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Preface

Neural networks have become a powerful tool in various domains of scientific
research and industrial applications. However, the inner workings of this tool remain
unknown,which prohibits us fromadeep understanding and further principled design
of more powerful network architectures and optimization algorithms. To crack the
black box, different disciplines including physics, statistics, information theory, non-
convex optimization and so on must be integrated, which may also bridge the gap
between the artificial neural networks and the brain. However, in this highly inter-
disciplinary field, there are few monographs providing a systematic introduction of
theoretical physics basics for understanding neural networks, especially covering
recent cutting-edge topics of neural networks.

In this book, we provide a physics perspective on the theory of neural networks,
and even neural computation in models of the brain. The book covers the basics of
statistical mechanics, statistical inference, neural networks, and especially classic
and recent mean-field analysis of neural networks of different nature. These mathe-
matically beautiful examples of statistical mechanics analysis of neural networks are
expected to inspire further techniques to provide an analytic theory for more complex
networks. Future important directions along the line of scientific machine learning
and theoretical models of brain computation are also reviewed.

We remark that this book is not a complete review of both fields of artificial neural
networks and mean-field theory of neural networks, instead, a biased-viewpoint of
statistical physics methods toward understanding the black box of deep learning,
especially for beginner-level students and researchers who get interested in themean-
field theory of learning in neural networks.

This book stemmed from a series of lectures about the interplay between statistical
mechanics and neural networks. These lectures were given by the author in his PMI
(physics, machine and intelligence) group during the years from 2018 to 2020. The
book is organized into two parts—basics of statistical mechanics related to the theory
of neural networks, and theoretical studies of neural networks including cortical
models.

The first part is further divided into nine chapters. Chapter 1 gives a brief history
of neural network studies. Chapter 2 introduces multi-spin interaction models and
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the cavity method to compute the partition function of disordered systems. Chapter 3
introduces the variational mean-field methods including the Bethe approximation
and belief propagation algorithms. Chapter 4 introduces the Monte Carlo simulation
methods that are used to acquire low-energy configurations of a statistical mechan-
ical system. Chapter 5 introduces high-temperature expansion techniques. Chapter 6
introduces the spin glass model where the Nishimori line was discovered. Chapter 7
introduces the random energy model which is an infinite-body interaction limit of
multi-spin disordered systems. Chapter 8 introduces a statistical mechanical theory
of the Hopfield model that was designed for associative memory of random patterns
based on the Hebbian local learning rule. Chapter 9 introduces the concepts of replica
symmetry and replica symmetry breaking in the spin glass theory of disordered
systems.

The second part is divided into nine chapters. Chapter 10 introduces the Boltz-
mannmachine learning (also called the inverse Ising problem in physics ormaximum
entropy method in statistics) and the statistical mechanics of the restricted Boltz-
mann machine learning. In this chapter, a variational mean-field theory for learning
a generic RBM of discrete synapses is also introduced in depth. Chapter 11 intro-
duces the simplest model of unsupervised learning. Chapter 12 introduces the nature
of unsupervised learning with RBM (only two hidden neurons are considered),
i.e., the unsupervised learning process can be understood in terms of a series of
continuous phase transitions, including both weight-reversal symmetry breaking and
hidden-neuron-permutation symmetry breaking.Chapter 13 introduces a single-layer
discrete perceptron and its mean-field theory. Chapter 14 introduces the mean-field
model of multi-layered perceptron and its analysis via the cavity method. In this
chapter, a mean-field training algorithm of multi-layered perceptron with discrete
synapses is introduced, together with mean-field training from an ensemble perspec-
tive. Chapter 15 introduces the mean-field theory of dimension reduction in deep
random neural networks. Chapter 16 introduces the chaos theory of random recur-
rent neural networks. In this chapter, the excitatory-inhibitory balance theory of
cortical circuits is also introduced, together with the backpropagation through time
for training a generic RNN. Chapter 17 introduces how the statistical mechanics
technique can be applied to compute the asymptotic behavior of the spectral density
for the Hermitian and the non-Hermitian randommatrices. Finally, perspectives on a
statistical mechanical theory toward deep learning and even other interesting aspects
of intelligence are provided, hopefully inspiring future developments of the interdis-
ciplinary fields across physics, machine learning and theoretical neuroscience and
other involved disciplines.

