here).

Second, we take a derivative with respect to m/ [see the original formula
Eq. (8.20)]
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oF 0 BN 2
:O: _ M I ”’Sp :0, 841
oml am' |: 2 ( ”) +pm, Zi 5 ’:| (841)
and obtain |
mg = N E él.“Sip. (8.42)

The parameter m/; is exactly the overlap between the state of the system and the th
pattern, characterizing the quality of memory retrieval.
Finally, from the requirement of a stationary free energy [see Eq. (8.32)]

oF 9 Nap? ap? .
—0= - pz;r,,gq,w + = D e SIS | =0, (843)

or or 2
e re ip.o

we obtain the Edwards—Anderson order parameter

1
_ o
Gpo = Z SPs? (8.44)
4 18 understood as the mutual overlap of two pure states in general. If a single state
dominates the phase space, the Edwards—Anderson order parameter characterizes
the size of that state.

8.2.1 Replica-Symmetric Ansiitz

To proceed, we need to make an approximation about the overlap matrix, i.e., con-
sidering the simplest form—the overlap is invariant under permutation of replica
indexes. This is called the replica symmetry (RS) ansitz

Too =1, Yp,0
mi, =m, Vp . (8.45)
Gpo =4, Vp #0

Then we have

2 2
F(r,q,m) = —%rq (n2 — n) - %nr — %Trln[l — BQ] (5.46)

— gnm2 + <lnTre’3H5'> ,

and



74 8 Statistical Mechanical Theory of Hopfield Model

NapB’rq  Nap’r (xN . Trin[l — BQ] BNm?

(nz)=-— 2 2 ao 2
n— n

8.47

. (lnTreﬁH5‘> ( )
+ N lim —— 1
n—0 n
where |

BHg = BmE' Xp: SP + E(xﬁzr ;’: 5P . (8.48)

First, we calculate the last term of (In Z).

Tr ePHe — Ty oPmE E,5 430 (2, 5°)°

2
-— Tr A(5,5") +BZ, 8

:Tr‘/éfdz e ATH24Y, S"+BX, S
T
A AR (2Az+B)S?
=, — | dze Trne ‘
b4 o (8.49)
ap*r —apirs? 2 Ny
=V 27 dze 2 [2cosh (ap’rz + BmE")]
apf?r lapirg? 2 ‘
_ dz e 9B +n In[2 cosh(ap?rz+pmé") ]
2
= /L/dz o~ 18 tnn[2cosh(Byarz+pme")]
2

Note that A and B are auxiliary variables in intermediate computations. The limit of
the above term is clearly given by

hmTre’S ,/ ‘/dzefiz =1. (8.50)

Thus, we can obtain the limit by the derivative with respect to n
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. (lnTreﬂH¥‘>
lim —

n—0 n

d Treﬁ
lim & —
n—0 Tr P
[ d —1z%+nIn[2cosh
— — lim — [ dze nin[2cosh(B/arz+pmé")]
2w n—>0dn
= {4 1 lim | dz e_%Zzi [2 cosh (Bv/arz + ﬂmél)]"
27 n—0 dn

= < /% lim [ dz =37 [2cosh (By/arz + pm&")]" (8.51)
In [2 cosh (,3\/51 + ﬁmél)] >

<,/ fdze 27 hm ZCosh (,B\/(Wz+,8mé )]
In [2 cosh (ﬂ«/@z + ,Bmél)]>

= <\/g/dz ¢ In [2cosh (Bv/arz + ,Bmsl)]>
= / Dz <ln [2 cosh (,Bx/az + ,Bmé‘l)]) .

Then we calculate the third term of (In Z). Since Q is a symmetric matrix, we can
diagonalize this matrix and get

AQA~! = A =diag(A, Ay ..., Ap) . (8.52)

We can thus expand In[I — Q] to a power series with respect to Q (here we take
the formulaIn(1 —x) = =) | < ) and obtain

Trin[I— Q] = Tr {A - In[I — BQ] - A"}

=2, BLA) (8.53)
e
:_iﬁZZM Zln[l—ﬂk].

=1 i=1
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This result is equivalent to the matrix identity: TrIn K = Indet K for a positive
definite matrix.

Then we calculate the eigenvalues of Q by

1=t —1)gl-Atm—Dg-1—r+@n—1lyg

1 e 1 (8.54)
ql—A‘.-. q

=[1-x+®n-Dql|. . )
q q .-.1—)\'
0l—A—g--- 0

[ —AtG-Dql|. |
0 0 -l—h—g

=[1-A+m—-Dgld—qg—-1""=0.

Thus, Q have one eigenvalue with the value (1 + (n — 1)g) and (n — 1) eigenvalues
with values (1 — ¢g). Then the trace turns out to be

Trin[I - QI =In(1 — B+ Bg —npg) + (n — )In(1 — g+ Bq) ,  (8.55)

and

+In(l -8+ /3q)i|

1—B+Bg—np
lim Trin[I — Q] . IH(W)
n—0 n n—0 n

(8.56)
Bq

I—W‘i‘lﬂ(l—ﬁ‘*‘ﬁ@,

where we calculate the limit by the L'Hospital’s rule.
Taken all together, the free energy of the Hopfield model can be written as
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—pf = ~(n2)

ﬂ2
=rq-D-3 [m(l —B+Bg) —

+/Dz (In[2cosh (Bvarz 4+ pmE")]) .

Ba :|_/3 2
1-B+Bg

To complete the Laplace method, we finally derive the saddle-point equations for
all order parameters in the RS ansitz. More precisely, we take derivatives of the free
energy with respect to all the order parameters

0=BD _ ¢
o
6(;’§f) =0 , (8.58)
H(Tﬁf) =0
dq
and get
q= _ﬁ— %/d’ze—%zzz(tanh (BVarz + pm&")) + 1
= A [ (g )+
1 -
32 h
= e (T pnt )| (859)

— / Dz (1 — tanh* (By/arz + Bmég")) + 1
= / Dz (tanh2 (ﬂ\/a_rz + ﬂmél))
= / Dz tanhzﬁ(\/(;z +m) .

Moreover, r and m can be analogously computed, which leads to the following
saddle-point equations for the associative memory model.

qg= f Dz tanh® B(Varz +m) , (8.60)
=/Dz(§ tanh B(J/arz + mé&)) =/thanhﬁ(ﬁz+m), (8.61)
q
=1 8.62
(Y EYTE (8:62

Phase transitions can be deduced from an analysis of the behavior of these equations
and the corresponding free energy function.
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8.2.2 Zero-Temperature Limit

Under the replica-symmetric assumption, as 7 — 0 (8 — 00), we have

1 x>0
tanh(Bx) — sign(x) = {0 x=0, (8.63)
-1 x<0

Equation (8.61) becomes

m= / Dzsign(varz +m) + O(T)

(8.64)
_ erf< m ) +or)
v 2ar
On the other hand, as 8 — oo
l—g= dz % (1 — tanh® B(Varz +m))
V2
1
~ e T / dz (1 — tanh? B(Jarz + m))
21 tanh? B(y/arz-m)=0 (8.65)
e 1 9 '
= ¢ 2 dz— tanh arz 4+ m)
e | dea s
2 |

2ar

NI N

Equation (8.60) thus yields ¢ = 1 — CT, where

2
c¥ | = i, (8.66)
Tro

Using these intermediate results, Eq. (8.62) becomes r = (1 — C)72.
The equations of m and r can be reduced to one equation, by defining an auxiliary
variable y = m/+/2ar. We then have

2 .
erf(y) = y (@ + ﬁeﬂ ) . (8.67)

One solution is given by y = m = 0, which is a spin glass (SG) solution. For o >
o, = 0.138, this is the unique solution. For a < «,, Ferromagnetic solutions m # 0
appear (2P such solutions, due to the model symmetry). At ¢ = «,, the overlap m
takes the value m = 0.967 [6].
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Fig. 8.3 The error probability as a functionof ¢ at 7 = 0

Equation (8.67) can be solved numerically. By using the relation m = erf(y), we
can obtain the values of m. The error probability is given by Ppror = (1 —m)/2,
which is shown in Fig. 8.3. From the plot, we can see that there is a critical value
o, = 0.138 where the error probability jumps to 1/2, indicating a discontinuous
transition to a spin glass phase. When o < o, the error probability is quite low, which
means that the network can reliably retrieve one of the stored patterns. When o > «,,
the error probability is 1/2, suggesting the network could not have a significant
memory.

8.3 Phase Diagram

By solving Egs. (8.61), (8.60) and (8.62) numerically, we can obtain the phase dia-
gram of the Hopfield network (Fig. 8.4) [3, 6]. At a very high temperature, the
thermal noise impairs the retrieval process, therefore m = 0, g = 0 and r = 0. Inter-
esting, from an inverse Ising perspective, given the configurations from this phase,
the couplings of the model can be easily inferred by a reverse engineering process
[7, 8]. As the temperature is lowered down, the paramagnetic phase becomes unsta-
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ble at a critical temperature-load line (7, («)), which can be obtained analytically
through a linear stability analysis of Eq. (8.60), i.e., T, = 1 + /«, where « is the
memory load.

On the other hand, with decreasing memory load, the spin glass phase becomes
metastable at a critical line T), (), where the retrieval phase becomes locally stable.
This transition is thus a first-order phase transition. In this phase, spurious states (i.e.,
alinear combination of several stored patterns) also emerge as metastable states. Once
a < 0.051, the retrieval phase becomes globally stable when a critical temperature
line T, is crossed. The discontinuous transition point can be obtained by analyzing
the saddle-point equation, and equaling the free energies of two competing phases.
Ty ~1—-195/a,and T, >~ 1 — 2.6/« [6].

At T = 0, the entropy per spin S = — % = —%a[ln(l —-C)+C/(1-0)]
T—0

with C = B(1 — g) is negative for all replica-symmetric solutions, which is unphys-

ical. Below the dashed line (so-called AT line in spin glass theory; see Chap. 9) in

Fig. 8.4, the retrieval states become unstable, the replica symmetry breaking (RSB)

effects should be considered (a general introduction of RSB will be presented in

TA

stable metastable

QY

0 0.05 0.138

Fig.8.4 The phase diagram of Hopfield model (adapted from Ref. [3]). Three phases (paramagnetic,
spin glass and retrieval) exist. The paramagnetic phase is separated by a continuous transition to
the spin glass phase (T line). The phase transition from retrieval phase to spin glass phase on the
Ty is discontinuous. Below 7. line, the retrieval phase becomes globally stable. Below the dash
line (7Tg), the replica-symmetric solution becomes unstable
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Chap. 9). In physics, this implies that the permutation symmetry of replica indexes
in the overlap matrix does not hold, requiring that a higher level of approximation
should be taken. However, as shown in the Fig. 8.4, the RSB effect in the retrieval
phase is very weak. As o — oo, the Hopfield model reduces to the well-known SK
model.

8.4 Hopfield Model with Arbitrary Hebbian Length

In this section, we generalize the standard Hopfield model to the case of arbitrary
Hebbian length. This is inspired by the Monkey experiments where the monkey is
trained to recognize and match visual stimuli, the temporal order of the stimulus pre-
sentations is maintained during training. The experiments revealed that the monkey’s
temporal cortex is able to convert the temporal association of stimuli into a spatial cor-
relation in the patterns of sustained activities [9, 10]. This experimental result was first
modeled by Griniasty et.al. [11], who takes one Hebbian length into the construction
of the coupling matrix, i.e., the neighboring patterns in the sequence of presentation
contribute to Hebbian learning. In this model, a novel phase of correlated- attractors
emerges due to this revised Hebbian rule. The correlated attractor triggered by one
stimulus pattern becomes correlated with neighboring patterns around the stimulus,
although the patterns themselves are all independent.

Motivated by the observation that Hebbian learning can occur in a wider learning
window [12, 13], we propose to extend the Hebbian length to an arbitrary value [14],
and thus define the following coupling matrix of neurons:

P d
Jij = % > {ca"sjf +yy (éﬁéj”’ + s,“’sj‘)] : (8.68)
n=1 r=1

where ¢ specifies the standard Hebbian strength, y specifies the coupling strength
between r-separated patterns, and d is thus the Hebbian length of our model. The
case of d = 1 has been studied by previous works [11, 15], while d = 0 recovers the
standard Hopfield model [1-3]. &/ follows independently a binomial distribution,
ie, pE =+1) =18 + 1) + 18(&/ — 1). We are interested in the limit of large
values of P and N, thereby defining @ = %. « is also called the memory load of the
associative memory model.

8.4.1 Computation of the Disorder-Averaged Free Energy

The matrix J can be recast into the form
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Lot
J= N‘s‘ X§, (8.69)

where Xisa P x P circulant matrix, a special form of Toeplitz matrix with elements

d
Xy = Sun +vy Z (8u,(n+r) mod P+ 8y1,(n—r) mod P)

r=1

, (8.70)

=(c— V)(S;u; +vy Z 6;L.(r]+r) mod P -
r=—d

The mth eigenvalue of X is given by [16]

)‘-m — Xl(k+1)672nimk/P

d
mk
|:C80k +y Z(SO,(kJrr) mod P+ 80,(k—r) mod P)] cos (277 ?> (8.71)

k=0 r=1

mr
- 2y ) oo (2 |
c—i—yZ[cos( T —+ cos nP
mr
—c+2 (2 —),
c+ yrZz;cos jTP

form=0,1,..., P —1.
The Hamiltonian of the model is defined by

1
H(s) = 5 ; Jijsis; . (8.72)
i#]

The partition function is thus given by
Z =Trexp ﬁsTETXé‘s , (8.73)
2N

where Tr indicates the summation over all discrete states s. In general, to compute a
disorder averaged free energy ((—7 In Z)) is a computationally hard task. However,
the well-known replica trick developed in spin glass theory [4] can be used to get
around the difficulty, but assumptions on the replica matrix are required (detailed
below). The replica method uses the mathematical identity
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. In(Z")
(In Z) = lim , (8.74)
n—0 n

where ( - ) denotes the expectation over the distribution of €. To proceed, we have to
compute an integer-power of the partition function

Z" = Trexp [% Z (s")T sTXEs”:| . (8.75)

a=1

We consider the situation where there are S condensed (or foreground) patterns
and P — S non-condensed (or background) patterns, which is reasonable in our
current setting. The choice of S can be justified a posterior, e.g., through solving the
mean-field dynamics or saddle-point equations. Thus, we can reorganize the matrix

X as a block matrix, i.e.
Xrr XrB
X = , 8.76
|:XBF XBB:| (8.76)

where Xpp € RS, XL = Xpp € RS*P=9 and Xz € RP-Hx(P=9),
It then follows that

ﬁ v.a ﬂ v
Z”:Trexp m Z ag:lt /u)%_ 5§ N Z siaé:iﬂxuvgjs;l

a,i,j,neB,veB a,i,j,ueB,veF

ﬁ asH v.a
ton D SNEXwds]

a,i,j,ueF,veF
(8.77)
We then diagonalize the submatrix Xpp as Xz = >_, Ao1%77, where Ay and 77,
are denoted as its eigenvalues and eigenvectors, respectively. We thus obtain

ag v.a
Y S XwEs

a,i,j,neB,veF

2
Z" =Trexp % > e (Z sf’gﬁnz) +
a,o

i,ueB

s

N

+£ Z s?%‘_”X %“,)sl,l:|
2N P50 THVS)T )

a,i,j,ueF,veF

N (Zs ﬁk xg
+ B Z sPElx g.“sf!:|
N i Si Apvs;is; s

a,i,j,ueF,veF

(8.78)

_Trl_[/Dx exp|:z

i,ueB

Z Si X”VSJ s})

a/veF

ﬂ\
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where we have used the Hubbard-Stratonovich transformation, i.e., exp [15%] =

[ Dx exp [£bx], where Dx = «/;27 exp (—";) dx.
We then define

dp = exp Z f Zs VBroxl +¢_ D siXEls , (8.79)

i,ueB a,jveF
and

dp = exp % Z SPE X 0EYsY | (8.80)

a,i,j,ucF,veF

Taking the disorder average over {£/'}, we write the result as

(z")= <Tr]_[/ngq>Bq>F> . (8.81)

We first carry out the average over the distribution of background patterns, which
yields

2

(@) = exp % Yoo Znu Bhox: +— Y Xk

i,ueB a j veF
(8.82)
Introducmg the state overlap as one order parameter: g, = Z s“s” for a # b,
andmj = 5 L, £ls? as another order parameter, we have

dqapddap dmfdm¢,
@B):/H (Zr/z?la I1 27:/NM
a#b a,uefF

X exp *%NZéaanb+%Zgabzsfsib*N Z my iy, + Z n ZE“ a:|

a#b a#b i a,neF a,uefF i

B 2
X exp % Z Z (Z Ny Broxy +ﬂ«/NZXlwmﬁ> :|

HEB a o veF

Xexp | 5 Z ZQah (Z n,;, IS)‘-JX + ﬂfz X;JAJm )

ueBa;éb veF

(an, ﬂ)\’ﬁx +ﬂfZX“Um">i|'

veF

(8.83)
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In the above derivations, we have inserted Dirac delta functions for defining those
order parameters, and then applied the integral representations of these delta func-
tions. The hatted order parameters are the byproducts of conjugated counterparts.

Under the replica symmetric ansétz with g, = g and gup = G for a # b, mj; =
my, and g, =, we arrive at

dqdq dmdm R 1 n
(®p) = / /N NS Nn Z My, exp [*ENn(n - 1Dqq

nelF
+%@ZZS + Z mMZE s& | x exp ;ZZ(ZnZ,/ﬁlgxg
a#b i a,ueF i HLEB a o
2
+ﬂ‘/ﬁzxuvmv> X exp % ZZ (Z nZ\/ ﬂ)"axg +,3\/NZ X;wmv)
veF pneBa#b \ o veF

(Znﬂ Broxl + VN Y Xyum, )}

veF

dqdg dmdm N

a#b i ner
2
+ Z muZE sit | x exp TZZ(Z”ZVW‘U%J”SWZXW’"O
a,uelF i neB a o veF
2
X €xXp % Z (Z Ny Broxg + ﬁn«/NZX,wmu>
neB \a,o veF
(8.84)

We apply the Hubbard—Stratonovich transformation once again, and obtain

dqdq dmdm
000 = | Gy @y | [1px: l_[ D

X exp fan(nfl)qur qZZs 57 anZmumM+ Z mMZEI ¢

L a#b i nelF a,neF i
xexp|+1—gq ZZ(Z"#‘/'BA” -‘rﬂfZme )
HeEB a o veF

neB veF

X exp ﬁz (Z ny Broxg + ﬂn«/ﬁz Xﬂvmv> Zu

(8.85)
By collecting terms containing x2, we have
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dqdq dmdm
8= | GajnyaD @ /NS 1_[ Dy 1_[ Dz,

X exXp fan(nfl)qur qZZs 57 anZmMmM+ Z mHZé a4

a#b i neF a,neF i

X exp Zx mznﬂ<\/f +IZM>

HEB

x exp | BVN Z quvmv (w/l—qyz—i-\/ﬁzu)

a,ueBveF

(8.86)

According to the definition of the overlap, ® ¢ can be written as

N
®p = exp ﬂ”T 3 mXm, | (8.87)

neF,veF

Collecting all the results derived above, we have

dqdq dmdm
a
Tr/l:[D (27T/N)"(” 1) (27T/N)”S l_[Dyﬂl_[DZl‘

1 o1 R
X exp —ENn(n—l)qq-i-EqZZsi”sf’—Nanﬂmﬂ

a#b i neF

><<exp Z ;&MZ;.”S;’ >><exp Zx(‘;w/ﬁAaZnZ (w/l—qu-FﬁZM)

a,pekF HEB

x exp | BvV'N Z wamv (\/lfqyz+\/§zu>

a,neBveF

pnN
xexp | —— E my Xy,
neF,veF

(8.88)
We define the term summing over {s{'} as
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<<1>s>=<Trexp S st + ZmMZs““ >

a#b i a,ueF

= exp [—%(}} Tr <1_[exp Ls (Zs ) + Z gl st >
i a,ueF
N

= exp [—gg] <Trex % (Zs) + > gt >

a,peF
(8.89)
Applying the Hubbard—Stratonovich transformation, we obtain

N

(®g) = exp _ﬂg </DZHTrexp fs z+2m Ehs? >
. a neF
N

N
= exp —%c} </DzH200sh fz—f-Zmﬂé“ >

nelF

N
= exp —n—c} exp{ Nln </Dz2”cosh” \/gz—i-ZrhMg“ >

neF

(8.90)
In the limitn — O,

N
(Dg) = exp |:_n7qi| exp nN<f Dz In | 2cosh \/qTZ‘FZ”ﬁy_%-M >

neF

(8.91)
Taken together, we have
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dqdg dmdm
/ [12% Gy @n/Nys L H D l_[ Den

1 R nN N pnN
X exXp fENn(nfl)qq77q7Nanﬂm,4+ 2 Z my X, wmy
neF neF,veF

X exp Zx MZ%(\/?M"‘IZ“)

HEB

X exp ﬁf Z ZX,“,mV (x/l— yu+fzu>

a,ueBveF

X exp nN</Dzln 2 cosh \/éz+2ﬁ1“$“ >

neF

(8.92)

To proceed, we first denote the vectors y* = [YZ? we BT, z= [z; 1 € BT,

=[my;pne FIT, ;=i pne F]" and & = [6*; u € F]". Integrating out
{x&}, we get

/npxaem R (VT=arg + vaz)

neB

1
=exp| 5B D el Ty + Vau) (- ay) + Vaz)

a,o,ueB,veB

1
=ep| 56 D Xw(WT—ayi+ V) /T—ax! + Va2
a,ueB,veB

(8.93)

1
=exp| 2B0—q) D YiXwy + BV —a)

a,neB,veB

1
X Z Z/,LXN,vyﬁ + Enﬂq Z ZH,XU.UZ\)

a,ueB,veB neB,veB

1 1
= exp [25(1 —q) Y ) Xppy' + V(1 —q)q ) 2" Xppy’ + znﬁquxBBz} :

Collecting all terms containing {y;}, we get
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n.a HeB,veB

/1_[ dyj; Hexp {—; > e B = BU =X u)y }
X exp [ﬂmz (Z x/ﬁxwmﬂ +‘/§ZZMXMV) y3j|

veB \neF HEB
dys, 1

/l_[ = Hexp [—5<y“)T (H—ﬂ(l—q)XBB)Y“]

X €Xp [ﬂ\/l —q (\/NmTXFB + ﬁzTXBB) y“]

1 1 2 T T

= —np*(1 —¢) (VNm'X X
Jdetd— Bl — 9)Xpp)I" xp{znﬂ( @ (VN Xrs + "X )

A= B = 9Xpp) ™" (VNXprm + /GXpp2) |

1 1
BN T T TG exp[EnNﬂza—q)mTXFBGI—ﬁ(l—q)XBBY‘XBFm]
- - BB

1
X exp [Enﬂz(l = 9)g2' X 1= p(1 = 9)Xpp)~! XBBz]

x exp [nB2(1 = @)/ Nqm™Xpg (1= B(1 = )Xps) " Xapz] |
(8.94)
where I indicates an identity matrix.
We then collect all terms containing {z,,}, integrate out {z,,} in the limit n — O,
and finally obtain

dzy -
/1'[ - {‘EZ [1—1BaXns — (1 = )gXp5 @~ B — 9)Xpp) 'xBB]z}

x exp | ny/gN [m™Xpp + B(1 — )m"Xpp (1 = B = 9)Xp5)™" Xp] 2]

1
= exp {—5 In det [H —nBgXpp —np>(1 — 9)gXpp (I — B(1 — ¢)Xpp)~" XBB]}

(8.95)
where to arrive at the last equality, we consider the limit of n — 0 (i.e., neglecting
terms involving O(n?)).

To sum up, we rewrite (Z") as

2) dqdg dm“dmu X exp {"N </ bzln [2 cosh (\/qiz + ﬁlTEF)D}

(27T/N)"(" I) (27T/N)ns

1 N, . N
X exp fENn(n —1gq — %q — NnmTi + ﬁnTmTXme]

X exp [fg Indet (I — (1 — q)XBB)]

[aNB2(1 —q)

X exp >

m Xpp (I— (1 — ¢)Xpp) ™" XBFm]

1
x exp { — Indet [1— nBgXps — (1 = 9)4X 5 @~ (1 = )Xnp) ™ X
(8.96)
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By applying the Laplace’s method, we get the averaged free energy as

—Bf = N (In Z) =</ Dz In [2cosh (\/gz+rﬁT§F)]> ;qq — 1q mT i + ﬂmTprm

2
1 21—
— s ndet (1= A0 — @Xpm) + =D (- B0~ X Xprm
~ tim =~ ndet [T~ X — n8(1 ~ )gXpp (1~ B — ) Xpw) " Xy
(8.97)
where the last two terms can be further simplified as follows:
(8.98)

1 1
— 5y Indet (= Bl = )Xpp) = = ;m[l — B = hol ;

and
= lim —— Indet [T = nBgXpp —np*(1 — 9)qXpp (L= B(1 = )Xpp) "' Xps]
nB>(1 — q)gh?
= —1li In|1-nBghy — —— %
nli%zn Zn[ L S T
1 Bqrs

TN &1 B gk,
(8.99)
Finally, the averaged free energy is given by

1 _ = ~T 1. 1, Toa ﬂ T
N(an)_</Dz ln[ZCosh(\/;z%—m §F)]>+qu—5q—m m+§m Xrrm
/32

1
_ﬁ;ln[l_ﬁ(l_q)ka]—i_ — 9 TXB(H_ﬂ(l_Q)XBB) Xprm

2

1 Bars
YW TR g
(8.100)
We rescale ¢ by 824, and by S. We then define

K =Xz + (1 — ¢)Xpp L= Bl — )Xpp) " Xpr. (8.101)

The stationary condition of the free energy with respect to m implies that m = Km.
Therefore, the free energy can be reorganized as follows:
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= 2

+ @Bq /01 du$ +</ Dz In [2cosh <,B\/(§z +ﬁﬁlTEF>]>,

2 1-B80—qg)A(u)
(8.102)

where A(u) = c + 2y Zle cos(2mru). In the limit P — oo, it can be proved that
X pp is asymptotically equivalent to X [16]. Therefore, the summation over o can
be replaced by an integral using the eigenvalue of the circulant matrix X.

24 1
’Bq(q—l)—émTKm—%/o duln[l — B(1 — ) A()]

8.4.2 Derivation of Saddle-Point Equations

The order parameter should take values optimizing the free energy function, leading
to the saddle-point equations (SDE). The saddle-point equation of g is given by

1
q—l+m</ Dz : tanh (ﬂ@z+,smT.sF)>:o; (8.103)

g—1 +</ Dz [1 ~ tanh? (ﬂ\/éerﬂngF)D:o; (8.104)

g= <f Dz tanh? (ﬁ\/& +ﬁﬁ1T§F)> . (8.105)

The saddle-point equation of m is given by

m = <§F f Dz tanh (,3\/qu n ﬁng:F)> . (8.106)

The saddle-point equation of m is given by
th = Xprm+ B(1 — ¢)Xpp 1— B(1 — )Xpp) ' Xprm :=Km, (8.107)

where K = Xrpr + 8(1 — ¢)Xpp (I — B(1 — q)XBB)_' XjgF, as derived at the end
of the previous section. The saddle-point equation of g is given by

1 22
1= 5 L gy T X (- B = X Xyem
o ’ 8.108
_ q/I A*(u)du B _lngm. ( )
0o (1= B0 —g)Aw)* dq
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Finally, the saddle-point equations are summarized as follows:

fi = Km (8.109a)
g= </ Dz tanh? (ﬂ\/éz + ﬁrﬁTgF)> , (8.109b)
. ! A%(u) _, 19K
qz“?ﬁdﬂl—ﬂl—mmmf_ﬂ g™ (8:10%)
m = <§F / Dz tanh (ﬂ\/c?z + ﬂﬁlTsF)> : (8.109d)

We next determine the critical temperature between the paramagnetic phase
and spin glass phase. In the spin glass phase, ¢ # 0 but m = 0. Expanding ¢ =

2 ~ AT A 1 A%(u) T K —
<f thanh (ﬁ\/&Z‘F,Bm §F>>,andq—aqf0 dum + m Em[C:
B(1 — q)] in powers of ¢ and g, we have

1 AZ(M)
g~ PG~ ﬁzaq/ du——"— +0(q*) . (8.110)
o (I=pAw)?
T, can then be obtained by solving
1 A2
1:a[ du#z. (8.111)
o (T, — Aw)

For the standard Hopfield model, Eq. (8.111) can be analytically solved with the
result T, = 1+ /o.

8.4.3 Computation Transformation to Solve the SDE

To solve the SDE numerically is challenging, due to the computation of K, which
involves the block structure of X. To get rid of dependence on N and P (we are only
interested in the large N and P limit), we propose the following numerical technique.
We first define C = (1 — q).

Note that if C = 0, K = Xz, & = Xp5Xpp. Let

XX = [H } (8.112)

where His an S x § symmetric matrix. Then, we have
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T T IK
H=XprXpr + XrpXpr = XprXpp + — . (8.113)
9C |
The matrix H can be computed as follows:
ho hy -+ hs
hy hy - hso
H= i ) . , (8.114)

hs_1 hs—a -+ hg

where

~v
|

hy

| =

_ 2
42 Xd: <2nrm>:| <2niml>
c y cos exp
i p— P P

I
S—
QU
=

d 2
c—y+vy Z exp (Znirx):| exp (2milx) (8.115)
r=—d

1 d 2
= / dx | c+2y Z cos (2nrx)] cos 2mlx).
0

r=1

Finally, we arrive at

oK
i =H - XX =H— (K|c_o)*. (8.116)
Cc=0
IfC #0,wehave K = Xpr — Xpp mXBF. To calculate K numerically in
the large P limit, we notice that
-1
X-c'pt= [Fl :::} , (8.117)

where F;!' € RS*S, and is a submatrix of (X — C~'T)~!. Since X — C~'I is a circu-
lant matrix, its inverse matrix can be calculated by (X — C~'I)~! = Circ(wg, wy, ...,

wp_1), Where
! 2k
Wi = / dx cos@rk) : (8.118)
0o ¢c—C 142y _ cos(2rrx)

fork=0,1,..., P —1in the limit P — oo. Thus, F1_1 can be written as



94 8 Statistical Mechanical Theory of Hopfield Model

wo wyp s Ws—g
i Wi Wo - Ws—2
Fil=| . . - (8.119)
Ws—1 Wsg—2 -+ W

By using the matrix formula for the inverse of a block matrix, we can prove that
K can be expressed as

K=F +C'I. (8.120)
Hence, to calculate K numerically, we first calculate wy for k =0,1,..., 5 —1to
get Fl_1 , and then calculate its inverse matrix F,, and finally add the matrix C “1Tto
F,.
The term % = —%%—K can be calculated as follows:
q

9K 9F 1 OF ! 1

2 g p, L F, - T, (8.121)

oC aC c? oC o

aF;!

where the entry of —- is computed as

3 ! C~2cos(2rk
% _ _/ dx cos(2mkx) - (8.122)
0 [c —C 2y Y cos(2nrx)]
fork=0,1,...,5 —1.
8.4.4 Zero-Temperature Limit
In the limit 7 — 0 (8 — 00), it is easy to derive that
- 2 [ 1
Dz tanh(,B(/c?z +x)) = ~ dzexp _EZ + O(T)
0 (8.123)

1
= erf(—Ax> +0(T),
V2q

and
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/j—_ e (1 — tanh® Blaz + b])

e dz (1 — tanh® Blaz + b])
4/ tanh? B(az +b) 0 /
1 e (8.124)
“ dz— tanh Blaz + b]
T Vn ap /

/ 3 o b2
aﬂ

‘We thus obtain

m = <§Ferf [\/Lz?g}KmD . (8.125)

In the limit 7 — 0, we also have

B(1 —q) =ﬂ/Dz<1 — tanh? [ﬂ\/q7z+ﬂ£$Km])

2
_ |2 <exp [_ [¢7Km] D (8.126)
Tq 2g

=C.

The conjugated order parameter g is given by

: A? dK
c}:a/ du—20 (8.127)
0 (1—CA) aC

where in the zero-temperature limit ¢ — 1.
The free energy at the zero-temperature limit is given by

! A c§ 1 2
= [ AL g (2
0 1—CA@w) 2 2

where a = \/gand b=m"é.

8.4.4.1 The Spin Glass Solution

In the spin glass solution of the SDE, m, =0 for all u = 1,2, ..., S. Hence, we
have

2
C = <, (8.129)
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and
qA = fl du—( ) (8.130)
0 (1 C“(”))T .

We consider the simplest case of y = 0 and ¢ = 1. It immediately follows that

o

asor (8.131)

qg=
Therefore, C = (1 4/ ”—2"‘)71 recovering previous results in the Hopfield model.

8.4.4.2 The Retrieval Solution

The ferromagnetic phase have a single non-vanishing overlap, i.e., m, = mé, | ~
O(1). They are named retrieval states, captured by the following equations:

m = <§1 erf [J%m [gEKLD, (8.132a)

. A2(u) K]

In the simplest case of y = 0 and ¢ = 1, we have K = . The above equations
thus reduce to

m:erf< m ) (8.133a)

29
2
C= |Ze %, (8.133b)
7q
R o
i=q"en (8.133¢)

This result gives the memory capacity of o, >~ 0.138 beyond which m = 0, which
is exactly the memory capacity of the standard Hopfield network [3]. In the general
case, we consider in this section, it is necessary to solve the general equation numer-
ically.

Finally, we look at the phase diagram. As shown in Fig. 8.5a, we identify three
phases. One is the retrieval phase where only one overlap component is of the order
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Fig. 8.5 Phase diagram of the associative memory model in the (¢, y) plane given ¢ = 1. a The
phase boundary shown by the lines delimits the retrieval (R) phase from the region where the
correlated-attractor (CA) and spin glass (SG) phases compete with each other (above the boundary).
The boundary is the condition on which the retrieval phase loses its metastability from below. All
shown transitions are of the discontinuous type. When o = 0, the transition point is given by
ye = 0.5 ford = 1, while y. = 0.25 for d = 2. The inset shows the boundary line above which the
spin glass phase is dominant. Note that for d = 1, there exists a very narrow regime (indicated by
the shadow) within which the correlated-attractor phase is dominant. b Overlap profiles obtained
from the statistical mechanics theory. All overlap profiles are obtained by solving the saddle-point
equations of the model when « = 0 and d = 2 (or d = 1). All theoretical results are obtained by
assuming that S = 11, except that for negative values of y, we use S = 15. Note that the results are
not sensitive to the value of S (e.g., S =1l or § = 13)

one, i.e.,m* = md,,, where v indicates the stimulating pattern. Given the value of «,
increasing the value of y would finally make the retrieval phase lose its metastability,
after which the correlated-attractor phase becomes metastable. The line separating
these two phases is thus the first-order transition. The correlated-attractor phase is
characterized by the stimulus-induced attractors being highly correlated with a finite
number of patterns in the stored sequence. In other words, the value of the corre-
sponding overlap decays with the distance between the patterns in the sequence and
the one used as the stimulus. The numerical solutions of the saddle-point equations
obtained by the replica theory (see the zero-temperature limit) reproduce the key
features of the mean-field dynamics of the overlap [Fig. 8.5b], which corresponds to
o = 0 in our theory.

Our theory predicts that the value of d can be used to expand the correlation span of
the correlated-attractor, and moreover reshape significantly the phase diagram. When
o = 0, the threshold for the dominant retrieval phase is y. = 0.5 ford = 1, but y. =
0.25 for d = 2. In the presence of a finite «, the retrieval phase loses its metastability
at a smaller value of y for d = 2 than for d = 1 [Fig. 8.5a]. After that, the spin
glass phase characterized by m* = 0 (Yu) appears and competes with the correlated
attractor phase, until the point where the spin glass phase becomes dominant (global
minimum of the free energy), as shown in the inset of Fig. 8.5a. Remarkably, for
d = 1, we identify a narrow regime for y > 0.5 [the shadow in Fig. 8.5a], where
the correlated-attractor phase becomes dominant. This regime shrinks gradually as
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y increases. If noisy neural dynamics is allowed (e.g., at a non-zero temperature),
the spin glass phase would be replaced by a paramagnetic phase at a continuous
transition (see a detailed exploration in [17]). This transition line is also strongly
affected by the Hebbian length.

As o gets close to the spin glass line [the inset of Fig. 8.5b], the peak value of the
overlap in the correlated-attractor phase decreases, as expected from the significant
memory interference at a relatively large memory load. At o = 0, the correlation
profile of the correlated attractor phase is more robust for d = 2 against increasing
y than the case of d = 1. Further increasing y might leads to the result that the
correlation is not localized any more, and the network loses the association ability
about the stimuli.

In particular, our theoretical analysis also reproduces the unlearning effects
observed in the mean-field dynamics [14]. Furthermore, a critical strength of y, =
—0.25 for the oscillatory phase is predicted. y, = —0.5 ford = 1. When y < y,, the
unlearning effect of non-concurrent anti-Hebbian terms becomes more evident, pre-
ferring some particular patterns rather than their sign-reversed counterparts. In other
words, the (spin reversal) symmetry in the Hamiltonian is broken, and the negative y
selects particular patterns, which suggests that the energy landscape is reshaped and
further the information storage is re-optimized [18-20]. This intriguing phenomenon
thus establishes the connection between the Hebbian length, anti-Hebbian effect and
memory function of unlearning.
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Chapter 9 ®)
Replica Symmetry and Replica I
Symmetry Breaking

In this chapter, we introduce underlying physics behind the concept of replica symme-
try, and replica symmetry breaking, which plays an important role in understanding
the spin glass models of neural networks. Replica symmetry ansitz is considered as
a first step of approximation to compute the quenched average of the free energy
function. When the ansétz becomes unstable or yields unphysical results, the per-
mutation symmetry of replica indexes must be broken, leading to a higher level of
approximation—replica symmetry breaking.

9.1 Generalized Free Energy and Complexity of States

In previous chapters, replica symmetry is usually assumed as the first step for a
statistical mechanical analysis of disordered systems (e.g., in the Hopfield model).
The underlying physics is that a single giant pure state dominates the phase space
of the model under investigation. In other words, the spin-spin correlation decays
over their distance, satisfying the cluster decomposition (clustering) property [1],
e.g., in a mean-field system of N particles, the correlation magnitude is of the order
O(1/+/N) [1]. This usually occurs at a relatively high temperature, as shown in the
dashed line of Fig. 9.1 As the temperature decreases, the giant state will split into
many well-separated pure states, characterized by a free energy profile with many
local minima separated by high barriers. Each minima corresponds to a fixed point
of either TAP equation or belief propagation equation [2]. It contributes a statistical
weight, i.e., %, where F, indicates the free energy of the state with index «,
and B is an inverse temperature.

To describe the decomposition of the Gibbs measure [3], we need to introduce an
additional parameter characterizing the fluctuation of free energy levels, namely y,

as follows:
e_-"¢ = Ze—}'F = /dfeN(_yf+E(f))v (9'])
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S a
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S Ea ==

Fig. 9.1 Schematic illustration of how a clustered organization of the phase space emerges. Here,
we show only three clusters of configurations, within each of which the clustering property of a
pure state holds. The right panel shows the corresponding free energy landscape

where X (f) encodes the complexity of exponentially many states, an extension of
the standard entropy in statistical mechanics. ® denotes the replicated or generalized
free energy, taking into account fluctuations across many local minima with free
energy density f, in the free energy landscape. This is the so-called one-step replica
symmetry breaking (1RSB) scenario (later explained mathematically in detail in
the last section of this chapter). Accordingly, we have e™>® = 3" Z™, where the
original partition function of the «th state is weighted by a power m, which is thus
called the Parisi RSB parameter or Parisi parameter [4]. It then follows that one can
interpret y as a product of Bm, which we shall discuss in detail later.

In the thermodynamic limit, the intractable integral in Eq. (9.1) can be estimated
by the Laplace approximation, resulting in

— Y9 = m?X{E(f) —yfh 9.2)
_9x(H
= (9.3)

¢ denotes the replicated free energy density (i.e., per spin). By a Legendre transform,
one obtains the following identities:

ad
F=22, ©4)
y

0
S = y(f - ) =y2£. 9.5)



9.1 Generalized Free Energy and Complexity of States 101

¢ can be estimated by the cavity method at the 1RSB level. More precisely, by
adding one variable node (e.g., spin) into the original factor graph of the model, and
assuming a one-to-one correspondence among the pure states (at least with the lowest
free energy) before and after the cavity operations (including also the operation of
adding a function node, e.g., an interaction), we then have

e*}‘d’f'cw — ZeindiyAFiu — e,y(pold Za)(a)eiyAFiu
a o (9.6)
— v <e—)’AFi>

’

where the weight w (o) = ﬁ, and the angular bracket indicates an average over

all equilibrium states.
Analogously, we have the contribution of adding a function node as follows:

S HNEw — vehold _
eV = @Y (e A, (9.7)

Therefore, the replicated free energy shift due to both cavity operations can be sum-
marized as follows:

— yAg; = In(e™ 47, (9.8)
—yAp, = In(e™2F), (9.9)

where A F; and A F,, are the free energy shifts under the cavity operations, and can be
estimated within each pure state, thereby having the same form with the RS theory.
Finally, applying the Bethe approximation at the 1RSB level, the replicated free
energy can be constructed by collecting two parts, given by

=Y A¢i— ) (l9al — DAg,, (9.10)

where |da| denotes the degree of the function node a in the factor graph. The free
energy density and the complexity can be derived based on Egs. (9.4) and (9.5)

AF VAF AF —YAF,
= - Etal - D ©.11)
) ©0.12)

The mean-field spin glass models can be classified into two distinct categories.
One is the SK model, where the low temperature phase can be described as an
ultrametric hierarchy of states, or mathematically a full replica symmetry breaking
(fRSB), explained in detail later. The transition to the spin glass phase is of a second
order, accompanying a diverging correlation length. The other class is the p-spin
(p > 2) models or discontinuous glass models [5]. The transition to the spin glass



102 9 Replica Symmetry and Replica Symmetry Breaking

phase is still second order (no latent heat) in the Ehrenfest sense, but the order
parameter (e.g., Edwards—Anderson order parameter) jumps at the transition, being
of the first-order characteristic. In spin glass theory, this transition is named the
random first-order transition [6]. The 1RSB scheme is known to be correct for the
p-spin spherical model [7, 8], where spin takes spherically-constrained continuous
values, but for the general case of the p-spin Ising model, the spin glass phase may
have a fRSB structure that occurs at a very low temperature [9]. Many complex
systems, including structural glasses' and constraint satisfaction problems, fall in
this category, sharing many interesting properties [4, 6, 10].

In a typical example of discontinuous spin glass models, there exists a maximal
value of free energy such that X ( fi.x) determines the number of metastable states, so-
called threshold states trapping most local algorithms, e.g., simulated annealing [11].
At the other end, X ( fy) = 0 determines the lower-bound estimate of the ground
state with the free energy fq, corresponding to the maximum of ®(y) at the IRSB
level. However, the 1RSB scheme becomes unstable for the free energy above fg,
which is the Gardner energy where the fRSB scheme of a hierarchy of nested states
should be assumed. As a classic example, the Ising p-spin glass undergoes a first
discontinuous transition from a paramagnetic to a 1RSB phase at a relatively high
temperature, and then a continuous transition to a fRSB phase as the temperature
is lowered down to the Gardner temperature [5]. In addition, we have the following
relationship fos < fo < fmax [12].

9.2 Applications to Constraint Satisfaction Problems

At the 1RSB level, the cavity method can be classified into two cases, depending on
different focuses on the probability measure of thermodynamics. We first introduce
the energetic cavity method [13]. In this case, as mentioned above, we can write the
1RSB re-weighting parameter y as a product Sm. Then we obtain

— Bmep (B, m) = rI}%x{E(s, €) +m(s — Be)}, (9.13)

where s and € denotes the entropy density and energy density, respectively. Taking
the limit 8 — oo and m — 0 while keeping a finite value of y, we get

$e(y) = max{X(e) — ye}. (9.14)

Note that the limit 8 — oo is the zero temperature limit commonly took in an opti-
mization problem to search for ground states of the model. X (¢) determines the
number of clusters of configurations with the energy density €, and moreover its zero-
value determines a SAT threshold, e.g., in random K-SAT problem (see Chap. 2).

! Many interacting particles move with a local random environment for each particle.
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In a constraint satisfaction problem, each solution can be treated as an equilibrium
configuration of a traditional statistical mechanics model. These solutions may be
grouped into exponentially many clusters [14], and each cluster can be called a pure
state, thus their statistics can be captured by the 1RSB scheme. In a SAT regime,
where a solution satisfying all boolean constraints exists, or the ground sate energy
remains zero, an optimal value of y tends to be co. However, when the SAT threshold
is crossed from below, the optimal y takes immediately a finite value [15].

The energetic cavity method at the y — oo (also m = 0) makes the Gibbs mea-
sure concentrate on the ground state with € = 0 (SAT configurations), leading to
an efficient fully-distributed algorithm, namely survey propagation [13] for the ran-
dom K-SAT problem. This algorithm goes beyond the standard belief propagation
iteration that does not work when the constraint density (the number of boolean
constraints or clauses per variable) is larger than some threshold (still below the
SAT one). The salient feature is that, the cluster-to-cluster fluctuation is explicitly
taken into account in this advanced algorithm, which tells us the exact probability of
picking up a cluster randomly and finding a given variable frozen to one direction
within that cluster [13]. The survey propagation can thus solve the NP-hard problem?
in typical cases up to a threshold very close to the SAT threshold. This intriguing
property inspires many following up works in other kinds of constraint satisfaction
problems [4]. However, the algorithm does not work on the random K-XOR SAT
problem (see the first chapter), due to the freezing effects in clusters of solutions [16].
In addition, the algorithm requires a high computational complexity in optimization
problems where the ground state energy is non-zero.

If we focus our measure only on the SAT regime, i.e., ¢ = 0, then we can shift
our interest to the entropy part. This kind of cavity method is thus called the entropic
one. It is easy to write first that

Y(e=0)=max X(s,e =0) = X(m =0), (9.15)

i.e., the energetic (m = 0) cavity method computes the complexity of the typical or

most numerous clusters, and clusters are weighted equally independent of their sizes.
0X(s) _

This can be seen from the fact that == = —m. Generalizing to the entropic case,
we have
¢ (m) = max{X(s) + ms}, (9.16)

and by the Legendre transform

¢ (m)
§ = —

, Y(s) = ¢p(m) — ms. 9.17)
am

2 Whether the NP class is distinct or not from the P class that is solvable in polynomial time remains
an open problem in mathematics.
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Fig. 9.2 Schematic illustration of the Parisi parameter and the complexity of states. & denotes the
constraint density (the number of constraints per degree of freedom) in a constraint satisfaction
problem

The relationship m = —% can be easily derived under the saddle-point approx-

imation. It is physically clear that a given value of m selects the size of states (or
clusters), like the temperature parameter selecting the configuration at the RS level.
Note that, to detect if a IRSB solution emerges in a model, a first test is to verify the
appearance of a non-trivial solution of the 1RSB equation at m = 1 (Fig. 9.2). At
the corresponding threshold, the point-to-set correlation function [14], an average of
the correlation between a randomly chosen variable and a variable set at a distance
£ from it, sets in discontinuously for a discontinuous transition or continuously for
a continuous transition. This threshold is thus called the dynamical transition point
(eg), many local algorithms (by local move—a few variables are changed at each
step, like Monte Carlo algorithms) are affected by this transition, due to thermo-
dynamically relevant (entropically dominant) clusters (at m = 1) prevail. Note that
the local stability of the RS solution coincides exactly with the dynamical thresh-
old for the continuous 1RSB transition. However, the local instability occurs after
a discontinuous transition [14]. A non-trivial ergodicity breaking takes place at the
dynamical transition, leading to impossible uniform sampling of solutions or equi-
librium configurations after this transition.

Further, increasing the constraint density, the thermodynamic value of m will start
to decrease at the condensation threshold «, (Fig. 9.2), where the Gibbs measure
condensates on a few or sub-exponential (with the number of degrees of freedom)
number of clusters, i.e., the equilibrium value of m is determined by X (m.q) = 0.
Depending on the specific problem, there may appear a freezing transition where the
thermodynamically dominant clusters contain a finite fraction of variables frozen into
the same specified direction [16]. The freezing transition at a  forms an algorithmic
barrier where a large-scale rearrangement of variables required for going from one
cluster to another one. For example, in random K-XOR SAT, oy = oy, and all
clusters have the same size, and for random 3-SAT problems, o, = oy.
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In the 1RSB phase, cavity marginals fluctuate from one state (or cluster) to another
one. In general, a IRSB equation can be written into a compact form as

1

P(mi»a) = Z
1—a b

[T [ @i (s = F ) 20 019

€di\a

where the RS message m;_,, is now turned into a probability function, i.e., the survey
of messages among states (or clusters), and ¥ denotes the RS iteration, which holds
within each state, and the cavity partition function Z;_, , is now weighted in a power
m, acting as a statistical weight in a Monte Carlo sampling—e ~#""2fi~« where the free
energy shift under the cavity operation A F;_, , can be constructed from the RS theory.
This re-weighting term discourages moving into states with high free energy [17,
18], in a similar way to a standard Monte Carlo sampling where a high energy state
is highly undesired during the process of searching for low-energy configurations.
The 1RSB iteration [Eq. (9.18)] can be derived from a variational principle on the
1RSB free energy function ® (8, m) [19, 20], with respect to the functional order
parameter (the probability measure over the messages) and the Parisi parameter m or
y. We lastly remark that if the distribution P (m,_.,) does not peak on a few isolated
values, then it cannot be parameterized by a few real numbers, thereby making it
impossible to derive an efficient algorithm like survey propagation.

Now, let us analyze the special case of m = 1. This special Parisi parameter
greatly simplifies the complex 1RSB equation, and make a numerical solution of
the equation using population dynamics [14, 17, 19] much less time-demanding.
Population dynamics is a special numerical techniques using a population of random
variables (being updated) to represent a probability distribution, particularly suitable
for solving the 1RSB equation that is a recursive probability function equation. In
this special case, we have

_ Y(s,€)+s
B

In the dynamical 1RSB regime, where the complexity X (m = 1) is positive, the RS
marginal probability and the free energy remains asymptotically exact. Moreover,
the correct total entropy deviates from the RS one only in the condensation phase or
phases after it. More precisely, sy = s*(2(s*) = 0) < sgg in this regime [4]. From
this sense, the dynamical transition is not a genuine transition. When X () vanishes,
a genuine, or ideal glass transition occurs, namely the Kauzmann transition [21]. At
this transition, the free energy has a discontinuity in its second derivative.

In some systems, there exists a frozen phase, e.g., in the random energy model,
or the binary perceptron learning problem [22, 23]. Therefore, for the ath state,
fo = €4, We have

pBm=1)=¢ =€ — Tsior. (9.19)

e NPmIBI) G NSy § NP — =N (), (9.20)

o o
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from which, we can define an inverse temperature §; where the entropy vanishes,
sgs(Bs) =0, i.e., when B = B;, m = B —1. As the temperature further decreases
(m decreases as well), the free energy is clamped to its zero-entropy value, like
that occurs in the random energy model. In this kind of models, the zero-entropy
condition is used to solve the entropy crisis, i.e., the free energy shows a maximum
at a finite temperature [18, 24]. In addition, the RS instability usually takes place
after the entropy crisis, there thus must exist a discontinuous transition before or at
the zero-entropy point [25].

9.3 More Steps of Replica Symmetry Breaking

As we know, the RS solution may be incorrect if long-range correlations emerge in
the system, e.g., the point-to-set correlation does not decay to zero [26]. This is also
called the sufficient condition. A necessary condition for the correct RS solution is
the non-divergence of the spin glass susceptibility xsg, defined as

1
xs6 = 5 ) (oi0;) = {oi) (o)), ©.21)
ij

where the angular brackets mean the thermal average and the overline means the
disordered average over model parameters. When these conditions are not satisfied,
high levels of approximation must be introduced, e.g., IRSB, in other words, a small
perturbation breaks the replica symmetry, in accord with the (de Aleida-Thouless)
AT stability analysis within the replica scheme [27], i.e., via a perturbation analysis
in the replica space around the symmetric order parameters. If the 1RSB solution is

n m ™Mo My

N
N

RS 1RSB 2RSB

Fig.9.3 Schematicillustration of how the overlap matrix changes as more advanced approximations
are introduced. n denotes the number of replicas, while m; denotes the size of subblocks when
considering a hierarchy of replica symmetry breaking
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unstable against further perturbations, either in terms of small changes in distribu-
tions or in terms of messages, like at a Gardner temperature, more levels of replica
symmetry breaking are required. In general, a 2-RSB theory involves an order param-
eter that is a distribution of distributions, and correspondingly, states can aggregate
into different clusters (inter-state susceptibility diverges), or each state can further
split into different states (intra-state susceptibility diverges) [25]. These susceptibil-
ities depend on different ways of handling the overlarge over the states with their
Boltzmann weights.

The overlap matrix in the replica theory can be interpreted in the matrix of the
overlap between pure states a and b [28-31], defined by

1
Qup = Z<ai>a<ai>b, (9.22)

where (o) represents the thermal average within that state. In terms of the Parisi
ansitz, the IRSB corresponds to the n replicas divided into n/m identical clusters
of size m . Within each cluster, the permutation symmetry of replicas still holds. Then
we need two order parameters, gy and ¢g; (g9 < ¢1) at the IRSB level. In general, for
a k-step RSB, we have 1 = my; < my < --- < mgy = n, i.e., by adding one level,
the diagonal block is further divided into m; /m;; subblocks, for each block g; | is
assigned (Fig. 9.3). In a mathematical form, we have

Qup = qi, if ’71—‘=’7£—‘ and ’7 - —‘75[ b —‘, (9:23)
mi mi mi4q mi41

where [x] takes the smallest integer not larger than x. {g;} then form a sequence
of order parameters representing similarity of states in the hierarchical organization
of the phase space. The permutation symmetry among replicas is clearly broken
across different blocks. By an analytic continuation to n — 0, as usually adopted in
the last step of replica calculation, the relationship among m; becomes 0 = my <
m; < --- < mypy; = 1. An observable measure reflecting replica symmetry effects
is defined by the realization-dependent distribution

Py(g) =) 0awhd(qar — ), (9.24)
a,b

where J represents the model disorder, and w, denotes the ath state’s statistical
weight described as above. We remark that this distribution is not self-averaging,
i.e., its profile depends on the specific realization of the model. It is thus unlike the
free energy (being of the self-averaging property), as the system size increase, the
fluctuation of the free energy value will be minimized, such that the free energy for
a single instance roughly matches the typical value obtained by replica theory.
Taking another limit k — oo, one obtains the fRSB solution, where ¢; transforms
to a continuous function g (x), ranged as g € [0, gmax]. In the fRSB phase, pure states
are organized according to an ultrametric structure. Note that the Edwards—Anderson
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order parameter gga = max, ¢ (x). The inverse function x(q) is just the cumulative
distribution

q
x(q) = /0 dq'P(q"), (9.25)

which gives the probability of observing an overlap less than or equal to ¢g. Therefore,
we have 0 < x < 1. Note that P(q) = P;(q) = d;—g”. In this way, the hierarchical
clustering of replicas can be interpreted in a physical picture of pure states. RSB
effects were investigated in the machine learning models of restricted Boltzmann
machines [32]. Ultrametric structures in the state space were also revealed. The
ultrametric property of overlaps among three states implies that two smallest overlaps
are equal [1].

We finally remark that in the replica theory, the 1RSB free energy is always larger
than the RS one, with increasing levels of RSB, the lower bound to the true free
energy improves [33, 34]. A fRSB solution of the SK model, proposed by Giorgio
Parisi, was proved to be rigorous in mathematics [35].
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Chapter 10 ®)
Statistical Mechanics of Restricted g
Boltzmann Machine

Energy-based model is an archetypal type of generative model, which can learn any
distribution of data and generate new samples that follow the same distribution as
the original one. In this chapter, two kinds of energy-based models are introduced—
Boltzmann machine (BM) and restricted Boltzmann machine (RBM). The learning
method of maximizing log-likelihoods is introduced and statistical mechanics analy-
sis of restricted Boltzmann machines is performed. The free energy of RBMs is cal-
culated based on the Bethe approximation. Then thermodynamic quantities related to
learning, e.g., magnetizations as well as hidden-visible correlations are also derived,
providing an alternative efficient way to train RBMs with continuous weights. In this
chapter, we also introduce a powerful physics-inspired algorithm for training RBMs
with discrete weights, which was previously thought to be out of reach until a very
recent work (Huang in Phys. Rev. E 102:030301(R), 2020 [5]). Training RBMs plays
an important role at the early stage of deep learning (Bengio et al. in Advances in
Neural Information Processing Systems, pp. 153-160, 2007 [9]).

10.1 Boltzmann Machine

Boltzmann machine (BM) is an energy-based model, as shown in Fig. 10.1. It is an
unsupervised learning network with the following energy:

E(@) ==Y hioi — Y _wij0;0). (10.1)

i<j

where o; = £1 is the state of node i, &; is the bias of node 7, and w;; is the connec-
tion weight between node i and node j. Configurations of o obey the Boltzmann
distribution

1
p(o) = ge‘““’), (10.2)
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where Z = )" e P£(@) is the partition function. To learn a given data set by a BM
is known as the inverse Ising problem (see Chap. 3).

The Hopfield model can be considered as a special type of BM with h; = 0, Vi,
and the coupling is constructed in the Hebbian rule. Generally speaking, the Hebbian
rule is not enough to learn any distribution of data. Therefore, to learn the distribution
of a given data set with M configurations, {al, a?.. ., oM}, the weights of a BM
network are updated by maximizing the log-likelihood of the data

L®l{o}) = (log(pe(0))aua

= —(E(0,6)) 4 — log Z(8)

N (10.3)

=Y hi(0i)aua + Y Wij(0i0)aata — log Z(0),
i=1

i<j

where (. . .)qan means the average carried out over the data, @ denotes the parameters
{W, h}, pg(0) is the distribution of ¢ with parameters #, and $ is set to be 1 for
convenience, as 8 can be absorbed in both weights and biases. The gradient of
L(#|{o}) can be easily computed as follows:

JL

3_/’li = (07 )data — (i) model;

oL (10.4)
dwij = (0i0)data — (0i 0 ) model

where (...)model denotes the thermal average under the model measure. Network
parameters can then be updated by gradient ascent

oL
Ah; = Mo = ({07 )data — {07 ) model);

3L (10.5)
AWij - nawi_j = n((oiaj>dutu - <Giaj)m0del)v

where 7 is the learning rate. The first terms of both equations in Eq. (10.5) are
easy to compute by averaging over the data. But the model average terms are
intractable to compute, as the computation of the partition function requires O(2")
time complexity. In practice, Monte Carlo method can give an approximate value
of the model average terms. An alternative simple way is the mean field the-
ory introduced in Chap. 3, which can be applied to calculate (o;)moger, and then
the two-point correlation can be obtained by using the linear-response theory:

d{oi
(U;;;,@del = (070 )model — (0 )model (T ) model-
j
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O Hidden node
. Visible node

=== Connection weight

(a) (b)

Fig. 10.1 a Illustration of BM without hidden nodes. b Illustration of BM with hidden nodes

In the standard BM, hidden nodes can also be introduced by providing a latent
encoding of the visible nodes (their number equals to the dimension of the data
samples), as shown in Fig. 10.1b. However, learning the parameters involved in the
hidden nodes is typically computationally demanding, as a Monte Carlo sampling of
states of hidden nodes is required. This computational barrier motivates an alternative
architecture, namely restricted Boltzmann machine to appear, which greatly reduces
the computational cost by removing the connections among visible nodes (and hidden
nodes) [1, 2].

10.2 Restricted Boltzmann Machine

The architecture of RBM is shown in Fig. 10.2. The hidden nodes play a role of an
encoder of sensory inputs. The RBM has one hidden layer and one visible layer. Con-
nections only exist between layers yet not within each layer. For the RBM network
with N visible nodes and M hidden nodes, the energy function that the learning tries
to minimize is given by:

E6,5) ==Y 0iWiaSa— ) $i0i — Y _ hasa, (10.6)

where o; is the state of visible node i with bias ¢;, s, is the state of hidden node a
with bias s, and w;, is the connection between them. The network state obeys the
Boltzmann distribution

1
p(o,s) = Ee*’”(‘””, (10.7)

where Z = )" e PE(@9 Here, we set f = 1, in that the temperature effect could
be absorbed into the inferred couplings and biases. Nodes in the same layer are
conditionally independent due to the absence of the lateral connections, and the
conditional probability is specified by
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O Hidd en node

Recognition

. Visible node

Reconstructio

===  Connect ion weight

Fig. 10.2 Schematic illustration of a RBM. The RBM has one hidden layer and one visible layer.
Connections are only allowed between layers. The recognition process is defined as sampling hidden
states given visible states. The reconstruction process is defined as sampling visible states given
hidden states

2ioyijizi) PO S)
Yo r(0.9)

e (hi+2_, WiaSa)

p (oils) =

- e0i (P42, WiaSa) + 0 i+, WiaSa)

1
1+ =201 (Bi+3, Wiasa)’

(10.8)
_ Z{sb:b;&u} p(o,s)

p (sqlo) = S p@.s)

esa (hq +Z[ Wiq0i)

eSa(ha+3_; Wiaoi) + e—Sa(hatd2; wiaoi)

1
1+ e~ 28a(hat 32 wia0i)

Given states of visible nodes, the states of hidden nodes can be sampled easily, which

is called the recognition process; and the converse process is called the reconstruction.
Similar to BM, the weights of RBM can be learned by maximizing the data log-

likelihood. Given a data set, {o!, 02, ..., oM}, the log-likelihood is formulated as

LO){a}) = (log (p(0)))gata
= —(E(0.0))qua —log Z ({6}).

(10.9)

where 0 denotes the parameters {W, ¢, h} for convenience, and pg (o) is the dis-
tribution of ¢ with the parameters 6. The gradient of the parameters can be easily
obtained as

8£({W1a a¢i aha })

IMWig = <Gisa)data - (Uisa>m0del;
a ias iaha .
—L({Wa,f D = (6i)qata = (0D modtet: (10.10)

0L{Wia, ¢ ha
% = <sa)data - (sa)model'
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Nevertheless, the model average terms still require O(2V*+¥) time complexity to
compute. An efficient method is the well-known contrastive-divergence (CD) algo-
rithm that performs an alternating Gibbs sampling [via Eq. (10.8)] that starts from
the data samples [3]. For saving computation time, CD is usually truncated to a few
Gibbs sampling steps, e.g., one step.

In next sections, we shall show that both the model average terms and the free
energy of the system can be obtained analytically by performing the Bethe approxi-
mation, which allows us to understand the statistical mechanics of RBM [4]. For the
sake of simplicity, we consider a random RBM with the property that all of w;, obey
an i.i.d Gaussian distribution with zero mean and variance %, and biases for each
layer also obey an i.i.d. Gaussian distribution with zero mean and variance v.

10.3 Free Energy Calculation

Using the conditional independence, we can derive the exact form of the marginal
probability of visible nodes

p@) =Y p,s)

1
[ > u Qi Boiwia+Bha)sa+)_; Boibi
7z Z e
s

1
—_ i Bodi Qi Boiwia+Bha)sa
=7¢ 2. [1e (10.11)
N a
1
—_ Boidi > Boiwia+Bha)sa

= % ]‘[ ePoidi ]:[[2 cosh(Bwao + Bha)],

where w, denotes the weight vectors connecting to the hidden node a. A direct
calculation of the partition function Z requires a time complexity of O(2"), which
becomes impossible as N increases. Here, the Bethe approximation can be applied
as a first-level approximation of the free energy. A factor graph can represent the
current system after the marginalization [Eq. (10.11)]. As displayed in Fig. 10.3, the
ith circle denotes the variable node o;, and the ath square denotes a Boltzmann factor
2 cosh(Bw,0 + Bh,), which corresponds to f,(x,) introduced in Chap. 3. B is set
to be 1 as explained above.

We then introduce a cavity probability P;_,,(o;), which denotes the probability
of the state of the variable node i in the absence of a factor node a, together with
auxiliary quantity u,—,;, summing the contribution of factor node b when the variable
node i is frozen to the state o;. According to the belief propagation formula, we have
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. factor node

o variable node

Fig. 10.3 Factor graph representation of a RBM. Circles denote variable nodes and squares denote
factor nodes

the following recursive equations:

P4 (0;) = e 1_[ Mp—i (07) (10.12a)
i—a bedila
wo—i (o)=Y 2coshwyo +hy) [] Pims (o)), (10.12b)
{ojljcob\i} Jjedb\i

where Zi .o = €% [Tyepng toi (+1) + €7 [Tyepig i (—1) is a normalization
constant, di \a represents the neighbors of variable node i except factor node a, db\i
represents the neighbors of the factor node b except the visible node i. Unfortunately,
the sum in the second equation still needs O (2¥~!) time complexity, and resolving
this difficulty requires further approximations.

Note that u,_,; estimates the mean of the Boltzmann factor 2 cosh (wpo + hy)
over the configuration {o;|j € 0b\i}. Under the Bethe approximation, ¢; around
the function node (b here) is approximately independent, provided that the cavity
probability P;_,,(o;) is defined. As U),_,; = Zjez)b\i w;,0; is the sum of (N — 1)
variables, and the variables {o;} are assumed to be nearly independent under the
Bethe approximation, the central limit theorem (CLT) thus suggests that U;,_,; obeys
a Gaussian distribution given a large value of N. The mean and variance of U,_,;
are, respectively, given by

Gooi = (Up—i) o, jcori} = Z WibIM j—b;

jeab\i
E%—)i = <q/{£—>i>{0'j‘jeab\i} - <(Llh_)i>?aj|jeab\i} (1013)
~ 2w (T=miy),

jedb\i

where m;_,, = Za, ojPiyp (aj) is the cavity magnetization. According to the
weakly correlated state assumption (the same spirit as the RS ansitz), a diagonal
approximation is further applied to simplify the variance, i.e., only the sum of diag-
onal elements of the correlation matrix is calculated. Then u;—.;(0;) can be approx-
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imately calculated as follows:

Mp—i(0;) = 2/ Dt cosh(Gyp; + Ei_}it + hy, + wipo;)

2

=2¢ 7" cosh(Gp—; + hp + wipo;),

(10.14)

where Dr = ¢~'"/2//27d1. Inserting this result into the cavity probability P;_,, (67),
we obtain the cavity magnetization

Mia =Y 0Py (0))

gj
_ Zg,. o nbeai\a Hp—i (07)
26 €77 [peoina Ho—i (01)

(10.15)
= tanh | ¢; + Z Up—i | 3
bediva
1 upsi(+1) 1 cosh(hy + Gy +wip)
Upsi = —In=—"""" 2 = _In

2 ppoi(=1) 2 cosh(hyp + Gpoi — wip)

where u,_,; is the cavity bias (see Chap. 2). m;_,, represents the massage passing
from variable node i to factor node a, and u;_,; denotes the massage passing from
factor node b to variable node i. Iterating Eq. (10.15) can reach the fixed point. Then,
the Bethe free energy can be calculated as follows:

F=) F—-(N-D)Y Fi

Fi=-InZ =—In(” [ [ mo—i +D) + e [ o—i (=) (10.16)
bedi bedi

g2
F,=—InZ, = —In(2e? cosh(G, + h,)),

where F; and F, are local free energies of variable node i and factor node a, respec-

tively, Ba = ) jcpa Wia (1 - m?_w), and G, = Yy, WjaM j—a- The computation
of F, is similar to that of u,_,;. Here, we show an experiment result of the free energy
computation via the Bethe approximation (Fig. 10.4).

10.4 Thermodynamic Quantities Related to Learning

To learn a RBM, computation of model averages in Eq. (10.10) is required, and the
Bethe approximation can then be applied. After getting the fixed points of Eq. (10.15),
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Fig.10.4 Free energy density (f = F/N) of random RBMs. The error bar is the standard deviation
overtentrials.a f versusae = M /N with N = 1000, g = 1,and v = 0.05. b The absolute difference
between exact free energy (calculated by enumeration) and Bethe approximation of different o with
N =20, g =1, and v=0.05. c Comparison of exact free energy and Bethe approximation for« = 0.6
in (b). The diagonal line denotes fpa = fexact-d f versus g with N = 1000,v = 0.05and @ = 0.5.
e f versus v with N = 1000, g = l and @ = 0.5

the magnetization of a visible node i, i.e., m; = (0;)model, can be obtained as follows:
m; =tanh | ¢ + Y upi ). (10.17)
bedi

Then, the magnetization of a hidden node, i.e., 711, = (54 )model, can be calculated as
follows:



10.4 Thermodynamic Quantities Related to Learning 119

My = (Sa)model = (tanh<z OiWiq + ha))(f

(10.18)
= / Dx tanh (,/ E2x + éa> ,
where G, = ", 5, Wiati + hq, and 82 = jeda wfa (1 - mi) Note that the sum

in the mean and variance here involves in full magnetizations instead of cavity ones,
which is different from those in Eq. (10.16).

To update the connection weights, correlations between hidden and visible nodes
should be calculated

Cai = <saai)model = <tanh<2 OiWia + ha)ai> s (1019)

a

where the average over s can be performed exactly due to the conditional indepen-
dence. To calculate the intractable correlation matrix C, we can first calculate the
matrix-product CW

[CWl,, = <tanh(2 Oiwia +ha) Do jb> . (1020)
i j

We can then define U, = ), w;,0;, and U, that obeys a Gaussian distribution
due to the CLT. The mean is given by ) ; w;,m;. The covariance matrix of U =
U, Uy, ... U,, ...) is defined as A, whose element A, is given by

Aap = (UsUp) — (Ua) (Up)

e R )

(10.21)
= Zwia Zij (oio;) — Z Wia Z wip (o) (o)
i j i j
= Z Wia Z ijéijs
i J
where C is the covariance matrix of o = (01,02, ...,0x) and the entry éij =
(0;0;) — (07)(0}). Hence the matrix A can be expressed as
A =W'CW. (10.22)

In particular, the diagonal element of A is given by
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Daa = (U3) = (U =Y wi, (1= m]), (10.23)

ieda

which is the same as @a.

To proceed, we re-parametrize U, = /Auq — Aupx + Doz + (U,),and U, =
Ay — Mgy + Aupz + (Uy), which guarantees the covariance structure. In this
parameterization, x, y, z are independent random variables obeying the standard
Gaussian distribution. Then the matrix-product CW can be calculated as

CWt,p = (tanh(Uy + ha)Up)
= (tanh(Uy + ha)(Up — (Up))) + (tanh(Uy + ha) ) (Up)

= / DxDyDztanh(y/ Aga — Agpx ++/ Aapz + (Ua) + ha)

X (v Bpp — Bapy + v/ Dapz) + tita (Up)

= Au f DxDztanh(y/Agq — Agpx + \/TM,Z + Gz + <Z aiwib>nA1u
i

= Agp / DxDz(1 — tanhz(\/ Aga — Agpx + v/ Agpz + Ga)) + Zmiwib"ha’

(10.24)
where Dx = e’xz/z/\/ﬂdx, Dy = e’yz/z/\/ﬂdy, Dz = e’zz/z/\/ﬂdz, and the
integral identity [ Dztanh(z)z = [ Dztanh’(z) has been applied. Note that
VAui — Apx + /Aypz obeys a Gaussian distribution N'(0, A,). The equation
can be re-parameterized in a simpler form

[CWlw = Awp [ Dr(1 — tanh®(y/Agut + Go)) + Zm,-w,»brﬁa, (10.25)

where Dt = ¢~"’/2 / /2wdt. We can then rewrite the above equation to a matrix
form for convenience. Here, we define a diagonal matrix A with diagonal elements
A = [ Dx(1 — tanh®(VAgex + G,)), m = (my, m, ..., my) that is a matrix of
dimension 1 x N,andm = (i1, mo, . .., my) thatis a matrix of dimension 1 x M.
The matrix form of Eq. (10.25) is given by

CW = AW'CW + m"'mW. (10.26)
From the above equation, we can immediately obtain
C=AW'C + ' m. (10.27)
Each element of C can thus be read off

Cai = Aaa Y_wjaCji + Mam;. (10.28)
J
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Considering the week correlation assumption, we apply the diagonal approxima-
tion that Zj WiaCij = wiqCii = wig(1 — miz). In sum, the model terms can now be
obtained as follows:

m; = tanh <¢z + Zubﬁl’> 5
b
h, = / Dx tanh </?3x + Ga> , (10.29)

Cai = Aaawia(l - mIZ) + ’/hamis

Aga :/Dx(l — tanh*(y/ E2x + G,)),

J
To evaluate the equilibrium properties of a random RBM model, BA requires

O(nM N) time complexity to compute the thermal average, where n is the number of
iteration steps before convergence and usually less then 100 (not around the transition
point), while the CD-k algorithm requires O(kT M N) [4], where T is the number of
data samples, and k is the length of the Gibbs sampling chain.

~ Y 2 2
where G, = ) 5, Wialli + hq, and 82 ~ Zjeaa Wi, (1 —m )

10.5 Stability Analysis

Bethe approximation requires that variance of weights and hidden-node density of
the network, @ = M /N, should be small enough to ensure the visible nodes around
cavity function nodes are statistically independent. With increasing weight-strength
and hidden-node density, i.e., g and o become larger, the Bethe approximation will
be not self-consistent. It is thus necessary to perform the stability analysis to draw
out the boundary within which the approximation works.

Considering a weak perturbation in the message from node i to node a as &, .,
we can write the actual passing message as m;_,, + &y, ,,. Following the informa-
tion flow in Fig. 10.5, we can write the recursive equation for the perturbation as
follows [4]:

il i—a
S =Y Mizas . (10.30)
P 8m]—>b !
bedi\a; jedb\i

To remove the sign dependence of the perturbation, we define the magnitude as
the squared perturbation as
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mi_)a + 8mi—>a
—l

Fig. 10.5 Propagation of message-perturbations through the factor graph of a RBM

2
om;
2 _ 1—a
8m[~>a - Z A 3’”]91; Sm/»b

bedi\a; jedb\i (10.31)

ami%a

~ Y Y G 6,

beaia jeab\i TP

where we ignore the correlation for different J,,,_,. Here, we use Vi, = 331,9“ to
denote the strength. Using Eqs. (10.15), (10.31) can be simplified as
V. = (1= mi)’ Z Py x [tanh (Ty_;) — tanh (T — 2wpi) ]
i—a 4 _ —1 —1 —1 i )
bedi\a

(10.32)

where I'ypi = hp + Gposi +wip, and Poosi = 3o w?b(vjﬁb. The total vari-
ance is defined by S(¢) = Z(w) Vi_4(t), where t denotes the iteration step of
Eq. (10.32)). To monitor the stability, we define A = S(z¢ + 1)/S5(¢¢), where ¢¢
denotes the time step when the iteration converges or reaches a prescribed maxi-
mal iteration number. If 1 > 1, the total variance will increase, thereby causing the
instability of the message passing equation. When we perform the BA approximation,
we should thus choose the suitable values of g and « to ensure A < 1. As Fig. 10.6
shows, the Bethe approximation becomes instable around g = 2.1 with N = 1000,
o =0.5 and v =0.05.
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Fig. 10.6 Stability analysis of random RBMs. The error bar is the standard deviation over 20
random realizations of the model. a Stability parameter A versus g with N = 1000, v = 0.05 and
o = 0.5. A increases with g. When g = 2.1, X is near to the critical point (A = 1). Some instances
are unstable, and the others are stable as (c¢) shows. b A versus o with N = 1000, v = 0.05 and
g = L. ) increases with «. ¢ Two instances of instability (dashed line) and stability (solid line) with
g=2.1,N=1000,« = 0.5and v = 0.05

10.6 Variational Mean-Field Theory for Training Binary
RBMs

In a restricted Boltzmann machine with continuous weights, maximizing the log-
likelihood through computing gradient ascent can be applied in training process.
However, in the binary RBM, the method fails in that the differentiation with respect
to the binary weights is ill-defined. Here, we introduce a variational principle that
maximizes the lower bound to the data log-likelihood, which results in a new algo-
rithm combining message passing with gradient ascents [5].
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10.6.1 RBMs with Binary Weights

Here, we consider a RBM with N visible nodes and P hidden nodes. The provided
dataset consists of M configurations, {o L2 ... oM }. Each configuration consists
of a set of binary spin ¢ = {0; = :l:l}fv= 1~ The synaptic weights are denoted as &,
where &/ = £1 denoting the synapse between visible node i and hidden node 1. The
energy of such a RBM is thus given by E (o, h) = Zi,u 0i&/'h,, where h,, = £1 is
the state of hidden node w. The Boltzmann distribution of visible nodes is then given
by

1
P(o) = 70 1:[cosh (BX,.), (10.33)

where we denote a short-hand notation X, = LN§“ -0 , " is the vector of weights
connecting to the uth hidden node, which is also called the receptive field of that
hidden node, and the partition functionreads Z(&§) = ), [] u cosh (/3 X M). The scal-
ing factor \/Lﬁ is added to X, to ensure that it is of the order O(1). 8 is the inverse
temperature tuning the noise level of the input data [6].

In this model, we consider a weakly correlated data set which can be generated
by sampling the planted model with a long Monte Carlo interval. This is also called
the i.i.d data sample assumption widely used in deep learning community. Thus, the
probability of a weakly correlated data set {o}!_ is modeled by

M
P(fo}il, 16) = ]_[ P ]_[ %},:) [Teosh (6x2).  (10.34)
=1 iz

where X} = \/LNE H. g, According to the Bayes’ rule, the posterior probability of
synaptic weights given the raw data is

am \_ P oL, 18) P&
P(€|{a } )_ P (]
_ TLP@I®P®
Y [1, P (018 P(&) (10.35)

= Lo (w7 Sincon ().

au

where the partition function of the posterior probability is given by

Q= Zexp (—Mln Z(&) + Zlncosh (ﬂXZ)) , (10.36)
&

ap
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and P (&) is assumed to be uniformly distributed, or no prior knowledge is assumed.
Here, B is ahyper-parameter during the training process. The nested partition function
Z (&) is intractable, let alone the posterior partition function 2. Computation of the
nested partition function 2 with one or two hidden nodes will be introduced in next
chapters. In the case of P > 3, analysis and calculation of 2 become extremely
challenging. In the following, a training algorithm based on the variational principle
will be introduced and moreover is applicable for any P.

10.6.2 Variational Principle

Instead of analyzing the posterior, a variational principle tries to find an approxi-
mate distribution close to the exact learning posterior [7]. We define a variational
distribution as ¢, (¢§) and the Kullback-Leibler(KL) divergence between g, (§) and
P (&l {o}™ 1) is used to measure how accurate the variational distribution is

&)
KL (4, (&) P(§]D)) = Eg In (Pqéé))) =EqIngr(§) — E, In P(§|D)

=E,Ingy(§) —E,In P(§) —E, In P(DI§) + In P(D)
=KL (¢, (&)1 P(§)) — E; In P(D|§) + In P(D)
= —LB (qx) +1n P(D),

(10.37)
where D denotes {0¢}*., for a short-hand notation, [E, denotes the average over
distribution ¢, and P(§|D) = %. As the KL divergence is nonnegative, the
lower bound to the data log-likelihood P (D) is given as follows:

LB (q2) = E4In P(DI§) — KL (¢:.(5) [ P(£)) . (10.38)

The learning process minimizing KL (g; (§)|| P (§|9)) thus amounts to maximizing
LB (g3). To maximize the lower bound, the first term of expected log-likelihood
should be increased, requiring g, (§) to explain the data. The second term is a regu-
larization term pushing g, (§) to approach the prior.

To maximize the LB, we first parameterize ¢, (§) and P (&). We assume that the
synapses are independent in the prior

1 —}—mm l —mm 1 +€iﬂmi/4
P(&) = 1—[ |: ) 85,.“,4,-] + ) 5;”,_]i| = l_[ T, (10.39)
i,u i,u
where m;,, corresponds to the mean of &, and 8, , denotes the Kronecker delta
function. Similarly, the variational distribution is assumed to have the same form as
prior yet with different parameters A,
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1+ 1— A 1+&E,
qx(§)=]_[[ > S8k 41+ 5 “sgi«ﬁ,_l]znT‘. (10.40)

(N7} i)

Under these two assumed expressions, the KL divergence between P (£) and g, can
be calculated analytically. By substituting the explicit form of P (D|£) into the LB,
we obtain

LB (¢1) = —KL (¢:(&)| P(§)) + E, [Zlncosh (BX§) — MIn Z(g)] . (10.41)
a,p

Notice that X7 = \/Lﬁfg #. g%, According to the central limit theorem (CLT), X ;. and
X, obey a Gaussian distribution with the following mean and variance:

GV- ( > szeéu 0i,

22 _ "

u,t_<(xau) o — (X)) = NZEM( %) 042
;L <X >‘l - szedu lll-a

&2 = (XY — (XD = & Tica (1-73,)

Then the lower bound can be parameterized as

LB (¢,) = KL (@ ®PE) + Y / Dzlncosh (BGY, + BE,z,.)
a,u

—M/DzanHcosh (BG,. + BE.z,),
[

(10.43)

1 @ : : H
where Dz =[], “.Ee 2 dz,. To train a binary RBM, gradients of the lower
bound w.r.t the variational parameters must be computed. Next, we shall show the
calculation of the lower bound and its gradients.

10.6.2.1 Calculation of the Lower Bound

To compute the integral in Eq. (10.43), the Monte Carlo method can be applied.
Therefore,

1 '
LB (¢2) = —KL (@ ()| P(§) + 5 Y Incosh (BG}, + BE,:7})

Ua s

_ Bﬂz ZanHCOSh (,BG,L + ,BE,LZZ) ,
s o I3

(10.44)
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Fig. 10.7 Calculation of the expected log-partition-function. The expected log-partition function
over gy (éi" ) is equivalent to the average of log-partition function over a dual RBM ensemble, whose

synapses are specified by \/iﬁk, and hidden biases are specified by E,.z),

where ZL is the sth standard Gaussian random number for the Monte Carlo integral,
B and B; is are the number of Monte Carlo samplers. In Eq. (10.44), the first two
terms can be computed easily. The KL divergence can be directly computed under
the parameterized form of ¢, (§) and P (&)

— +E )‘H’» +$ )\m
,KL(QA(g)HP(E))—%:%(E)ln (H e ) Zq‘@z‘“(wsﬂmm)
+%~ )sz,
=) D a )'“<1+s,um,ﬂ>

L gl =t

ZZ 1+)»,Hx 1 +mj,x _s L+ Xdipx 1+ A,x
2 2 ’ 2 ’

x=%1 i,u
(10.45)

gt
A is the variational distribution, and the entro function
Py

where gy (§/") = 50
S(z,y) =zlny.

The second term of the integral can be computed directly. However, the third term
of Eq. (10.44) is intractable. But it has the same form as the partition function of a
real-valued RBM with continuous weights, whose statistical mechanics properties
have been already analyzed in previous sections of this chapter. Then it is necessary
to consider a dual RBM ensemble, whose synapses are A scaled by +/N, and the bias
of the th hidden neuron is specified by E,z), (see Fig. 10.7).
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For the dual RBM, the Bethe approximation can be applied to calculate In Z. As
analyzed in the previous sections, the cavity magnetization m;_,, and cavity bias
Ui are

m;_,, = tanh Z Uysi |,
eI\ (10.46)

;i = tanh™! (tanh (Bxu—i + BH,,) tanh (mw /Jﬁ)) :

where x,; = ﬁ Zjefm\i Ajum ., denotes the message sent from a factor node p,
H, = B,z represents the quenched-random hidden bias. The cavity magnetization
m;_,, represents the message from ith visible node to vth hidden node, and the cavity
bias u,_,; denotes the message from jth hidden node to ith visible node. After the
BP equation converges, the Bethe log-partition function can be calculated as follows:

mzZ=> FE~WN-1Y F,. (10.47a)
; 1
F; = Z [ﬁzAi%i/Z + Incosh (,BXMH,' +BH, + ﬁliu/\/ﬁ)]
eI
(10.47b)
+Inf1+ l_[ o 2tui
nedi
F, = ﬁzAi/2 + Incosh (Bx, + BH,) (10.47¢c)

2 1 2 2 2 1 2 2
where Ay = 5 > o M (1 - mjau),AM =N 2jeou Mu (1 — mj%M>,and
Ky = \/;ﬁ > icou MipMi—p- Together with Egs. (10.44), (10.45), (10.46), (10.47), the
lower bound can be computed to measure the impacts of the approximations on the
training.

10.6.2.2 Calculation of Gradients

We first calculate the gradients of the first term in the LB [Eq. (10.45)]:

0 X 1+ xm;
- —KL P&) = S (ln——F-1). 10.48
7, KL @ ®1PE) x; 2( T, ) (10.48)
If the variational distribution completely matches the prior, this term will vanish. The
gradients of the second term of Eq. (10.43) is given by
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3}~zu /Dzlncosh (,BG“ ﬁuMZM)

_Z/m<
:Z/m<

— m ;o'ia tanh (ﬂGZ + ﬂEuZZ) = NB 2 [1 — tanh? (5GZ + ﬂEuszﬂ )
” ) (10.49)

m tanh(8GY + ﬂaﬂzu)>
,u

By

4 4 BEuz) — (L4wmsz+ﬁ&ﬂM0

where [ Dzf(z)z = [ Dzf'(z) is applied.
Lastly, the gradient of the expected log-partition function is given by

d
P szanHcosh (,BG,L+,BE,LZM)
i o u

- JEBZ Z(o,- tanh (G, + ,BEMZfL))
s . i| (10.50)

ﬂ)\-luz[ 123 tanh ﬂGM‘F,BuuZ ))

B )‘iuzz N
= Ci — m .
VNB, Z oUNg, "

where (...) denotes the thermal average on the dual RBM. C;, and 1, denote the
correlation of visible and hidden nodes, and the magnetization of hidden nodes of
the dual model, respectively. We now quote the results as derived in this chapter for
estimating the equilibrium properties of the dual RBM, as shown below

m; = tanh E Ui |,

el

iy = / Dz tanh (ﬂiu +BH, + ﬂ]\uz) ’ (10.51)

Ciﬂ = ﬁzﬂm,- + — ’8)\[# (1 — ) AM’

VN
A, =1- / Dz tanh? (,B)ZM + BH, + ﬂixﬂz) ,

where Dz = e %/2/\/2ndz, X = % > icop Mipmi, and ]\i = % D ieon A2

(1= m).
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To sum up, the final gradients of the lower bound w.r.t the variational parameters
are given by

X 1+xmiu ) B a
A, = Tl /) 4 o tanh( G% + BE zf)
L x;]z( 1+X)"ipt BIW;I ’B 12 ’3 “ep

B hin > Mp hipZh

— 1 — tanh G4 +BELZ, )| — —— Cip—— .