I am grateful for the students’ efforts in drafting the lecture notes, including
preparing figures. Here, I list their contributions to associated chapters. These
students in my PMI group are Zhenye Huang (Chaps. 4 and 10), Zijian Jiang
(Chaps. 2, 13 and 16), Chan Li (Chaps. 11, 15 and 16), Jianwen Zhou (Chaps. 5, 8 and
17), Wenxuan Zou (Chaps. 3, 6 and 14) and Tianqi Hou (Chap. 12). I also thank the
other PMI members, Ziming Chen, Yiming Jiao, Junbin Qiu, Mingshan Xie, Xianbo
Xu and Yang Zhao for their reading feedbacks on the draft. I also would like to
thank Haijun Zhou, K. Y. Michael Wong, Yoshiyuki Kabashima and Taro Toyoizumi
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for their encouragements and supports during my Ph.D. and Post-doctoral research
career. I finally acknowledge the financial support from the National Natural Science
Foundation of China (Grant No. 11805284 Grant No. 12122515).

Guangzhou, China
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Chapter 1
Introduction

Neural network studies stemmed from the curiosity about how the brain works and
even biological mechanisms of high-level intelligence [1]. This original curiosity
has a very long history that is also a history of humans’ endeavors to understand
the brain. A modern artificial neural model was proposed by McCulloch and Pitts in
1943 [2], and the neuron of complex biological processes was abstractly modeled as
a non-linear transfer function of simply weighted sum of inputs. A few years later,
Donald Hebb proposed the Hebbian learning rule [3], i.e., “cells that fire together,
wire together”. This rule forms the basics of a later development, i.e., the abstract
model of associativememory, the so-calledHopfieldmodel [4, 5], where theHebbian
rule was used to construct the effective coupling between neurons in the model that
can realize the retrieval of a memory item (e.g., a random pattern the Hebbian rule
uses), under a less noisy neural dynamics from an initial state where the memory
item is corrupted by a few bits. The Hebbian rule, despite its simplicity, plays a
significant important role in the current status of both experimental and theoretical
neuroscience studies [6].

Based on theMcCulloch–Pitts model of artificial neurons, Frank Rosenblatt intro-
duced the first perceptron model of supervised classification tasks [7]. At that time,
this model can only be used to classify linearly separable patterns [8]. However,
this abstract model plays an important role in neuroscience studies, as the percep-
tron model was popular in modeling the learning behavior of the cerebellar Purk-
inje cells [9, 10]. The perceptron model can also be easily generalized to multi-
layer feedforward neural networks, which are able to separate non-linearly separable
patterns, due to the highly nested non-linear layer-wise computations. This nested
non-linearity makes an analytic understanding of inner workings challenging in the
academic community [11, 12]. However, the backpropagation of the error from top
layers was shown to work in practical training of multi-layer neural networks [13],
which establishes the algorithmic foundation of deep learning.

Fukushima introduced neocognitron in 1980, using the biological concept of sim-
ple and complex cells observed in visual pathways of a cat’s visual cortex [14].When
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these neural computations are organized in a hierarchical way, the position-shift
invariance can be achieved. This neocognitron model inspired the further develop-
ment of multi-layer neural computation, for example, the powerful architecture—
convolution neural network (CNN) proposed in 1990s [15], where the computation
of simple cells corresponds to convolution while computation of complex cells cor-
responds to pooling, showing the power of multi-layer neural networks in practice,
e.g., in solving computer vision tasks [16].