NB Z [ (ﬁ n B MQL)] \/NBZ XY: i \/NE# my
(10.52)

One can then train the network with the following learning rule:

A=A+ A (10.53)

& can be decoded as & = sign(A), where sign() is the sign function. This decoding
is also called the MPM (maximizing the marginal posterior) estimator in statistical

inference [8].

10.6.3 Experiments

We first carry out simulations of planted models, where P hidden nodes are assumed.
A ground-truth synapses, £* is designed, and then a data set can be generated by Gibbs
sampling. A long-time-interval sampling of two consecutive visible configurations
is required to ensure the weak correlation of data samples in the synthetic dataset.
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Fig. 10.8 Training process of two-bit planted RBMs. The number of visible nodes N = 100, and
the data density « = % = 5. The x-axis denotes the training epoch. a The absolute overlap between
decoded receptive field and ground-truth receptive field. Q* = % > é;‘éi“’*. q= % > éil‘*éiz’*
is the correlation of the ground-truth synapses. The algorithm works even when the ground-truth
synapses are not independent. b KL divergence between ¢, (&) and P (&), and the approximate
lower bound based on the cavity approximation. The variational distribution is pushed away from
the assumed uniform (apparently incorrect) prior. The LB increases with training epochs, indicating
the variational distribution is approaching the true posterior. The density means the corresponding
physics value per model parameter
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Fig. 10.9 Training process of three-bit planted RBMs. The number of visible nodes N = 100, and
the data density o = 5. a The absolute overlap between decoded receptive field and ground-truth
receptive field. b KL divergence between ¢, (§) and P (&), and the approximate lower bound
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Fig. 10.10 Average absolute overlap with different «. N = 100. The error bar is the standard
deviation over 10 trials terminated at the 100th epoch. The synapses with a correlation level ¢ = 0.3
are relatively easier to learn with fewer examples, despite a finite-size rounding of the threshold

The overlap between & and &, Q" = % > gl " is considered as the measure

of success in training (i.e., whether the ground truth can be recovered). Due to the
reverse-symmetry of the model probability, we consider the absolute value of the
overlap.

Due to the permutation symmetry-broken phenomenon, P! = P(P — 1)(P —
2) - - -1 situations should be considered. Figure 10.8 shows the results of a train-
ing process of two-bit RBMs (P = 2). The algorithm works even when the ground
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Fig. 10.11 Training RBMs with binary synapses on MNIST. N = 784, P = 100 and M = 2000.
a KL divergence between g, (§) and P (). b The approximate lower bound

truth has correlations between two receptive fields. The approximate lower bound is
increasing, implying that the variational distribution gets closer to the true posterior
distribution during training. Training results on three-bit RBMs (P = 3) are also
shown in Fig. 10.9. The learning effect of two-bit RBMs with different « is summa-
rized in Fig. 10.10. Notice that the correlation reduces the necessary amount of data
for learning as will be analytically derived in Chap. 12. Moreover, the method can
be applied to structured data like MNIST, using RBMs with many hidden neurons,
displayed in Fig. 10.11.
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Chapter 11 ®)
Simplest Model of Unsupervised I
Learning with Binary Synapses

Learning features hidden in unlabeled data is called unsupervised learning. Unsuper-
vised feature learning has been thought of as a fundamental learning process found in
brains of humans and non-human animals. In standard machine learning algorithms,
a large number of samples are needed to uncover hidden features. However, biolog-
ical brains only require a few samples to learn the features. It is thus important to
understand how the number of samples affects the learning process. In this chapter,
we propose a simplest unsupervised learning model to provide statistical physics
insights about inner workings of neural networks (Huang and Toyoizumi in Phys.
Rev. E94:062310,2016 [1]; Huang in J. Stat. Mech.: Theory Exper. 2017(5):053302,
2017 [2]).

11.1 Model Setting

Our simplest model of unsupervised feature learning is built upon the restricted
Boltzmann Machine (RBM), which has been analyzed in the previous chapter as a
statistical mechanics model where random couplings and fields are considered. As
mentioned in the previous chapter (see also Fig. 11.1),a RBM consists of two layers of
neurons, including a visible layer receiving the input data and a hidden layer building
aninternal representation of the input. Neurons of the RBM are fully connected across
layers but with no lateral connections within each layer. The symmetric synapses
between visible and hidden neurons are considered as features that the network tries
to learn from the training examples.

Itis impossible to analytically study the commonly-used gradient-descent method
in feature learning process, like the CD algorithm, due to nested complexity. In this
chapter, we simplify the problem and study feature extraction within a Bayesian
learning framework.

We first define a teacher—student setting for an analytic study. Finite samples are
generated by a simple RBM (Fig. 11.2), where only one hidden node is consid-
ered. o and & are defined as the visible configuration and the state of hidden node,
© Higher Education Press 2021 133
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Fig. 11.1 Schematic illustration of a general restricted Boltzmann Machine. (o1, 02, ...,0n) is a
sequence of input data, (A1, h3, ..., hp) are the hidden representations and (§1, . . ., £py) encodes
learned features

recognition

reconstruction

Fig. 11.2 Schematic illustration of a simple RBM with only one hidden node. (o1, 02, ..., on) is
a sequence of input data, % is the state of the hidden node, and (&1, .. ., £&v) encodes true features.
The directions of reconstruction and recognition are illustrated by two arrows

respectively. Both the components of ¢ and / take binary values (+1). Meanwhile,
we assume that the components of true feature vector & generating the data sam-
ples takes only two values, i.e., +1 or —1, with equal probabilities. For simplicity,
we consider the case of neurons without any external biases (fields). Under these
conditions, independent samples are generated according to the joint distribution
P(o,h) e_ﬂ%, where E(o, h) = — ), h&io;. A rescaled factor by the model
size +/ N is considered for a statistical physics analysis. 8 denotes an inverse tem-
perature.

Given the true feature vector &, the distribution of o can be obtained by the
marginalization of the hidden node’s state & on the joint distribution P (o, /) as
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cosh (\%)‘;‘Ta)

P =
) = 5 Ty

(11.1)

where o7 denotes the transpose operation, and the normalization can be obtained
exactly as

> cosh (%ga) -y exp (%&%) +exp (_%ETU)
o N

= 2
|:H2exp< 5101)+H2exp< ;%Eiai):|
=[zcosh%r,
(11.2)

Independent samples of the model can be generated by Gibbs sampling through the
above conditional probability [Eq. (11.1)].

The feature vector & can also be learned through Bayesian learning framework,
given M independent samples {o“}*._, . Hence, the posterior distribution of the feature
vector can be obtained by the Bayesian rule as

P, (o))
P({o?))
_ P({o"}&) x P (&)
~ Y P({09)[E) x P (&) (11.3)

= % 1:[ cosh <\/%ETG“>,

where Z is the partition function of this learning model, and a goes froma = 1to M.
For simplicity, we consider the prior probability for the feature vector as a uniform
one. The inverse temperature § tunes the noise level of the provided data. From
Eq. (11.3), alarge B implies that the feature in the data is strong and can be revealed
by a few samples, while a small 8 requires a large number of samples. In the process
of inferring the feature vector, each sample serves as a constraint, which makes the
model non-trivial. The parameter « is defined as the data density as o = % In the
following sections, we omit the conditional dependence of P(&|{c“}) on {0“}; and
the dependence is clear.

PEl{e’)) =

11.2 Derivation of sSMP and AMP Equations

In the framework of the Bayesian learning, the main purpose is to maximize the
posterior distribution P(&|{o“}), in order to to get the correct inference on the true
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feature vector & in a probabilistic way, with the form as 5, = arg maxg, P; (&;). In order
to measure the efficiency of the inference quantitatively, we define an overlap between
the inferred feature vector and the true feature vector as ¢ = (% > EM(&)). The
inner average is a thermal average, while the outer average is taken over many
different true feature vectors (also called quenched-disorder average). If g = 0, the
examples for learning do not give any useful information about the true feature
vectors. On the other hand, ¢ = 1 implies that the feature vectors hidden in the
examples are perfectly inferred. Because of the interactions among an extensive
number of data samples, how to calculate P; (;) is highly non-trivial. In this section,
we shall achieve this goal by the message passing or cavity approximation.

First, we make a weak correlation assumption (also named Bethe approximation)
in the factor graph. By defining a cavity probability distribution P;_,,(;) denoting
the probability distribution of &; in the absence of the sample constraint a, we can
arrive at the following belief propagation equations:

1

P (&) = Z l_[ mo—i (&), (11.4a)
bedi\a
poi(@) = Y cosh(J=0") [T Pt (11.40)
{§1j€ab\i} N JjE€ab\i

where di\a denotes the constraints connecting to i except the constraint a. The
auxiliary variable u,—,;(§;) indicates the contribution from the constraint b to the
node i, and can be understood in physics as an average of the Boltzmann factor
over the joint distribution of {§;|j € 0b\i}. In the large N limit, we can apply the
central limit theorem, and calculate the auxiliary variable p;-,; (§;) with a Gaussian
integral. More precisely, we define Gp_,; = JLN > jeapi Gjbm j—b as the average of

\/LN D jeomi & jo]'? . Under this assumption, we can obtain the simplified message
passing equation (sMP) as

Myy = tanh( 3 u,Hi), (11.5a)
bedila
—t h’1<t h (8G,_.;) tanh por ) (11.5b)
Up_s; = tan anh (BG,_,;) tan N , .

where m;_,, = ZE,‘ & P;_ (&) denotes the cavity magnetization interpreted as the
message passing from feature i to data constraint a, and u,,_,; can be interpreted as the
massage passing from data constraint a to feature i . If the Bethe approximation is self-
consistent, the SMP would converge to a stationary point {m, ., u,_.; } after a certain
number of iterations. By calculating the marginal probability as P;(§;) = #
where m; = tanh (_,,; 4p—:), we may finally extract useful information about the
true feature vector from the given data. The sSMP equation [Eq. (11.5)] therefore offers
a practical way to compute the marginal probability distribution P; (§;). Nevertheless,
this method is still computationally expensive with the time complexity and memory

>
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of the order O(M N'), which motivates the derivation of approximate message passing
(AMP) equations [3, 4] in the remaining part of this section.

In the large-N limit, a Taylor expansion of Eq. (11.5b) w.r.t ,80}’ /~/N can be
carried out. We use the fact that tanh x ~ x and tanh~!(x) &~ x when x is close to
zero, and obtain

upi ~ ol //N tanh (BGy_,) . (11.6)

In addition, m;_,, can be rewritten as
mi_q = tanh (tanh™" (m;) — uas;), (11.7)
Notice again that tanh(x + €) & tanh x + tanh’(x)e = tanhx + (I — tanh? x)e,

where € is a small number. Applying this expansion together with Eq. (11.6) to
Eq. (11.7), we can obtain

ﬁ

In addition, G, = f > jeon O m ;. can be rewritten as

Mia =m; — (1 —m}) tanh BGyos;. (11.8)

I

ﬁai mi;_p. (119)
Our goal is now to eliminate all the subscripts—a — i and i — a, thereby reducing
the total computation cost through saving the computer memory. In other words, we

need to find a set of equations involving only the site indexes, i.e., G, and m;. By
definition

Gysi = Gy —

Ga on Misq. (11.10)

icda

Applying Eq. (11.8) to Eq. (11.10), we can get

G J_Zwm) Zﬁ(l—m?nanh(ﬂc;bﬁi), (11.11)

i€da ieaa

where we have used that (0/)? = 1.
Because G,_,; ~ G, Eq. (11.11) can be simplified as follows:

Gy = fza m; — B(1 — Q) tanh BG,, (11.12)

icda

where Q = & >, m?. We then define the local field H; = Zbeaz tanh ,BGb_”

where G_,; is given in Eq. (11.9). Then we do a Taylor expansion w.r.t fm,_ﬂ,
and approximate m;_,, by m;. Finally, a closed-form of H; and m; is obtained as
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H~>" \/_tanhﬁGb - T Z (1 — tanh? BG}), (11.13)

bedi bedi

/30-.b ﬂzmi 2
= tanh (8H;) ~ tanh Z \/_N tanh G, — —= Z (1 — tanh? BG})

bedi bedi
(11.14)
To sum up, the AMP equation for the unsupervised learning is given by an iterative
form

G, = fZU m; — B(1 — Q) tanh BG,, (11.15a)

icda

2
— tanh <Z tanh BG, — ﬂTm > (1- tanh2ﬂc,,)> (11.15b)

bEBl bedi

The correct iteration order to implement the AMP equation follows the order of
the above theoretical derivation, as summarized by

Gl = Za m™' — (1 - 0"")tanh BG' 2, (11.16a)
teaa
m} =~ tanh (Z tanh BG) ' prmi” > tanhz,BG’_l)>
b b ’
bedi \/_ N bedi
(11.16b)

where ¢ denotes the update temporal order. Another remarkable feature of the AMP
equation is that the essential physics is closely related to the TAP equation in mean-
field models, with the extra advantage of requiring a much lower memory demand
compared with sMP. The AMP equation is also helpful for a theoretical analysis of
the typical properties of the model [3].

11.3 Replica Computation

The basic idea of replica computation is to compute the disorder average of an integer
power of Z, instead of the disorder average of In Z. Therefore, the free energy function
can be obtained as

_gf = fim B2 _ oy EZD (11.17)

N—oo N n—0,N—oco nN

where N represents the number of neurons in the visible layer.
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11.3.1 Explicit form of (Z")

Z is the partition function of the learning posterior P (§ | {o“}), which can be written
as
B .t )
7 = cosh{ —&'0“ ). (11.18)
ETe( 75
Z" is actually the product of the partition functions of different replicated systems

Zl_[cosh< &) 'o ) (11.19)

&7} ay

Let us define (-) as the disorder average about the true feature vector £, or simply
&%, as well as the generated data samples given the true feature vector. Therefore, we

can obtain
=N Z P({o"} | &* )Z]_[cosh( (EV)Ta“) (11.20)

where the joint distribution P ({a“}, E ) is used for the disorder average. Because we

have M independent samples {09},

a * a * cosh(%(g*)TUa)
P((a} 1§ =[P 18 =] D cosh(A;‘;(E*)Ta“)
P a o N

cosh(Z (6"
=11 (2cosh )N

a

1 2 (&)To"
:2N—Ml:[e P cosh(ﬂ NG >,

(11.21)

where we have used Incosh(x) =~ )‘72 when x is a small quantity. Substituting
Eq. (11.21) to Eq. (11.20), we can obtain the form of (Z") as follows:

(Z") = ZN 2NM Z*Ue g cosh(%(; Vo a)ZHCOSh<%(EV)T a)

{o@ (&7} ay
(11.22)
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11.3.2 Estimation of (Z") Under Replica Symmetry Ansiitz

To pr d fi defi a _ () d v = (GON Both u¢ and v®¥
proceed, we rst define u” = _«/ﬁ , and v =TSN oth u® and v are

random variables subject to the covariance structure: (u) = 0, (u?) =1, (v’) =0,
(W2 =1, (uv”) = g7, (v’v?") = r’?’, where we have dropped off the index a
because of the independence of data samples, and we also define the overlap between
the true feature vector and the estimated one as g7 = % >, &/€x, and the overlap
between two estimated feature vectors as r7?’ = + 3. & Siy’. After introducing the
definition of ¢g” and 24 by delta functions, we can obtain

u 1 1 dqvdq DN 20T S
Z >:2_N2N_M 3 / 5@ -4 %,
o“}.E%. (&)

v gprv' . P !
y / d}" Zd}’ g_l qu/ FYY (rvv —% Z,‘ &.’_V%-I}/ ) (1 123)
T

X 1:[e_’522 cosh(%(&*) >Hcosh< & 'o >

Under the replica symmetry assumption (similar to that used in the analysis of Hop-
field model), ¢” = g and r*?" = r, we have

—iZéqu = —ingq. (11.24)
. n(n - 1) P

— VV vy 1125

12; r — (11.25)

For the sake of a concise physics representation, we define the entropy term G
and energy term G g. We first derive the entropy term.
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(GS)N = Z e(; Zy Zi giy‘t-i*+2y<y’ Z/ ;E,‘V‘giy

§°.{8")
= ¥ AN DA, && -
§.{&")
=) % Y& &5, €)= 5nl
£°.{8)
-y He@zysrs,*+§<zys?>2—%n
gy i
—1_[ Z EIY /Dze‘/izvéyZ
P (11.26)
—H/Dze S et e

&6 v

= l_[/ Dze™ 5" Z 1_[ 2 cosh(G&* + v72)
i &y
= l_[ f Dze™ 5" 2(2 cosh(g&* + Vi)
i £
) N
= [/ Dze 2"2(2 cosh(§ + x/;z))"i|
) N
=2V |:[ Dze "2 cosh(§ + \/?z))"} ,

e dz

where Dz = Ner3
Note that in Eq. (11.26), we remove the dependence on the 51te 1ndex i after the order
exchange of the summation and product. We also apply the Hubbard—Stratonovich
transformation to derive the fifth equality. We finally arrive at

, and the prefactor 2V cancels with the 55 term in Eq. (11.23).

Gs = / Dze™2"(2cosh(§ + V72))". (11.27)

To compute the energy term G¥, we should first parametrize u and v with
mutually-independent standard Gaussian random variables (¢, x¥, y) as follows:

u=t, (11.28)

Y =qt+mx’/+ r—qzy. (11.29)

Itis easy to check that the above parameterization gives the same covariance structure

required in our problem (see the first paragraph in the this subsection). G is thus
given by
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2
e <]_[ T cosh(Bu) | | cosh(ﬂvy)>

ay
2
:H[e_%th/D}r/DxV cosh(ﬂt)l_[cosh(ﬁqt—t-ﬂ«/l —rx¥ +8 r—qzy)].
a Y

(11.30)
112
According to the identity f Dz cosh(az + ¢) = ez coshc, we have

2 2 M
G%’I = [e_@/Dt/Dy cosh(,Bt)(eﬁT(l_r) cosh(Bqt + B+/r —q2y))":| ,

(11.31)
\'2 2 " .
,and Dy = _e—\/;?d) We obtain the energy term G as

2
—e' 2 dt

where Dt = T

Gg = - f Dt/Dy cosh(ﬂt)(e%*’) cosh(Bqt + Bv/r — q2y)". (11.32)

Taken together, we can estimate the disorder-averaged integer power (Z") as

dqdg drdr . nn—1) F
(Z") = . - x exp| —Nngg — Nri——— — Nn—
2ri/N J 2mi/N 2 2

+N ln[ Dz(2cosh(§ + «/iz))"] x exp[azv 1n{e52“*”"/2 (11.33)
X e‘g / Dt/ Dy cosh(Bt)(cosh(Bqt + B/ r — qzy))”}i|.

where « = M /N, and i is absorbed into ¢. Using the saddle-point method (in the
large-N limit), the disorder average (Z") can be approximated by the argument in
the exponential function, or so-called action in physics.

11.3.3 Derivation of Free Energy and Saddle-Point
Equations

Under the saddle-point approximation in the large N limit, the free energy function
is given below

-1 InG InG
n +Il 5+anE

. In(Z")
—Bfrs = lim 5
n

n—0,N—oo nN

’

= lim |:—qc} —rF
n—0 n
(11.34)
where



11.3 Replica Computation 143
Gs = / Dze™2"(2cosh(§ + V72))", (11.35)

Gg = s / Dt/ Dy cosh(ﬂt)(e%‘*’) cosh(Bgt + Bv/r — g2y)". (11.36)

To proceed, we have to perform two limits: lim,,_, o, 1"55 and lim,,_, l“nGE . First
. InGg . —%n +1In [ Dz(2cosh(g + NN
lim = lim
n—0 n n—0 n (1 137)

= —% + / DzIn(2 cosh(§ + V72)),

and second,
nGg ﬂz%n +1In [e_% [ Dt [ Dy cosh(Bt)(cosh(Bqt + B+/r — qzy))”i|
lim =1l
n—0 n n—0 n
_ g 1—r 4 J Dt [ Dy cosh(Bt) In (cosh B(gt + /r — g%y))
- 2 J Dt [ Dy cosh(Bt)

= ,32 ! ;r +ei§ / Dt/Dy cosh(Bt) In (cosh B(gt + /7 — g%V)).

Finally, we obtain the following free energy function:

(11.38)

Ao 2
—Bfrs =—qg + r(rz—l) + %(1 —-r) +/Dzln(Zcosh((§ + \/;z))
+ae’g/Dt/Dycosh(,8t)ln (cosh B(gt + /1 — g2y)).

(11.39)

In Eq. (11.33), we use the saddle-point value to approximate the integral in the
large-N limit. Therefore, the order parameters {q, ¢, r, 7} must be the values making
the free energy a lowest value. The saddle-point equations for the order parameters

{q. g, r, 7} canbe derived from the stationary condition—a(_ff Rs) — (), 2=Blrs) _
q or

%qu) =0, and %rf”) = 0, as are precisely given by
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a( ffRS) g+ / Dz tanh(§ + V/72), (11.40a)
q
a(— -1 A =
( f}{RS) _r 5 +/thanh(q+\frz)%
:r;1 +2\1[ [/Dz(l—tanh (q+«[z))‘[:| (11.40b)
= i + 1 / Dz(— tanh?(§ + V72)),
a( ffRS) -4 +ae” /Dt/Dycosh(ﬂt)tanh(,Bqt—f-ﬂ r—q2y)
q
Bt+ B X (—Zq)]
dl m

=—q+ ae_T / Dt / Dy{ [,82 sinh(B¢) tanh(Bqt + B+/7 — q2y)
(11.40¢)

+ cosh(B1)B(1 — tanh®(Bgt + By/r — qz))ﬂq}

+ cosh(ﬂt)[ﬁ 2\/%(1 — tanh?(Bqr + ﬂ\/r - qzy))ﬂ\/r - qz] }
2
=—q+ aﬁze_ﬁT / Dt/ Dy sinh(B1) tanh(Bqt + By/r — q2y),
P 2
i ﬂfRS) =Z- L +ae” /Dt / Dy cosh(Bt) tanh(Bqt + B+/7 — q%y)
ar 2 2
x ﬁy2 —
7 ‘1,32 2 2
=373 +ae” f Dt/Dy cosh(Bt)(1 — tanh“(Bqt + B+\/r — q~y))
x B ! X ByJr — g2
2\/r — I
A 2 2 2 2
= %— a;23 +2ote % Xe%ﬂz—%aﬂze_T

Dy cosh(Bt) tanhz(ﬁqt + By —q2%y)

X
——
S
—

— —af’e ﬂzz Dt [ Dy cosh(ft) tanh”(Bqt + r— g2
> 2 y cosh(B1) t 2( t+ B8 q°y).
(11.404d)

Finally, the saddle-point equations are expressed as



11.3 Replica Computation 145

Dztanh(§ + v/7z), (11.41a)

/ Dztanh?(§ 4 v72z), (11.41b)

ESH
||
‘\x:

7/Dt/Dysmh(ﬁt) tanh(Bqt + BvVr — q%y), (11.41c¢)

.g\m

af’e”

~>
|

/Dt/Dycosh(,Bt)tanhz(,BqtvL,B\/r —q2y). (11.414d)

11.4 Phase Transitions

For a statistical mechanics analysis of the system in the thermodynamic limit, we
first define the cavity field

1
Hio=— Y oftanhBG_;, (11.42)
“/ﬁ bedi\a
where G,_,; has the form as
Gpoi = > otmiy. (11.43)
f jeab\i

Under the replica symmetric assumption, H;_,, follows a Gaussian distribution with
mean zero and variance « Q in the large-N limit, which can be described as follows:

(Hi—q) =0, (11.44a)

A

(Hima)?) = %aanhzﬁGbﬁ» — ), (11.4b)

where Q = (tanh’8G,_,;), and % denotes the data density. Note that the average
refers to the disorder average. The Gaussian assumption can be checked with a
comparison with numerical simulations. As for G;_,;, we can also obtain a similar
structure as follows:

(Gpi) =0, (11.45a)

((Gb%l) ijeb = (1145b)

0 and Q can thus be written in a compact form
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0= f Dztanh?8,/ 0z, (11.46a)

Q= / Dztanh?(8y/ ¢ 02), (11.46b)

where Dz = ‘IZLJ; Itiseasy tocheck that Q = Oisasolutionof Eq.(11.46). Q =0
implies that m;_,, = 0, the information flow characterized by passing messages
contains no information anyway; the whole system is thus in a disordered/symmetric
state. Next, we use a linear stability analysis method to measure on which condition
the stability of this trivial solution is not guaranteed.

When « is small, only one solution of Q = 0 exists for the above mean-field
equations. However, at some critical point ¢, there appears continuously a non-
trivial solution of Q # 0, which signals the fixed point of SsMP or AMP starts to
contain information about the underlying true feature vector. We then assume Q is
of the order of €, a very small quantity. Notice that tanh x & x when the argument x
approaches zero, and thus Q ~ B2¢.Therefore, we can expand the following equation
around Q =0.

0= / Dztanh?(By/a Qz) = f DzB*a 07 = BPaf’e / Dzz%.  (11.47)
Using [ Dzz? = 1, we arrive at a very simple form of Q.
0 = Bae. (11.48)
Putting back the iteration step ¢, we then have
et = qpte. (11.49)

This result shows that when af* < 1, the Q = 0 solution is stable. The transition
point is thus set to a. = B~*. As shown in Fig. 11.3, a critical-slowing-down phe-
nomenon is observed, suggesting a continuous phase transition at «., where the trivial
solution Q = 0 loses its stability.

Note that the statistical analysis of the sSMP equation does not give the correct
value of Q after the transition, probably due to the invalid Gaussian field assumption
in the case of biased messages immediately after the transition. Hence, a deeper
analysis from replica computation is needed.

According to the Nishimori condition, g = r, implying that the true feature vec-
tor follows the same posterior distribution in the optimal Bayesian inference (the
algorithm can have access to the true temperature). This can also be verified through
the numerical solution of the saddle-point equations [Eq. (11.41)].
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Fig. 11.3 An illustration of critical point .. The simulation is made based on three different
temperatures: § = 1.2, B = 1 and B = 0.9. The fixed point of Q and convergence time of SMP are
also shown. The dashed lines show convergence time measured by iteration steps

G

Assuming ¢ and r are both small values close to zero, we obtain

g = aﬂze# / Dt / Dy sinh(B1)Bqt = af’q, (11.50a)
F= aﬂ%’g / Dt / Dy cosh(B1)[Bqt + Bv/r — q*y)*
— ape s / D / Dycosh(BN[(Bq1)* + (Byr —g2yy1 (11900
=ap' (g’ B + 1),
q=4q=ap'q, (11.50¢)
r=§>+7= (B9’ +ap'P®B> + ap’r ~ ap'r. (11.50d)

Note that Eqgs. (11.50c) and (11.50d) imply the same critical point o, = % for both
q and r, above which ¢ = 0 is not a stable solution any more. This transition is
continuous, and is called spontaneous symmetry breaking transition as well, since
our model has original symmetry with respect to changing the sign of feature com-
ponents (e.g., & — —&). In addition, this theoretical prediction coincides well with
the numerical results of sSMP iterations on single instances of learning (Fig. 11.4).
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Fig. 11.4 Order parameters versus «. The theoretical predictions of replica computation are indi-
cated by lines, while the numerical simulations of g on single instances are indicated by symbols
(solid circles denote the case of 8 = 1.0, and solid diamonds denote the case of 8 = 0.8)

11.5 Measuring the Temperature of Dataset

We already know that the critical number of data samples to trigger unsupervised
learning is clearly determined by the inverse temperature 8, a measure of noise level
in the raw inputs. Is it possible to infer the true temperatures used to generate the data
itself? If we can learn the temperature parameter, we can know the typical properties
of phase transitions intrinsic in the system. Here, we will apply the Bayesian rule to
infer the true temperature parameters, which is further consistent with the fact that
the data itself reflect how noisy a data sample is.
M

The posterior probability of B given the data {¢“};_, is given by [2]

> P({o“}|E. B Po(E. B)
[dBY ¢ P({o}I&. BYPo(E. B)’

P(Blio“) =) _ P(B. &llo“) = (11.51)
&

where we have used the uniform prior probability P, for the hyper-parameters. We
then apply the property of the generative model

cosh(iijTo“)
VN , (11.52)

P({c“}IB. &) =| | P(c“IB. &) =
o“}1B. & ]:[ a‘IB. & lzlzacosh(%éja“)
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We can then rewrite the posterior probability as follows:

1 1
PI0"D = Zay L g Lo (%s%a), (11.53)

- N
where Z = [2c0sh (%)] ,and Z({o“}) = fd,B ZE P({o?}|&, B). We can then
write an explicit form of the posterior as follows:

1 MNln 2cosh
Z({aa});e Hcosh(—§ ) (11.54)

P(Bl{o’}) =

—MN In(2 cosh

. .. . MmE
where in the large-N limit, we approximate the factor e 2 by e M7,

With this approximation, we can get the final form

P(ﬁl{a"})fxz({ —e M Z]‘[cosh(—s )cxe_Mﬁ;Z(ﬁ,{o”}),

(11.55)
where Z({o“}) does not depend on 8, and Z(8, {o“}) is the very partition function
of our original unsupervised learning model.

If we want to get the true temperature parameters of this system, we can try
to maximize the probability of B given the data {o“}" |, which is denoted by
B = argmaxz P(B|{o“}). Applying the method of Maximum Likelihood Estimation
(MLE), we obtain the self-consistent equation that § must satisfy

aP(Bl{o“}) 0 (11.56a)
B '
BZ—(ﬁa,ﬁ{a”}) _ ZM8, (11.56b)
1alZ(B, (o)) M,
N = g = ap. (11.56¢)

In statistic physics, Eq. (11.56c) is defined as the negative energy density (—e¢).
Therefore, 8 = —2, which is considered as the Nishimori condition, i.e., in the
optimal Bayesian setting, the internal energy of the disorder model is analytic, like
the case in the p-spin model. When N is not very large, the equation determining
B is given by g = +/N tanh™!
per neuron € can be computed by Ne = — Y. Ae; + (N — 1) Y, Ae,, where Ag;
and Ag, are given, respectively, by
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_ Zaeai Hasi (1) + (Haeai ga—ﬂ‘) Zaei)i Hasi(=1)

A¢; = , (11.57a)
.B + /3 naeai ga—)i
A€, = BE? + G, tanh(BG,), (11.57b)
where B2 = + >, (1 —m? ), and

Hasi(5) = BB + (BGamsi + Bol'&i/v/N) tanh (BGuoi + Bof'&i /v N),
(11.58)
and G,_,; = e ?“~i_ These quantities can be easily derived from the cavity approx-
imation of the free energy function of the model.

We apply the expectation-maximization (EM) procedure [5], to implement the
update of the hyper-parameter B—p(¢) = —%, where ¢ denotes the iteration step.
In this algorithm, the message updates are called E-step, and the temperature update
is called M-step. First, we start from some initial value of By. One can iteratively
update the value of § until convergence within some precision. After one updating
of the temperature, the messages in the sMP equation are also updated. To avoid
numerical instability, the damping technique is recommended, i.e., 8(¢) = nB(t) +
(1 —n)B(t — 1), where t denotes the iteration step and 1 € [0, 1] is a damping factor.

Results of this algorithm are shown in Fig. 11.5.
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Fig. 11.5 The inference performance of the hyper-parameter 8. Deviation of inferred 8 from the
true value decreases with the data size. In simulations, we consider 20 instances of size N = 100,
and use n = 0.02 and initial value of By = 0.8. Two representative trajectories of S(¢) are shown
in the inset
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Chapter 12 M)
Inherent-Symmetry Breaking in e i
Unsupervised Learning

In this chapter, we introduced a toy model of unsupervised learning, which exhibits
inherent reverse-spin symmetry and permutation symmetry of any two hidden neu-
rons. These symmetries can be broken by the increasing amount of data, reflecting the
nature of unsupervised learning in its simplest setting (Hou et al. in J. Phys. A: Math.
Theor. 52(41):414001, 2019 [1]; Hou and Huang in Phys. Rev. Lett. 124:248302,
2020 [2]).

12.1 Model Setting

We use the two-bit binary RBM (Fig. 12.1), which has two hidden neurons to learn
embedded features in input data samples. This is a simple model to learn the internal
representation from the raw unlabeled data, which we call unsupervised learning.
Each data sample is specified by a binary configuration ¢ = {0; = %1}, where
N is the input dimensionality. A collection of M samples is denoted as {o“}M .
Synaptic values connecting visible and hidden neurons are characterized by &, where
each component takes a binary value (£1) as well. Because of two hidden neurons,
£ = (&', &%) wherethe superscript indicates the hidden neuron’s index, are also called
receptive fields (RFs) of the first and second hidden neurons, respectively. The joint
distribution of hidden unit and input data in this RBM model, given the two receptive
fields, is thus described by the Boltzmann distribution as

B
P(O’, h17 h2|§1, 52) — eﬁ(§1'0111+52'0’h2)’ (121)

ZE' 8
where £; is the ith hidden neural activity, X = ﬁ‘;‘] coand Y = \/;NS 2. 0. Here-
after, ab denotes the inner product of two vectors a and b. The scaling factor \/;ﬁ

ensures that the argument of the hyperbolic cosine function is of the order of unity.
B represents the inverse-temperature, and Z (&) is the partition function depending
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factor graph

(E}:EIZ)C!D a o
Y

Fig. 12.1 A schematic illustration of the two-bit RBM model. N = 4 in this example (say, , j, k
and /). (Left panel) The original model with only two hidden neurons (say, x and y). (Right panel)
The corresponding factor graph where the data node is represented by a square, and the paired-
synapses (feature vector) is indicated by a circle. In this example, M = 3 (say, a, b and c¢). The
circle is an augmented version of single synapse considered in the one-bit RBM [3]. The plot is
taken from Ref. [1]

on the feature &. o can be arbitrary one of the M samples. The marginal distribution
of input data o will be obtained when the two hidden neurons’ activities (£1) have
been marginalized out

P(o) = Z P(o,hy, hy|E', E%) = % cosh BX cosh Y, (12.2)
= 2@, &)
where the dependence of P (o) on the hidden feature & is omitted.

When the embedded feature is randomly generated, the inverse-temperature j
tunes the noise level of generated data samples from the feature &. Clearly, the data
distribution is invariant with respect to (w.r.t) the exchange of the hidden neurons,
which is called the permutation symmetry (PS), i.e., the distribution P(c'|&", & 2=
P(o|&%, £"). The required number of hidden neurons to produce this symmetry is at
least two. Therefore, this setting defines a minimal model to study the permutation
symmetry in unsupervised learning.

In this model, the embedded feature follows the distribution P(§) =
P(&")P(&*g") inwhich P(§") = [T, [16(&' — ) + 18 + 1] and

N

PEEY) =[] [pas & = —&h + (1 — p0sE’ =€), (12.3)

i=1

where pq specifies the fraction of components taking different values in the two
feature maps associated with the two hidden neurons.

First, we consider the case of no prior knowledge about &. Given the M data
samples, one gets the posterior probability of the embedded feature according to the
Bayes’ rule
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[l P(a“]$)
Z§ Hu P(o-a|£)

_1 ! B e P g g
_QUZ(;’],’;‘Z)COSh(\/NE 6>cosh<m§ a),

where 2 is the partition function of the minimal model. In addition, we use the
same temperature as that used to generate data. Because we do not use the true
prior [[; P; (Eil, §i2| Pa), the current setting does not require the value of pq4, and is,
therefore, not the Bayes optimal setting which corresponds to Nishimori condition
in physics.

One challenging issue to compute the posterior probability is the nested partition
function Z(&', £%). Fortunately, this partition function can be further simplified in
the large-N limit. More precisely

ZE' & = ;cosh <%gl wr) cosh (%’;’2-6)

_! B P B g P
_226:[005h<«/ﬁ§ 6+W§ a)+cosh<ﬂg o WE o):|

PEeM ) =
(12.4)

il B B
=3 1_[ 2 cosh <ﬁ(%—il + 5,»2)) + 1_[ 2 cosh (ﬁ(éil - 5:'2))]
— l l_[elnzﬂ-%@il"’giz)z + 1_[ eln 2+%(Sil _éi2)2i|
2 (4 )
1 In2+8 482 ¢1g2 1n2+’*2—”2§‘§2i|
— l_[e NNii+1_[e N TN SiSi
2 (4 )
= % [ Nn2+p2+ 00 X616 | NIn2+p2-50 Y, E"lg’z]
~ 2V P’ cosh(B20),

(12.5)
where we have used In cosh(x) >~ % for small x to arrive at the final equality, and
defined Q = % > éil éiz, which is the very overlap between the two feature maps.
Finally, we move all the irrelevant constants into the partition function €2, the posterior
probability can thus be rewritten into the following form:

1 1 B B .,
P( |{Ga}A/I: ) = —= ————cosh <— . o.a) cosh <_ .o ,
Sl QUcosh(ﬂzQ) Nk "
(12.6)
which constructs the Boltzmann distribution of the minimal model. We are interested

in the case of M = o N, where « specifies the data (constraint) density.
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12.1.1 Cavity Approximation

Our goal is to compute the maximum of the posterior marginals (MPM) estimator
(éil , é‘iz) = argmaxg) ¢ Pi (&}, £7). Hence, the task is to compute marginal probabili-
ties, i.e., P; (Eil , Eiz), which is, in general, intractable due to the interaction among data
constraints (the product over a in Eq. (12.6)). However, we can represent the prob-
lem in a graphical model, where data constraints and paired-synapses are treated,
respectively, as factor (data) nodes and variable nodes. Then, the computation of
the marginal probability can be achieved by running a message passing iteration
among factor and variable nodes. We further assume that the paired-synapses on the
graphical model are weakly correlated, which is called the Bethe approximation in
physics.

We first define a cavity probability P;_,, (Eil, éiz) with the data node a removed.
Under the weak correlation assumption, P;_,, (éil, Siz) obeys a self-consistent equa-
tion

[T i 6D, (12.72)

=4 pedia

1
miE L ED = ) —
g\gl g2 cosh (,82 O+ 5&&

xcosh(ﬁYb—i-—é ) l_[ »b(é 5)

jeab\i

: 1 og2y
Pisa(§.87) = 7

) cosh <,3Xb + %Eﬁa}’)

(12.7b)

where Z;_,, is a normalization constant, di \a denotes neighbors of the feature node
i except the data node a, db\i denotes neighbors of the data node b except the
feature node i and the auxiliary quantity 14, (!, £7) denotes the contribution from
data node b to feature node i given the value of (&il, Eiz). Products in Eq (12 7)
are due to the weak correlation assumption. In addition, X, = f > ki é ; ] s

f Zﬁél 7o}, ?, and the cavity version of Q is defined as Q. = + Zﬁél £ 52

However, the above self-consistent equation is still intractable due to the sum-
mation in w;,_,;. Nevertheless, X, and Y} are approximately correlated Gaussian
random variables due to the central limit theorem. As a result, the intractable sum-
mation can be replaced by an integral which is easy to work out in this model. Hence,
we just need to compute the following means, variances and covariances among these
random variables

Gy, = ZU mh_,, (12.8)
J;ﬁt
Gy = Zo m3_,. (12.8b)

J#t
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= > (1= m} %), (12.8¢)
J#i
1
o= 2 (1= 0m3.,)%), (12.8d)
J#
1
Bpoi = > (gjop—miymi ), (12.8¢)
J#i

where G and I" denote the mean and variance of the Gaussian random variables,
respectively, and the last quantity denotes the covariance between X, and Y. As a
result, we can express the first and second statistics of X}, and Y}, as follows:

(Xp) =G, (Yp)=Gr,,

(X7 —(Xp) =Th, (YD) — (V) =T, (12.9)
(XpYp) — (Xp){(Yp) = Epsi.

By the reparametrization trick, we express X, and Y, by two standard Gaussian
variables x, y as

Xy =G, +T} x

b—i""
Eb—)i
1// =

v Fli—n Fl%—)l

To compute Eq. (12.7b) under the joint Gaussian distribution P (X, Y;), we use
the following analytic integral:

1 =// Dx Dy cosh (Ax + D)cosh (Bx + Cy + E)

1 1 1
= Ee% [ei(A+B)2 cosh (D + E) + e2A=8" cosh (D — E)] )

(12.11)

The cavity distribution P;_,(£/,&7) can be parameterized as Pj_,(§/,&7) =

1+m1-ﬁ,61+1712-ﬁ E24q;pElE2 . . . . 1,2
el ———") The cavity magnetization is thus defined as m;~, =

7
Zg! £ E}’sz_)b(é}, Sf), and the cavity correlation is defined as g, =
J2i
> o2 £167 Pip(€], &7). Finally, using the above parameters of the correlated Gaus-
J2i

sian distribution, we rewrite 1, (€, £7) as

1 B
o & &) = / f DxDy cosh (ﬂ Dhx+ G, + —s,-‘d’)
cosh (ﬂ2 Op—i + %Eil El-z) ! b VN

x cosh <ﬁ U2, (Wx+,/1—y2y) + BGy ., + %&2‘7}7) ;

(12.12)
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-2 Eposi i
where Dx = dx , U= ﬁ and Q,_,; = % Z#i qj—p (coming from
Q.) replaced by its cav1ty mean. The above integral representation of ,_,; (Eil, Siz)

can be analytically worked out. Then, u,_,; “n Up—; can be expressed as follows:

Ty 1=y 2¢1 2
up—i (& &) = M —In (Zcosh<ﬁ2QlH,- + P f\/g )) + % (\/ﬂ
b‘”l/f) + In cosh (ﬁGb_” -I—/SGb_” + — f o; (é: + & ))
| 142V  cosh (ﬂGle G i+ Wi EHG *E,-z))
n e il b

cosh (ﬂGb—n +ﬂGb—>z No'ib(gil +Ei2))
(12.13)
where the integral identity in Eq. (12.11) has been used.
To close the iteration equation, we need to compute the cavity magnetization and
correlation as follows:

++ -
ml _ nbeai\ Hpsi + nheai\a Hpi — nbeal\a H‘h—)z l_[beE)l\a 'u’h—n
j—a = i - ’
! [Tpeona Ho—i t [peoina #o—i T [beoina i+ [Tpeona Hoi
(12.14a)
2 Hbeat\a Mbm + Hbeaz\a /LIH, Hbeaz\a /‘sz Hbeai\a My
mj~>a - —_
[Thesna it + [Thesina s + [Thesna i + [Tocoina Hoi
(12.14b)
++ — —+ -
e = Hbeai\a Mp_; + Hbeai\a Hpi — Hbeai\a Hpi — Hbeai\a Hpsi
]—)a - —_

—n = = =
[Tpeona #o—i + [oeoina Booi + Tocoia Hosi + Tpeoina Koo
(12.14¢)

where M,H, = wpi(§l = £1, = £1).  We  define  up_; (&', &%) =
In /L;,_,,(Sl ,E ) before for the purpose to recast mjﬁb, ?»b’ and g;, in a
compact form

| 251:i1,§2:i1 éleZbeai\a up—i (§'.6%) s
i—a Zslzil,ézzil ez"a’f\a wpi(ELED) .
1— 2 zezheai\a upi (€1,€%)
ml'2—>u - Z;;iif E:iilizbeai\a upi (1,82 (12.15b)
Zélzil,gzzil glg2eXrema wp—i (81,62
iz = ZE‘:il,§2=i1 o Lbeina Uo—i €12 (12.15¢)
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3_2)a can be interpreted as the message passing from feature node i to data node
a (gi—q 1s also similarly interpreted), while u;_,; can be interpreted as the message
passing from data node b to feature node i.