In 1985, Hinton and Sejnowski introduced the Boltzmann machine [17], where
the model parameters, e.g., coupling and fields of an Ising model, can be learned
directly from the data samples, matching only the first two moments of the data
statistics [18]. This framework has a recently renewed interest in system neuro-
science [19], being known as an inverse Ising problem in physics [20] with a wide
application in different interdisciplinary fields ranging from neural activity modeling
and protein structure prediction to financial data analysis [21]. Paul Smolensky later
introduced the original two-layer neural network with stochastic activations [22],
the so-called restricted-Boltzmann machine (RBM) [22, 23], where neurons in a
traditional Boltzmann machine are divided into visible and hidden groups. In 2006,
Hinton and Salakhutdinov proposed efficient methods to train a deep belief net-
work composed of layer-wise stacking of RBMs [24], initializing the deep learning
revolutionary in both academic and industrial neural network studies.

Another type of neural network architecture has salient features in its recurrent
computation, incorporating temporal information. There appeared extensive research
interests in algorithmic issues around 1990 [25–28]. However, training the recurrent
neural network (RNN) is typically challenging, due to vanishing/exploding gradients
of the objective function [29]. In the current deep learning era,many smart techniques
are beingproposed to tackle this challenge. In particular,Hochreiter andSchmidhuber
introduced the long short-termmemory (LSTM), using various kinds of information-
gating mechanisms [30], to avoid the training difficulty of RNNs. The RNN structure
is also considered as a canonical model of perception, learning, memory, action and
other high-level cognition [31–33].

In the history of artificial neural networks, still a lot of important topics are not
covered in the above retrospect. For complete reviews, we refer interested readers to
several recent reviews of neural networks [34–36]. On the other side, the statistical
mechanics plays a key role in understanding the emergent behavior of artificial neural
networks, even real neuronal networks [37].

The first statistical mechanical theory of neural networks was published in 1985;
providing a complete phase diagram of the Hopfield network [38, 39] and explain-
ing low temperature and low memory load are necessary to guarantee a successful
retrieval of one of the embedded random patterns (akin to memory items). The
analytic techniques are rooted in studies of disordered systems, such as spin glass
systems [40, 41]. One powerful technique is the replica trick, which introduces many
copies of the original model, and the original complex spin-to-spin interactions are
decoupled into overlaps between replicas, while the overlaps are exactly the order
parameters of the statistical mechanical model. This technique was later generalized
to the perceptron model, inventing the concept of the Gardner volume to determine
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the capacity of a perceptron system [42, 43]. The Gardner method is still popular as
a powerful physics tool in the theoretical neuroscience community [10].

In 1988, Sompolinsky et al. developed another powerful physics method for ana-
lyzing the recurrent dynamics of RNNswith randomweights [44]. Thismethod treats
the behavior of a real RNN as an effectivemean-field limit of a homogeneous system,
whose first two moments of neural dynamics statistics are recursively established,
resulting in amean-field calculation of theLyapunov exponent determiningwhether a
transition-to-chaos is possible. This framework can be derived under the path-integral
representation of the dynamics [45, 46] and is still popular in analyzing more com-
plex RNNswith structured connectivity. Themean-field study of a randomRNNwas
later generalized to neuronal networks of excitatory and inhibitory cells [47, 48], sat-
isfying biologicalDale’s rule (a biological neuron cannot produce both excitatory and
inhibitory synapses). In this study, the excitatory–inhibitory balance condition [49,
50], i.e., feedback inhibition cancels with strong excitatory recurrent inputs, can be
identified in themean-field limit, leading to amechanistic explanation of the irregular
asynchronous neural activity observed in cortical circuits. Brunel further studied the
emergent behavior of spiking activity of a sparsely connected excitatory–inhibitory
neural network [51]. These theoretical paradigms still benefit the computational and
theoretical community even now. Therefore, the statistical physics methods, includ-
ing equilibrium phase diagram analysis and non-equilibrium mean-field theory, are
very promising in exploring the black box of deep neural networks, which may
further connect to other branches, e.g., random matrix theory [52], etc.