Suppose the weak correlation assumption is self-consistent, starting from ran-
domly initialized messages, the learning equations will converge to a fixed point
corresponding to a thermodynamically dominant minimum of the Bethe free energy
function, which is given by —Bfpene = & >; Afi — XL 3 Af,, where Af; =
In Z; and Af, = In Z,. According to the cavity approximation, the free energy con-
tributions of variable node and data node are derived, respectively, by

=3 1 m—i'.8h,

‘511 ’g’:l? bedi\a

_ ! B 1 a 2 a )
Zg = s%z cosh B20, cosh (\/ﬁ ;E]JJ) cosh (f ZS] J) jl;)[a *)d(gj’ Sj),
’ (12.16)

where Qs=+ > jcoadj—a- We then denote X, = \/;ﬁ > Ejof and Y, =
f Z éza“ A full (non-cavity) version of relevant quantities to parameterize the
above welghted-sums can be defined as

1
1 _ 1
Ga - ﬁ Zo‘;mjéa’
G2 = Za mjﬁa,
re=— 2(1 mi_)%, (12.17)

r2= N Z(l — (M3,

]
| [

a N Z(qj—m - j%u 3%5)

Thus, X, and Y, can be parameterized by standard Gaussian variables x and y as
X, =G} + /T,
Yo =G+ /T2(x + 1 - y2y), (12.18)

y=
VIaTlz

Hence, Z, can be worked out, leading to
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21’*21_~2 2
Af“:w In (2cosh(8° Q) + & <\/> \/>¢>

cosh (,BG,II - ,BGg) (1219
cosh (BG) + BG2)

+Incosh (BG) + BG2) + In [1 + ¢ 2F7E

where = . We can also get the marginal probability P; (¢!, &%), which is

vV rc} a

2g2 JESES . .
defined as P; (€}, £?) = w, where m/ and m? are the magnetizations
of Sil, and éiz, respectively. The marginal posterior probability is given by

P& &) = H i (&' ED), (12.20)

Zi bedi
and m}, m?, and g; are given, respectively, by

Y g £l eXoea; w8

N ’ 12.21a
: Zfl—ﬂ:l £2=+1 ezbea/ up— i (§',62) ( )
2 Z‘El:ﬂ £2==1 SzeZheH.f up—j ("6 2.21b
v Limt o eXven h—j ELED) T (12.21b)
(el g2
ZEI:ilfz:il %-1&262”53/ ups j(E1,E2) .
qj = Z,,Eaj uhﬁj(glfz) ( ' C)

Zgl:ﬂ,gzzil ¢

If we consider the prior information PO(EI,EZ), the posteriori probability
P(&', E*|{o“}M.)) is given by

[1, Po?IE" DTV, Po(&!. 8D
Y [1, PoelE  EHTTL, Po&/ . £2)

N
1 1 B ) ( B ) 1 g2
= — ———— cosh| —=£& 0“ | cosh | —£&“0“ P&, &).
Q H cosh (82Q) (\/_NE JN 1] ’
(12.22)
We have assumed that the prior is factorized over i. The self-consistent equations

for the cavity distribution P;_,, (&, §?) and the auxiliary quantity 4,—; (€, &%) read
as follows:

PE' E oY) =

Proa®l &) = — P& &) [ moi(El 6. (12.23a)
i—~a bedi\a
g2 1 < B .1 b)
—-i\§;,6; ) = h X —F5; 0;
b (E S ) El,sz\éil,é‘? cosh (,32 Qc + %zé‘ilgiz) COos ﬂ b + \/NE (o2
B 2 b 1 g2
xcosh(ﬁYb—}—— l-ai) P, (&, E9).
VN jel;)[\i J AR

(12.23b)
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. . . 1 2 . .
The cavity magnetizationm;_, ,, m;_, , and correlation g;_, , are computed as follows:

(el g2
| D g gl eXvana 1608 5 o) £2)

o Dot 2 Xbeie ui 68D 5 po(e), €2)
, Zs‘ g %‘izezbeai\a up—i (',67) X Po(gil’ %'12)
n = TN N (12.24)
Zéil,éf eLbeaina Ub—i 5 557) Po(é:i , ,s;-‘l, )
(£ 82
q 2 g2 gl g2eTreana i CLED P& ED)
i—a — .

((EL g2
Yo g2 e D S Py )

The free energy shifts can be obtained in the form of A f; and A f,, given, respectively,
by

Af;=InY " P& &) [ | i€ 8D, (12.25a)
E;I’Siz bedi
Af, = BT —v (2cosh(82Q.)) + i (\/FJF \/E/})z
“ 2 “ 2 a a
cosh (G - BG?) (12.25b)
1 2 —28%E, a a
+ In cosh (ﬁGa—l—,BGa)—l-ln |:1+e oeh (,BG},+ﬂG§)j| .

The above belief propagation equations for either prior-free or prior cases provide
us the practical algorithms for the unsupervised learning problem at hand. An easy
implementation is carried out on a teacher—student setting. Note that, teacher here
does not provide labels of data, unlike the supervised learning. Instead, the teacher
setting means that the raw data is generated from a teacher (or ground truth) archi-
tecture with specified feature vectors (& ! £%). Then the student uses the above belief
propagation to infer which feature vectors underlie the data, given that only the
temperature is known or both the temperature and the correlation prior are known.

12.1.2 Replica Computation

As we show in the previous section, the partition function of the two-bit RBM model
is defined as 5 5 .2
M b a b a
o_ Z 1_[cosh(\FNS (: )cosh(ﬁs o )' PPN
2N eP* cosh (B2q)

In order to have an analytical argument about the typical performance and the critical
point where the spontaneous symmetry breaking (SSB) phase transition appears, we
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have to calculate the free energy in the thermodynamic limit by the replica method.
Instead of calculating the disorder average of In €2, the replica method calculates the
disorder average of the nth moment of 2, i.e., (2"), where n is the replica number,
which means copying n replicas of the original system. The disorder average (e) is
taken over all possible sampling data and the random realization of the true feature
vectors. Using the replica trick, i.e., Inx = lim, o 2 5. X", the free energy density can

be obtained as @
'Bf = 1%1—13) 1\}1—I>noo nN

(12.27)

Given the two true feature vectors, the data distribution generated by these feature
vectors are

M COSh(isl,true a)COSh( 821rue
P({o'h =] il TG Ez,mg , (12.28)

a=1

where the nested partition function

Z(gl,true’ E2,true) ZCOSh ( 1 true ) cosh (igl,truea>

VN (12.29)

= 2Neﬂ cosh (829),

where g is defined as the overlap between the true feature vectors: ¢ = ﬁ& Lirueg.true
Next, we show how to compute (2"), which is defined as

) true 2 o COSh (fgl Jtrue a) COSh (fEZ true
> ]‘[[P(s )] 1_[ 2Ne” cosh (B2q)

Enue “}l 1

cosh (Tgl’ya“) cosh (%82”’0")

N N
Z l—[ cosh (B2RY) ’

§1V§7V a,y

(12.30)
where y indicates the replica index, "¢ = {g1/"4¢ g2/} and R = Lglrgrr,
To further calculate (€2"), we have to introduce the order parameters as follows:

1

TlV — Ngl,truegl,y’ T2V — gZ trueE2 Y (1231a)
1 1
Y _ _ glirueg2y Y g2truegly 12.31b
o = e, o = e, (12.31b)
o 1 / v L ooyeay
g’ = Nsl,y:s-l,y . @ = NE VESY (12.31¢)
1 , 1 /
RY = —gL7g2Y, vy = _ghrgy’ 12.31d
N'E £ r NS 3 ( )
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Note that these order parameters construct a complete set to describe the problem
at hand, although the necessary number of order parameters may be reduced due
to symmetry. These order parameters capture the emergent behavior of our model.
T and T, characterize the overlap between prediction and ground truth. g; and ¢
characterize the self-overlap (Edwards—Anderson order parameter in physics). 1)
and 1, characterize the permutation-type overlap. R and r characterize the students’

guess on the correlation level of the planted receptive fields.
By using these order parameters, the disorder average (€2") can be expressed as

N n
Z HP(Sil,true’SiZ.true) Z [1_[ dRy(s(E],yEZ,y _ NRy)

(o.g,EINAP)":l (EI'V'EZ'V) y=1

n n
x / HdTIVS(E“megl'y _ NTI}/)/ ndTZVS(EZ,lmeEZ,y _ Nsz)

[ndrya(sl rrueEZy N‘L’y)/ l_[dTVS(EZIru(EI Yo N‘L’y)

y=1

f [T day” 5" 78" — NW)[ [T da}” s&>7£>" — Ng}™)
y<y' y<y'
l_[ dryvv’(;(gl-ygly/ _ N,V—y’)
y<y'
ﬁ cosh (8X9) cosh (BY?) 11[ cosh (BXY) cosh (BY))
* WV eF cosh (B2q) cosh (B2R7)

- l_IP(i__lrrue g2iruey Y /‘l—[<dRVdRV)f u (dTVdTl )

{oa, gluw), 1 (EI Y EZ y) y=1

fl_[(dT2 dty” >/‘l—[<drlydrl )/l_[(dz{d )

/1_[ dquydq [1_[ gl dqy” arry apry'
472

y<vy'

X exp (Ziéy(EI,VEZ.y_NRV)J'_ Z iT"]V(El,ysl,true_Nle)_,’_ Z ifZV(EZ,VSZ.true_NTZV))

xexp( lfly(El"ueEZV Nrr)+zlf2y(§2true51y Nr21/)+ Zl VV(EIVEIV Nq}/.y,))
y=1 y<y’'
x exp( D i ETE NGy 4 3 i e NW’))
y<y’ y<y'
N ﬁ {cosh (BX9) cosh (BY?) 1~ H cosh (BX)) cosh (ﬂyj)}
2N eF* cosh (B2q) =i cosh (B2RY)

a=1

(12.32)
where we have defined X0 = f SN ghrega Y0 = f SN P Ga, and

X! = ﬁ >N, 3;1 Yol Y, = f >N, 52 ""of. To get the second equality, we have

used the integral representation of the delta functlon sx)=[ g—; ¢"* Hence, we have
to introduce the conjugate order parameters
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@ D a6 @ @ R R (12.33)

corresponding to the non-conjugated (physical) order parameters
a7 T gl g RV ), (12.34)
To further compute an explicit form of the free energy, we assume a simple ansatz,

i.e., all order parameters do not depend on their specific replica indexes, which is
called the replica-symmetry assumption. To be more precise, we assume

R’ =R, iR" =R, (12.35a)
T/ =T, ify =1, (12.35b)
T} =T, ity =1, (12.35¢)
=1, it! =1, (12.35d)
‘L'zy = T, lfzy = A2, (12356)
for any y. We also assume that

" =q, ig,"" =4, (12.36a)
" = i) = 4. (12.36b)
R P =7, (12.36¢)

for any y and y’. Then we can express (") as
Q" = f dOdOeNAOO.apnm). (12.37)

In the thermodynamics limit, (©") can be approximated as N0 0".«pm

(namely the saddle-point method), where O* and O* represent all non-conjugated
order parameters and conjugated order parameters evaluated at the maximal value
of the action, respectively. The expression for the action A(O, é, o, B, n) (we omit
* hereafter) can be written by

A N A . . nn-=-1)
A=-nRR —nT\T\ —nTL, T, —ntt, —ntt, — ———q141
2 (12.38)
nn—1 ., nn-1
- 5 P4 ) rr +Gs+aGg,

where G is the entropy term, and G is the energy term.
To derive the entropy term G, we use the following identities:
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2
Z SIVEIV (Zgl)/) _%Z(gl,)’)z’ (12.39a)
V4 Y

’

y<v
2
X e = (Zf”) -3 L E (12.39b)
y<v' 4 Y
Z 51)/52)/ 1 Zslygz;/ Zfl’yfz’y
y<v' 2 ¥
2 2 )
- % (Zfl'y + Zf”) - % (Zfl’y) - % (Zé”/) - % Y glrgdy,
4 v Y ¥/ Y

(12.39¢)

The above non-linear terms can be reduced to linear terms in the exponential func-

tions of Eq. (12.37) by the Hubbard—Stratonovich transformation | Dre?" = ez"”.
Then, we obtain G g as

n n n
Gg = In |: Z exp (R? Zél.yéﬂ,y + TAI Zél,ysl,true + 7:2 Z§2,y$2,!rue
{ }

gly g2 y=1 y=1 y=1

y<y'

+7 Zglzruf’SZV) X exp (722%_1 yE2nu< +q| Z &.1 V&.I N

y<y’ y<y'

s 2 " 7 2
=ln[ Z exp (q] ; 2 (Zsly) +q2% (ZSZV) +flzsl.y§1,true)
(617 27) v 7 ”

2
r 1y 2,y ’]: 2,y £2,true R?ii Ly g2,y
xexp(4(2y:§ +;s )+ z;s 21 4 ( z)gs § ) (12.40)

t Y ETET 47 Y s‘*&“’ﬂ
51'“”“ sz,znm

~>

~ ~ n., n .
X exp (‘L’] § gl.trueEZ,y 5 § gZ.lruegl.y _ qu _ zqz):|
Y Ltrue g2.true
& &%

Y

7 7
:ln|: Z /Dzexp(z ‘11—551’1/11"'2 q2_§&_2.722
v ¥

(617 ,627)
i (peze)
Y

X exp (T"] Zé.l,trueé.l.y 4 7:2 252,1/&.2,”146 + f[ Zgl.rruesly)
Y 14

<

X exp (fzzsz,truegl.y+(ﬁ )ZEIVEZV g ;q"):| .
S].rr'ua.gz.lmc

14
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Finally, we can express the entropy term G g in a compact form as

n

— 1 2 1£2
Gs=1In /DZ E D15 T8 b8 s _
£1.62 e £2.07
’ glitrue g2,true

A~

n n
—q1 — =, 12.41
Y 5% ( )

where we have defined Dz = Dz; Dz, Dz3, and the auxiliary variables by, b,, and

bs as
A~ f f 5 el true ~ 2 true
by =/q1 — 741 +4/ %3 + 1&g (12.42a)
~ 7 3 5~ 2 true ~ o1, true
by =,/q — 522+1/§Z3+T2§ S R T (12.42b)

by =R — (12.42¢)

NS

We remark that in the expression of Gg, the inner summation over £!,£2 can be
thought as a two-spin interaction partition function, which is defined as Z.z =
Y1 o @NE FTREHNEIE = 90b1 cosh (by + by) + 2e7P cosh (by — by). [@]grime grime
means an average w.r.t P(§1/7“¢ £2!"¢) This simplification is due to the intro-
duction of replicas, i.e., the original spin interaction decouples, being transformed
into the overlap matrix.

Next, we turn to compute the energy term G . The expression of G is given by

n

Gr 1 cosh (BX°) cosh (8Y?) cosh (8X7)cosh (BY7)
= cosh (82q) }—[:1 cosh (B2R7)

>, (12.43)

where (o) defines the disorder average. X 0 Y0 X7, Y” are correlated Gaussian
random variables, which are the same as before but the data index a has been dropped
off. They have zero mean and unit variance. Their covariances are determined by the
aforementioned order parameters as follows:

(X°v% =g, (X°x7y =17, (xX°v7y =1, (12.44a)
(X7X7) = qi, (YY) =g, (X7Y7) = R, (12.44b)
YOY”y =T, (YOX7) = 1, (XTY") =r. (12.44¢)

The random variables X°, Y°, X, Y? can thus be parameterized by six standard
Gaussian variables of zero mean and unit variance (¢, xo, u, u’, Yy, wy) as follows:

X0 =1, (12.45a)
Y0 = gty + /1 — ¢%x, (12.45b)
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—Tiq
XY =Tty + FXQ + Bu ++/1 - qio,, (12.45¢)
q
T — —A R —
Yy:‘[1[0+ 2 quxo—i—r u+ ! a)y—f—Ku/

V1—4¢2 B V1 =g

s (R —r)?
q2 1—41 Yy

(12.45d)

where A =Ty 4 B=l00ono, B=\/q1—(T1)2—(”‘_—T‘;”2, and K =

\/qz —(11)% — (Tz f‘q) — (=2 A)2 One can easily verify that the above param-

eterization satlsﬁes their covariance structures. Therefore, the G term can be
calculated by a standard Gaussian integration given by

,cosh (Bt°) cosh B(qty + /1 — q%xo)
cosh (82q)

1
DowDy——— h Tt B V11—
X(/ CEY osh (B2R) ﬂ( ”’+ﬁx°+ “t q“”)

Gg=1In |:/ DtyDxoDuDu

n

hp t+T2—1'1q +r—A 4o R—r L Ku +C
X COS T1lo X0 u w u y
V1—¢g2 B V1 =q
(12.46)
where C = l—qz—%.
To proceed, we first define the auxiliary quantities as
Dh+w)—q(Ti+7 —A
A+=(T1+7:1)to+(2+ i}]iq(zﬁ 1)xo+<B+r >u+Ku’,
—4q
(12.47a)

—T1) —q(T, — —A
=(Ty — )ty + (r2 2) — (T TI)XO + B — 4 u—Ku'
NI B

(12.47b)

Then we compute the integral inside the power n, which is defined by I whose result
is given by
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] /DD[ hﬂ( t+T2—t1q +r—A n R—r
= wy| COs T1ly X0 u w
V1—gq? B V1—q

R—r)? 1 —T
SR 4 [1—gy— BZD y) x cosh B(Tito + 22— yo 4 Bu+ /1 —qla))i|
1—q V1—g?
—r -n? —r -n?
_ 1/DwDy[eﬁ<A++(~ﬁlfql+ RH“ Yoty 1=g2 = {05 ) +e—ﬂm++<¢*1—m+ RH“ Yoty 1-q2 = =07 y)
4

. 2 _r 2
4P T = A A = 0 A == =0 [1-a- 9 y}}

= %eﬁz(]ﬂ;qz ) |:eﬂz(R7r) cosh (BA4) + e PR cosh (ﬂA_)].

(12.48)
For simplicity, we also define the following auxiliary quantities Zg, G_, G7, G} :

Zp = P B cosh (BAL) + e P B cosh (BA_),
P’ R=1) cosh (BA 1) — e PR~ cosh (BA_)
¢ T B (R=1) cosh (BA4) + e =) cosh (BA_)
PR sinh (BA ;) + ¢ 7R~ sinh (BA ) (12.49)
S P (R=1) cosh (BAL) + e~ R=1) cosh (BA_)’
eP* =) sinh (BA4) — e =) ginh (BA_)
S eP(R=1) cosh (BAL4) + e B R=1) cosh (BA_)

Following the replica trick, we can get

f DtoDxoDuDu' cosh Bio cosh B(qto+4/ 1—g%x0) In [ I ]

. G cosh B2¢ cosh 2R

lim ZE - . (12.50)
h h -

O Dy Dy Du D S BT

where the integral in the denominator can be exactly computed with the result [see
also Eq. (12.11)] given by

/ DtoDxoDuDu’ cosh (Bty) cosh B(gty + /1 — g%xo)

= % (eé(174)2+§(17q2) + e@i(u‘])q?(l*qz)) = ¢# cosh /326].

(12.51)

Finally, by collecting all the above relevant terms, we have the following estima-
tion of (£2") given by:
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~ ~ ~ A N
Q") = /dOdOexp <—NnRR — NnT\Ty — NnT,T» — Nntyty — ?n(n - l)qltf]>

N 1 . N 1AnNA nN N1 Daz"
X exp —E”("— )t]zqz—?ﬂ(n— )rr—TQI—TQZ'F n / 2L s e gimie (12.52)
+aNn /DtCOSh (Bto) cosh B(qty + /1 — g?x¢) [ 1 i|" ’
cosh (B2q) cosh(B2R)
where in shorthand Dt = Dty DxyDuDu’. By computing lim,_,¢ In (;2”> and using

Eq. (12.50), we get the expression Fg = —Bfrs as
5 5 5 . .4 ¢
Fg=—RR-TiT\ - LT, — 111 — 0 + 7(611 -1+ ?(42 -1

+ % + / Dz[In ZegrJgromie grome — o In (2cosh(B2R)) + o (1 _ %)

,,32
% / Dt cosh Bty cosh B(qto + /T — ¢2x0) In Z.
cosh (B2q)

(12.53)

In| [ DzZ}, . .
[f e'f]gl.lwé’.gl"uf = fDZ [ln Zeff]g’;l.lrue,g’;l.true tO

n

Note that we have used lim,_.
arrive at the final expression.

By the saddle-point analysis, these non-conjugated order parameters O should
obey the following stationary conditions:

9F 9F 9F 9F
Py, Ty, F_y, F_y, (12.54a)
OR or g1 0q2
aF, 3F, aF, aF,
el Y el ) Y Y (12.54b)
8T1 8T2 81’1 81’2

Similarly, for conjugated order parameters O, the following stationary conditions
should be satisfied:

OF OF JF, F,

£ —o, £ —o, £ o, £, (12.55a)
R or 941 9>
F, F, F, IF,

£, 7, —L o, e (12.55b)
8T1 3T2 aT] 8‘[2

We first evaluate the self-consistent equations those non-conjugated order param-
eters obey. For R, we have the following equation:

3 9InZ
F:—R+[/ DZM} —0. (12.56)
3R sl.rrueysl,true

oR

Thus the saddle-point equation of R is given by
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R = [(£'6%) ), crmue g2ime, (12.57)

where the thermal average (e) is computed under the partition function Z (a two-

spin interaction partition function), and the outer average indicates the disorder aver-

age over Gaussian random variables z and the distribution P (£ 1-/74¢, g2:1ruey
Similarly, for the order parameter 77, we have the following equation:

oF, 1 0Z
LR +sz[ fff] =0. (12.58)
8 T1 Zeff 3 T] E ].rrueﬁgl,rruk

Noting that BBZTE"" =D e gliruegl ghi&'+hit*+h38'8* e oot the final expression of T
as 1
Ty = [(ENE Y, prume g2ime. (12.59)

The expressions of 7>, 7; and 1, can be derived in the same way as follows:

T> = [(EDEPY, prumue g2ime, (12.60)
and

T = [(E2)EM Yy grime grome, (12.61)
and

T = [(§")E3 Y grome grime. (12.62)

Next, we turn to the saddle-point equation of ¢, i.e.,

oF 1 1 97
£ = (@ — D+ / Dz[ —Aeffi| =0. (12.63)
8(]1 2 Zeff 86]1 glirue g2.irue
Noticing that 63271“ =g -5 Yoo g2 £121NE TREFREE e get the expression
of g as
1
A
g1 — 1+ <q1 — 5) [(E") 211, e g2ime = 0. (12.64)

To proceed, we use the following identity:

/sz(z)z=/sz/(z), (12.65)

where f(z) is any differentiable function of z. Thus, we have the following equality:
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9 . 251 b1 +by£2+byEE2 A ~
[<s'>zl]z=[— (Zé 825 ¢ = ql—%n—@‘ﬁz.

0z Zet
(12.66)
Finally, the expression of ¢; is given by
g1 = [(E" ) e rime g2me. (12.67)
Similarly, g, should obey the following equation, which is given by:
qr> = [<€2>2]z,$“”‘”,SZ-”“@ . (1268)

Following the same line of computation, we get the following stationary condition
for 7 as:

r a9
5+ / Dz[ﬁ I Zet g1 i go1mie = O- (12.69)
Note that
9z 1(4 ;>_é (EYYz) + ! <;>_é ")z
A eff = — 1 — 5 1 - ~ .3
ar 4 2 | 4\2 | (12.70)
1/, 7\ 1/F\ 2 1
- ( > — %) )z + 3 (%) (%23 — 5(5152»
By applying Eq. (12.65), we can obtain the following three identities:
[(E2)z22], = /62 — g(l — [(EH,),
[(E")z3], = \/g(l — [EN ), + [E"E)], — [E"VED,). (12.71)

[(E%)z3], = \/g(l — [, + [E'E)), — [ENED,).

Using the above three identities together with Eq. (12.66), we get the expression
of the saddle-point equation for » as follows:

r=[(E"YV(ED) g1 g2ame. (12.72)

Given the result that Z.s = 2e cosh (b + by) + 2~ cosh (b; — b,), the ther-
mal average like (£!), (£2), and (£'£2) can be easily calculated as follows:
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i InZ
3b3 eff

¥ cosh (by + by) — e73 cosh (b1 — by)
b3 cosh (b + b2) + e=b3 cosh (b — by)
V3 (cosh by cosh by + sinh by sinh by) — e 3 (cosh by cosh by — sinh by sinh b»)
eb3 (cosh by cosh by + sinh by sinh by) + e~b3(cosh by cosh by — sinh b sinby) ’
sinh b3 cosh by cosh by + cosh b3 sinh by sinh b;
cosh b3 cosh by cosh by + sinh b3 sinh b sinh by
tanh b3 + tanh b tanh by
1 + tanh b tanh b, tanh b3’

(12.73)

—8 InZ
= n Zeag
b, eff

b sinh (by + bp) + e b3 sinh (b — by)
ebs cosh (b1 + by) + e=b3 cosh (by — by)
b3 (sinh by cosh by + cosh by sinh by) + e =3 (sinh by cosh by — cosh by sinh by)
eb3 (cosh by cosh by + sinh by sinh by) + e~3 (cosh by cosh by — sinh by sinh by)
cosh b3 sinh by cosh by + sinh b3 cosh by sinh by
cosh b3 cosh by cosh by + sinh b3 sinh by sinh by
tanh b; + tanh b; tanh b3
1 + tanh b tanh b, tanh b3’

(12.74)

—6 InZ
= n Zeff
aby eff

b3 sinh (by + by) — e b3 sinh (b — by)
b3 cosh (b1 + by) + e=b3 cosh (by — b)
b3 (sinh by cosh by + cosh by sinh by) — e~23 (sinh by cosh by — cosh by sinh b»)
eb3 (cosh by cosh by + sinh by sinh by) + e b3 (cosh by cosh by — sinh by sinh by)
cosh bj sinh by sinh b3 + sinh by cosh b cosh b3
cosh b3 cosh by cosh by + sinh b3 sinh by sinh by
tanh by + tanh by tanh b3
1 + tanh b tanh b, tanh b3

(12.75)
In case of 7 < 0, we can re-parameterize b; and b, as
bi =iz + TiEW™ + HE>, (12.76a)
by = V(W21 + V1 — ¥2z) + Trg>rme 4 fighire, (12.76b)
v = - (12.76¢)

NS
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We remark that this re-parameterization does not change the final results of multidi-
mensional Gaussian integrations in the saddle-point equations.

To sum up, the saddle-point equations for non-conjugated order parameters are
given by

Ty = [EM7 (M) g1me grome, (12.77a)
Ty = [E277"(E%) ] 10mue gromue, (12.77b)
g1 = [(E')? 1y g10mue grimue, (12.77¢)
42 = [(E) 1y g10mme grme, (12.77d)
1 = [E17ER) ]y gromue grime, (12.77¢)

= [E2"7(E" )] g1mue gromue, (12.77f)
R = [(5 E Mz, g10mue g2.irue (12.77g)

= [(E")(E™)]y g1 grome. (12.77h)

Next, we derive the saddle-point equations for those conjugated order parameters.
For R, we obtain the saddle-point equation as

i ——Ié— 132t h(ﬁzR) e 2 /Dt h Bt h B (gt 1—¢42 )—3 InZg =0
= af” tanl + cos cos + 4/ Xi n =0,
dR cosh (B2¢q) 0 at 470 dR E

(12.78)

KR zeﬁ (R=1) cosh (BAL)— —e~ PR cosh (BA) _ p2p—
where 5% InZp = B =05 T eosh (BAL) Te P cosh (BA) = B°G_. Therefore, the

saddle-point equation of Ris given by

2 -
R = aﬂ— / Dt[cosh Bty cosh B(qto + v 1 — q%x0)G, — af? tanh (8%R).
cosh (B2q)
(12.79)
For convenience, we define the measure (o) as
= (,szq) | Dtcosh Btg cosh B(gto + /1 — g*xp)e. As aresult,
R = ap*(G7) — af® tanh (B*R). (12.80)
For f] , we have the following condition:
dFg A p?
——- = —T1 + ———— [ Dtcosh Brycosh B(gty ++/1 — 2xo)—ln Zg =0.
oT, cosh (,B2 )
(12.81)
To proceed, we first get the derivation of A, and A_ w.r.t T} as follows:
0hy _, £l + 0 (=) 2Ky, (12.82a)
— =1t — ——xp+ — u+ —u', .82a
oT, ' Ji—gq2 | 8Ty B oT,|
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aA_ q a r—A oK ,
— =ty ———=x0+—= (B——— |u— —u. (12.82b)
0Ty 1 —q2 0T, B

Then, the derivation of In Z w.r.t T} can be simplified into the form as

dln ZE
0Ty

=BGl — q G+x0+3—BG+u+i r—4 G*u+3—KG*u’.
§ /1—q2 $ oT; * aTy B s o1y °*

(12.33)

To further simplify the result, we need to evaluate the following integral formulas.
The first one is derived by applying Eq. (12.65) as

/ Dtcosh Bt cosh B(gto + /1 — g2x0)G 1o
]
= / Dta—to (cosh Bty cosh Bgtg ++/1 — qzxo)Gj)
=B / Dt[sinh Btg cosh B(qto + /1 — g%xq) + g cosh Bty sinh B(gty + /1 — qzxo)i| G}
+ ﬂ/ Dt cosh Bty cosh B(qty + /1 — quO)[Tl +1G. —Ti(G))? — nG:“G;].

(12.84)
The second one is derived as

f Dt cosh Bty cosh B(qty + WXO)G;FXO

= / Dtaix0 (cosh Bty cosh B(gty + mxo)6j>

= ﬂﬂ/ Dt cosh Bty sinh B(gty + WXO)G;L
+ \/%7 / Dt cosh Bt cosh B(qty + mxo)

X [(Tz —qT) + (T — qu)G; — (1, — qT)(G))? — (Tr — qr])G;LG;].

(12.85)
The third one is derived as

/ Dtcosh Btg cosh B(gto + /1 — ¢2x0)Gu

9
— _ ) +
= / Dtau <cosh/3t0 cosh B(gto ++/1 — q“x0) G )

—A —A
=8 [ Dt cosh Bt cosh B(qto + /1 — quO)[B + rTG; — B(GH? - rTGjG;].
(12.86)
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The fourth one is derived as

/ Dt cosh By cosh B(qto + /1 — q?x0)G; u

9
— 42 -
- / Dt (cosh Bto cosh B(qty + /1 — ¢%x0)G; )

—A r—A
_ ﬂ/Dtcoshﬂto cosh B(gto + /1 — quO)[BG; + VT T (G - BG:rGS_]
(12.87)

The last one is given by
/ Dt cosh Bt cosh B(qty + MXO)G;M,
= / Dt%(cosh Bto cosh B(gty + mxo)G;) (12.88)
— BK f Dt cosh Bt cosh B(qto + ﬂxo)[1 - (G;)z].

Through a bit lengthy algebraic manipulations, we get

2
'B— f Dt sinh Bty cosh B(gty + /1 — g )co)G+ (12.89)
cosh (B2q)

We thus define another measure ((e)) = o (,32@ J Dtsinh By cosh B(qto + /1 — g%xo)e,
and it then follows that A
Ty = af*((G)). (12.90)
Similarly, we can obtain the saddle-point equation of 7] as

2 = af*((G])). (12.91)

Next, we turn to the saddle-point equations for T and 7. We first get the derivation
of AL and A_ wrt T3 as

AN, X0 194 9K
_ _ oA Ly (12.92a)

a7, 1 — qz BoT, a1,

IA_ X0 194 9K

= — — - (12.92b)

i Ji_g  Ban'  an

Based on the above equations, we get the derivative of In Zg w.r.t T, given by

91n Zg xo . 19A __ 9K .,
o B G — o Gu+ — G| (12.93)
a7, 1—6]2 ’ BoT, - aT,
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Then we have

f: L/Dtcoshﬁto cosh B(qto + /1 — ¢2x0)
cosh (B%q)
194 9K
x [LG; — 2 Gru+ —Gs_u/:|. (12.94)
1— q2 B oT5 T,

For a further simplification, we need to derive the following integral identity:

/ Dt cosh Bt cosh B(qty + WXO)G;)CO

= / Dtaixo (cosh Bty cosh B(qty + mxo)G;>

— ﬁ@/ Dt cosh Bio sinh B(gto + /T — ¢2x0) G
+ \/% / Dt cosh Bt cosh B(qty + on)

X [(tz—qu)G — (. —qT)G/G; — (T, — q)(G,)’ +(T2—qu)]

(12.95)
Using Eq. (12.95) togeAther with Eqs. (12.87) and (12.88), we finally arrive at the
saddle-point equation of 7

2
“’3—/0t cosh Bty sinh B(gto + v/1 — ¢2x0) G . (12.96)
cosh (82q)

We thus define the third measure (({e))) = mh (ﬂ,q) J Dtcosh Big sinh B(gto + /1 — g2xp)e.
We then write the saddle-point equation in a compact form as

T, = af>(((G))). (12.97)

Similarly, we obtain the saddle-point equation for %, as

& = af(((G]))). (12.98)
Then we turn to the saddle-point equations of ¢; and g;. From =0, we get
1 2 dlnZ
_511_%4_&/Dtcoshﬁtocoshﬂ(qto—i—\/l—q X0) il =0.
2 2 cosh (B82g)

(12.99)



12.1 Model Setting 177

The derivation of In Zg w.r.t ¢ is given by

dlnZ 9B 9 —A 9K
omnZeg = —Gju—i—— <r )G;u—i——G;u/. (12.100)
aq1 aq1 0q1 B g1

Most terms in the above equation cancel each other, leading to

o{,Bze_ﬁz
g1 = ———— [ Dtcosh (Bty) cosh B(gt, 1 — q2x0)(G))*
0 cosh(,qu)/ cosh (0 cosh Bty + V1= PG 1o
= ap*((G))?).
Similarly, we can derive the saddle-point equation for g, as
L _ o /Dt h (Bto) cosh B(qto + v/T — ¢2x0)(GT)?
=— cos cos —
= Cosh (B2q) 0 o H0 s (12.102)
= af*((G7)?).
Lastly, we derive the saddle-point equation for 7 as
; a dlnZ
Ty L/Dtcosh,fszocoshﬁ(qzoJm/1 ) R EE _ 0. (12.103)
2 cosh B%g or

Noting that M22 = —B2G + B (4G u+ 2 G u’), we get the saddle-point
equation of 7 as
F = 20B2(GTGT). (12.104)

1 =ap’((G)). (12.105a)
iy = ap(((G)))), (12.105b)
| = aB((G;)), (12.105¢)
H = af(((GH)), (12.105d)
41 = ap*((GH)?), (12.105¢)
G = af*((Gy)?), (12.105f)
F=2ap*(G}G)), (12.105g)
R = ap*(G7) — af® tanh (B*R). (12.105h)

In the case of g = 0 (correlation-free scenario), the saddle-point equation of the
correlation-prior-free minimal model has the solution: g; = ¢, = T} = T, and other
order parameters vanish. Thus, we can simplify A, and A_ as follows:
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Ay = Titg + Toxo + Vg1 — (T1)*u + Vg2 — (1), (12.106a)
A~ = Titg — Taxo + g1 — (T — Vqo — (T2 (12.106b)

We then define x| = Tito ++/q1 — (T1)2u, and x, = Toxo ++/q2 — (T2)2u’. The
saddle-point equation of 77 is given by

N 2 inh A inh BA_
T\ =ap’e? /Dtsinhﬁtocoshﬂxo[sm pAy + sinh p ]

cosh BA; 4+ coshBA_
sinh B x; cosh B xa (12.107)
cosh B x; cosh B x2

=af e’ﬁZ/DtSinhﬂto coshﬂxo[

2
= 05,326_% / DtyDu sinh ,Bl() tanh ,B(Tlto +Vq1 — (Tl)zl/t),

where we have used the identity | Dx cosh(Bx) = ¢f*/2. In an analogous way, one
can prove that f’l = fz. As for g1, we will have

sinh BA 4 + sinh BA_ ]?
cosh SA 4+ cosh BA_

sinh §x, cosh B x> 1° (12.108)
cosh By cosh Bx»

= ozﬂze_’g2 / Dt cosh Bty cosh ,3x0|:

= afte / Dt cosh Bt cosh ,on|:
2
—aple T / Dty Du cosh Bto tanh® B(Tito + /g1 — (T1)2u).

Similarly, one can prove that §; = §.
It is also straightforward to prove that 7, = 0, 7, = 0 and R = 0,7 = 0, then we
can compute by, b, and b; as

by = gl e 4/, (12.1092)
by = HE>" 4oz, (12.109b)
by = 0. (12.109¢)

Therefore, [ Dz[In Zegt]gime g2 can be simplified as 2 [ Dz In2 cosh(7; +
\/a z). In addition, T} becomes

T = [/ Dz Dz, Dz3£ "™ tanh (T3 + \/4111)}

EI,U‘U(‘,EZJH(P

1 A — A
= f DZ1§|:ta[1h (Ty + \/QIZI) —tanh (—T; + ﬁ121)1|
(12.110)

1 . _ .
= / DZ15[tanh<Tl +/§1z1) — tanh (=T} — ﬁlzo}

:szltanh(f1+@Z1)-
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One can easily prove that 77 = T5. Similarly, for the order parameter ¢,, we can also
get

q2 =[/ Dz, tanh® (Th£ 17 4 \/?221):|
1 ~ < A =
=5 / ng[tanhz (T> + v/4222) + tanh?® (=T + \/1522)] (12.111)
= / Dz, tanh? (fz + \/6522).

gl.zruefz./ruc

On can similarly show that g; = ¢, and moreover R =r = 71 = 7, = 0. To sum
up, we recover the saddle-point equations of one-bit RBM.

Next, we show the g = 0 version of the free energy function. It is easy to show
that Zg = cosh B(x1 + x2) + cosh B(x1 — x2) = 2 cosh B x; cosh §x,. Therefore,
we have the following integral

oteiﬂz / Dt cosh Bty cosh BxgIn Zg = ae7ﬂ2 / Dt cosh Bty cosh Bxg In(2 cosh B x1 cosh Bx2)

2
:cxan—i—ZaeiﬁT/DuDzocoshﬁtolncosh,B(T]to+,/q| — (T1)2u).
(12.112)

Collecting all the relevant terms, one shows that the free energy of our minimal
model with ¢ = 0 is merely two times as large as that of one-bit RBM (see Chap. 11),
which can also be intuitively understood by the argument that the partition function
factorizes as Q@ = Q2. . rpym- Therefore, we draw the conclusion that the critical
data size for spontaneous symmetry breaking does not change even if an additional
hidden node is added. This conclusion is expected to hold in the case of more hidden
nodes following the principle of the partition function’s factorization.

Next, we turn to the two-bit RBM model with the prior knowledge about the
embedded correlation level. For the replica analysis, we need to evaluate the disorder
average of an integer power of the partition function (2"), where (o) is the disorder
average over the true features distribution Po(£"""¢, £*'") and the corresponding
data distribution P ({o?}M_ |&"/e, g217¢) as:

Z 1_[[13 (3):1 true 2 tr. ue)] ﬁ cosh (%gumeaa) cosh (%gzynueaa)

2N B cosh (B2q)

{Etrue a} i=1

cosh (%El‘ya“) cosh <%§Z’Va”>
2 11 cosh (B2F7) [Tme 5.
{El,yszy} a,y ; iy

(12.113)

Under the RS assumption, (Q") can be expressed as (") = [ dOONAOOn.B.p)
where A = Gy + Gs + aGg. The term G reads
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. . R . . nn—1), nn—1) .
Go=—-—nRR —nT1T\ —nThT, —ntity —nnt + 2 q191 + 2 qzqz—i—Err

(12.114)

The entropic term G g reads

n n n
Gs=1In Z exp R Z%-l,y%-ly + fvl Z%-l,ysl,true + fvz Z%—Z,y%-ltrue

g1y, 627} y=I1 y=1 y=1

Z 1,true 2y X exp tngly%-Ztrue_i_ Z <q1%—1y§-1y

y=1 y<v'
n
+RERTE 4 PEVE ) 4 ) In Po€ ! E27)
y=1 gl g2me
(12.115)
In an analogous way to the prior-free (not Bayes optimal) case, we can express the
entropy term Gy in a compact form as

n

n . n .
Gs=In /DZ Z eh1§l+b2$2+h3~’31~’32+lnPo(‘fl,fz) _ qu _ qu,
51»52 El,/ruc’sz,/rw
(12.116)

where we have defined Dz = Dz, Dz, Dz3, random variables z;, z», z3 are standard
Gaussian variables, [e] is the disorder average under the true features distribution
Py(gltrue g2.truey ‘and the auxiliary variables by, by, and b3 are given, respectively,

by
r ltrue 21rue
,/q1—511+\/7Z3+T5 1233 (12.1172)
/qz _ —22 + \/>Z3 + T2$2true %.1 true (12117b)

f
=R—— 12.117¢
5 ( )
In particular, we obtain an effective partition function Z.¢ as
Zoii = Z o1& a8 +bsE 87 +In Py 67)
§lg2 (12.118)

— 9 o5 cosh (by — by).

R
er 9 1 cosh (by & by) + 1

The saddle-point equations for non-conjugated order parameters are given by:
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Ty = [E"7(E") ]y, 10mue grme, (12.119a)
Ty = [E2"7(E7)], 10mue grme, (12.119b)
q1 = [(E") 1y g1me grome, (12.119¢)
42 = [(E%) ]p,10mme grme, (12.119d)
1 = [E1 D) ]y grmue g, (12.119)
T = [E2"7(E" Vg g1mue g2, (12.119f)
R = [(£'E%)]g,610me gromue, (12.119g)
r = [{E")(E) g grmue gromue. (12.119h)

where (o) is the average under the distribution P(§ 1 g2y =

ﬁeb1§]+b2§2+b3$l$z+ln PU(EI,EZ)‘ For <€:1)ch we can get

k)
Yz = Spr In Zer

(1 +¢q)e? sinh (by + by) + (1 — g)e™" sinh (b) — by)
T (14 q)ebs cosh (by 4 by) + (1 — q)e=b3 cosh (b — by)

(cosh b3 sinh by cosh by + sinh b3 cosh by sinh by) + g (cosh b, sinh by sinh b3 + sinh by cosh by cosh b3)
cosh by cosh by cosh b3 + sinh by sinh b; sinh b3 + g (cosh by cosh by sinh b3 4 sinh by sinh b, cosh b3)
tanh b; + tanh b; tanh b3 + ¢ tanh by + ¢ tanh b tanh b3

1 + tanh by tanh by tanh b3 + g tanh b3 + g tanh by tanh by~

(12.120)
Similarly, for (£2) 2, and (£2)7,,, we have
) B
(g >Zeff - ln Zeff
9bz (12.121)
B tanh b, + tanh b, tanh b3 4 ¢ tanh b; + ¢ tanh b, tanh b3 ’
" 1 + tanh b, tanh b, tanh b3 + g tanh b3 + g tanh b; tanh b, ’
and
1£2 0
(&%) 2 = T In Zgt
3 (12.122)

tanh b3 + tanh b; tanh b, + g tanh b tanh b, tanh b3 + g
1 + tanh b, tanh b, tanh b3 + g tanh b3 + g tanh b; tanh b,

The saddle-point equations for conjugated order parameters are same with the
prior-free case

[ = ap*((G))), (12.123a)
[ = af>(((G7), (12.123b)
G1 = ap*(GH?P), (12.123¢)
G = af*((G)?), (12.123d)
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1 = ap>((G;)), (12.123¢)
£ =ap’(((GH)), (12.123f)
R = ap*(G7) — af® tanh(B°R), (12.123g)
F=2aB*(G}G)). (12.123h)

12.1.3 Stability Analysis

It is reasonable that near a continuous transition point, all order parameters are very
small (a trivial state) such that we can expand them to leading order. We first analyze
the prior-free unsupervised learning. According to Eq. (12.77), when the critical
point is approached from below, (£!) ~ tanh b, ~ b,. Analogously, (£2) ~ b,, and
(E'£2) ~ b3. We thus have the following results in this limit:

Ty = [ED74(EY], prme g2ime = Ty + T, (12.124)
Ty = [E27(EN) ], prime grame = Ty + T (12.125)

Similarly, in the limit of vanishing order parameters, we have the following
approximation:

PR~ sinh (BA ) + e=# R~ sinh (BA )

Gf =
: ;ﬁz(R—r) cosh (BA4) + e ®=1) cosh (BA_) (12.126)
=5 A+ A0

Substituting this approximation into the saddle-point equations of T) and %,, we get
the approximate results of 7} and 7, as

2

Tn =aB”((Gy)) ~ cosh (B24) Dt sinh Brg cosh B(gtg + mxo) > [A+ +A_]
= of*[Ty + tanh(B%)72],

A~ 2 —+ aﬁze_ﬁz . 2 ﬁ

7 = af({(Gy ) = m/DtCOShﬂR) sinh B(qto ++/1 —¢q xO)E[A+ +A_]

= ap*[ry + tanh(B%¢) T1 1.
(12.127)

We recast the equations for all these four order parameters in a matrix form as

T] _ 1(] 7,\11
(M) =(1)(%). (12.128)
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T\ _ 1 tanh (8%¢)\ ( T:
<r21> = of’ (tanh (Bq) 1 ) <12>. (12.129)

From the Eqs. (12.128) and (12.129), T} and t, can be worked out as

Ti') _ 4t ! +4tanh (B*q) g +tanh (B2q) \ (Ti\ _ (T
/) g +tanh (B%q) 1+gtanh (B%q) J\ ©n ) — 0/’
(12.130)
where the matrix M is the so-called stability matrix, whose largest eigenvalue deter-

mines the critical value of the learning data size «,. In detail, the stability matrix has
two eigenvalues:

oy = af* (1 + g tanh (B2q) + |g + tanh(8%9)]) , (12.131)
A_ =ap* (1 + g tanh (8%q) — |g + tanh(Bq)]) . (12.132)

The o, can be read off from A, = 1, i.e.

_ g
" 1+ gtanh (B2g) + |g + tanh(B2q)|’

(12.133)

(o

A physics understanding of why the smaller eigenvalue could not be used to determine
the threshold «. can be carried out, in the sense that the result is in contradiction with
the expectation that learning should be easier given noise-free data.

Next, we analyze two interesting limits of the critical threshold equation
[Eq. (12.133)]. As the first limit, |g| — 1, o, — %ﬂ"‘ provided that g is relatively
large such that tanh 8% ~ 1. The second limit is that |g| — 0, i.e., g takes a small
value but not zero, suggesting a weak correlation among feature maps. Based on the
order of magnitude of g, we have the following analytic result given a relatively large
B:

1 if|g| < B2,
Jim acp® = ) g ife = a0 orlal ~ B (12.134)
sy iflal > B

Note that co means any large value of 8 making tanh 8 = 1, rather than a definite
value of infinity. Equation (12.134) shows that once the two feature maps are weakly
correlated, the minimal learning data size for a transition can be further (or even
significantly) reduced compared to the correlation-free case, especially in the case
that ¢ is not very small but still larger than the order of magnitude set by f~2. We
show this result in Fig. 12.2.

We thus deduce a significant hypothesis for the triggering of concept formation that
a bit large (compared with 872) yet still small value of the correlation level is highly
favored for unsupervised learning from a dataset of smaller size (compared with the
correlation-free case). Regularization techniques such as locally enforcing feature
orthogonality [4] has been introduced to deep learning. Weakly-correlated recep-
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q

Fig. 12.2 The critical value of data size (Eq. (12.133)) as a function of the correlation level g. The
weak-feature-correlation limit at different orders of magnitude compared with =2 is considered.
B =5 for this example. The dashed line shows the third case of Eq. (12.134). This plot is adapted
from Ref. [1]

tive fields are also favored from the perspective of neural computation, because the
redundancy among synaptic weights is reduced and thus different feature detectors
inside the network can encode efficiently stimuli features rather than capturing only
noise in the data. A similar decorrelation in hidden activities was recently theoreti-
cally analyzed in feedforward neural networks [5]. We anticipate in specific machine
learning tasks, and even in neuroscience experiments the relationship among the
minimal data size for learning, the correlation level of synapses (or receptive fields)
and the noise level in stimuli can be jointly established. Therefore, from the Bayesian
learning perspective, the non-orthogonal-feature case yields a much lower thresh-
old for the phase transition toward the concept formation, in comparison with the
correlation-free case [3, 6, 7].

In the optimal Bayes inference case, when « approaches the SSB threshold from
below, all order parameters get close to zero, except for R which is always equal
to ¢ due to the prior information. It is straightforward to show that R is also zero
below the SSB threshold. Therefore, by, b, and b3 are all small quantities. Then we
can expand our order parameters to leading order. Note that (') ~ b; + ¢b,, and
(E%) =~ by + qb,. It then follows that
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~

Ty = (" EY = T + g% + gt + ¢* D, (12.135a)
Ty = [E2™ ()] = Th + gt + qt1 + ¢°T, (12.135b)
1 =[E"EN =6 +qT + 9D + ¢, (12.135¢)
= [E2"EN ~ b +qTi + 9D + ¢°%. (12.135d)

2‘I . . .
Because R = ¢, by defining W(q) = #(ﬁzq)’ one arrives at the approximation
Gt ~ BW(g)(A; F A_) £ BA_. To proceed, it is worth noticing that
5 p g

((A4)) = BITi + 71 + T tanh (87¢) + Ty tanh (87q)], (12.136a)
((A_)) = BITy — 71 + Ty tanh (8%q) — Ty tanh (87q)], (12.136b)
(({A4))) = BIT2 + 72 + 7 tanh (87q) + T tanh (87q)], (12.136¢)
(({A_))) = Blr, — T, + Ty tanh (8°¢) — 7, tanh (87q)]. (12.136d)

Based on the above approximations, it is easy to derive the following approximate
values of the relevant conjugated quantities

T1 ~ aB*[Ty + Y| +  tanh (B%g) + Y T tanh (82¢)], (12.137a)
Ty ~ af*[T, + Y1, + 7, tanh (B%¢) + YT, tanh (8%¢)]. (12.137b)
2 ~ ap*[r, + YT| + T, tanh (82q) + Y1, tanh (82¢)], (12.137¢)
% ~ ap*[t, + YT + T tanh (8%¢) + Y1, tanh (B29)], (12.137d)

where T =2W(q) — 1. o
The above approximations of (71, T», 11, 72) and (71, Tz, 1, T2) can be easily
recasted into a compact matrix form as follows:

Ty 1¢*q T
T qz 1 g ’f2
- , 12.138
T 99 1¢q 7 ( )
2 q 949 7
and
7, 1 Y tanh (82q) T tanh (8%q) Ty
Ty | _gpt | Tanh B 1 tanh (8%¢) Y T
8~ 0 tanh (82q) 1 Y tanh (82%g) 7
' tanh (8%q) s T tanh (8%q) 1 2
(12.139)
A linear stability analysis implies that the stability matrix M can be organized in this
AB

case as a block matrix of the form M = , where the matrices A and B are

B A
derived from Eqs. (12.138) and (12.139), and given, respectively, by
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A=apt(C + g tanh (8%¢))(1 +¢Y) (tanh (B%q) +¢)(g + )
- (tanh (82q) + ¢)(T +¢q) (1 +gtanh (B%¢))(1 +¢Y) )’
(12.140a)

4 (T4 q)(1 + qtanh (B%q)) (Tq + 1)(g + tanh (B%q))
B =quof ((Tq + (g -+ tanh (ﬁzq)) (Y +¢)(1 +qtanh (,BZQ))> . (12.140b)

According to the determinant identity for a block matrix, |M —XI| =|A+ B —
M| |A — B — Al|, the eigenvalues of the stability matrix can be determined by the
following two equations:

ap*(1+q)(1 +qtanh (BP))(1+0) =4 ap*(1+q)(X +1)(q +anh(F>q)) | _
ap*(1+¢)(Y + 1)(g +tanh (B%¢))  ap*(1+¢)(1 +gtanh (B2gH(1+T) — 1|
(12.141)

and

ap*(1 —q)(1+qtanh (B2g)(1 = 1) =1 ap*(l —g)(T = 1)(q + tanh (8q)) ‘ —0
ap*(1 = )(Y = (g +tanh (7)) af*(1 —@)(1 +qtanh (B¢))(1 =) =4 |~
(12.142)
Using the mathematical identity max(l — g, 1 +¢g) = 1 + |g|,and max(1 — Y, 1 +
T) =14 ||, we conclude that the maximal value of all eigenvalues is given
by Amax = af*(1 + |g[)(1 + | Y)(1 + g tanh (B%q) + |q + tanh (B>¢)|). The criti-
cal data density for the SSB phase is thus given by

ﬂ_4

= L (12.143)
(14 1gD(1 + Y1 + g tanh (B%q) + |g + tanh (B2g)|)

K

This SSB critical data density is compared with that of the prior-free case in Fig. 12.3.
We see that the prior knowledge about ¢ significantly reshapes the critical data
density surface for the SSB phase, which provides deep insights about roles of prior
information.

12.2 Phase Diagram

In this section, we provide a detailed explanation of phase transitions caused by
increasing data size for the model with prior. The difference from the prior-free
scenario is also highlighted. Interestingly, when « is small, trivial (null values) order
parameters except R are a stable solution of Eq. (12.119), thereby suggesting a
random guess (RG) phase. As expected, R captures the prior information, thus being
equal to g irrespective of «. In this phase, (£') = (£2) = 0, the weight thus takes
+1 with equal probabilities, implying that the data does not provide any useful
information to bias the weight’s direction during learning. The underlying physics
is that the posterior [Eq. (12.22)] is invariant under the reverse operation § — —§&,
and this symmetry is unbroken in the RG phase.
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2.51 08 06 04

Fig. 12.3 Comparison of SSB critical data densities in models with/without prior knowledge. This
plot is adapted from Ref. [2]

Surprisingly, as more data is supplied, the RG phase would lose its stability at a
critical data density. By a linear stability analysis as shown above, this threshold can
be analytically obtained as

_ A(B. q)

(1+IgD)(1 + | tanh(B%q)])’
where AB,q) = g ﬁzq)-:q T ()] denotes the learning threshold fqr the
prior-free scenario [1]. In the correlation-free case (¢ = 0, more than one hidden
nodes allowed), the known threshold a,. = ﬂ"‘ is recovered [3, 6]. Compared to
the prior-free scenario, the prior knowledge contributes to a further reduction of the
threshold (~60% of the prior-free one for ¢ = 0.3 and 8 = 1). Most interestingly,
in the weak correlation limit, where ¢ ~ 82 with a proportional constant g in the
presence of less noisy data (large B), a.f* = (lJr\ta]m’ which demonstrates that
the learning threshold can be decreased to only 32% of the correlation-free case for
qo = 1. This demonstrates the same benefit of the weak correlation between synapses
as shown in the prior-free scenario.

When o > «, the RG phase is replaced by the symmetry-broken phase, where
(€'Y = (£?) # 0. Note that the inherent-reverse-symmetry is spontaneously broken.
We thus call the second phase a spontaneous symmetry breaking (SSB) phase. The
SSB implies a non-zero solutionof g; = g, = T} = T, = t; = 7, = r. As areason-

(12.144)

oo
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(A,B) (B,A)

Fig. 12.4 A schematic illustration of various kinds of inherent symmetry breaking in unsupervised
learning. As the data density « increases, a first continuous transition related to the reverse sym-
metry breaking occurs, where the student machine starts to infer the common parts of ground-truth
receptive fields. This type of transition is named spontaneous symmetry breaking (SSB), as encoun-
tered in a standard Ising model. As « further increases, the student starts to infer the distinct part
of the ground truth. This is called the first type of permutation symmetry breaking (PSB), i.e., the
student starts to realized that its two receptive fields are not the same. We name this transition as
PSB;, where the subscript means student. As the data density further increases, the student starts
to be capable of distinguishing the intrinsic order of two hidden nodes in the teacher’s (or ground
truth) architecture. We call this transition as PSB,, where the subscript means teacher. Only after
this transition, the free energy has two equally important valleys (for an arbitrary number P of
hidden neurons, there are reasonably P! valleys). These two valleys corresponds to two possible
orders of (A, B) or (B, A) for the ground truth, which is also the inherent permutation symmetry
in the model to generate the data of the identical Gibbs-Boltzmann distribution

able interpretation, the student infers only the common part of the two planted RFs
in this new phase (see Fig. 12.4, see also a numerical simulation proof in the previ-
ous work [1]). Thus the PS still holds for the student’s hidden neurons. Moreover,
£1¢ and £2"° have the PS property as well, providing a physics explanation of the
solution we obtained. The SSB phase is thus permutation symmetric and stable until
a turnover of the order parameter r is reached [Fig. 12.5a].

At the turnover, the PS is also spontaneously broken, thereby leading to a per-
mutation symmetry breaking (PSB) phase. The third phase is characterized by two
fixed points: (i) g =g =T1 =T, and 1y =1, =r; (il) g = g2 = 71 = Tp, and
T, = T, = r. We remark that these two fixed points share the same free energy, rep-
resenting two possible choices of ground truth— (§1:19¢, g214¢) or (g2tve gliiuey,
resembling the well-known free energy picture of ferromagnetic Ising model. In fact,



12.2 Phase Diagram 189
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the PSB phase has two subtypes: the first one is a PSB; phase where the permutation
symmetry between &' and £ is broken on the student’s side, i.e., (') can point
conversely to (£2) but with the same magnitude, thereby g; = ¢, # r, and the sec-
ond one is a PSB, phase where the PSB occurs on the teacher’s side, i.e., £"™ and
£2™° cannot be freely permuted, thereby T, # 5.1 (see Fig. 12.4). Interestingly,
the self-overlap deviates from r at the turnover, thereby merging PSB phase and
PSB, phase into a single PSB phase, rather than separating these two subtypes as in
the prior-free scenario (Fig. 12.5a). With the help of prior knowledge, the student is
able to distinguish two planted RFs (PSBy, recognizing the exact order) at the same
time when starting to infer different components of the student’s RFs (PSBy). This
process is also pictorially shown in Fig. 12.4. Furthermore, the prior does not change
the PSB; transition point of the prior-free case, in that knowing ¢ does not help to
accelerate the recognition of two choices of ground truth. The only effect is that the
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knowledge of ¢ does elevate the overlap values before the turnover, resulting in a
larger value of r in the post-turnover regime compared to the prior-free case. After
the turnover, the overlap equal to min(7}, t;) or min(7,, 7») has the same value with
r, since (£, £2"°) follows the same posterior as (£', £), as can be deduced from
the Nishimori condition of the Bayes optimal learning. As expected, r finally tends
to ¢ at a finite but large value of « [Fig. 12.5a], suggesting that the unsupervised
learning is completed.

We conclude that with/without the prior knowledge, the data stream drives the
SSB and PSB phase transitions of continuous type [ 1, 2]. Thresholds of the transitions
for the prior case are summarized in Fig. 12.5b. This conclusion can be verified by
numerical simulations on single instances of the model by applying the corresponding
message-passing-based learning algorithm (Fig. 12.5a, technical details have been
given in the previous sections). We finally remark that in a general RBM with more
than two hidden neurons, the message passing does not apply, or even we cannot have
a closed-form for the equation. However, a variational mean-field theory, working at
the model ensemble level, can be used to treat arbitrary many hidden neurons, as we
already introduce in detail in Chap. 10.

12.3 Hyper-Parameters Inference

In this section, we show how to infer the hyper-parameters of our unsupervised
learning model. We first write the posterior probability of the hyper-parameters
and ¢ as [2]

P(DIB,q. & §) P& Elg)
[ [dBdg Y i 2 P(DIB.q. &' EPo(E" &)
(12.145)
where D indicates the dataset, we have used the Bayes’ rule, and we assume that
Py(& " 52, B,q) = P()(§1 , ‘;‘2 lq) 150(/3, q) where 130 (B, ¢) is aconstant or equivalently
we have no prior knowledge about the true values of the hyper-parameters. Therefore,
we have

P(B.qID)= Y P(B.q.& . E1D) =)
e e

M N
PB.qID) o Y [[P"1B.q.8" )] P& E19). (12.146)

gl gra=l1 i=1
Note that the data distribution can be expressed as

cosh <\/iﬁ§1 . a“) cosh <\/iﬁ“;‘2 . a“)
2Nef cosh (B2Q)

P(c“B.q.E" &) = (12.147)
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The posterior probability of the hyper-parameters can be finally simplified as
P(B,q|D) x e PMQ where S is exactly the partition function of the posterior
P (&', £%|D). This partition function can be written explicitly as follows:

m cosh (\/iﬁgl -a“) cosh (\/iﬁ‘;‘z . U“) N
QB.q) = Py(&, &71q).
(89 52;1:[1 o 70 1] 0 (& & 1q)

(12.148)

Searching for consistent hyper-parameters (8, g) compatible with the supplied

dataset is equivalent to maximizing the posterior P (8, g|D). Following this principle,
we first derive the temperature equation as

dln P(B, q|D) 0
—_— = -2M, — InQ(B, q). 12.149
op B+ 5 B.q9) ( )
Note that in statistical physics, the energy function is given by Ne = — =7, where

€(B, q) denotes the energy density (per degree of freedom). We thus conclude that
B should obey the following temperature equation

_€(B.9)

12.150
o ( )

B =
Note that when the true prior is taken into account, the energy density of the model
is analytic with the result ¢ = —2af independent of g. This is exactly what the
Nishmori model shows (see Chap. 6). Note that rare model of spin glass can have
analytic energy in general.

Given the dataset and an initial guess of 8, the aforementioned message passing
scheme with prior knowledge can be used to estimate the energy density of the
system as Ne = — ), A¢; + (N — 1) ), A€, based on the Bethe approximation.
The energy contribution of one synapse-pair reads

et Ypea Qi LD 57, i (6 62)+n P&l )

B
Ag; 5 , 12.151
l Zsl g2 e Xoveni Up—i (& ED)+In Po(&] ) ( )

dupi (6 .ED)
where %

reads as follows,

3141;—»‘(5-1, 52) 211 1 2 5152
PRRAA L IRl S r . r . 2E —il — 2 —1 —
B op B, + T +28p1 =287 Op +—N
2 B 1.2
x tanh { B~Qp_; + Wéi &)+ Y, ;tanh Y,_,;
+ Boi (—4B*Epi + Xpoitanh X, ; — Yj; tanh ¥p;)
1+ Ah—)i

(12.152)
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where X, .; = pG,_, — BG}_; + f_ﬁaib(gil — &), Yot = PG + BGy +
%oib &+ &), and Ay = e 2 S Soi=i The energy contribution of one data
sample is given by

BAe, = AT + T2 428,) — 28%Q, tanh (82Q,) + Y, tanh ¥,

A (12.153)
—* (-4B’8, + X, tanh X, — Y, tanh Y,)) ,
A, (W )
where X, = BGl — BG2, ¥, = Gl + PG, and A, = ¢ 2F'E0 X,
122
Next, we derive the correlation equation. Note that Py(&/, 7)) = %, where

Jo = tanh™! ¢. This prior contributes an extra coupling term in the effective Hamil-
tonian in the replica computation. We then have

OPBaID) _ s 32 _

0, (12.154)
dq dq

which requires that % = 0. It then follows that

a2 e 1.2 aJy
i 5252E P& 'D),Z@" &7 — tanh Jo) 7~

dJo
=Q <Z<s,~ls,-2>p@us2o> — N tanh Jo) % =%

1

(12.155)

To satisfy Eq. (12.155), the following correlation equation must be solved:
1
9= IZqi, (12.156)

where g; can be computed in a single instance by iterating the message passing
scheme. More precisely

ZS,»',S,? g sizez”“” oei 61,67 P&, &)
gi = ST - (12.157)
Syt g2 o LD Py(E] 87)

In addition, the negative log-likelihood of the hyper-parameter posterior per neu-
ron can also be estimated as % =C-— % + off 2 where C is an irrelevant constant,
and the second term can be approximated by S fgethe. This measure is helpful to char-
acterize the quality of the inference performance, as was analyzed in our work [2].
Given only the data samples, the inference of hyper-parameters (8,q) underlying
the data can be achieved by iteratively imposing the Nishimori constraint to reach
a consistent value of (8, ¢) to explain the data. In statistics, this iterative scheme
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is called the expectation-maximization algorithm [8], where the message update to
compute (€, {g;}) is called an expectation-step, while the hyper-parameter update is
called a maximization-step. The hyper-parameter space, especially when the amount
of data samples is not sufficient, is not guaranteed to be convex, instead being highly
non-convex in general. A high relative inference error with a large fluctuation in a
data-deficient regime would be observed.
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Chapter 13 ®)
Mean-Field Theory of Ising Perceptron Giese

Learning problem asks one to find a group of synapses to store P patterns in a
network with N neurons. For a feedforward structure, it can also be seen as a classi-
fication problem of P patterns with specified labels. For this purpose, we can design
a simplest architecture with only one output unit but with binary synapses connecting
input nodes to the output. Although this binary Perceptron is not a practical setting
for complex learning (e.g., non-linear-separable datasets), the toy model received a
substantial research interest especially in statistical physics community. In particular,
many important theoretical insights are gained from studies of this model. In this
chapter, we bring some important progresses in recent years about the theoretical
studies of the Ising/binary Perceptron (Braunstein and Zecchina in Phys. Rev. Lett.
96:030201, 2006 [1]; Huang and Kabashima in Phys. Rev. E 90:052813, 2014 [2];
Baldassi et al. in Phys. Rev. Lett. 115(12): 128101, 2015 [3]).

13.1 Ising Perceptron model

Perceptron models [4] were first studied by physicists in 1980s. Continuous weights
were first analyzed as a statistical mechanics problem. From an information storage
perspective, the capacity, denoted as the maximal ratio («.) between the number of
random patterns classified correctly by the machine and the number of input neurons,
was claimed to be o, = 2 [5]; later, this setting was generalized to the perceptron with
binary (£1) synapses (also called Ising-type), and the capacity decreases below one
(the upper-bound from an information-theoretical perspective) [6—8]. The spherical
perceptron with continuous weights has the continuous space of solutions below
the capacity, and thus training is easy. However, the binary perceptron has isolated
equilibrium solutions [2], and the training in the worst cases belongs to the NP-
complete class [9, 10].
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196 13 Mean-Field Theory of Ising Perceptron

The Ising perceptron is a simple and abstract model of a biological neuronal
network (e.g., cerebellar Purkinje cells). The output of the Ising perceptron is the
sign of an weighted summation of its input (see Fig. 13.1), given by

y* = sgn (Zé}‘%) : (13.1)

where &/* is the i th component of the 1th pattern, J; is the ith synapse and sgn(-) is the
sign function. Note that the patterns are randomly selected with equal probabilities
for their entries, i.e., P(§ = +1) = 1/2. The corresponding label is also random
and independent of the input signals. In the case of labels generated from a teacher
perceptron, the learning problem turns out to be a generalization problem [11]. We
will not analyze this case, because methods introduced in this chapter can be easily
adapted to the generalization case, in which there emerges interesting first-order
transitions for learning [12, 13]. If the output y* is equal to a prescribed label o *,
we say the perceptron successfully classifies €. The energy cost of the network is

then given by )
ot
EQ) = C (—— J,Ef‘) . (13.2)
ol

E ranges from O to P, taking O for a complete storage, and P for a complete failure of
learning. Thus our goal is to find an optimal J to minimize E. The learning problem
is thus formulated as an optimization problem in the space of neural interactions. The
joint distribution of J can be formulated in the following Boltzmann—Gibbs form

1
PQ) = Eexp(—ﬂE(J)), (13.3)

where § is an inverse-temperature characterizing the learning noise. In the zero-
temperature limit, the distribution can be written as

PA) = %]‘[@ (%ZL&#) (13.4)
" i

where O is the Heaviside step function. In Z thus counts the number of solutions (valid
J) to the learning problem (a definition of an entropy S). In other words, Eq. (13.4)
indicates a uniform sampling of the solution space composed of all valid J.

One can expect that the number of solutions will decrease with the increase of
the number of patterns P, because it is more and more difficult to satisfy more
and more constraints of patterns. We are interested in large values of P and N, but
keeping a finite pattern density « = P/N. How S changes with « is of theoretical
interests, which determines the maximal density (capacity) of the network that can
be compared with numerical experiments.
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Fig. 13.1 Left: A binary perceptron with three synapses. Right: the factor graph of the binary
perceptron. Circles (called variable nodes) represent synapses, and squares (called function nodes)
represent patterns to be learned

13.2 Message-Passing-Based Learning

To calculate S, one has to compute the partition function Z, but direct calculation is
unrealistic when N is large. Message passing algorithm, which is an application of
Bethe approximation in statistical physics, can provide a reasonable approximation
about the partition function with a much less computation, as we already see in
Chap. 2. Under this approximation, the joint distribution is factorized as the product
of pattern u (except for a site-dependent factor for normalization). Therefore, the
message passing equation (see the factor graph in Fig. 13.1) is given by [1]

1 N
Pisa(Jp) = [T Po—in.
Zia bedila

(13.5)
b
Pritly= Y © j—ﬁZJ,-s;’ x T Prstip
J

{J;1j€db\i} jeab\i

where Z;_,, = ]_[b#a Py i(+1) + ]_[b# Pyi(—1).

The second equation of Eq. (13.5) needs to sum up all configurations, which
is practically impossible. Notice that this summation is exactly the average of the
factor term under the cavity distributions, then [A’b%i can be written as

2N—1

Ppi(d) =) FADPA). (13.6)

Jvi

Since J\; take discrete values, we cannot directly replace the summation by an inte-
gral. If we could find an auxiliary variable w(J\;) which is a function of J\; and takes
continual values in the large N limit, the average can be replaced by
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Frosti > [ dwPongon. (13.7)
where g(w(J\;)) = f(J\;). Naturally, we define w,_,; = ﬁ Zjeab\i Jjéjl.’. Without
loss of generality, we set ” = 1 for any input patterns in the remaining part of this

chapter, since our learning setting is invariant under the transformation &” — o?&?.
Then the exact form of Eq. (13.7) is given by

R 1
Pyi(J) = | dwpi Pwpsi)® [ wyi + —=1J; ”) 13.8
b—i (Ji) / b—i P (Wp— ;) (b N & (13.8)

Due to the central limit theorem (CLT), wy—,; ~ N(Wy—;, 0p—;), Where

Wyt = (Wposi) = Zmﬁbs], (13.9)
J#l
psi = (Wyo) — (Wpoi)® = Z(l m;_). (13.9b)
J#t

It then follows that P(w;_,;) = ‘(Wb”i_‘%*")z]. Notice that the step

1
ex
«/Zﬂ&b—»i p [ 26p-i
function equals zero when its argument is less than zero. Then we obtain

R 00 L JiEP 4 Wi
Ppi(J;) = / P(wp_i)dwy; = H i a— (13.10)
—ﬁfi&b

The function H(x) = f e dz , which is related to the error function H(x) =
1—erf (x/v/2)
—

For a further simplification, we apply the definition of cavity magnetization m;_, ,,

Mira = Pra(+1) = Pia(=1)
o Poi 0D = Tl Poi(=1)

" Tlosa Pooi 4D + Tl Broi (< D)

(X In Posi (1) = exp(X 4, In Ppi (1)) (13.11)
exp(Xy o In Pyt (1) + exp(X, ., In By (1))

1. Ppi(+1
= tanh Z =1In ﬁ
b#a 2 Ph—)l( 1)

Finally, the message passing equations are summarized as follows:
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m;_, = tanh Zu,ﬁi , (13.12a)
b#a

1 b A 1 b A,
1 =&+ Wi ——=&" + Wpsi
i = = |mH (-2 ) (-2 ) |, (13.12b)
2 \/&b%i \/6‘b*>i

where Wp_,; = \/LW > izimjpEl and 6y = \/LN ia(l—ms_y).
Meanwhile, the Bethe free energy can be calculated as (see also explanations in
Chap. 2)

BF =) BF,—(N—1))_ BF, (13.13)
pFi=—-InZ =—1In []_[ Poi(+1) + ]_[ﬁbﬁ,-(—l)} , (13.14)
b b
—Wp
BF,=—InZ,=—InH|—], (13.15)
()

where W, = \/Lﬁ > imjpE), and &, = JLN >_;(1 —m3_,). The entropy is exactly
the value of —B F when the energy is zero. Hence, we have
S BF

= 13.16
N N ( )

Figure 13.2 shows how the entropy changes with the pattern density. Two points
can help us to examine whether the entropy is correct: (i) When « is zero, each
synapse can take arbitrary values, suggesting that the total configuration is 2V, and
thus the entropy should be In 2; (ii) The shape of entropy as a function of & must
be concave. A monotonic decrease of the entropy profile is confirmed. The capacity
above which the entropy becomes negative is estimated to be about 0.833, which
will be exactly computed by the replica theory in the next section.

13.3 Replica Analysis

Since MP only gives the approximation of the capacity when specific patterns are
given, it is hard to find the precise capacity (the N-independent one), due to the
fluctuation caused by selections of &. Instead, we turn to the replica method to
calculate the precise free energy averaged over all possible realizations of random
patterns. The replica trick is given by
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Fig. 13.2 Entropy versus pattern density. Results are estimated by the message passing algorithm
(MP) running on single instances of N = 1000. 20 random realizations of the model are considered

. In{Z")
(InZ) = hr% , (13.17)
n— n

where (- - -) indicates the quenched-disorder average over different random patterns.
Here, the disorder average of a logarithm can be transformed into computing the aver-
age of an integer power of the replicated partition function (Z"). Replica refers to the
process we copy the original system for n times. Correlations among synapses, which
precludes an analytic study, will be transformed into correlations among replicas,
which is amenable for further assumptions. In other words, synapses are decoupled,
and instead an overlap among replicas of the original system has to be introduced.
Therefore, (Z") is given by

P
(o))l Core)
Je} a=1 p=1 a} \a=1 p=1
(13.18)
To proceed, we first define the weighted sum as

1
MZ = ﬁ‘]agﬂ. (1319)

The covariance structure for the sum is given by
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(uy) =0, (13.20)
(uuly = 8,,q", (13.21)

where §,,, is a Kronecker delta function, and q”b = % Zi J Jl.” being the desired
overlap (order parameter) due to the replica operation. Then, we introduce g by the
delta function

(Z™ dq®s JEIP — Ng“ Ows)) . (13.22)
Z/H ’ (Z 1 b) <1_[1_[ >
{us)

a<b pn=Ila=1

Using the Fourier representation, §(x — a) = f dq /2w exp [i(x - a)c}], we recast
Eq. (13.22) into the following form

(Z" Z/( dqab Aab)eXp (N(—iZq“bC}“b)+iZé“"J“J”>
a<b a<b a<b
(MMew)
{us,}

a p=I1
(13.23)
where J*J" is a vector inner product.

13.3.1 Replica Symmetry

To get physics results, we have to make an assumption about the form of the overlap
matrix. Here, we use the RS ansiitz, i.e., the overlap entries do not depend on specific
replica index, or permutation symmetry holds for the matrix. Specifically,

W — 8.+ (1 = 8ap)q. (13.24)

Under this first-level approximation, we can first simplify terms involving g:

> qqt = @qé, (13.25)
a<b

Zéab‘la‘]b:%(Z‘I‘l]b_Z‘]u‘]u)

a<b a,b a

(13.25b)

N >
N[>

(Z VAN nN) =

a,b,i

(Z(Z J;‘)2 = nN) .
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By making the variable transformation, § — ig, we have

A

" / I dqabdmb oxp ( Nn(n —-1) ) Z""P( (;(Xa: Jia)2 _nN))

a<b {Je}

Entropy term

n '
X <l_[ l_[ ®(uZ)>
a=1 pu=1

{ug,}

Energy term

(13.26)
, we compute the part A

N\‘f\:

By applying the Gaussian integral identity: [ Dzeb* =

as follows: 2
A= Zexp < (Z(Z J,-d) — nN))
J) o

A 2

=exp(—nNG/2) Y [ Jexp (% (Z J,»a) )
ey i ¢

) 2

=exp(—nNg/2) l—[ Zexp (% (; Jf) )

i (Y

= exp(—nNG/D [ / Dzexp (Jc? > Jﬁz)

i {J7}
13.27
=exp(-nNg/2) [ | / Dz Y [[exp(v4Jf2) (1327
i (J4) a
= exp(-nNG/2) | | / Dz exp(/3J2)
i a Jg
=exp(—nNG/2) [ | / Dz [ [2cosh(v/4z)

= exp(-nNg/2) | | / Dz(2 cosh(v/4z))"

N
— {exp(—nc}/Z) / Dz(zcosh(\/éz))”}

Then, we start to compute the energy term. Notice that {uf } are independent for
different patterns. It then follows that
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n P
Energy term = < 1_[ O (uj, >
{u,}

a=1 pu=1

P n
]—[< ®(u§i)> (13.28)

=1 \a=1 {us)

" P
a=l fu}

Under the RS ansiitz, the mean and covariance of u® is given by (u?) = 0; (u®u®) =
8ap + (1 = 8,5)q®. According to the CLT, u obeys a multivariate Gaussian dis-
tribution subject to their covariance structure constraints. Let u¢ = Ax“ 4 Bz,
where x“ and z are mutually independent standard Gaussian random variables.
The variance is then given by (u?u®) = A?(xx?) + B*(z?) = 84 + (1 — 84p)q*.
To satisfy the covariance constraint, we have B2+ A’=1,B*= q, resulting in
u’ = /1 —gx* + ,/qz. Then, the energy term can be written in the form of a prob-
ability distribution integral

=
S}

n P
Energy term = |:/ DzH/ Dx*®K/1 —gx® + ﬁz)i|
a=1

[ e (5T

Taken together, we have the final result of (Z")

q —1
(2" = / 2499 o [—Nwéq N N ( / D22 Cosh(\/zfz)]”>]

(13.29)

2mi 2 2

X exp [Naln/Dz(H(— /1 iqz)) :|,
(13.30)

where o =%. We define F(q,4,n) = —nln- D@q — 54 +1n(f Dz[2cosh

(\/&)]”) +aln [ Dz[H(—,/ I"qu)]". Then, we get the free energy of the perceptron
under the replica symmetry ansitz as follows:

_In(zmy | In[%ddNE
—ﬂfRs=3133) N =nL0 N ) (13.31)

To get around a high-dimensional integral, we apply the Laplace approximation
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. In(Z") . Fmax
- = 1 ~ lim ——
Plrs n%O,l}\Illaoo Nn nElO n
L In (f D22 cosh(,/G2)1" ) aln [ D2[H(~ [1L )"
=—-g4q — =4+ lim + lim .
2 2 n—0 n n—0 n
(13.32)
Using L'Hospital’s rule for computing limits, we have
1, 1, ~ q
— Bfrs = 599~ 54 + | DzIn[2cosh(v/§2)] +a | DzIn[H(— — qz)].
(13.33)

Using [ DzF(z)z = [ DzF'(z), tanh'(x) = 1 — tanh?(x), and H"(y) = —yH'(y),
we then derive the saddle-point equations as follows:

3(=Bfrs) l 1)+/ Z_tanh(fz)

Tag 24
—l —1/D tnhz(f)
=547 5 zta qz
=0,
I(—Bfrs) 14 B a /DZZH/(— T2
dg 27 2/q(1—q) _ [
a-a H=y1=59) (13.34)
1,\ &Z)

2 m/u— ﬁ/ H(- [0

1 ekl
=3 20—q»/ H f*@
=0,

which leads to the final saddle-point equations of the Perceptron model,
= / Dz tanh® (\/gz),
2
r— | 13.35
o / H (— quqZ) ( )
] Dz| ————| .
—4 H(— /752

As shown in Fig. 13.3, the saddle-point equation solution is not physical anymore
once o > o, ~ 0.833 [8], because a negative entropy is impossible for a system of

qg=
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Fig. 13.3 Entropy versus pattern density. Results are computed by replica symmetry theory, com-
pared with the results obtained on single instances of the learning problem by running MP (indicated
by the symbol). 20 random instances of network size N = 1000 are considered

discrete state-variables. One can further check the AT stability condition,' showing
that aar >~ 1.015 [6, 14]. Therefore, the RS solution is still stable in the negative-
entropy regime. To gain deeper insights, we have to consider the replica symmetry
breaking effect in the next subsection.

13.3.2 Replica Symmetry Breaking

We consider the one-step replica symmetry breaking (1RSB) ansitz, i.e., the form
of the overlap matrix Q is assumed to have the following shape

L g1 g0 g0 g0 90
g1 1 g0 o0 g0 9o
0= | 1 g1 g0 90
qo g0 q1 1 qo qo
qo0 90 90 90 1 qi
q0 90 90 90 q1 1

U1t is interesting to show that the microscopic instability condition around the fixed point of the
MP algorithm is identical to the instability for breaking the RS in equilibrium, which is left as an
exercise for interested readers.
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where we assumen = 6, m = 2 for an example, and the matrix is divided inton /m X
n/m small blocks in general, and m is the width of each small block. Diagonal blocks
have elements g, and off-diagonal ones have elements ¢;. All diagonal elements take
1 by definition. The physical meaning of g, is the average overlap between replicas
in the same state, and g is the average overlap of two replicas from different states.
Consequently, we have gy < ¢;. Under the IRSB ansitz, we have

A B
(Z") :/ 1—[ dq®dgeb exp (N( anbAab ) ZeXp <anbjajb>
27
a<b a<b {J4} a<b
Entropy term (13.36)
n P
x <]‘[ I1 @(uz)> .
e w=l ()
Energy term
The part A is then computed as
ab ~a nmim—1) nn —m)
D q®q = — @11+ qodo- (13.37)
a<b mn 2 2
The summation over a < b inside the part B is then calculated as
Zéab.’a]b Z Zéah]a-]b
a<b i a<b
= 2D @diar+ 30 @ = a0 )
i a<b i a<b
n/m (13.38)
P IPILVEED I IR BRCIEL OV
i a<b i ¢ a,becia<b

i aec

Then, the part B can be explicitly calculated out as follows:
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reo(z

ey i

) [ (‘;(Zﬂ) s z(z))

e (2(21“) z(z))

t[J a=1 c

[xor(3(5 ))n( (z))

i {J a=1 aec

nz/DZOexp< qozoZJ )"ﬁfazlexp (mzf 21)

aec

nz/Dzoexp( (ZZJ") ZO) 'i/"f/pr (mzj Zl)

¢ aec aec

aec

n/m

H/DZOH/DZI Znexp (\/7]“zo+\/ml"u)

{J¢)acc

H/DZOH/DZ[HZCXP(\/(IT)J zo+ﬁj 21)

agc Jg

n/m

H/Dzol_[/DmHZCO?h<\/720+MZ1>

aec

n/m

HszOl_[/Du 2cosh ﬁaﬁ-ﬂm))

)
)
)
")
i .)HZ/DZOH/DZ]nexp (Vaosszo+ Vi = dwiar)
)
)
*)
!)
)

{/ Dz |:/ Dz (2cosh (/c%zg + mzl»m] " }N .
(13.39)

Next, we are going to compute the energy term

a=1 p=1

n P
<H [1 ®<u2>>
us)

P n
I1 <]_[ ®(u‘/i)> (13.40)
n=1 {us)
P n
=11 <]‘[ CIve )> :
)

n=

—_
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The mean and variance of u“ are specified by

1, a=b;
(u'u’y =134q, |b—al <manda # b;
qo, otherwise.

(13.41)

To obey this hierarchical statistical structure, we suppose u* = AX + BY + CZ,
X, Y, Z are independent standard Gaussian random variables. We then have to solve
the following constraint equations

A2+ B2+ C* =1, Va=b;
B>+C*=gqi, |b—al<manda # b; (13.42)
CQ =4qo-

Therefore, X gets a superscripta, and Y gets a superscript ¢, where c is the index of the
small block that a belongs to. More precisely, u* = /1 —q1 X + /g1 — qoY° +

+/qoZ. Thus, the energy term can be written in the form of probability distribution
integrals as follows:

P n
I <H @(u”)>
{ua}

n=1 \a=1

:]ﬁlsz

n=I1

n/m

H/DYCH[DXaQ(Vl — @i X+ Vg1 — qoY° + Vq0Z)

aec

ZIQ/DZMUm/DYCQHGWiY:_;J%Z)
:i[l/DZMl:[m/DYc [H (_Jﬁ(f_;@z)]m
{1 [ 02| [ o [ (R mz>]m}n,m

:/Dz{/m [H (_iji_;@2>}m}n/m}p

By applying the Laplace approximation, we finally arrive at

(13.43)
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In(z")  nm-1) . nn—m) . ng
N ) 9191 4090

2 2

+1n </ Dz U Dz (2cosh (v/aozo + \/Hzl))m}n/m>

+aln </ DZ {/Dy [H(_«/MYJF\/%Z)T}n/m

vI—q
(13.44)
Taking the limit: n — 0, we get the IRSB free energy

In(z") 1-m ML q1
Nn 2 q191 240610 5

1 — — = m
+ Zszoln{/Dm [ZCosh(\/t%ZO +Vaq —qom)} }

+%/DZIH:/DY{H (‘Wﬂm}’

—Bfirsp = lim
n—0

45)
where m € [0, 1] dueton — 0. In fact, m is called the Parisi parameter for the IRSB
analysis [15]. Saddle-point equations are derived by requiring that

[—Bf] _ [—Bf] _ [—Bf] _ a[—Bf] _ o[—Bf] _
dq0 940 9q1 g1 om

0, (13.46)

where f indicates the IRSB approximate value of the true free energy.

The transition from RS to RSB takes place at the zero-entropy line: Sgs(«, T) = 0,
where we introduce the temperature parameter [see Eq. (13.3)]. This is also called
the frozen-RSB solution, widely existing in a broad class of constraint satisfaction
problems [16]. The transition is of the first-order type, in the sense that g; = 1
becomes a RSB solution at the transition point [8], which also suggests that §; — oo.
This solution implies further that

A 1 )
Fixsn (@0, do, 1,00, B, m) = — Frs (4o, m*go, pm), (13.47)

where F' = —ff, m = ./ and B, are determined by the zero entropy condition.
Moreover, the stationary requirement of the IRSB free energy w.r.t m reduces to the
zero-entropy condition. The free energy is equal to the RS one at 8., independent
of the temperature when 7' < T, like that in the random energy model. Then, the
distribution of the order parameter ¢ is specified by [8]

P(q) =md(g —qo) + (1 —m)3(qg — 1), (13.48)

where m is now interpreted as the probability (see also Chap. 9).
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13.4 Further Theory Development

To find a solution for the Ising perceptron is typically very hard [10, 17, 18]; whereas,
a reinforced message passing algorithm was proposed [1], and is able to solve the
binary perceptron problem up to a pattern density o ~ 0.7. These two facts seem to
conflict with each other. This puzzle was first explained by Huang and Kabashima,
who adapted the Franz—Parisi framework, originally proposed to study spherical
spin glass models [19], to the neural network learning problems. In this work, they
demonstrated the origin of the computation hardness of the Ising perceptron problem,
by a theory-grounded picture about the weight space, i.e., isolated solutions emerge
in the entire finite « regime, and the typical distance separating any two solutions
grows rapidly with « [2].

The basic idea is to first choose an equilibrium configuration J at a temperature
T’, then constrain its overlap with another equilibrium configuration w at a different
temperature 7', which results in a constrained free energy [19]

’ 1 _pn _ xJ-
F(T, T, x) = <m Ze FED ane BEW+ JW>, (13.49)
J w

after taking the quenched-disorder average (over the pattern distribution &, denoted
by the angular bracket) and the average over the distribution of J, which is
e PED /7 (T"). Z(T') is the partition function for the original Boltzmann measure,
and B (or B’) denotes the inverse temperature.

A ground-state focus leads to the following replica representation of the frame-
work

F(x) = iiér(l) % <{ >oT1 []‘[ @(ufj)@(vg)} e L ff‘wf>, (13.50)

0 Jawry w Layy

where uy = Y, J#&/'/v/N and vl = 3", w!' &/ //N. Detailed replica calculation is
given in the original paper [2]. The Franz—Parisi potential ‘V(p) is obtained through
a Legendre transform of f(x) = limy_ F(x)/N, ie., V(p) = f(x) —xp and
df (x) = p. V(p) has the meaning of the entropy characterizing the growth rate of
the number of solutions (eVV(®) lying apart at a normalized distance (1 — p)/2
(Hamming distance divided by N) from the fixed equilibrium solution.

At the point p — 1 (¢ =1 — p — 0), we have d"V;p) aCre 2 4+ (Ine)/2 +
C [2] where C is a finite constant and C,, is a positive constant. The first term domi-
nates the divergent behavior in the limit e — 0. This means that, for any finite o > 0,
the entropy curve has a negative infinite slope (‘fj =-2 drV) at p = 1, supporting the
existence of the convex part in the entropy curve, thereby confirming the point-like
clusters in the Ising perceptron problem.

On the other hand, the isolated solution is not accessible by the reinforced message
passing algorithm. This heuristic strategy, working by progressively enhancing or
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weakening the local field (h; = ), u,—.;) each synapse feels by an increasing prob-
ability as a function of iteration steps, may search for sub-dominant dense regions
of the weight space. This hypothesis was proposed as a large-deviation analysis [3,
20]

Fd,y) = —Niy In (Z I (W)N (W, d)}’) , (13.51)

where I constrains W to be a solution, N(W,d) =Y, LI (w)3(w- W, N(1 — 2d)).
Then, the local entropy S, (d, y) = % (In N(W, d))¢ & can be obtained by the above
generating functionas S = 9,(y¥ (d, y)). In this new measure, individual solutions
are favored provided that they are surrounded by a large number of other solutions.
These solutions are not necessary to be equilibrium (e.g., isolated ones). The sub-
dominant dense region is then characterized by a nonzero Sy (d,y) > 0 around
d = 0. In fact, the previous work considering the solution-pair entropy landscape
falls into the case of y =1 [21], while the frozen picture falls into the case of
y— 0[2].

This large-deviation analysis inspires new entropy-driven algorithms [20, 22],
suggesting that heuristic learning algorithms are biased towards a flat region in the
high-dimensional weight landscape. In particular, these flat regions have better gener-
alization performances compared to those narrow regions. However, how to measure
the flatness of the weight space is still under heated debate [23, 24].

Although this chapter is restricted to the single-layer Perceptron model, the same
statistical mechanics techniques can be applied to multi-layer models with specific
topology of the architectures. Interested readers can go through several papers related
to multi-layered toy models [25-27]. In the next chapter, we shall explore the statis-
tical mechanics analysis of an arbitrary topology of multi-layered networks.
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Chapter 14 )
Mean-Field Model of Multi-layered s
Perceptron

Deep learning has already become a powerful tool in the areas such as image clas-
sification and speech recognition [1, 2]. Deep learning with many layers has been
proved to be a universal approximator [3]. However, compared with its achievement,
the mechanism of deep networks is still challenging to understand. Redundancy is
one of the characteristics of deep neural networks, which means that the deep net-
work is robust under the removal perturbation of connections between layers [4]. In
other words, the generalization ability of deep network does not significantly change
until a large number of connections (a threshold) between layers are removed. In
this chapter, we introduce a random active path (RAP) model on a multilayer per-
ceptron network to study the redundancy property [5]. In the RAP model, the paths
are randomly activated, and the weights along the paths are constrained by the cor-
responding inputs, and therefore a p-weight glass model is naturally introduced. By
applying mean-field methods, we analyze the statistical properties of the model under
the removal perturbation of connections between layers to different extents. A crit-
ical value of the perturbation is revealed, separating a paramagnetic phase from the
spin glass phase, where the paramagnetic phase shows a poor generalization ability,
which is a non-robust regime of the deep networks. The RAP model still relies on
assumptions amenable for a theoretical analysis, which should inspire future refine-
ment. In this chapter, we also introduce mean-field training algorithms for multilayer
perceptrons with discrete weights, and moreover, the ensemble backpropagation to
understand the credit assignment problem in deep neural networks.

14.1 Random Active Path Model

Redundancy is known to be one of the characteristics of deep neural networks. From
the perspective of statistical physics, we try to study how the statistical property of a
deep neural network changes with respect to the removal perturbation of synapses.
To address this question qualitatively, we propose a random active path model on a
multilayer perceptron network with binary synapses.
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Fig. 14.1 The structure of
the multilayer perceptron
network, considered in the
RAP model, where a single
output with an identity
transfer function is
considered

Ny n; n;

We consider a four-layered perceptron network (Fig. 14.1). Each layer has n; (I =
0, 1,2, 3) units. The input is an ny-dimensional vector v with binary(£1) element
v;, and the weight matrix W' with binary(41) element wl’. ; specifies connections
between layer / and layer / — 1. The non-linear function f(-) is chosen to be ReLLU
function, which is defined as f(u;) = max(0, u;). Finally, we can obtain the form

of the output y as
Y= fra W Lo (WE2 e fi(Wl))). (14.1)

Note that L = 4 here. To propose the random active path model, we should define
the active path first. An active path refers to the path from one input unit to the output
unit and finally contributes to the output value. Thus, an active path must meet two
demands: First, all units along the path are activated (the activation values of the units
are positive) because of the ReLU activation function; Second, each connection on the
path is present, while each synapse is deleted with a dilution probability. Therefore,
the form of the output can be re-expressed as

v

L-1
y=>Y v ]]w (14.2)
k=1

a=1

where W denotes the total number of the active path, v* denotes the input node in
the ath path and W{f denotes the entry of W* that is present in the ath path.

In addition to the dilution, whether a path is active depends also on the data-
driven layered representations for a multilayer perceptron network performing real-
world tasks. However, for simplicity, we assume that the activation of each path is
independent of the input in our model, where the units of each layer are activated
independently with a layer-dependent unit activation probability &;, which can be
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empirically estimated from a practical training. The Hamiltonian of the model can
thus be written as

HW)=— i:Aav” ]_[ w;, (14.3)
a=1

icda

where n denotes the number of the units at each layer except the last one. A, is
a binary value indicating activation (A, = 1) or silence (A, = 0). The probability
of a path activation is P(A, = 1) =[], &(1 — p;), where & is the unit activation
probability and p; is the dilution probability.

In statistical physics, an equilibrium system always has a relatively low energy
(Hamiltonian in our RAP model), while in the deep learning, a practical network
always has arelative low training loss. Thus, to build an intuitive relationship between
the Hamiltonian and the loss function used in training, we assume that the true labels
are Y; = £ A (A > 0), where A is the maximal output of the network. Moreover, we
assume that the true output Y; is a random variable such that P(Y;, = £A) = %, and
the input v is also a random variable such that P (v* = 1) = % Hence, sgn(Y;) can
be absorbed into the input (sgn(Y;)v* — v*), and the model is statistically invariant.
Then, the Hamiltonian and the loss function can be written, respectively, as

H = —sgn(Yy)y, (14.4a)
C=1Y,—yl (14.4b)

For simplicity, we choose the absolute error loss. Itis easy to verify that minimizing
the loss function between the target and the actual output y is equivalent to finding
the minimal value of Hamiltonian in the RAP model.

14.1.1 Results from Cavity Method

Given the form of the Hamiltonian, we apply cavity method in mean-field the-
ory to approximately acquire the statistical properties of the RAP model. First,
we consider that the weight configuration W follows a Boltzmann distribution
P(W) = PHW) /7 where B is the inverse temperature, and Z is the partition
function. Under the cavity approximation, we could derive a set of self-consistent
equations which are called message passing equations:

miq = tanh Z Upi |,
bedi\a
(14.5)

Up—si = tanh™! tanhﬂvb l_[ mj_p
jeab\i
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Note that, the form of Eq. (14.5) is similar to the standard message passing equa-
tions in Chap. 2 except for two crucial differences. First, weights along the paths
are constrained by the corresponding inputs, where v* = +1 denotes a ferromag-
netic interaction, and v* = —1 denotes an anti-ferromagnetic interaction. Thus, a
factor graph (Fig. 14.2) can be naturally constructed, where two types of nodes can
be connected to the deep network function. Second, weights configuration W is a
subset of total weights {W'} unless all the paths are activated. By recursively solving
these equations, the iteration will converge to a fixed point {m;_,, up—;}, which
corresponds to a local or global minimum of the Bethe free energy (see Chap. 3).
Therefore, we can acquire the statistical properties of RAP model, including mag-
netization and entropy.

To characterize the potential phase transitions in the model, we further define
an order parameter Q = NL Zi m;2, where N,, is the total number of weights in
the model. Q measures the responses of the network to the input data, and thus
a high Q refers to a biased inference of weights (indicating an effective learning
process). As shown in Fig. 14.3, when the dilution probability of the second layer
p1 increases (more units are deleted), Q decreases slowly at first and sharply drops
at a threshold p;, which is a critical value separating a paramagnetic regime with
poor generalization performance from spin glass regime with good generalization
performance. Entropy here represents the number of candidate weight configura-
tions, which increases as the dilution probability p; increases, indicating that the
deep network becomes less constrained, like in a paramagnetic phase. Entropy also
displays a slight jump at the same critical value of p;, which is a characteristic of
the first-order phase transition. Overall, by applying the mean-field cavity method,
we can reveal that increasing the magnitude of the removal perturbation (dilution
probability) will trigger a first-order transition to an undesired paramagnetic regime,
which has poor generalization performances as expected.

14.1.2 An Infinite Depth Analysis

Since modern deep networks can have thousands of layers, we then ask whether
an infinite depth limit exists in our current model, and whether the joint energy
level distribution becomes factorized, and a frozen phase can be identified when the
temperature is lowered down [6]. Applying similar methods to those in Chap. 7, we
derive the form of the joint energy-level distribution of our model in the infinite depth
limit. First, the Hamiltonian can be re-expressed as

n?

H(W) = — ZAu ]_[ w;, (14.6)
a=1

i€da

where p =L — 1, Aa = A, v, and its probability distribution is re-defined as
follows:
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Fig. 14.2 Schematic illustration of a factor graph of the RAP model. Left panel: a four layers
perceptron, where two paths are activated. Right panel: a factor graph of the four-layered perceptron,
where variable nodes (circle nodes) are weights to be estimated, constraint nodes (square nodes) are
the active paths, and the lines between the variable nodes and the constraint nodes can be interpreted
as connection strengths which are specified by the input in our current RAP model

Fig. 14.3 QO and entropy
versus pp. pi denotes the
dilution probability applied
to weights between the first
and second layers. In
numerical stimulations, we
set&1 = 0.5, & = 0.1 and
p2=0, p3 =0.By
increasing p1, Q will sharply
drop at p; = 0.9, which is a
first-order transition,
characterized by the entropy
gap (dashed line) as well.
This plot is a schematic one
of that published in the
recent work [5]
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Then, we denote Py = P(A, = 0) for simplicity. The joint distribution of N' =
2Nv energy levels can be written as

P(E1, Ea, ..., Ex) = (8(E1 — HW") x 8(Ey — HW?)) x -+ x S(Ex — H(WN)) 1

_ l—[/dEa |E,1Ea —iéﬂH(W"‘)>
A’

(14.8)

We define A =[], < eiEﬂH(W“)>/s , then we have:

n? N

A = l_[ <1_[ eiEdAa l_[[ez’)a Wza>
a=1 \a=1 A,
o N (14.9)
— H[PO + <1_[ eiEaAa l_[iez')u Wiu> }.
a=1 a=1 Ag==%1

According to the identity: e*” = cosh(a)[1 4 otanh(a)] (valid only foro = +1),
we derive that

A= ]_[[P0+<]_[ cosh(Ey)[1 + A, ]_[ Wetanh(iE,, )]> } (14.10)
Ag==%1

a=1 a=1 i€da

¥, leading to

Now, we perform the gauge transformation: A, — A, [Ticoa Wi

n?

A= ]_[[P0+

n 1‘[(1 —tanhGE,) [ | W/ Wi")]}-

a=1 i€da

l_[cosh(lEo,) ]_[(1 + tanhGE, )]_[ W We)

a=1 i€da

(14.11)

Then, we replace W) W¢ by its mean (W W) neglecting the thermal fluctua-
tion, and we have immediately [, _,, W! W ~ gP, where q is clearly the overlap
function between two configurations. We have further ]_[g/z A+ tanh(iEa)qP) ~
14 ¢g? ZaN=1 tanh(iE,). Note that q? is a negligible term in a large-p limit. We
finally complete the calculation of the A part.
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nP - N N N

A=T]|Po+ 1= P I1 cosh(iﬁa)[l +4qP ) tanh(Eq) +1-¢” ) tanh(iEa)]]

a=1" a=1 a=1 a=1
nP - N

= ]_[ Py + (1 — Pp) ]_[ cosh(iEa)],
a=1"- a=1
nP

= H 11— 1‘[&1(1 —pD+ ]‘[a(l - p) 1‘[ cosh(le}
a=1"- a=1

Z"pﬂn[ ~T1, &(1—p)+TT, & - pD TTA. 1C08h(1Ea)i|

- ’

—n? [1_[1 &(1-pn(-TT), Cosh(iéu))]
e .

~
~

(14.12)

To sum up, we can obtain the form of the joint distribution of the energy levels:

P(Ey, Es,...,Ex) = /1_[ dEO‘ ZN VELE, n”lnlél(l PO(TLL, cosh(iEy)— 1)]

(14.13)
Let us ﬁnally discuss the small conjugated energy limit. ]_[ 1cosh(lE )=

Ha=1(1 + %) ~ 1+ Z(x:l % where E, is a negligible term by the limit.
Thus, we have the following result:

dEa ) )
P(E],Ez,...,EN)zfl | ZQ’IIEE—nIH’EI(I YN, (E) ’
(14.14)

2

o
e 2PIL&E0=p)

l_[ L v/ 2mn? l_[l & — p1)

In the small conjugated energy limit, the energy levels become independent
random variables. More precisely, single energy level follows a Gaussian distri-
bution with a fluctuation of the order of [n” [, &(1 — pl)]% around zero, where
n? [, &(1 — p;) is exactly the number of active paths in the model. However, it
is not correct to conclude that the energy levels for the RAP model are generally
independent random variables, as we use the small conjugated energy limit, whose
physics remains elusive. It is also not excluded that energy levels maybe organized
into non-trivial structures in the infinite depth limit. Therefore, more systematic
studies are required, including confirmation of the first-order transition in a practical
training as well.
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14.2 Mean-Field Training Algorithms

The mean-field method to train a deep supervised network with binary synapses was
first introduced in the previous work [7]. In our current setting, each weight wf. ;18
sampled from a Bernoulli distribution P (w/;) parametrized by an external field 6,
as follows:

P(w) = (0})8, 1 + 1 =018, _. (14.15)

with mean pf; = 20(6/;) — 1 and variance (0};)> = —40%(0};) + 40 (0))). 0 (x) is a
sigmoid function. According to the central limit theorem, the feedforward transfor-
mation can be re-parametrized as

di=ml + 0l € (14.16a)

1
! 1
) = —= RelU(). (14.16b)

where N;_| is the number of neurons at the previous layer, €; is a standard Gaussian

random variable, m’j =3, ,uﬁjaf_l, and vi. =/, (oilj)z(af_l)z. We use the ReLU

function [max (0, x)] here.

During the error backpropagation phase, we need to compute the gradient of the
loss function £ (e.g., cross-entropy for classification problems) with respect to the
external field @, which proceeds as follows:

) 1 !
0oL 0L 8Zj _ 8~£(amj lavj).

02 02 P (g (14.17)

L
We then define A, = % On the top layer, A[j = yJL — f)jL, where yJL = Ze - is the
j

_] by
i€’

softmax output, and )31" is the (one-hot) label of the input. On the lower layers, given

Aff‘ , We can iteratively compute Alj:

0L -y 9L a7t

azl_ - 8Z5<+1 azl'
Lok ! (14.18)

1+1\2 .1
(o3 )a;
_ I+1 ¢r1 I+1 1+1 V7 jk J
=) A f(Zj)<“jk tea — )
X Uk

. am'
Finally, we compute i and

T 57> respectively. It then proceeds as follows:
ij ij
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3ml- Bml‘ a/,Ll..

—L=—L 1 =200, (14.19a)
90}, o, 96}, /

vl vl 9(cl)? (@="H2ul.o’6h)

_il — l./ z.; — ]lf vz (14.19b)
20}, 0(cl)? 96}, v

Note that € is sampled and quenched for both forward and backward computa-
tions in a single mini-batch gradient descent. After the learning is terminated, an
effective network with binary weights can be constructed by sampling the Bernoulli
distribution parametrized by external fields.

14.3 Spike and Slab Model

Deep learning has achieved impressive performance in a variety of scientific and
industrial fields. Nevertheless, little has been known about the mechanism of the
black box of deep neural networks, e.g., how much credit should be assigned to each
network-parameter after learning. For a specific task, the backpropagation method
has long been applied to train a feedforward neural network [8]. In the process of
learning, the neural network is capable of coordinating a large number of parameters
and makes an accurate decision at the output layer. The traditional backpropagation
method provides only point estimates of the network parameters, which could not
capture the decision uncertainty caused by noisy sensory inputs. In contrast, from
the ensemble perspective of candidate networks accomplishing a task, our recent
work [9] proposed a spike and slab (SaS) model to learn the credit assignment,
bridging the gap between microscopic interactions of components and macroscopic
behavior, thereby identifying key parameters capturing informative and nuisance
factors in the sensory inputs connected to the output behavior of the network.

14.3.1 Ensemble Perspective

In this section, we derive the ensemble backpropagation algorithm for feedforward
neural networks with L layers (L — 2 hidden layers in addition to the input and
output layers). We remark that it is straightforward to adapt the following method
to other network architectures, such as CNNs. The depth of the network L can be
designed arbitrarily large. For each layer [, the width of the corresponding layer is
denoted as N;. Therefore, Ny and N are determined by the number of pixels in an
input image and the number of output classes, respectively, for a classification task.
The weight matrix of our model can be written as w, whose element wf ; denotes
the connection from neuron i at the upstream layer / to neuron j at the downstream
layer I + 1. The activation of the neuron j at the layer / 4 1 is a non-linear func-
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I+1 _
tion of the pre-activation z; f Sowhh i I, where the scaling factor ﬁ ensures
that the weighted sum is 1ndependent of the upstream layer width. The rectified
linear unit (ReLU) function is applied to create the non-linearity, which preserves
the positive pre-activation values while setting the negative values to zero. The out-

put is transferred to the probabilities over all classes by using the softmax function

hjL = Ze J -, which can be used by the network to make a decision. For simplicity, a

categorization task is considered here, and we denote h as the corresponding target
label which is in the one-hot form. Meanwhile, we use cross-entropy as the loss
function C = — Zi leL In hiL, which requires the gradient descent method to mini-
mize the cross-entropy. For the categorization task, the training data with the size
T is applied to train the network by adjusting all the connections to minimize the
objective function until a satisfied accuracy is reached. To test the generalization
ability of the network, the unseen data with the size V is used.

The standard way to train a deep network is the well-known backpropagation
algorithm. However, it can only lead to one point estimate of the connection weights
after a single running of the algorithm. Here, we assume that there may exist a
random ensemble of neural networks that fulfill the computational task given the
width and depth of the deep network. This ensemble may occupy a tiny portion of
the entire model space. In that case, we propose a theoretical model whose weight
is characterized by a spike and slab (SaS) distribution as follows (Fig 14.4):

P(wl) = mlswl) + (1 — )Nl Iml;, BL), (14.20)

where the spike probability & (wl ) has a mass at zero, and the slab is characterized by
a Gaussian distribution with mean m! ; and variance & ’“l . over a continuous support.
These two parts also have their physics 1nterpretat10ns respectively. The spike is
associated with the concept of network compression, while the slab is related to the

uncertainty of decision making [9].

14.3.2 Training Equations

In this section, we apply the mean-field method to train the SaS model and learn the

parameters 8}, = (;, m;;, E},) for all the layers. To begin with, we derive the first

and second moments of the weight w! ; as follows:

Mﬁj = Elw);] = m};(1 — ), (14.21a)
oi; = Elwi)*] = (1 — [)[E}; + (m}))*]. (14.21b)

As mentioned before, the pre-activation can be written as zZ‘H = W Y.whh -
1
Given a large width of the layer, the central limit theorem mdrcates that the pre-
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—
O—= 0 mmm:
B

softmax output

Fig.14.4 The schematic illustration of the model learning credit assignment. A deep neural network
of four layers including two hidden layers is used to recognize a handwritten digit, say zero, with
the softmax output indicating the probability of the categorization. Each connection is specified
by a spike and slab distribution, where the spike indicates the probability of the absence of this
connection, and the slab is modeled by a Gaussian distribution of weight values as pictorially
shown only on strong connections with different means and variances. Other weak connections
indicate nearly unit spike probabilities, although they also carry a slab distribution (not shown in
the illustration for simplicity). The figure is adapted from the work [9]

activation follows a Gaussian distribution with mean Gﬁ and variance (Aﬁ)2 as fol-
lows:

1
Gl= —=) utn (14.22a)
s
1 _ _ _
(@) = 5= 2 (e — G M)y (14.22b)
- k

According to this statistics, the pre-activation can be re-parametrized by

=G+ €Al (14.23a)
h = f(Zh, (14.23b)

where the transfer function f(z) used here is RELU for/ < L, and softmax function
forl = L. ef is a standard Gaussian variable randomly generated for each component
in every layer. Meanwhile, €’ is quenched for every single mini-batch, and the same
value is used in both feedforward and backward computations. To train the model,
we apply the gradient descent method to minimize the objective function, which can

be written as follows:
3Z[<+l
AB; = —nK T (14.24)
00y,
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where K I+ = daﬁl, and 7 indicates the learning rate. The gradients are evaluated

over mini-batches which are obtained by dividing the training data into subsets (so-
called mini-batches). To calculate the gradients in Eq. (14.24), we first derive the
derivative for each hyper-parameter based on Eq. (14.23) as follows:

azéJrl _ ( _T[lit)hi I'l“ktnkl(hl )2 !

— 14.25a
mk. VN, N A ( )
ot mphi (@ — DOm)? + B () 14256
e ANG 7 2N, A ’ (14:230)
it (1= ) () el (14.25

= I+1 25¢)
IEL, N

The above derivatives characterize how sensitive the pre-activation is under the
change of the hyper-parameters 0 (7Tl 1 f i Ef ;). Then, we have to calculate
the derivative 7(;“. Forl =1L, ‘Ki’“ can be directly estimated as K" = hF — }AzlL
For other layers, 7(1.1 can be estimated by using the chain rule, which results in the
equations below

K =5 f(2), (14.26a)

5=> K" TR (14.26b)

where f’(z) denotes the derivative of the transfer function, and (Sf =3 h, .Eq. (14.26b)

shows clearly how the gradient signal flows from the output layer down to any

l
hl , which shows how sensitive
the pre-activation at the deeper layer is under the change of the input neural activity
to that layer. This part is derived as follows:

8Z1+1 _ Mfk N (Qlk (Mlk) )hl I+1
ant N N A

(14.27)

Based on the above mean-field method, the hyper-parameters of the model can
be updated, and the SaS model naturally captures the fluctuation of the hypothesis
space, which significantly differs from the standard backprop [8, 10]. Particularly,
if we enforce # = 0 and E = 0, m becomes identical to a single weight configura-
tion. The training method immediately recovers the standard backprop. Hence, the
training protocol mentioned above can be thought of as a generalized backpropaga-
tion (gBP) at the weight distribution level. The model can separate the deterministic
part (. = 0, 1) from the uncertainty part (7w € (0, 1), and E # 0, m # 0). Note that
the uncertainty part may capture nuisance factors in sensory inputs. These factors
are not informative to the computation task. The gBP can reveal that a U-shaped
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m-distribution, and an L-shaped E-distribution, a peak model entropy (derived from
the SaS distribution, and assuming that the joint distribution factorizes) in the central
part of the network, matching an encoding-recoding-decoding paradigm. We refer
interested readers for more details to the original work [9]. In particular, the VIP
weights (r = 0, E = 0) play a vital role in determining the final decision-making
behavior, which can be quantified by the SaS model.
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Chapter 15 ®)
Mean-Field Theory of Dimension Giese
Reduction

The sensory cortex in the brain has long been proposed to learn hidden features
of sensory inputs in a way called unsupervised learning, which requires no labels
or rewards from the data, just by gradually creating better representations of the
sensory inputs along a hierarchy of information flow to extract the intrinsic features
hidden in the data. Both in the fields of artificial intelligence and neuroscience, the
sensory inputs are physically high-dimension data. To extract the latent features
in the input data, the process of creating more abstract representations along the
hierarchy (e.g., the ventral visual stream of primates) is realized through a non-linear
dimensionality reduction of high-dimensional data. Nevertheless, these results have
been empirically revealed, which makes computation along hierarchy in deep neural
networks extremely nontransparent. In this chapter, we introduce a framework based
on mean-field theory to analyze the dimension reduction of data representation across
layers (Huang in Phys. Rev. E 98:062313, 2018 [1]; Zhou and Huang in Phys. Rev.
E 103:012315, 2021 [2]).

15.1 Mean-Field Model

A multilayer feedforward neural network with non-linear transformations of sensory
inputs is considered here for the purpose of simplicity (Fig. 15.1). The number of
hidden layers is denoted as the depth of this network; the network can be arbitrarily
deep. The number of units at each layer is defined as the width of the corresponding
layer; we assume that the width of each layer has equal value (N) for simplicity.
The input data vector can be represented by v, and the non-linear transformed rep-
resentations of the pre-activation a; = Z_,' wf-jh.']fl are denoted as (hl, h2, h3, ey
h?). More specifically, h{ =¢(a; + bf ), and we choose the non-linear function as
¢ (x) = tanh(x) without loss of generality. Weights connecting the (I — 1)th to the
Ith layers are specified by a matrix w'. Biases of neurons at layer / are defined as b'. To
facilitate further analytic studies, we make the random weight assumption. Weight

© Higher Education Press 2021 227
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Fig. 15.1 Schematic illustration of a deep neural network. Here, we introduce the feedforward
network with three hidden layers with the input v, and the internal representation output of each
layer is denoted as (hl, h2, % ). There are N units in each layer

here follows a normal distribution N (0, %), and the bias follows another normal
distribution with different variance N(0, 0},). g characterizes the weight strength,
while o, characterizes the bias strength.

To generate the input data, a high-dimensional point in N-dimensional input space,
we consider a point-cloud with a maximal correlation strength p. We assume that each
point follows the multivariate Gaussian distribution N (0, X), where the covariance

entry is defined as (v;v;) = :/’L for all i # j (r;; is a random variable uniformly

distributed from —p to p), and (v i) = 1. In the following derivations, we define
the deviation of pre-activation a; from its mean over the input ensemble as af =
> j wf. ; (hlj_l - (hlj_l)). It is evident that af has zero mean, which shows a great
convenience in the following analysis.

The covariance of a’ can also be derived by its definition as Aﬁ ;= (af aé). We
can get the exact form based on the mean-subtracted activation from the following

procedure:
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Aly = tala)
<Z Whe i = () x Yo wh (! — <hi,:1>)>
k m

= DWW (i = (Dt = G )

km (151)
= D wieWh (- By = () )

km

_ T R |
= 2 WikWim Cim
km

= [w'C' W)y,

From the form of A/ ;» weknow that the covariance of a' isrelated to the covariance
matrix of neural activity at the (/ — 1)th layer. We further define the data average
of neural activity at the /th layer (k') as m'. The elements of a' can thus be written
as af => j wfj (h[j_1 — mlj_l). When N is large, each neuron at an intermediate
layer receives a large number of inputs, which indicates the applicability of the
central limit theorem. As a result, the pre-activation (a} 4+ Y_; wi,m'™" + b!) follows

a normal distribution with the mean of (3 j wf ! (ml;l) + bf) and variance of (Aﬁi),
which results in the following approximate from of mf

ml = <h§>=/Dz¢( ALt + [w'm'™"; + b)), (15.2)

_dt -
where Dt = Nirad

Following the same spirit, we obtain the analytic form of Ci’ ; by the central limit
theorem. First, we unfold C l’ ; by its definition:

Cl; = (hihh) — (R (h))

_ Lyl 1
= (hthl)y — mim,

(15.3)

-1 -1
where the part (hih',) = (¢ (af + 3, wi;m'" + b (al + 3 whmy ™" + b)) has
to be parametrized by two standard Gaussian variables x and y because of the covari-
ance (aja’). Based on the statistical structure of a; and a’, these two activations can
be first parametrized as

al = \/Alx, (15.4a)

aj = /Aljj(\llx +/1 —W2y), (15.4b)
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i

where ¥ = «/AA_A In this way, we finally obtain C as follows:
C; = f DxDy¢(/ Alx + b + [w'm' ™' ])p (\/ AL (Wx + V1 — W2y) 4 b
+ wWm'']) — mim!,. (15.5)

However, the form of C! ; 1s still very complicated for a theoretical analysis
to gain underlying mechanisms of dimensionality reduction. According to equi-
librium statistical physics in the thermodynamic limit, C;; I is of the order O(%)

for i # j, and therefore ((Al =D um (Wh)? ><(ij) )(C 2 = sz\',]f”l/ ~

o+ v)- Hence, Af is also of the order O(—) Meanwhlle we can also analyze the
magnitude of AL ( =3, () C,lck1 =&> C ~ O(g). In this sense,
Aﬁj is a very small Vanable in a large-width hmlt Hence, we can carry out a Taylor
expansion of C}; around A}, = 0:

Cl. ~ | DxDy¢(J/ALx + )¢/ (/A 1y X85 15.6
ij = v ( ,-,-X+Zi)¢( Ajjx+zj) (15.6)

Al

1

where z} ;=b] ; 4 [w'm'~']; ;. Based on the identity | Dz tanh(z)z= [ Dz tanh’(z),
we can simplify Eq. (15.6) as follows:

ij:/Dnyqb/( Alix +2)¢' (AL y + )AL (15.7)

Nevertheless, the form of C’ still contains an integral part, which makes it incon-

Vement in the further theoretlcal analysis. Considering the magnitudes of Aii and
;»if we make another assumption that the parameter g is also small, the parameter

A’ and A’ can also be seen as small physics quantities, which suggests another
Taylor expansmn of C}; around Aj; = 0 and A%;; = 0. Hence, we obtain

Ci; ~ / DxDyl¢'(z) + ¢" (2D ALx1[¢' () + ¢ (&) AL y1A
= ¢'(2De' A

= KA},

(15.8)

where K ll ;= ¢’ (Zf)¢’(zlj), and we only retain the first-order Taylor expansion of C ll i
Equation (15.7) holds in the large-width limit, while Eq. (15.8) requires additionally
the assumption of the small-coupling strength in deep networks.
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15.2 Linear Dimensionality and Correlation Strength

In this section, we define two important physics quantities: linear dimensionality of
the presentation (D) and covariance strength st
To characterize the collective property of the entire hidden representation, we
O 22
LA
where {2;} is the eigenspectrum of the covariance matrix C'. According to the Cauchy
inequality formula

define the linear dimensionality of the representation at layer / as D' =

A
— N ) <= =) A 15.9
(72) =52 (159

from which, we derive that a normalized dimensionality D' = D! /N is generally
upper-bounded by one. If the eigenvalues of C' are all equal, which implies that each
component of the representation is generated independently with the same variance,
then D! = N. However, if there exist non-trivial correlations in the representation,
the linear dimensionality D' will be smaller than N, which will be theoretically and
numerically revealed in our model.

Based on our mean-field framework, we first study the dimension reduction pro-
cess. The theoretical results are computed based on the large-N limit, as shown in
Eq. (15.7). The simulation results are computed by a direct propagation of the inputs
in our feedforward network. Both the theoretical and simulation results (Fig. 15.2)
show that the representation dimensionality progressively decreases along the hier-
archy, and these two results agree with each other perfectly, which validates our
mean-field derivations.

To get deeper insights about the hidden representation, we have to analyze the
overall strength of covariance at layer [, i.e., X/. Because of the symmetry prop-
erty of the covariance matrix C!, we define the overall covariance strength as

S = o 2icj (C)*. In fact, these two key parameters of our model, %' and

D!, are closely related. According to the definition, we have

B L OCn )
N YL
(TrCH?
= 15.10
NTr(C)H? ( )
(y 2 Ci)?

§ i €2+ 5 ()Y

where Tr(C') denotes the trace of the matrix C'. As the overall covariance strength
5! = 5= 2i<;j (C1))% we can build the relationship between the normalized

dimension D' and the covariance strength as follows:
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Fig. 15.2 The numerical simulation of ¥/ and Dlin comparison with theoretical predictions. Input
data are generated with \/Lﬁ = 0.05. The left panel shows the feedforward simulation based on 10°
samples, and the right panel shows the theoretical results based on the large-N limit assumption.
The inset shows how the overall strength of covariance changes with depth and connection strength
g when 0, = 0.1, N = 100. Ten network realizations are considered for numerical simulations

1\2
z’:Nl_l Z C) 12((1 ) (15.11)

In physics, strong-enough connection strength maintains the weakly correlated
neural activities at further stages of the hierarchy, which facilitates the signal prop-
agation through layers of deep networks by minimal (or maximally compressed)
representations (Fig. 15.2).

We also explore how the parameter o}, affects the overall covariance strength
and the dimensionality of representations (Fig. 15.3). o, strongly affects the overall
covariance strength X/ across layers, i.e., a higher o;, induces a lower X', yet yield-
ing little impact on the dimensionality. It is intuitive that strong bias would freeze
the neural firing pattern, thereby reducing correlations among neural activities. The
competition with the coupling effect leads to the observed dimensionality.

15.2.1 Iteration Equations for Correlation Strength

Next, we try to understand the mechanisms of dimension reduction and neural decor-
relation. We first discuss the iterative form of the strength /. As we already know, the

elements of the correlation matrix C can be approximated as G I~ K: ! Af ;» Where
K; j =¢'(Z)9'(z j) in the large N and small-g limits. According to this assumption,

%! can be obtained as

2
== v = 2

< (15.12)
2 IN2, Al 32
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Fig. 15.3 The numerical simulation of X! and D! (in the large-N limit assumption). Data are
generated with LN = 0.05. The inset shows how the overall strength of covariance %! changes

with depth and o3, when g = 0.8 and N = 100. Ten network realizations are considered for each
network width and o},

where (Al ) = ka (wlk)z(C D) (w]m)2 ~ sz D km (C,lc;f)2 because of the statis-
tical structure of w'. Hence, Eq. (15.12) can be rewritten as

zl:N(N 1)Z(K1)(Al )’
(K’)zg ey -+ Y el
N(N 1)Z ]sz Z kk
) 22 (15.13)
_ 128 _ -1 -1
=) gj(K,,) (NN = DX +;ckk)

l 2
=g221—1(Ki1j)2 8 ( l]) Z(Ckk)

where (Kl.lj)2 = m ij (Kilj)z. Based on the fact that in the thermodynamic
limit, the correlation between different weights is negligible and that the covariance
of the mean pre-activations of different units is negligible as well, (K; (K1)? )2 can be
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2
approximated by (Kilj)2 ~ [¢'(z))]* = (k")%. Hence, Eq. (15.13) can be simplified
as

\2
o~ gt e 4 ) Z(C’;‘)Z. (15.14)

According to our model setting, N = g 2(kH2(NZ0 + 1), there exists a critical
pomt where the strength ©! = %°. We can then arrive at the critical point as NX, =

% The quantity «! can be derived as follows:

k' =[¢/' (b + [w'm!=1];)]2

15.15
=/Dth[¢’(«/0_bu+ g0-nP, ( :

where Q' = 2 3. (m})?, and m} = (h!) = [ Dt¢(\/ ALt + [w'm'~"]; + b}). Note
that the quenched-disorder average has been performed over the network parameter
statistics. In addition, we can recursively update Q' as follows:

0 =/Dth¢2[¢a_bu+\/gQ’—lt]. (15.16)

Note that the initial Q° = 0 by the construction of the random model. Given the
above theoretical analysis, we can calculate «’ iteratively, i.e., in a layer-by-layer
manner. k! = f Du[d:/(\/o_bu)]z, and the critical point X, of the first layer is shown
in Fig. 15.4.

As shown in Fig. 15.4, we have determined the critical point ¥, (so-called oper-
ating point [1]) of the first layer. In fact, this critical point X, defines the condition
where the overall strength X! = X°. It also means that if X° < %,, there will be
a boost of X!, and decrease otherwise, as shown in (Fig. 15.4). Furthermore, the
correlation strength X' at every layer always has a layer-dependent operating point,
which determines the correlation level of neural activations, i.e., either growing or
decreasing.

15.2.2 Mechanism of Dimension Reduction

As we mentioned before, the normalized dimension D' has already been proven to
be reduced across layers in (Fig. 15.2). Next, we will see why dimension reduction
is possible in our toy model. The normalized dimension D'+ is defined as
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Fig. 15.4 Illustration of the operating point controlling the magnitude of neural correlation level.

The correlation strength £%! (including also the critical one) has been scaled by the network width
N. k here indicates its value at the first layer (see details in the main text)

2

s L EL )
N
N YA
(TrcH-l)Z
(LY, clty?
N ] i
% Zi<j (CLI;LI)Z + % Zl(ClIlJrl)2

To compare D'*! and D!, we have to substitute the physics quantities of layer
( + 1) in D'*! by their counterparts of layer /. By definition, 2 ¥ i j C?;rl)2 =

(N — )X*! Note that 21+ = g2 (k!T1)2x! 4 £ 1 (KH])z Y. (C!)2. We can then get
the form of 2 Y, (C1¥")> as (N — 1)(g (Kl+1)22’ L7 5 (CL)?). More-

over, CZJrl K!TTAT! where the part AT = (a! ! l+') can be approximated by
Aﬁf] ~ Zk Ckk, and we can thus obtaln the 51mp11ﬁed ClJrl

Cit = KA ~ gk, (15.18)

def o T
wherek} = L 3. CL. Forfurther51mp11c1ty,Wedeﬁne K =13 Kk, KZ“)2
f ..
=+ (K2, and k) = e 2, (C!)%. Due to the i.i.d assumption of network
parameter dlstrlbutlon in our model, D'*! can be rewritten as



236 15 Mean-Field Theory of Dimension Reduction

D — ( Z Cl+1)2
= 2 Z Cl+1)2 + L Z (Cl+1)2
N i<j ij N £ui\“ii
—2
_ g K (k)?
(N — D 4 g2(kh)2(K )2
—2
- &K k)
(N = D(g2(c 25!+ LTS (CL)2) 4 g2(k)2(K L) (15.19)
g2Kl+12(kl)2
- 8 (K,/

(N = D(g2(KH?s! + S () + KK

(kp)?

(N = DB+ K+ S (k]2

where we have used the fact that (K H'1)2 K;; K , thanks to the i.i.d setting.
To compare D'*! with D', we write down the definition of D' as follows:

B — (3 2 Chi )2
I y2 [y2
Nz,zk,l;c P i (Ch) (15.20)
1

T N-DY K

Comparing Egs. (15.20) and (15.19), we can easily draw the conclusion that

Ky . .. . . .
¢ = 1; (k{)2 is always positive, the dimension reduction as
K:;

because the additive term

D't < Dlis guaranteed mathematically. Hence, Eqgs. (15.20) and (15.19) explain
the dimensionality reduction across layers.

To get an explicit form of the additive term, we have to use the large-N limit
assumption. Note that

/DtDu[¢ (Vopu ++/g0=10)? —K”, (15.21a)
0! =/-Dth¢)2[\/a_bu+\/ng—2t], (15.21b)
(K})? =/DtDu[¢’(ﬁu+ g0!'n1% (15.21¢)

According to the definition of k!, we can get k| = + 3", Cl; = (hlh!) — (hl)(h!)
= (hlh}) — Q', where Q' = 3 3", (m})*. An iterative form is thus given by
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2
kb = / Dx¢ [,/Aﬁix + bl + [wlml—l],-] -0, (15.22)
whose quenched average can be performed explicitly as follows:
k! :/Du[Dr/Dx¢2[,/gk’,—1x+ g0t + Jopul — Q'
= / D”/Dy¢2[\/ g™t + g Ql-1y 4 Jopul — Q.

TRl
Taken together, we arrive at the final form of the additive term %(k’])zz

i

(15.23)

(Kl.’jl)Z(kl 2 _ | DrDulg'(Jopu + Vg Q'n)1*
K L DiDul'(JGu + g OO PP

2
X U Du/Dy¢2[\/gk§*1 + g0y + Jopul — Q’} :

Finally, according to both theory and finite-size system simulation, we find that
the additive positive term tends to be a very small value as the number of layers
increases (Fig. 15.5), which is consistent with the observation in a finite-N system.
This indicates that, because of the property of the addictive term, the estimated
dimensionality becomes nearly a constant in the deep layers.

To conclude, the mean-field theory reproduces the key features of dimension-
ality reduction and neural decorrelation process, which is also compatible with the
redundancy reduction hypothesis [3] put forward in neuroscience. Whether the mech-
anisms revealed by the simple i.i.d setting are robust against taking more network
details (e.g., learning effect) deserves future studies.

(15.24)

15.3 Dimension Reduction with Correlated Synapses

In the previous part, by a mean-field theory, the dimensionality of layered repre-
sentations in neural networks whose synaptic weights are independently and identi-
cally distributed was calculated. However, in real cortical circuits, synaptic weights
among neurons, even in the same layer, may not be ideally independent with each
other [4]. Therefore, to understand the mechanism underlying how the weakly cor-
related synapses affect the neural representations is important. In this part, we will
calculate the dimensionality of layered representations under the weakly correlated
case by a mean-field theory [2].
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Fig. 15.5 The behavior of the addictive term as a function of the network depth. The theory is based
on the large-N limit assumption, whereas the simulation part is carried out in a finite-N system
(N = 100)

15.3.1 Model Setting

We consider a deep random neural network with d hidden layers and N neurons at
each layer. The weight matrices are defined as w’ (/ is a layer index) whose ith row
corresponds to incoming connections to the neuron i at the higher layer (so-called
the receptive field (RF) of the neuron i). Throughout this part, we just consider
binary weights (£1). The analysis of continual weights is straightforward [2]. The
biases of neurons at the /th layer are denoted by b’. The pre-activations are zﬁ =
g[w’hl‘l]i /N + bf and the activations are hf = ¢(zf). In this part, we use the non-
linear transfer function ¢ (x) = tanh(x).
The specific covariance structure we consider here is Fig. 15.6.

Wiwg, = 8jsq + 8udjs (1 — q) . (15.25)

The weights have a zero mean. The biases follow a Gaussian distribution N (0, o;).
Here, we do not enforce any scaling constraint a priori to the correlation level ¢, and
it will be determined in a self-consistent way.

We consider random inputs which are independently sampled from a multivariate
Gaussian distribution with zero mean and the covariance matrix A = %E &7, where
&isan N x P matrix whose components follow a normal distribution of zero mean
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Fig.15.6 Schematic illustration of a deep neural network with correlated synapses. The deep neural
network carries out a layer-wise transformation of a sensory input. During the transformation, a cas-
cade of internal representations ({h’}) are generated by the correlated synapses, with the covariance
structure specified by the matrix above the layer. g characterizes the variance of synaptic weights,
while the diagonal block characterizes the inter-receptive-field correlation among corresponding
synapses (different line colors), and ¢ specifies the synaptic correlation strength. We do not know
a priori the exact scaling form of g, which is self-consistently determined by our theory. The figure
is adapted from the paper [2]

and variance o2 (0 = 0.5 here). The ratio« = P/N controls the spectral density of
the covariance matrix (see Chap. 17).

15.3.2 Mean-Field Calculation

15.3.2.1 Mean-Field Iteration of Activity Moments

In this section, we derive the mean-field iteration of activity moments. We first derive
the mean-field equation for the mean activity mf as follows:
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m! = (h!)

i

= <¢ <% [wh'~']. +bf~)> (15.26)
=<¢ <a§+%[wm ', +bl)>

where the average (-) is defined over the activity statistics throughout this section, and
we define the mean-subtracted weighted-sum (or pre-activation) af = f—— Z . wl

(hl]fl - (hl]fl >), then its expectation is zero, and variance is given by A}, = <af aﬁ)

2 T . .

£ [wl = (w)) ]”, where C denotes the covariance matrix of the neural activity.
ij

Because a! is the sum of N nearly independent random terms, as N — oo, we apply

the central limit theorem, and obtain

m! _/an ,/Alr+—zw m' bl (15.27)

where Dt = e~"/2dt /+/2m. Then, we consider the covariance of activities. Note that
the Gaussian random variable a' has a variance A!.. The activity covariance is then
given by

Cij = (i) = (i) {15)

o (a4 = w00 o (e [ 404 ) ) <l
Z/Dny¢<\/ATx+b’+\/—N ) ,/Aljj(qfx+y\/1—q;2)

I 8 11 11
(15.28)

where Dx = e */2dx/+/2, and = AL/ /ALAL. gl and @) have been
parametrized by two independent standard Gaussian random variables, say x and
v, respectively. The pre-activation correlation has been captured by the correlation
coefficient ¢ (|| < 1).

With the activity moments, we can then evaluate the dimensionality of the /th

layer by , , ,
Xik) _ (mC)” (3G

o _ _
A2 Tr(C> Y, ,(Cl)Y

(15.29)

where {A;} is the eigenspectrum of the covariance matrix C'. Then we can define

. . . . S (TrC’)Z
the normalized dimensionality as D' = N

which is then independent of the
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network width N. To derive the recursion of dimensionality for each layer, we
define additionally K| = § >_; C};, K, = 5 2. (Cl)%and &' = 35 3, (Cl)* for

a large value of N. The normalized dimensionality of the /th layer is thus expressed

as
5 KD

= NEI—%-‘K{ (15.30)

which is useful for the following theoretical analysis.

15.3.2.2 Expansion of Two-Point Correlations

In the mean-field limit, we can assume ij ~ O(1/+/N) for i # j [1]. We first
analyze the off-diagonal part of the covariance matrix. First, we notice that A_zz, =

. — s s ) 2
S Wi Ca =N 44 ~ 0 (% . whichmeans that A;; ~ O(£=). The over-

line here denotes the disorder average over the network parameters. In other words,
when N is sufficiently large, A;; is very small. Then, we execute a Taylor expansion
with respect to a small A;; whose layer index is added below

& (Al + 3/ T=02) +22) = ¢ ({/aly +0)
v (y/ar+ ) J% ro((ah).

(15.31)

Ly 8 [wlml—l]j, By noting that m! = [ Dt¢

where we define z(} =0l Wil

(Mr + z?), we obtain

cl = / DxDy¢ (@x + z?) ¢’ ( Aly+ Z_?) }A»; +0 ((Aﬁj)z)

Aj;
- / DxDy¢’ <\/A>f,~x + z?) ¢’ (\/Aij + Z?) Aj;+0 ((Aﬁj)z) :

(15.32)

Therefore, we can write ij ~ (¢ <\/A>flx + z?))x(qb’ (\/AT“y + Z?)));Aﬁj, where

the linear coefficient is an average over standard normal variables, and is called
hereafter K lI ; for the following analysis.

We next remark that A;; ~ gﬁz > w_kakk = g27(1 ~ O(gz). In the small-g limit,
we can carry out an expansion in 4/A;; whose layer index is added below, and get

I}
i
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el [ DxDy |0 @0) + o () alx | [0 (0) + 0" () )]
= ' (2N’ DA

(15.33)
We then analyze the diagonal part of the covariance matrix,

= )~ )
=<¢2 (Gf+z?>>—mgmﬁ
:/Dxd’z (\/ATNCH?) —/DW <\/A7ix+z?>/l)y¢< Aﬁ,.y+z?>.

(15.34)
We expand the above formula in the small A}, ie., ¢ (a! +2)) =¢ (z)) + ¢

(29) /Ex, and obtain
Cl ~ / Dx |:¢> (z) + ¢ (2) \/A»fix:r — |:/ Dx <¢> (%) + ¢ (20) \/ATZX>:|

= [¢'cD] AL

2

(15.35)
Therefore, we can write C!; >~ K!;Al,, where K/, is the shorthand for the linear
coefficient. To improve the prediction accuracy, one needs to include high-order
terms into this approximation. We observe that if we use Eq. (15.32) by setting
i = j, the theoretical prediction can match the numerical simulation results even in
arelatively large value of g. This may be due to the fact that the contribution of Aﬁi
is taken into account when computing K/,.

15.3.2.3 Iteration of the Correlation Strength X'

First, we calculate ‘K{, and in the large N and small g limits, we obtain

2
N
K=o | =3 wim w0l || Al
(15.36)

1

N
8 1 1-1 ! 2q1l—1

g _NE wiin; +bi g(}(l ,
Vo=l

where = means an average over the distribution of network parameters, and A’ is
approximated by
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2 N
g g _ -
Al ~ § whwl, Gt = v Y Cpl =K (15.37)
k j k=1

Note that the argument of ¢’(-) is a sum of a large number of nearly independent

random variables. It is then easy to write that =3, whm'~' + bl =0, and

2

2 2
4 [oo1—1 I 8 ( z—1>
= wp.m' T+ b = — m; +op .
/NXJ: J N X]: J

According to the central limit theorem, we obtain

2
i w6t | | =[x (0a/e 0T ) EK

(15.38)
where we have defined 0'~' & L 5™V (mﬁ_l)z. The recursion of Q' becomes

g
M=
=

2
1

Ql:ﬁz /thb ,/A’t+—Zw,j =y
i (15.39)

2

= / Dx [/ Dt¢<,/g27(flt +xvgro + Ub)] ,
where we have used AL, = g2,
Finally, we obtain the recursion for 7({ s

%K =g’ KLK!. (15.40)

Note that K! can also be calculated recursively without the small-g assumption as
follows:

“K{ = / DxDit¢? <\/g27{1t —I—x\/m) — 0!
= / Dx¢2 <\/g27(f_1 + o0, + g20!! x) _ Qz.

Next, the recursion of K} can be calculated by definition as follows:

(15.41)
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Z Kl 27<1 1 (15.42)

(K,é)zg“(«{-l) :

where we have assumed that K/, in the large- N limit does not depend on the specific
site index, and thus

4

- 4

K= (o | s ot ) | = [ ox (sw0T )
J

(15.43)
Note that % can be evaluated recursively without the small-g assumption as

5 = ([( ()= — (N s (15.44)

where z, u and ¢ are all standard normal variables, and f = o g27(fflz + Jopu +

Vg2oi't.
We finally derive the recursion of X'. First, for the binary weights, to compute
A?i’ where the layer index can be added later, we have

2
(E Wiijlel> = E Wsz]lel+E wikW ik Cx
Kl

kAl

>~ Z WikWik’lele’Clek’]’+E WikW kWit W ji Crx Coe
kALK A kK

2
~(1+q)) Ch+(1-¢° )chk+q (chk) :
k

kL
(15.45)
where the cross-term vanishes in statistics to derive the second equality, due to the
vanishing intra-RF correlation for one hidden neuron. The third equality is derived
by considering the inter-RF correlation in our current setting. Finally, we arrive at

2 —— g 2
N — - Z(Kiljﬂ)zm [(1 +AONT + (1 —qz)N‘Ké +¢>N? (7({) ]
i<j
= (K72 [(1+¢NE' + > N(K)* + (1 — ¢*)K]

~ (KT [N + 5K+ (K)D?]
(15.46)
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A unique scaling for ¢ must then be ¢ = —~, resultinging>N = r* wherer ~ O(1),

and thus Eq. (15.46) is self-consistent in physics as well. Besides, (K ;}Ll)z is used to

replace (K l.l;’l)z in the mean-field approximation and can be computed recursively
as follows:

o 2
77 = ({0 (Ve + viea + o)
2
x <¢/ <My+\/gTQl(pm +m22) +~/0_b“2)> > ’

yizi,22,uy,u2

(15.47)
where x, v, 71, 22, U1, U, are all standard Gaussian random variables, capturing both
thermal and disorder average (inner and outer ones, respectively). The correlation
coefficient is given by

0 0
e Zi_bA z; —b;
pur & oW& ) (15.48)

J&@ b2 &= b))

We finally remark that the synaptic correlation is able to boost the neural cor-
relation level when transmitting signal via hidden representations. From the linear
relationship between s and T [see Eq. (15.46)], one derives for the binary weights
that the operating point is given by

sl _ YK, Yri(Kl)?
-7 1-7

) (15.49)

where X! has been multiplied by N, and Y &f gt (K l.l;rl)z. Equation (15.49) implies
that the operating point is increased by the synaptic correlations (the last term in
the equation). The intercept of the linear relationship is also increased by a positive
amount Yr2 (K { )2. Note that the slope of the linear relationship under the orthogonal-
weight and correlated-weight cases are the same. These phenomenons are shown in
Fig. 15.7.

15.3.2.4 Iteration of the Dimensionality Across Layers

According to the definition, with the help of Egs. (15.40) and (15.42) and the recursion
equation for X ! we obtain
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Fig. 15.7 The schematic illustration showing how synaptic correlations elevate the neural corre-
lation level (multiplied by N) and the operating point in hidden representations of deep neural
networks. The boost is indicated by the double arrow for an example in which the input £/ is below
the operating point (indicated by star-symbols) where £/*! = £/ The figure is adapted from the
paper [2]

2
5 (%)
NZ! 4+ K]
. (15.50)
1

VIVE 4K + (112 +v2) (K] )

’

where y; = K7, JKisys =K 2 /K andr = gN*. When the superscripts of layer
index for K;; and K;; are clear, the superscripts are omitted. Here, we manage to
use the activity statistics at previous layers to estimate the dimensionality of the
current layer, rather than the original formula [Eq. (15.30)]. Thus, the mechanism
for dimensionality change can be revealed. The output dimensionality is tuned by
a multiplicative factor y; and an additive term [the last term in the denominator of
Eq. (15.50)].
Note that to evaluate y; and y,, we need to compute the following quantities,
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. 2

Kii = < (¢/ (x\/ gro-t + Ub>) > ,

— 4

Ki = < (cb/ (y g20" + ob)) > :

y
o 2
K} = <<¢>/ (,/gz‘Kflx + 820z + Ja_bu1> >
X
2
x <¢/ (\/ Sy + Vg0 (pz +V/1=p222) + Ja_buz> > > :

yizi,zo,uy,un

(15.51)
where p = ¢. Q', K! and K} can also be computed recursively by following the
iterative equations mentioned before.

15.3.2.5 Closed-Form Mean-Field Iterations for Estimating the
Dimensionality

The equations of the mean-field iteration are given by

AL _g § :wlkak, whie, (15.52)
g N
1 1 I 1-1 !
m; = | Dt¢ | JAt+—= ) wim ™ +b;|, (15.53)
/ VN ; Y

and

ij =/Dny¢ (,/A1x+bl+—2wlkmk )
¢<\/Aljj(llfx+}’\/1—¢2)+b[j ijkmk, )—mfm[]

(15.54)

15.3.3 Numerical Results Compared with Theory

15.3.3.1 The Generation of Weights and Synthetic Data

We consider a five-layer fully connected neural network with one input layer and four
hidden layers. The number of neurons in each layer is specified by N. The param-
eters of the network are generated by following the procedure below, and after the
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initialization, all parameters remain unchanged during the simulation of dimension
estimation, and then the result is averaged over many independent realizations of the
same statistics of network parameters.

The binary weight (w;; = £1) follows a statistics of zero mean and the covariance
specified by

WiWis = 8j5q + 8ik8js (1 — q) = g5 (1 — 8ix) + 8ixSjs - (15.55)

Diagonalization of the full covariance matrix of binary weights is challenging. How-
ever, no correlation occurs within each RF. Then, we can generate the network
weights for each diagonal block in Fig. 15.8 independently by a dichotomized Gaus-
sian (DG) process [5]. In the DG process, the binary weights can be generated by
wi; = sign(x];), where

x>0

, 15.56
-1 x<0 ( )

sign(x) =

where x! ; is sampled from a multivariate Gaussian distribution of zero mean (due to

wf- ;= 0) and the following covariance, as also shown in a schematic illustration in
Fig. 15.8,

XXy = 8js T +8u8js (1 = ) = B85 (1 — 8ix) + 8k - (15.57)

The relation between ¢ and X can be established by matching the covariance of the
DG process with our prescribed correlation level ¢, i.e.,

2
g = // DxDy sign(x) sign (Zx +V1- zzy) — Zarcsins.  (15.58)
T

Then, we have

. TTq
Y =sin - (15.59)

A sample of the multivariate Gaussian distribution with the N x N covariance matrix
¥ (diagonal blocks in Fig. 15.8) can be obtained by first carrying out a Cholesky
decomposition of the covariance, i.e., X = LLT whereLisa lower-triangular matrix.
A sampleis then obtained as z = Le, where € ~ N(0, I). I denotes an identity matrix.
The parameter bf follows N (0, o) independently.

15.3.3.2 Results

In this section, we make comparisons between theoretical predictions and numer-
ical results. The experimental details are shown in the caption of the figures. We
highlight that the theoretical predictions derived in this section provide a principled
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Fig. 15.8 The schematic
illustration of the covariance ]. E
matrix of x! is used to 1 O
generate correlated binary .

weights. The figure is E 1

adapted from the paper [2] o

M
. M

N XN

11.2
2 1l

N x N

understanding of heuristic tricks of weight and neural decorrelation widely used in
machine learning community [6-8].

We find that the weak correlation among synapses is able to reduce further the
hidden-representation dimensionality across layers compared to the case of orthog-
onal weights [Fig. 15.9a]. Moreover, the synaptic correlation r can also boost the
correlation strength ¥ [Fig. 15.9b]. The boost is larger at earlier layers of deep
networks. We can draw a conclusion that the weak synaptic correlation accelerates
the dimension reduction, while reducing the decay speed of the neural correlation
strength.

In Fig. 15.9c, we show that the change of g and ¢}, has no (or negligible) effect on
the dimension reduction. In contrast, the weight strength elevates the correlation level,
playing the similar role to the synaptic correlation [Fig. 15.9b]. Besides, increasing
the firing bias would further decorrelate the hidden representation.

The output dimensionality is tuned by a multiplicative factor y; and an additive
term [the last term in the denominator of Eq. (15.50)] [Fig. 15.9d]. We observe
that the multiplicative factor y; grows until arriving at the unity; this factor always
equals the unity at ¢ = 0. The additive term is always positive and decreases with
the network depth, thereby contributing an additional reduction of dimensionality.
Those two terms overall make the dimension reduction weaker at deeper layers.
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Fig.15.9 Typical behavior of dimension reduction in networks of binary weights. Simulations were
carried out on networks of finite size N = 200, and averaged over ten instances with negligible
error bars. a Layer-wise dimension reduction with different correlation level r. g = 0.9, a = 2,
and o, = 0.1. The covariance is obtained by Eqs. (15.53) and (15.54). The cross symbol indicates
the simulation result obtained by layer-wise propagating 10> samples. b Layer-wise decorrelation
with . Other parameters are the same as in (a). The neural correlation strength has been scaled by
N. ¢ Dimension reduction and decorrelation with different values of g and op,. r = 0.5. g = 0.9
when o}, varies, and o, = 0.1 when g varies. d Large-N limit behavior for g = 0.4. The left inset
shows the behavior of y| and the additive term. The right inset shows a comparison of the estimated
dimensions between theory and simulation (N = 200). In both insets, r = 0.5, 05 = 0.1 and o = 2.
The figure is adapted from the paper [2]
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Chapter 16 ®)
Chaos Theory of Random Recurrent i
Neural Networks

In the context of computational neuroscience, analyzing the model of recurrent neural
networks (RNNs) is a promising frontier to reveal dynamical computation princi-
ples underlying cognitive functions, e.g., working memory, decision-making and
learning (Wulfram Gerstner et al. in Neuronal Dynamics: From Single Neurons to
Networks and Models of Cognition. Cambridge University Press, Cambridge, 2014
[1]). This is usually achieved by simulating a spiking neural network whose dynam-
ics is described by the evolution of neuronal membrane potentials. The idea is that a
neuron in a spiking neural network is not captured by a single activation value (e.g.,
0 or 1, thereby unlike the standard Hopfield network). Only when the membrane
potential reaches a threshold value, a spike is emitted; after that, a silent period of
short duration is maintained. An abstraction of this spiking dynamics is the firing
rate model, whose dynamics properties can be analyzed by statistical mechanics
tools. In this chapter, we will introduce the dynamical mean-field theory to draw a
complete picture about how fixed-point dynamics shifts to chaotic states, and how
experimentally observed irregular asynchronous cortical activity can be explained
by a mean-field argument.

16.1 Spiking and Rate Models

The information in the neural networks is represented by the neural firing activities,
including spiking activities as well, and thus the spatio-temporal evolution of these
activity patterns is a manifestation of neural information processing. We first briefly
describe the spiking model. When a neuron is activated, it produces a discrete spiking
signal that is transmitted to other neighboring neurons, increasing or decreasing
neighbors’ membrane potential via inhibitory or excitatory connections (depending
on the cell type of the spiking neuron). In contrast to traditional artificial neural
networks, the spiking models process spatio-temporal information, in terms of the
following leaky-integrated firing (LIF) equation [2]:
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dV;(t) _ _Vi(t) — Viest
dr T

Y T8 (t—tjn — Aij) + Jew Y8 —T). (16.1)
Jjin n

where V;(¢) can be seen as the membrane potential of the ith neuron at the moment
t, usually at the order of millivolt in a biological neural network. Here, J;; is the
synaptic efficacy which couples the output of the (presynaptic) jth neuron to the
target (post-synaptic) ith neuron, and J;; = 0. The coupling unit here is millivolt
per second. The positive and negative properties of J;; depend on the cell type of
neurons, namely excitatory or inhibitory neurons. In a neural circuit, excitatory neu-
rons produce positive outward synapses, while inhibitory neurons produce negative
outward synapses. T, (e.g., 20 ms) stands for the membrane time constant, deter-
mining the time scale that the membrane potential decays from V;(¢) to the resting
voltage V.. In other words, it specifies the time scale of the membrane potential
dynamics. A;; is the signal-transmission delay from jth neuron to ith neuron. #;,
is the nth spiking time of the jth neuron. Hence, Zj’n Jij6(t —tj, — A;j) is the
sum of contributions from neighboring spiking neurons of the ith neuron. The last
part Jex Zn 8(t —7;,) characterizes the external contribution (e.g., a stimulus) to
the internal recurrent dynamics. If Jex; = 0, the dynamics is called the spontaneous
dynamics, or the autonomous dynamics.

In a more biological reality, the recurrent synaptic input I;(z) = > i Jijo(t —
tjn) (the delay neglected here) can be also described by an instantaneous jump and
exponential decay process [3]:

dl
t— ==L+ Y Jij8(t —tj), (16.2)

dt ,
Jsn
where 7, captures the synaptic relaxation time scale. Therefore, Eq. (16.1) assumes
the delta-function post-synaptic currents, i.e., the synaptic time constant can be
neglected compared to the neuronal time constant.

Figure 16.1 shows a schematic illustration of the membrane potential of represen-
tative neurons. The membrane potential evolves from an initial value; the membrane
potential fluctuates until it reaches the threshold value, which sends out immediately
a spike. After the spike, the membrane potential decays rapidly to the resting voltage,
and then stays there in a total of a few milliseconds (defined as the refractory period).
During the period (¢, €.2., 2 ms), all the input signals are ignored. A waking animal
cortex always shows asynchronous irregular activities with low firing frequency. The
dynamical system theory can be applied to analyze the spiking model to get insights
about the collective properties of the network. We recommend interested readers the
seminal paper [2] and many recent works citing this seminal paper. We would not
explore statistical analysis of the LIF model here, which is explored in-depth in the
book [1].

We would rather study a simpler system, called the firing rate model. Whether
a spiking dynamics is related to a rate model at the macroscopic level is still under
heated debated [4]. For simplicity, we use a firing rate to describe the dynamics
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of the neurons in a population, instead of spikes. In other words, the firing rate is
interpreted as the firing frequency (or probability) in a specified temporal interval.
The model has N neurons, whose states are characterized by their local currents (e.g.,
summed and filtered synaptic current inputs): x;(¢),i = 1, ..., N; the firing rate can
be expressed as r; = tanh(x;); other transfer functions can also be applied. Note thata
sigmoid function is physically consistent with the firing probability definition. Here,
we would not put much biological reality, and instead focus on the mathematical
analysis. Each pair of neuron i, j is connected by a synapse of weight J;;. The rate
description of Eq. (16.1) is simplified as follows:

dx;
d_tl = —Xi + 71, (16.3)
where n; = Zj‘v=1 Jij¢ (x j), and we omit the external drive. We choose ¢ (x) =
tanh(x) as the non-linear transfer function of each neuron. We further assume that
each synapse is independently sampled from a zero-mean Gaussian distribution J;; ~

N (0, %), where g characterizes the coupling (or recurrent feedback) strength of

the rate model. The scaling of % in the variance is to ensure the weighted-sum input
of each neuron is of O(1) in the large-N limit.

16.2 Dynamical Mean-Field Theory

Dynamic mean-field theory is inspired from a generating function formalism of the
rate dynamics (see a review [5]). This theory was first applied to the recurrent neural
network in 1988 [6]. The theory is also called the path integral approach, having
a long history in computing the disorder average of all dynamics trajectories [7].
This approach has been originally designed to study stochastic dynamics in spin
systems [8—11]. The path integral method provides a systematic analysis of the high-
dimensional dynamics in a complex system, allowing for a thorough analysis of the
fluctuations around the saddle point of the action function [11].

16.2.1 Dynamical Mean-Field Equation

Here, we derive intuitively the steady state of the rate dynamics, i.e., the dynamics of
the system can be reduced to the dynamics of a single representative neuron, driven
by a Gaussian noise. In this sense, 7; can be thought of as a time-dependent Gaussian
variable. The driving force of the dynamics fluctuates around the zero mean. The
statistics is given by
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Fig. 16.1 An illustration of spiking dynamics in a recurrent neural network. (Left) Network archi-
tecture. The randomly connected recurrent model is composed of three populations—excitatory
one indicated by E, inhibitory one indicated by I, and the external population X simulating an
uncorrelated Poisson process. (Right) Spike trains of one randomly selected E neuron and one I
neuron from the spiking model following the dynamics equations [Eqs. (16.1) and (16.2)]. The
spiking threshold is set to be —52 mV. Once the membrane potential of one neuron reaches the
threshold, the membrane potential drops to the reset potential —70 mV and remains unchanged
for a duration of 7 = 2 ms. Other time scales are 7, = 20 ms, and tyz = 10 ms for both E and
I neurons. The population size is N = 16000, in which 4000 inhibitory neurons are present. The
connection probability is set to p = 0.1 for a sparse network

N
i) =Y [ (x))], ~0, (16.4)
j=1

where [...], denotes the disorder average over the coupling distribution, and (. ..)
denotes the temporal average of the dynamics. In Eq. (16.4), (...) is replaced by
[...] because of the assumption in statistical physics that the ensemble average is
equivalent to the temporal average in the long time limit. The time-delayed correlation
is defined by
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(mi(m; ¢ + ) = {Z Ji Z Tk (i (1)) ¢ (xi( + r))}

=1 k=1

2
= 6,5 D 1O () (xx (1 + )] (16.5)
k

= 818" (9 (1) (¢ + 1))
=8;8°C(1),
where the autocorrelation function is introduced as follows:

C(v) = (@ k(D) (xk (1 + 7)), (16.6)
which measures the similarity between the state of the system at the time step ¢ and the
state after a temporal separation 7. In the long time limit, the autocorrelation depends
only on the temporal separation . In other words, the dynamics is time-translation

invariant.
Applying the Fourier transformation to both sides of Eq. (16.3), we have

(1 +iw)¥(w) = N(w), (16.7)
(1 —iw)f(—w) = H(-o), (16.8)

where x(w) is the Fourier transformation of x(¢), and x(—w) is the conjugated
quantity of X (w). Multiplying both sides of Egs. (16.7) and (16.8), we have

(14 o) 2 (—0)f (o) = H(w)i(-o). (16.9)

Performing an inverse Fourier transform to the right-hand side of Eq. (16.9), we have

1 5 N iot _ L —iwt n ot iwT g4/
E/n(a))n(—a))e dow = o // n(t)e dt/n(t)e x e Tdt'dw
= L//W)n(t/) dtdt’/ei‘“(t/'”_’)da)
// O (¢')dedt's (1 —t' — 1)

= (n(On(t +1)).
(16.10)
The similar inverse Fourier transformation applies to the left-hand side of Eq. (16.9):
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1 2\ & a iwt
7 (1 + w )x(w)x(—a))e dw
T

1 . N2\ A A it
=E/(1 — (iw)?) R(w) X (—w)e dw (16.11)

d2

where the local field (or current) autocorrelation A(t) = (x; (1)x;(t + 1)).
Collecting Egs. (16.5), (16.10) and (16.11), we arrive at a motion equation describ-
ing the dynamics of A(t):
A—A=g*C(), (16.12)

where A indicates the second-order derivative of A with respect to time. To solve
Eq. (16.12), we can write C(7) as a function of A(r). Equation (16.6) tells us
that C(7) is a function of x(¢). A(r) depends also on x(¢). Furthermore, x(¢) can
be approximated by a Gaussian distribution according to the CLT; the mean and
covariance are given, respectively, by

(x@®) ={x@t+1))=0;

(16.13)
(x(x@ + 1)) = AD).
We then use the following parametrization of the random local current x (¢):
t) = ay + Bz;
()= Pz (16.14)

x(t+1)=0ay + Bz.

To satisfy Eq. (16.13), « = «/A(0) — |A(7)], and 8 = +/|A(7)|. Then C(t) can be

written in the following form:

2
C(r) = / DyDy' Dz¢ (ay + Bz)¢ (oty’ + ,BZ) = / Dz [/ Dy¢(ay + ,BZ)i| .

(16.15)
The form of Eq. (16.12) suggests the existence of a potential energy V, which

satisfies oy
A=——. (16.16)
A

The underlying physics is that Eq. (16.12) can be thought of as a particle moving in
a potential well. We then have the following form of the potential:

A2 oV,
V=46V, — =C(1). 16.17
5 eV o (7) ( )

The exact form of V, can be derived as follows:
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2
V2=/Dz |:/ DyCD(oty+ﬂz)i| ) (16.18)

where dq)(") =¢(x),or d(x) = f(f dy¢(y). One can prove that Eq. (16.18) meets
the constramt [Eqg. (16.17)]. A detailed proof of Eq. (16.18) is left as an exercise for
interested readers. [Hint: Price’s Theorem]

Finally, we summarize the dynamical mean-field equation of the rate dynamics:

oV
A

A? 2
V(A)=—7+g2/Dz U Dy®(/A(0) — |A|y+\/|AIZ)} ,

)

(16.19)
where we omit the time-dependence of A when writing A.

16.2.2 Regimes of Network Dynamics

As mentioned in the previous section, Eq. (16.19) describes the motion of a particle
in a potential well—V (A) with an initial velocity A(O). A(7) records the coordinate
of the particle at time 7. The shape of V (A) depends on the strength of synapse g
and the initial position A(0). There are two physical constraints for Eq. (16.19):

e A is bounded like A(0) > |A(#)|, and A(0) > 0.

e A(t) is a differentiable even function, i.e., A(t) = A(—t), because of the time-
translation invariance in the long time limit. In addition, A(0) = 0 (a maximal
value reached at = 0), and thus the initial kinetic energy is zero.

Equation (16.19) indicates a mutual transformation between kinetic energy and
potential energy, and thus the total energy of the particle is conserved, which means
that %A(t)2 + V(A(t)) = V(A(0)) atevery time ¢. Since the kinetic energy is always
positive, we have V (A(¢)) < V(A(0)). If we can determine the shape of V (A) atany
given g and initial state A(0), we can fully characterize the trajectory of A over time
by using Eq. (16.19) and the physical constraints. Let us calculate the derivatives of
the potential:

WV __A +g /Dz [/ Dyd(VAQO) — [Aly +]A| z)} (16.20a)

A
2
% =—1+g2sz [/ Dyg¢'( A(O)—|A|y+\/Wz)] . (16.20b)

Note that Eq. (16. 20a) is consistent with Eqs. (16.12) and (16.17).
It is easy to get | Ao = 0 foran odd transfer function. Because 0 < ¢ < 1 for
the considered transfer function, the integral in Eq. (16.20b) must be smaller than
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Fig. 16.2 Dynamics regimes in recurrent rate neural networks [6]. The solid points on the curve
show possible initial positions. a g < 1. b g > 1 and a small A(0). ¢ g > 1 and a large A(0).

Discussions are presented in the main text
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one, and thus we have gZA‘f < g2 —1.Ifg<1, 31\1 will always be negative, and
thus V is strictly concave, suggesting that the maximum appearsat A = 0.If g > 1,
g% may be positive, but the second derivative also depends on A(0). When A(0)
is quite small, %M:O =—1+g*[f Dydﬂ(My)]z, and thus the second-order
derivative can be positive, suggesting a convex part for the potential. Therefore, the
shape of V (A) can be either a single well or a double well, depending on the sign of
g% at A =0.

The potential-shape determines the characteristics of the network dynamics, clas-
sified into the following types:

e Concave shape, forg <.

Because of the concave shape of V, A(¢) starting from A(0) will tend to grow,
violating the physics bound. In addition, due to the energy conservation, the other
solution is given by A(#) = A(0) = 0, suggesting that A(#) must always stay at
the initial point. This indicates an all-silent dynamics state, a trivial fixed-point
solution of the dynamical mean-field equation [Fig. 16.2a].

e Convex shape, for g > 1,and small A(0).

The trajectory of A oscillates from A (0) to —A(0), indicating a limit-cycle solution
for the dynamics, as shown in Fig. 16.2b.

e Double well shape, forg > 1,and a relatively large A(0).
The dynamics now depends on the initial value of A. As shown in Fig. 16.2c, we
have the following observations: (i) When A (0) is at the bottom of one well (point
a), the particle will stay there, which is called a static solution of the dynamics.
(i) A will oscillate around the bottom of the well, provided that A(0) is slightly
away from the bottom of one well (point b). (iii) A will oscillate from A(0) to
—A(0) in Fig. 16.2 (point c). (iv) At the point d, V(A (0)) = V (0), and the initial
energy can exactly bring the particle to A = 0. A thus decays monotonically with
time, i.e., A(t) decays to zero as T — o0. This solution represents a chaotic state
of the network, characterized also by a positive value of the maximal Lyapunov
exponent (see the next section). The decay rate of A can be characterized by the
relaxation time scale t,. Let A(¢) ~ A(0) exp(—¢/7.), 7. can then be derived as

7, = [-32V(0)/3A2] "/ [see Eq. (16.16)].

To sum up, the steady state of the network dynamics can be captured by different
types of solutions: fixed points, limit cycles and chaos. The stability of these solutions
can be verified by the Hessian of fluctuations around the saddle point of the action
based on the path integral representation of the dynamics [11]. The static solution
below g = 1 is stable, while for g > 1, all the oscillatory solutions are unstable, but
the only stable solution is the chaotic one. Note that for a finite-size network, the
network may display oscillatory patterns of activity, whereas the oscillations will
vanish with increasing network sizes; in other words, the chaos transition with g
becomes sharper as N becomes larger.
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16.3 Lyapunov Exponent and Chaos

Next, we show how the chaotic state emerges, i.e., we study how infinitesimal per-
turbations grow or shrink along the dynamics evolution. This criticality is math-
ematically characterized by a Lyapunov exponent (the maximal one). A positive
exponent implies that nearby trajectories (e.g., starting from nearly the same con-
dition) diverge exponentially fast with time. In other words, chaos depends on the
initialization condition.

We first derive the dynamics of perturbations, i.e., we add an infinitesimal fluctu-
ation dx; (¢) to Eq. (16.3), and get

dx; (1) dsx;(t)
dt dt

= — (x; (1) + 8x; (1)) + Z Jij [0 () + @' (x;(1)8x;(1)] .
J

(16.21)
Comparing Eq. (16.21) with Eq. (16.3), we obtain the equation that describes how
the perturbation changes with time. That is,

@ + D8xi(1) = Y Ji'(x; ()8 (1). (16.22)
J

By making a time translation to Eq. (16.22), we get

Oz + D dxi(t + 1) = Z Jud' (u(t + 1) 8xi(t + 7). (16.23)
!

Multiplying Eq. (16.22) with Eq. (16.23), and taking the average over J on both
sides, we have

(B + e + 00r + DAL, T) = E2Cp Ayt T), (16.24)

where Cy = (¢'(x())¢'(x(t + 1)), Ay (¢, T) = (x()dx(t + 7)), where (...)
refers to the temporal average.

Performing the variable transformation: T =¢t+7+1¢t; T=t+71 —¢, and
using the chain rule of the partial differential, i.e., 9;(f (T, t)) = 3. (f (T, r))%—f +
or(f(T, 1)) da—f (the chain rule for the time derivative w.r.t ¢ 4 t is similar), we recast
the left-hand side of Eq. (16.24) into the form [ (1 + 97)* — 82] A, (T, 7). Notice that

Cy (1) = ggg; = aizz‘g)’ we have g2C¢/(7:) = % + 1, after using Eq. (16.20b).

Then, Eq. (16.24) can be reduced to

2

IA2(T)

[(1+07)* =07 A(T, 1) = ( + 1) A(T, 7). (16.25)

Next, we are going to study the maximal Lyapunov exponent of the perturbation
dynamics. If [§x(¢)| ~ |6x(0)|e*', and the maximum exponent Ay of A is positive,
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the difference between the original trajectory and the trajectory under the infinitesimal
initial deviation will be amplified, thereby leading to a chaotic state. A, is then given

by
1 ox(t
A = lim L log ( 18 )||2)
1—00 t 18%(0)]I2
- 2
fim — L jog (Z (6x: (1)) )

!
lim > log [NA,(1, T = 0)]

(16.26)

o1
= tlif& Zlog [Ag(t, T = 0)] .

where ||§x(0)||> = 1 is assumed.
We further assume a time-separation ansitz for Ag(z, 7) = ek ¥ (t), and thus
Amax = k/2. Substituting A, (T, t) = eT/2y (1) into Eq. (16.25), we have

92V
92 o 5
( % 8A2(r)) v =(1-10+k/2°) ¥ (). (16.27)

Equation (16.27) is exactly a one-dimensional time-independent Schrodinger equa-
tion. T is now interpreted as the spatial coordinate. — % is the quantum potential
W(t),and (1 —(1+k/ 2)2) is the energy E. The eigenvalues (or energies) E,, deter-
mine the exponential growth rate k,,, like A,(2¢,0) = €X', (0), where T = 0 leads

to T = 2t. The rate k,, is given by

kE=2(—14+1—-E,). (16.28)

Denoting the ground state energy as Ej, we have immediately:

kt
Amax = 7" =-1+ m (16.29)

In the case of zero-fixed point, a constant quantum potential is expected. Therefore,
Eo = W(A = 0) = 1 — g% Thecritical coupling strength is then set by g = 1, above
which the zero-fixed point (trivial solution) is destabilized, replaced by a chaotic
state. Therefore, once the lowest energy E( becomes negative, the chaotic state (very
sensitive to small changes of the initial condition) appears. An important property of
the transition to fluctuating activity is the divergent time scale t, of the fluctuations at
acritical coupling g = 1 (7, = [—82 V(0)/0 Az] Y 2). The edge-of-chaos hypothesis
in RNNs’ training suggests that the very slow dynamics around the transition regime
is very useful for processing long-term temporal dependence of input sequences [12—
16]. In addition, a recent theoretical work shows that the proliferation of stationary
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points (topological complexity) is coupled with the appearance of a chaotic attractor
(dynamical complexity) [17].

16.4 Excitation-Inhibition Balance Theory

Neurons in the cortex of behaving animals show temporally irregular spiking pat-
terns. We consider the hypothesis that this irregularity is caused by the balance of
excitatory and inhibitory currents into the cortical cells [18—20]. In a biological brain,
local cortical circuit is composed of thousands of neurons, with each neuron receiv-
ing approximately the order of O(10%) inputs from other neurons (from the same
or different cortical layers, some of them may be long-ranged). We introduce a net-
work model with excitatory and inhibitory populations of simple binary units, whose
connectivity profile is random and sparse. Excitatory inputs drive a regular firing,
which must be counteracted by local inhibition to yield a low rate irregular cortical
firing pattern [20, 21]. In this balanced network, a balance between the excitatory
and inhibitory inputs emerges dynamically for a wide range of parameters. When
synaptic weights are scaled like O(1/+/N), where N is the network size, the balanced
state is thus achieved by canceling mean excitatory and inhibitory inputs (Fig. 16.3),
and thus the fluctuations drive the asynchronous activity [22]. This balance is thus
achieved dynamically rather than a fine-tuning of synaptic strength.

We consider a firing rate model of Ng excitatory cells and N; inhibitory cells,
where K excitatory, K inhibitory and K external neurons project to each neuron in
the network on average. Although the average number of projections K is large, it
is still much smaller than the subpopulation size, i.e., 1 < K <« Ng ;. The connec-
tion between the ith post-synaptic neuron belonging to the population k£ and the jth
presynaptic neuron belonging to the population / is denoted by J,/, where k = 1 or
I =1 represents the excitatory subpopulation, while k = 2 or [ = 2 represents the
inhibitory subpopulation. Because of the sparse network, J;] = j—k’? with a probabil-
ity K /N, where the synaptic constant Ji| is positive, and Ji, is negative.

We denote the binary variable oik () as the state of the neuron i in the population k.
Therefore, the corresponding total synaptic input uf‘ (t) can be expressed as uf (t) =
S M T o) + uf, where uf is the external input to any neuron in the kth
subpopulation, and is defined as ug = E; \/?mo, where E;, ~ O(1),and my, € [0, 1]
represents the mean activity of neurons in different subpopulation including the
external one. The new state of the ith neuron at time ¢ is determined by

af (1) = O (1) — 6y, (16.30)
where 6y is the firing threshold, and © is a step function. Since the model neurons are

threshold-type units, the absolute scale of uf is irrelevant. We thus set the synaptic
strength as follows:



16.4 Excitation-Inhibition Balance Theory 265

15

10 4

| T

—-10 A

— ltot

Currents
o

0 50 100 150 200 250 300 350 400
Time(ms)

-15

Fig. 16.3 An illustration of the balanced state in spiking dynamics of a recurrent neural network
[Egs. (16.1) and (16.2)]. The balanced state is characterized by the mean (population averaged)
synaptic current of an excitatory contribution /g, an inhibitory contribution /; and the total current
I;o¢. The total current fluctuates around zero, showing the characteristic of the dynamic balance

JEEIJ[EII; (163121)
Jg=—Jg; > 0; (16.31b)
J[ = —]11 > 0. (1631C)

Next, we consider the population-averaged inputs of the excitatory and inhibitory
cells uy(t) as

2 N 2
we() = [uf O] =YY (L7} (O] +uf = VK (Z Juamy (1) + Ekmo> ,

=1 j=1 =1

(16.32)
where the population average [. . .] is defined as the quenched average over the con-
nectivity statistics, and is calculated as ‘/ﬁj 4 and the population-averaged firing rates

are defined as m; (1) = [0} (1)] = Nll M ol(1). To do the average in Eq. (16.32), we
have neglected the correlations between the random fluctuation in the neural activity
and the particular realization of the connectivity.

Similarly, we derive the variance oy, as
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2 N 2
() = [uf )1 = D Y ()8 el = (Ju)*mi(0),

L g.g’ I=1
" (16.33)
where the symbol §u = u — [u] denoting the fluctuation around the mean. Note that to
derive the above variance, we use the result [ (J,7 o7 ())*] = J3m; /N, and we neglect
the small term [J;] o/ (t)1* = J3m?K /N because of K < N;. In a balanced state,
the temporal fluctuations in the inputs are of the same order with the populations-
averaged inputs. By matching the order of magnitude of the population averaged
mean and variance, we derive a necessary condition for a balanced state, i.e., both
the excitatory and the inhibitory inputs cancel each other in the large- K limit, more

precisely being of the order O(1/+/K). This leads to the following equations:

Em() +my; — JEm1 = 0; (16343)
Imo+mg—Jim; =0, (16.34b)

where E, I represent the strength of excitatory and inhibitory external inputs, respec-
tively. Then, we obtain a solution:

JE —Jgl
== 16.35a
mp == ;Mo ( )
E-1 (16.35b)
mp = my. .
I Tr— 7, 0

To have areasonable solution (not pathological state), we require that 0 < m; < 1.
Therefore, the following constraints for the model parameters must be obeyed:

oo sl (16.36)

When % < Jj—f, there exists a solution with m; = 0. This is because, if mg = 0, then

Imo

mp = ¢, and we will have

J
up = VK (E - J—EI) mo < 0. (16.37)
1

On the other hand, when Jr < 1 and J; < 1, there appears a solution with mp =
my = 1 even for my = 0. In this case, we have:

up = VK1 = J) > 0. (16.38)

my = 0, 1 can be thought of as the pathological state of the cortical dynamics, in that
all-silent and all-active states are not preferred.
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Under this excitation-inhibition balance theory, the neural firing event is purely
driven by fluctuations, producing asynchronous irregular patterns, as observed in
awake cortex [21]. Recent studies argued that the residual input can be comparable
to the excitatory input. But the excitation and inhibition still cancel, yet not as tight
as the above balance theory. This scenario is called the loosely balanced setting [23].
The response of a loosely balanced network can be non-linear function of input
activity. In contrast, the tightly balanced network responds linearly to its input (see
Eq. (16.35a), and Fig. 16.4). The slope is related to the inverse of the mean-recurrent-
strength matrix.

We finally remark that the dynamical regime of the recurrent population plays an
important role in non-linear computations a neural circuit can implement. Therefore,
to provide a mechanistic understanding via theoretical arguments is still promising in
current research of theoretical neuroscience, in particular, bridging the gap between
models and experimental data.

o
U

re — theory
r;— theory
re — simulation
r; — simulation

©
o
[ )

o
w

o
N

o
=

Network activity (normalized)

o
o

0.0 0.1 0.2 0.3 0.4
External activity (normalized)

Fig. 16.4 Linear input tracking of excitation-inhibition balanced network. The mean-field theory
predictions are compared with the simulations of a spiking network. Parameters are the same as in
Fig. 16.3. We denote r, as the population(x)-averaged firing rate. The rate is normalized (scaled)
by the maximal value
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16.5 Training Recurrent Neural Networks

16.5.1 Force-Training

The chaotic activity near the edge of chaos can be used for computation tasks, such
as generating oscillating activity, and simulating a decision-making process of a
cognitive task [15]. The computational goal can be achieved by modifying only the
output weight, maintaining the randomly connected pool of neurons. The algorithm
that realizes this type of learning is called FORCE-learning [15]. FORCE is used for
the shorthand of first order reduced and controlled error learning. Here, we briefly
introduce the training details.

First we have a target output f;(¢), and the readout is obtained as z(t) = w'r,
where w is the readout weight, and r is the internal dynamics of the RNN. Readout
weights can be updated by the following local least mean squared rule:

T

Aw;j(t) = —n(t)e; (t)r;(1), (16.39)

where 7 is the learning rate, and the error e;(¢t) = z;(¢t) — fi(¢). This rule can be
further revised by taking into account the correlation function of the rate dynamics:

Aw;j(t) = —e;(D[C()r1)];, (16.40)

where C(¢) is a running estimate of the inverse of the correlation matrix of the
network activity plus a regularization term:

¢ -1
Ct) = (Zr(ﬂ)r%/) +a1> : (16.41)

t'=ty

where 1 is the starting time, and C(0) = 5, and an iterative solution is given by
C(t — ADr(OrT(1)C(t — A1)

C(it) =C@t — At) — 1+ rT()C(t — ADr(t)

, (16.42)

which follows the Sherman—Morrison formula. This learning rule can be adapted
to learning the recurrent weight as well [24], and to supervised learning in spiking
networks [25, 26].

16.5.2 Backpropagation Through Time

Recurrent neural networks (RNNs) is able to implement tasks involving time-
dependent signals, such as natural language processing and time sequence forecast.
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Fig. 16.5 Schematic illustration of a recurrent neural network. Wi, Wiec and Wy, are correspond-
ing connection matrices

Moreover, RNNs can also be used to model brain dynamics of any cognition tasks.
In this subsection, we introduce a widely used training method for RNNs, which is
backpropagation through time (BPTT). We first consider a canonical RNN structure.
Then, the derivation of BPTT is carried out in detail based on the chain rule. Finally,
we use RNN to perform a classification task on the MNIST benchmark dataset to
verify the effectiveness of the RNN model trained by the BPTT algorithm.

16.5.2.1 Dynamics Equation

We consider a discrete-time RNN model (Fig. 16.5), where N, recurrent units
connected to each other are described by the recurrent activity vector h(¢). For
simplicity, we consider at every time step, an input vector x(¢) of Nj, dimension
enters the network to provide signals to recurrent activities, which are read out to
form a time-dependent output y(¢) of Ny, dimensions. In practice, the time step for
turning on an input or reading out the decision signal depends on specified settings
of a task. The dynamics equation of the model reads

1
hi@ +1) = h;i(t) + = [=hi(t) + ¢ (u; ( + )], (16.43a)
NISC Nill )
wit+1)=> Wrhjt)+ Y Wihx;t + 1), (16.43b)
j=1 j=1
NOU[
() =Y W hi(), (16.43¢)

i=1

where ¢ (-) is a non-linear function, u; (¢ + 1) is the input current to the unit i at a
time step ¢ + 1, and 7 is the time constant characterizing how fast the RNN dynamics
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is. Alternatively, it can be compared to its continuous version—rtdh; /dt = —h; +
¢ (u;). There are only three sets of weight matrices in our setting, which are the input
weight Wi, = {Wii]‘.‘}, recurrent weight Wy, = {VI/ir]?C}, and output weight W, =
{Wi‘}“t}. These matrices are all time-independent, but need to be adjusted during
learning. Our goal is to train the network to produce a desired output y(¢) at each
time step, given a time-dependent input x(¢) and an initial activity vector h(0). Then,
the loss function that measures the difference between the target output y*(¢) and the
actual output y(¢) can be defined by the mean square error integrated over time:

T Nous

L= ZZ ek (D], (16.44a)
t=1 k=1

ex(t) = yi (D) — yi (1), (16.44b)

where T is the total number of time steps, &, (¢) is defined as the error of the output
unit £ at a time step ?.

16.5.2.2 Derivations of BPTT

Backpropagation through time is a standard training algorithm for RNNs [27]. In
this section, we introduce an easy way to derive BPTT based on the chain rule. More
precisely, we first derive the explicit forms of the derivatives of the loss function £
with respect to the input weight Wj,, recurrent weight W .. and output weight Wy.
As the error back-propagates from the output, we first consider = BW"“‘ . According to
the chain rule,

T Nou

Z 0L ayk(r):i 0L 8ya(t)
W;’é" — I (D) AW 2 () BWg!

T
= ea(Ohy(t). (16.45)

Then, we derive === based on the chain rule, and we can easily obtain

P Wru

o 0L b 1
Wrec Z 3ha(l) 3W;2€ - Z 8h ( ) (1646)

where we define z,(1) = 5,7 h ( 5 as the error of the recurrent unit a at a time step f,
which backpropagates through the network during training. At the last time step 7,

we have
Nout Nou

_ AL oy (T) _ out
ah (T) Z = ;ek(T)W,m . (16.47)

Ayi(T) 9ha(T)

At the other time steps t = 0, 1, ..., T — 1, the derivation proceeds as follows:
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Nou ' 1
oh, (t) ayk(t) ohy (1) o oh; (t+ 1) 0h,(t)
Nou[ 1 NICC
=D e OWE + — D ¢+ Wz + 1) + (1 = —)za(z +1).
k=1 1
= (16.48)
Flnally, an is derived as
L dh, )
8Wm —Z e 8W(lf,) 3 2008/ (g ()1 0), (16.49)

which is easy to obtain from the Eq. (16.46) by replacing A, (t — 1) by x(¢).

With the derivation of the above three derivatives, we can summarize the BPTT
algorithm in three steps. First, following the dynamics described by Eq. (16.43),
recurrent activity h(z) and output y(¢) evolve over time. Thus, the error e(¢) can
be directly computed. Second, the gradient term caused by error, namely z(¢) is
integrated backwards in time described by Egs. (16.47) and (16.48), and we can
finally obtain the gradients for three sets of weights,

% = é;ga(t)hb(t)7 (16.50a)
3L a

W = gza(tw’(ua(t))hb(t — 1), (16.50b)
IL

awi = 2 w09 wa)x 0. (16.50¢)

1=ty

We remark that the learning can be implemented by applying different kinds of
optimizers, such as vanilla SGD or Adam.

In the above BPTT, the gradient flows back from every time step ¢ to every time
step t’ < t, which may be very deep in the temporal domain, causing gradients to
explode or vanish. However, in practice, a truncated version can be designed, where
gradients do not flow from ¢ to ¢’ if the temporal distance |# — ¢'| exceeds a truncation
window size [28].

We finally show an example of training a RNN with the BPTT derived above.
MNIST is a benchmark classification dataset, containing handwritten digits patterns
from 0 to 9, which are 28 x 28 grayscale images. We input the training patterns row
by row at each time step, which means that the input dimension Nj, for the RNN
is 28, and the total number of time steps for processing one image is also 28. The
output dimension N should be equal to the total classes which is 10. 150 recurrent
units are used in this example. For the MNIST classification task, we only consider
the error generated from the last time step, when the whole image has been shown
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Fig. 16.6 Training trajectories of a RNN performing the MNIST classification. The lines are mean
results from the five independent runs, where the shadows indicate standard deviations

to the RNN. During each training epoch, 12800 images randomly selected from the
total training data (60000 images) are divided into 100 mini-batches with their size
equal to 128. The loss function is the cross-entropy, and Adam is used to optimize the
gradient with the learning rate of 0.01. In addition, we apply the gradient clipping in
which each gradient element for the weight matrices is clipped to the absolute value
of one.

The training performance is shown in Fig. 16.6. The training error and test accu-
racy saturate in tens of epochs, which verify the effectiveness of the BPTT algorithm.
Advanced algorithms taking the weight distribution into account are proposed in the
recent work [29], showing advantages of revealing the weight uncertainty and tem-
poral credit assignments underlying the network output behavior, in both engineering
tasks and computational cognition tasks.
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Chapter 17 ®)
Statistical Mechanics of Random g
Matrices

Random matrix theory plays an important role in neural network research, espe-
cially in characterizing the stability of the collective behavior of the network, which is
related to phase transitions (e.g., in the Hopfield model), or dynamical modes in recur-
rent neural networks. The asymptotic properties of random matrices whose entries
follow a pre-defined distribution can be connected to the thermodynamic behavior
in statistical physics (Edwards and Jones in J. Phys. A: Math. Gen. 9(10):1595, 1976
[1]; Sommers et al. in Phys. Rev. Lett. 60:1895, 1988 [2]). Therefore, the eigen-
spectrum of a random matrix ensemble can be reduced to calculating the free energy
function of a two-body spin interaction model, in which the spin could be continuous.
In this chapter, we will introduce statistical mechanics calculations of the spectral
density for random matrix ensembles, and its connection to neural networks (Rajan
and Abbott in Phys. Rev. Lett. 97(18):188104, 2006 [3]; Rogers et al. in Phys. Rev.
E 78(3):31116, 2008 [4]).

17.1 Spectral Density

Considering an N x N symmetric matrix J, whose entries follow a distribution, e.g.,
a Gaussian with zero mean and variance g/N, we then write the spectral density
intuitively:

1
p(A) = NZS(A—Ai>, (17.1)

where A; is a specific eigenvalue of the matrix J. To transform the definition to an
analytic form, we first introduce the Sokhotski—Plemelj formula:

1 1
lim — =P <—> Fimd(x), (17.2)
e~0+ x 1€ X
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where the Cauchy principal value integral is defined as

00 =4 o
P/ pdx _ {/ px)dx +/ M}, (17.3)
—00 X §—>0* —00 X s X

where ¢(x) is a real-valued test function. If we further define a resolvent (AI — J)~!,
then we have the following Green’s function:

1 1 1
Gy =—Trl-D"'==) ——. 174
NO) = L TG =) N;A_M (174)
Note that the resolvent can be disorder-averaged by using the replica method, and
is thus a very useful quantity for the analysis of random matrix. When N — oo, we
have

EGy() = Gao(A) = /dx’ff) (17.5)

x/
where E means the expectation with respect to the random realization of the matrix.
This is the so-called Stieltjes transform of p(x). We assume here that the spectral

density of a random matrix almost surely converges in the large-N limit. By using
Eq. (17.2), one can then prove that

1
px)=— hm ImGy(x —i€) = —E lim Im Gy (x — i€), (17.6)
T e—0*

where we have used the representation of the delta function:

€

8(x) = 7.7

T e_>o+ x2 4+ €2’

To sum up, we have the following analytic form to retrieve the spectral density
pA):

) ! E lim I 3 !
= —F lim Im _
p N e>0* 1 A —ie — )\i
1 ARgp) .
= N—E hm+ Im T In(A —ie — A;)
R (17.8)
1
= WEGIEJL Im — ln |:1_[(A i€ — A; ):|

0
= —E lim Im — In [det (A — ie)I — J)],
Nm  e-0* IA

where we have used the relation—
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N

det(\[—J) = ]_[(,\ — ). (17.9)
i=1

Because we are interested in a random matrix ensemble, the spectral density must
be averaged over the statistics of the ensemble. Therefore, we first transform the spec-
tral density in a form of the partition function, thanks to the fact that the determinant
can be transformed back to its integral representation, using either multivariate Fres-
nel integral or Gaussian integral:

b4 N
1 er /oo
—_— = | — dx;exp | —i xiAjixi|, (17.10)

or,

L _ 1 /deex [—XTAX] (17.11)
JdetA)  (2m)* P 2 '

which holds as long as A is positive definite. As we apply in other chapters, the
disorder average can be carried out by the replica method:

ir N
) 2 B fim m 2 gim L] &5 n/w]_[d“ Z C(A8ii — Jij)x< 1
=———=F lim Im — lim — —_ x| exp | —i X; ij — Jij)xs —
P N e—0+ OA n—0n 7'[% -0 4 ! b ! Y R

ij.a

2 ] 1
:=——-F lim Im — lim — (2" — 1)
N e>0+ oA n—>0n
2 3 . In(EZ")
=—— lim Im — lim s
Nm e—0+ dA n—0 n

(17.12)
where « indicates the replica index, A in the partition function should be replaced by
A — i€ [according to Eq. (17.8)], and

ir JNn 00
g [e} / [Taxeexp [ =i xeeay — x| (713
X i«

1
T i),

Taken together, we obtain a two-body interaction Hamiltonian for estimating
the spectral density of random matrix ensembles, which can be read off from the
definition of the replicated partition function.

17.2 Replica Method and Semi-circle Law

We assume that the random matrix statistics is specified by J;; ~ N (0, J>/N) and
Jij = Jji (the so-called Wigner ensemble). In the following derivation, we set A to
the one with a small imaginary part €. In other words, X in the following expressions
should be replaced by A — ie. According to the previous section, we have
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i,j,a

EZ" [ }N/ de exp (—MZ(x“) +12x°‘x”‘])

Sy

o

N
=

i<j

= /-oo l_[dx,f’ exp (—ik Xz(xl‘?‘)2 ]_[IEexp (21Zx x§ J,,)
X ia
r iz qNn

2
= [ l—[dxf‘ exp |:—iA 2:()cf‘)2 exp {— Z (Zx ) :| (17.14)

i#j \ o

q |
wi—| #I3

r iz qNn

] 2
= /_OC HdX," exp |:—ix Z(xf’)Z exp {{Vz Z (;(xlgx)Z) :|

A
=[5

2
[ 1]

< exp {_Z<2x ﬂ

where we have used the integral identity: E.e% = ¢°"%*/2 for z ~ N'(0, o'2). We have
neglected the diagonal entries of J. Note that

J? ?
LT(z) -3
i,j o

Z Z x“x“xﬂxﬂ

i,j op

2 Z <Z< “ ) LS eealal,

N

(17.15)

where we need only retain the terms of o« = . In other words, {x{} are in the replica

2
space mutually orthogonal. Moreover, the remaining term JNZ > (Za (xf‘)2> is of

the order n? and thus neglected as well. Consequently, we have

n

IV 2
EZ" = |:ft—zr| [ de,-exp —iAZ(xi)z—JWZ(Z(Xi)z)

(17.16)
By applying the Hubbard—Stratonovich transform (let a = 2J%/N):
( ax2> ( 4 ) (17.17)
exp | —— ——exp| —=— L ixs .
P 2 2ma P

we have
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2
—J? N\ o —N
exp |:N <Z (xi)2> :| = (E) W ‘/_OO ds exp (ms2> exp (—is Z (xi)2>

NAY2 A o0 -2, , 5
= (E) W/;oodscxp <mNs )exp —1A.v2i:(x,~) ,

where we have rescaled the variable s — As. It then follows that
iz N 12 o 2v2q]”
n e N A . A“Ns
i [T] <§> W /m dSUdXi xp [0+ )0 exp [_412”

n
I A AN o0 PP e A2Ns2
; (—) 7]/2/ ds [e 7/ exp | — 5
ot ) @) ) A +3) 47

N\'2 o N 22Ns27]"
— _— / ds [AM(1+45)]" 7 exp I:f i|
—00

(17.18)

472

N\ /DC J N Gl + ) 2Ns2 1|
— — xp | —— In ] Xp | ————

) @)l T2 e R RV
N\ N > N el
7> 77 €Xp [——1nk]/ ds exp[——ln(l+.€)—7;:|
27 (272) / 2 o 2 47

N\ N o0 "
= <—ﬂ> Wexp[—gln)\}/_oodsexp[—Ng(S)] s

where we have defined g(s) as

(17.19)

1 232
g(s) = 2 In(1 +5) + WER (17.20)

Now we use the Laplace method due to the large-N limit, i.e.,

o0 | 27
f ds exp[—Ng(s)] = exp [—Ng(s )] W, (17.21)

where g’(s*) = 0. Thus, the saddle-point solution s* is obtained by solving the fol-
lowing equation:

12
s2+s+/\—2 =0. (17.22)
A solution is given by
1 1 4J2?
=-[-1+ A]:— 1+ 1= 17.23
) [ VA|=3 [ 22 } (1729
472

where A ;=1 — .For || < 2J,1i.e., A < 0, the saddle points occur at

A2
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+ :
= - —lzl:‘l——l s 17.24
N 2|: 1 ? :| ( :

while for |A| > 2J, we have
1 4J2
st= =11 -—|. (17.25)
2 A

Only the solution s or s~ can make the saddle-point approximation reasonable
(considering the contour integration in the complex plane, see details of proof in
Ref. [1]). Hence,

" N\ N a
s { () Grmee -3 mioel-ree ”}

(17.26)
= (l>n/2 M exp [—ﬂ In k] exp [-nNg(sy)]
) (272)"? 2 0
Finally, we take the limit » — 0, and get
F0) = tim 2B _ i gz
n—0 n n—0 on
— lim > [f In (N—)\z> N - nNg(s)]
n—09n 2 \4mJ? 2 0
= 1ln ( N32 ) — Eln)» — Ng(sy)
2 \4nJ? 2 0
N _
~ —3ln)»—Ng(s0) ,as N — oo.
(17.27)

Note that in the above equation, A should be replaced by A — ie. We thus derive the
eigenvalue spectrum when |A| < 2J:

2 0 .
o(A) = —melilg Im ﬁ}'(k — i€)
1 9 A (sg (A —i€))?
== Jim Im o |:ln(k —i€) +In(l + 55 (A —i€)) + it (212 ) ]
1
- Varr =2,
2 J?

(17.28)
For |1| > 2J, g(s™) is real, and thus p(X) = 0. A comparison of the theory to the
numerical eigenvalue spectrum is shown in Fig. 17.1. Interested readers can check
if a simple annealed approximation of the free energy leads to the same result.
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Fig. 17.1 The semi-circle law. Comparison between theory and numerical simulations are shown.
The random matrix has a size N = 1000. 100 random realizations of the random matrix are con-
sidered

17.3 Cavity Approach and Marchenko-Pastur Law

In this section, we introduce the cavity approach to estimate the asymptotic spectral
density. Given the partition function defined as in the previous section, we can write
the spectral density:

2 0
pa(A) = ——— lim Im <— In ZA(z)> , (17.29)
7 9z z=A—i€

N e—0+

where

N
dx,- 1
ZA(Z =/ exp | —= xi(zI— A);ix; | . 17.30
AG) (Hm)pzz;( )ij X (17.30)
Thus, we derive the corresponding Hamiltonian:

1N
Ha(x,2) = 5 Zx,»(z]l — A)ijxj, (17.31)

ij

where we consider A;; = 0Vi. Finally, the spectral density can be calculated as
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. 1 2
pa(l) = 61£(1)1+ N2 Im [ (x; )z]Z:A_ie , (17.32)
1
where (- - -) denotes the average w.r.t the Boltzmman distribution under the Hamil-
tonian.
The cavity iteration can be written out explicitly as follows:

—2x}/2

Py = S [axasexe (v 3 | [T Pt a733)

Und kedi\j kedi\j
However, the integral is hard to work out analytically. We make a Gaussian ansétz [4],
without a rigorous proof. More precisely,

— Xz

1
P i(x) = ————¢ -7, 17.34
0= e (17.34)

Then, the cavity iteration is transformed to

1
AiLj(z) = - Zkeai\j A2 A @) (17.35)
The variance for the marginal probability can be derived immediately as
AD) = 1 . (17.36)
= Zkeai AizkAlHi(Z)
According to Eq. (17.32), one has
pa(k) = lim % Do (A0, (17.37)

The Hamiltonian can be defined on a tree-like pairwise-interaction graph if the
matrix A is sparse, and the cavity approximation is valid. We also assume that A;; ~
N(0, J?/c), where c is the average connectivity of the graph. In the large connectivity
limit (denoted as ¢ — 00), we can define

. 1
A =Cll)n;OZZAi. (17.38)
Therefore, we have
- 2 7
lim Zk:AikAH J2A, (17.39)

where we have used A,_,; >~ A,. Hence, we derive that
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1

= —, 17.40
z—J2A ( )

which gives the semi-circle law as derived by the replica method.
Now we consider the random matrix is the interaction matrix of the Hopfield
model:

P
Aij = %Zgiﬂg#, (17.41)

n=I1

where £ is an N x P matrix with entries subject to the binomial distribution with
equal probabilities for two peaks. This matrix ensemble is called the Wishart ensem-
ble. The Hamiltonian can be written in the form of

1 2
Ha(x,2) = %ZX,Z 5 Z[mu(xau)} , (17.42)
i Iz

where the auxiliary quantity m is defined by

1
My (Xp,) = NG > g (17.43)

[=m

The belief propagation equation reads as follows:

2 1 EVxi\2
P (xi) & e i/ / dmai\u eXp |: E (ml}*)i + = ) :| 1_[ Ovi(my_),
2 £ VN ;
vedi\pn vedi\pn
(17.44a)

Qvﬁi(muﬁi)O(v/‘dX(gu\iS(mvﬁi —ﬁ Z Ejvx,) l_[ Piy(x)). (17.44b)

JjEeov\i JEIV\i

Assuming that the cavity distribution P;_, ,(x;) ~ N(0, A;—,) and Q,—;(m,) ~
N0, I',—i), we can derive the recursive equation for these two variances [4]. The
marginal one is given by

1
Ai(2) = , (17.45)
o D Ch =
where (éi“ )2 = 1. In the large-N limit, we can further define
A= li 1ZA (17.46)
- Ngnoo N &~ ” ’

Equation (17.45) suggests that
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1 1
L —0, 17.47
A erozl_A ( )

wherea = P/N,and wehaveusedI',,;(2) = + Zjeaﬂ\[(éj’.‘)zAj_m(z) ~ A.This
equation is exactly the saddle-point equation if we use the replica method to com-
pute the disorder average [5]. Next, we show how to solve this equation to get
the Marcenko—Pastur law [6], an asymptotic spectral density for sample covariance
matrix.

Solving Eq. (17.47) (we change the notation z to A in the following derivation),
we have

=@ == DE(@— ke — 1) —4x

A 17.48
e ( )
where A, = A — ie. We then have
I . — 7 -
A — (¢ —re — e m (A Fie)y/ (@ — A — 1)2 — 4 +415' (17.49)
2(A2 + €2) 2(A2 + €2)
‘We now have to solve the following equation of complex values:
Je+id =5 +it, (17.50)
where ¢ = (¢ — A — 1)> — 4. From Eq. (17.49), we have a solution:
4e
t == , (17.51)
\/2(\/02 4+ 16€2 +¢)
and,
/2 L 16€2
s= g YV Tl te (17.52)
V2
Then, we have
(o — — i _ —1)2 — i
lim A= fm —@TreDe L GOV = ke = D —4r+die
e—0+ e=0t 2002 4€2) e—0+ 202 + €2)
S Z@m e T D oy 4 tim m ATIOG I
2 e—0F 2002 +€2)
@ =D o+ i MLy b
= —F—70 m ——F-—7> m ——-7-,
2 e—>0t 202 +€2) T >0t 202 +€2)
(17.53)

where Eq. (17.7) is used to get the delta function.
Finally, if & > 1, the first and third terms in Eq. (17.53) cancel, and the second

term gives rise to
Vel

[
p()\.) = ;éli)%l_# ImA = 2’7[—)\']1)‘7’)%()\,). (1754)
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Fig. 17.2 The eigenvalue distribution of the covariance matrix A. The pattern entry follows a
Gaussian distribution with zero mean and variance o2 (see details in the work [7]). Here we set
a=2,0 =0.5and N = 1000. 100 random instances of the matrix ensemble are considered

The indicator function I,_;, (1) reports one if A falls within the interval [A_, A, ],
and zero otherwise, which guarantees that the value of ¢ is negative. In the case of
a < 1, the first and third terms in Eq. (17.53) give rise to a delta peak. We thus have

1 A
p() = L Jim ma =Y () + (1= a)s(h), (17.55)
T e—>0F 2w A ’

where A+ = (1 £ /a)?. In sum, we derive the Marcenko—Pastur law:

p(A) = ! lim Im A = VA=A )0y —2)

- Jlim ol () + (1= 8o (@),

(17.56)
A comparison between theory and numerical results is shown in Fig. 17.2. We finally
remark that the Marcenko—Pastur law could also be derived using the annealed or
quenched computation of the replica method [5, 7].

17.4 Spectral Densities of Random Asymmetric Matrices

If the matrix A is a non-Hermitian matrix (e.g., asymmetric interaction matrix in
recurrent neural networks), the eigenvalues are complex. Then the spectral density
must be defined as follows:
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1 N
pa(z) = N Z §(x —Re(2))é(y — Im(2)). (17.57)

i=1

We first define a complex variable z = x + iy, where x and y are real. z* denotes
the complex conjugate of z. The Wirtinger derivatives can be defined as follows:

1

9, = 5(8x —1idy), (17.58a)
1

9, = E(ax +1dy). (17.58b)

The Wirtinger derivative has the following properties: 9.(z) = 9,-(z") = 1, and
0,(z*) = 9,+(z) = 0. We then have the following identity:

3+ (1/2) = 8.(1/2%) = w8(x)8(y). (17.59)

To interpret the above mathematical identity, we imagine a two-dimensional classical
electrostatic field (E) generated by a unit charge. The Gauss law implies that

2nrE = 1/g, (17.60)

where r denotes the distance from the charge on the plane, and &y is a physical
constant. Therefore, the Gauss law reads as well

V.= =28, (17.61)
r

which leads to the Poisson equation V2In(|r|) = 278(r). V denotes the gradi-
ent operator. The Laplacian operator V2 is defined by V? = % + 03_22 (in two-
dimensional space). Therefore, by defining E, = Re(1/z) and E, = —Im(1/z),
Eq. (17.61) turns out to be Eq. (17.59).

Then, we have
1

1 1
= —0p—
PAG) = —0. N;z—xi

(17.62)

11 -
= ;aZ*NTr(ZHN —A)L

Therefore, in the large N limit, the empirical density of different random realizations
of the matrix converges to the average density:

() = laz* <i Tr(zly — A)‘1>, (17.63)
T N
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where the average Green function G(z) = (+ Tr [(zIy — A)~']) where the average
is done w.r.t the random realizations of A, and Iy denotes an N x N identity matrix.
We further define the average Green function on the complex plane:

1 1 1
G(2) = <N Tr [(zIy —A)—1]> = <NZ A> = /dz)\:(_k)k, (17.64)

y LT

where [ d?)e indicates an integral over the complex plane, we have used Tr[P~'AP]
= Tr A for any invertible P, and if A is invertible, ArAH =1 /A(A), where A indi-
cates the matrix’s eigenvalues. Note also that adding a diagonal matrix zIy to A just
increases each eigenvalue of A by z. Considering a contour integral around a closed
path C, we can use the residue theorem to prove that

L./dz(;(z) =fd2xp(x), (17.65)
2mwi C S

where S indicates the region bounded by the closed path (the eigenvalue is not on
the path). In addition, a complex form of Gauss law implies that

1 G G
— | &z —=+i—|= / d>rp (L), (17.66)
2r Js ax ay s
which requires that
oReG 0ImG
— —— =2np, (17.67a)
ax ay
dImG 0dReG
= °7 _0 (17.67b)
ox ay

Equation (17.67a) implies that £, = 2Re G and E, = —2Im G [2], relating the dis-
tribution of an electric charge to the electric field, while Eq. (17.67b) corresponds
to V x E = 0, suggesting a scalar potential ®, i.e., E = —V ®. Therefore, we have
the Poisson equation for the two-dimensional electrostatics V2® = —4mp, corre-
sponding to the spectral density problem. Altogether, the spectral density for a non-
Hermitian random matrix can be obtained through finding a potential:

1
®(z,2%) = — 5 {Indet [y — AN Iy — A))), (17.68)

which can be shown to be consistent with Eq. (17.64) and the electrostatics repre-
sentation, using det(AB) = det A det B and det(AT) = det A. The Green function is
given by
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G(z) = 0.P(z, 2"), (17.69a)
G*(z) = 0-P(z, 27). (17.69b)

Equation (17.67a) also implies that Re [81* G] = 27 p, which means that if G is
only the function of z in a region, the eigenvalue density must be zero in that region.
Therefore, the non-zero spectral density is related to the non-holomorphic behavior of
Green'’s function [8]. This property can be used to determine the boundary separating
holomorphic and non-holomorphic solutions of the spectral problem.

To sum up, we have

—1 2 * T
p(x,y) = —Nv (Indet [(z*Ty — AD Iy — A))), (17.70)

where V2 = 40,0,.. The determinant can be transformed to the Gaussian integral
representation over complex variable. Then, the spectral density problem is reduced
to a disorder system composed of a large number of interacting particles. Thus, the
cavity approach or replica method can be applied to derive the analytic form of the
asymptotic spectral density. In some specific problems, n replicas decouple in the
thermodynamic limit, then an annealed calculation can be performed [2].

Z > = D 2 (i — Al (28, —Akj)z,')>,

() = ln </ ]‘[
i,j.k
’ (17.71)

where a positive infinitesimal quantity € is usually introduced to avoid singularities
caused by z=A;. More precisely, ®(z)=— %(ln det [(Z*]IN - AT)(ZI[N —A)+ e]IN]).
For example, the derivation of the (Girko’s) circular law for the fully asymmetric
random matrix falls within this class [9]. When the matrix is dense, diagrammatic
expansion techniques (Feynman diagrams) are also useful for deriving the asymptotic
spectrum of non-Hermitian matrices [10, 11]. This method can also derive the eigen-
spectrum of the E-I interaction neural populations, where cell types are distinguished
and thus Dale’s law is respected [3].

To apply the diagrammatic method, we introduce the following Hermitization
process. We first construct a 2N x 2N Hermitian matrix [12, 13]:

_ O A — Z]IN
H = <A* Ty 0 ) . (17.72)
AT denotes the transpose conjugate of a matrix. The Green function reads then
1 gll g12
= = , 17.73
g(w) oly —H (gz1 G2 ( )

in a block structure, and w is a constant. Note that each of four blocks (e.g., G'!) is
an N x N matrix. We then have the following matrix identity:
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oly zZIn—A\[(G" G2\ [(Iy 0
(Z*]IN _ AT CL)HN ) (ng g22> - ( 0 HN) . (1774)

Inspecting the upper left block, we have immediately
wG" + Iy — A)GH =Iy. (17.75)

Then G(z) = (zIy — A)~' = G?! when w = 0, and thus the spectral density is
obtained by

p(x,y) = laz* <i TrG* (w=0,z, z*)>. (17.76)
T N

To compute G(w), we first write wly — H = G, I _ 7, where

Gyl = (“’HN Z]IN) and J = (1& ‘3) : (17.77)

Z*]IN (,()HN

We assume that J has a zero mean, and thus Gy is just G with A = 0. G can then be
expanded in Gy as follows:

1 o0
g=<—>= Go((TGo)"). 17.78
7 ; 0((TG0)") (17.78)

By applying the Wick contraction (supposed that the distribution over 7 is Gaussian),
and noting that only planar diagrams remain, one can re-organize the above expansion
as follows:

G=Y Go(2Gp)" = : (17.79)

-1
n=0 go - X

where the self-energy matrix X isintroducedas ¥ = (J7GJ) (i.e., Dyson—Schwinger
relation), which is the sum of all contributions coming from all one-particle irre-
ducible diagrams [13]. The key equation G~ = G, ' — ¥[G] is also called Dyson
equation in physics. The Dyson equation gives the self-consistent way to compute
the spectra density of random non-Hermitian matrices.
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Chapter 18 ®)
Perspectives I

This book introduces basics of statistical mechanics and its relationship to current the-
oretical studies of neural networks (including deep neural networks), mainly focusing
on an overview of main tools to deal with non-linearity intrinsic in neural compu-
tation, and detailed illustration of deep insights provided by physics analysis in a
few typical examples (most of them were proposed by the authors’ own works). In
Marr’s viewpoint [1], understanding a neural system can be divided into three lev-
els: computation (which task the brain solves), algorithms (how the brain solves the
task, i.e., information processing level) and implementation (neural circuit level). In
artificial neural networks, researchers build a naive mapping of the first two levels
into a toy model level (especially for theoretical studies). Even the first two levels
are now turned into ideas to solve challenging real-world problems, driven by deep
learning [2, 3]. However, biological details are also being incorporated into standard
models of neural networks [4—6]. Indeed, neuroscience researches about the biologi-
cal mechanisms of perception, cognition, memory and action have already provided a
variety of fruitful insights inspiring the empirical/scientific studies of artificial neural
networks, which in turn inspires the neuroscience researchers to design mechanistic
models to understand the brain [7, 8]. Therefore, it is promising to integrate physics,
statistics, computer science, psychology, neuroscience and engineering to provide
theoretical predictions, and reveal inner workings of deep (biological) networks and
even intelligence.

The goal of providing a unified framework for neural computation is very challeng-
ing. Due to re-boosted interests in neural networks, there appear a lot of important
yet unsolved scientific questions. We shall list some of them below, and provide
our personal viewpoints towards a statistical mechanics theory of these fundamental
questions.

Representation Learning
From a viewpoint of unsupervised learning aiming at extracting statistical regulari-
ties from raw data, one can ask what a good representation is and how the meaningful
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representation is achieved. We have not yet satisfied answers for these questions. A
promising argument is that entangled manifold at earlier layers of a deep hierarchy is
gradually disentangled into linearly separable features at output layers [9-13]. The
manifold perspective is also promising in system neuroscience studies of associa-
tive learning by separating overlapping patterns of neural activities [14]. A coherent
theory of manifold transformation is still lacking, prohibiting us from an understand-
ing of which key network parameters control the geometry of manifold, and even
affects the learning process, for which there may exist a few factors having their ori-
gin from biological contexts, e.g., normalization, attention, homeostatic control [15,
16]. Another argument from information-theoretic viewpoints demonstrates that the
input information is maximally compressed into a hidden representation whose task-
related information should be maximally retrieved at the output layers, according to
the information bottleneck theory [17]. However, this theory is still under debate [18].

Generalization

Intelligence can be considered to some extent as the ability of generalization, espe-
cially given very few examples for learning. Therefore, generalization is also a hot
topic in current studies of deep learning. Traditional statistical learning theory claims
that over-fitting effects should be strong when the number of examples is much less
than the number of parameters to learn, which thereby could not explain the current
success of deep learning. A promising perspective is to study the causal connection
between the loss landscape and the generalization properties [19-21]. For a single
layered perceptron, a statistical mechanics theory can be systematically derived [22,
23]. In contrast to the classical bias-variance trade-off (U-shaped curve of the test
error versus increasing model complexity) [24], deep learning achieves the state-
of-the-art performance in the over-parameterized regime [20, 25]. However, for a
multi-layered perceptron model, how to provide an analytic argument about the
over-fitting effects versus different parameterization regimes (e.g., under-, over- and
even super-parameterization) becomes a non-trivial task [26]. Furthermore, clarify-
ing which of lazy-learning (or neural tangent kernel limit) and feature-learning (or
mean-field limit) may explain the success of deep supervised learning remains open
and challenging [27, 28].

Adversarial vulnerability

Adversarial examples are defined with those inputs with human-imperceptible modi-
fications yet leading to unexpected errors in a deep learning decision-making system.
This adversarial vulnerability of deep neural networks poses a significant challenge
in the practical applications of both real-world problems and scientific studies. In
physics, systems with a huge number of degrees of freedom is able to be captured by
a low-dimensional macroscopic description. In this sense, a low-dimensional expla-
nation with a few order parameters about the origin of the adversarial vulnerability is
lacking so far. Although some recent efforts were devoted to this direction [29-31],
more exciting results are expected in near future works.

Continual Learning
A biological brain is good at adapting the acquired knowledge from similar tasks
to domains of new tasks, even if only handful examples are available in the new
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domain. In contrast, neural networks are in general poor at the multi-task learning,
although impressive progresses have been achieved in recent years. For example,
during learning, a diagonal Fisher information term is computed to measure impor-
tances of weights (then a rapid change is not allowed) for previous tasks [32]. A later
refinement by allowing synapses accumulating task relevant information over time
was also proposed [33]. More machine learning techniques to reduce the catastrophic
forgetting effects are summarized in the review [34]. However, we still do not know
the exact mechanisms for mitigating the catastrophic forgetting effects in a princi-
pled way, which calls for theoretical studies of deep learning in terms of adaptation
to domain-shift training, i.e., connection weights trained in a solution to one task
are transformed to benefit learning on a related task. Furthermore, it remains unclear
how the related knowledge contained in a source task can be transferred effectively
to boost the performance in a target task, suppose that both tasks share common
semantics in the latent space.

Causal Learning

Deep learning is criticized as being nothing but a fancy curve-fitting tool, making
a naive association between inputs and outputs. In other words, this tool could not
distinguish correlation from causation. A human-like AI must be good at retrieving
causal relationship among feature components in sensory inputs, thereby carving
relevant information from a sea of irrelevant noise [35, 36]. Therefore, understand-
ing cause and effects in deep learning systems is particularly important for a next-
generation artificial intelligence. The question whether the current deep learning
algorithm is able to do causal reasoning remains elusive. Consequently, designing
theory-accessible toy models becomes a key to address this question, although it
would be very challenging to identify causes for observed effects by simple physics
equations.

Internal Model of the Brain

The brain is argued to learn to build an internal model of the outside world, reflected
by spontaneous neural activities as a reservoir for computing (e.g., sampling) [37].
The agreement between spontaneous activity and stimulus-evoked one increases dur-
ing development especially for natural stimuli [38], while the spontaneous activity
outlines the regime of evoked neural responses [39]. The stimuli were shown to carve
a clustered neural space [40]. Then, an interesting question is what the spontaneous
neural space looks like, and how it dynamically evolves. Furthermore, how sensory
inputs combined with the ongoing cortical activity to determine animal behavior
remains open and challenging. On the other hand, reinforcement learning was used
to build world models of structured environments [41]. In reinforcement learning,
data are used to drive actions which are evaluated based on reward signals the agent
receives from the environment. It is thus interesting which kind of internal mod-
els the agent establishes through learning from interactions with the environments.
Moreover, a recent work shows a connection between the reinforcement learning and
statistical physics [42], which suggesting that a statistical mechanics theory could
potentially be established to understand the internal model, with potential impacts
on studying neural computations in the brain.
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Theory of Consciousness
One of the most controversial question is the origin of consciousness—whether the
consciousness is an emergent behavior of a highly heterogeneous neural circuit with
various carefully designed regions (e.g., a total of 10'* connections for human brain).
The subjectivity of the conscious experience is in contradiction with the objectiv-
ity of a scientific explanation. According to Damasio’s model [43], the ability to
identify one’s self in the world and its relationship with the world is considered a
central characteristic of conscious state. Whether a machine algorithm can achieve
the self-awareness remains elusive. There are other two major cognitive theories
of consciousness: one is the global workspace framework [44], which relates con-
sciousness to the widespread and sustained propagation of cortical neural activities
by demonstrating that consciousness arises from information-processing computa-
tions of specialized modules. The other is the integrated information theory that
provides a quantitative characterization of conscious state by integrated informa-
tion [45]. Both theories follow a top-down approach, which is in stark contrast to the
statistical mechanics approach following a bottom-up manner building the bridge
from microscopic interactions to macroscopic behavior. These hypotheses are still
under intensive criticism despite some cognitive experiments they can explain [46].
From an information-theoretic argument, the conscious state may require a diverse
range of configurations of interactions between brain networks, which can be linked
to the entropy concept in physics [47]. The large entropy leads to optimal segrega-
tion and integration of information. Taken together, whether the consciousness can
be created from an interaction of local dynamics within complex neural substrate is
still unsolved [48]. A statistical mechanics theory, if possible, is always promising in
the sense that one can ask theoretical predictions from just a few physics parameters.
To sum up, in this chapter, we provide some naive thoughts about some fundamen-
tal important questions related to neural networks, for which building a good theory'
is far from being completed. In physics, we have the principle of least action, from
which we can deduce the classical mechanics or electrodynamics laws. We are not
sure whether in physics of neural networks (and even the brain) there exists a general
principle that can be expressed in a concise form of mathematics. Readers interested
in the interplay between physics theory and neural computations are encouraged to
promote advances along these exciting yet risky research lines.
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