In this book, wewill provide our personal selections of statisticalmechanical tech-
niques applied to neural networks studies, and an in-depth introduction of these sta-
tistical physics methods, especially applications in simple toymodels where learning
mechanisms can be revealed in a mathematically concise way, even with theoretical
predictions of new emergent behavior.
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Chapter 2
Spin Glass Models and Cavity Method

Spin glasses are magnets with two-spin interactions of random signs (Mézard et al.,
in Spin Glass Theory and Beyond. World Scientific, Singapore, 1987 [1]), e.g., an
alloy with randomly localized magnetic moments. In spin glass models, the ran-
domness emerges in spin interactions. For example, in the Sherrington–Kirkpatrick
model (Sherrington and Kirkpatrick in Phys. Rev. Lett. 35(26):1792, 1975 [2]), all
two-spin interactions follow independently a Gaussian distribution with variance
N−1/2 (N is the system size); in the Edwards–Anderson model (Edwards and Ander-
son in J. Phys. F:Metal Phys. 5(5):965, 1975 [3]), the spins sit on a finite-dimensional
lattice, and in the Bethe lattice model (Viana and Bray in J. Phys. C: Solid State Phys.
18(15):3037, 1985 [4]; Mézard and Parisi in Eur. Phys. J. B 20:217, 2001 [5]), the
spins locate at a random lattice of finite connectivity for each spin. All these models
belong to the category of multi-spin interactionmodels, originally studied in physics,
later widely explored in the context of optimization problems in computer science,
machine learning and computational neuroscience.

2.1 Multi-spin Interaction Models

Before going into details of the underlying physics, we would like to give a few
seminal applications of the spin glass models. The first one is the random K -SAT
problem. The random K -SAT problem is finding a solution, say an assignment of
N Boolean variables, to satisfy a random formula composed of logical AND of M
clauses. Each clause is expressed as a logical OR function of K randomly selected
distinct variables (either directed or negated with equal probability) from the variable
set. For example, one short formula is given by

F = (x3 ∨ x7 ∨ x2) ∧ (x1 ∨ x5 ∨ x6) ∧ (x4 ∨ x7 ∨ x5). (2.1)
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From a physics viewpoint, the random K -SAT can be treated as a spin glass
problem with a focus on the typical case analysis.1 If xi is TRUE, then we transform
it to an Ising spin with value 1 (spin up); otherwise, it is transformed to −1 (spin
down). Given a configuration of spins, the number of violated clauses can be defined
as an energy function in statistical physics [6],

E(σ ) =
M∑

m=1

K∏

j=1

1 + Jm
j σimj

2
, (2.2)

where imj is the j th variable appearing in the mth clause. The quenched disorder Jm
j

is 1 if the Boolean variable in the formula appears negated and−1 otherwise. Hence,
the constraint satisfaction problem reduces to a physics problem of finding minima
of the energy function.

Analogously, the random K -XOR SAT formula can be written as

F =
M∧

m=1

⎡

⎣

⎛

⎝
K⊕

j=1

ximj

⎞

⎠ ⊕ ym

⎤

⎦ , (2.3)

where the symbol⊕ denotes the logical XOR operation, and ym is quenched random
Boolean value. This formula corresponds to a linear system,with an efficient solver of
the Gaussian elimination procedure. In physics, the diluted Ising p-spin model with
coupling±1 belongs to the class of random K -XOR problem. Similar to the random
K -SAT Problem, one can easily write down the associated energy function [7]

E(σ ) =
M∑

m=1

1 − Jm
∏K

j=1 σimj

2
, (2.4)

where Jm is an Ising-mapping of the Boolean variable ym .
The above two constraint satisfaction problems belong to multi-spin interaction

models in physics. Physicists are interested in studying the mean-field limit N → ∞
and M → ∞ but keeping the ratio M/N constant. One expects that rich phase
transitions emerge due to complex interactions among spin variables. Next, we will
illustrate how the cavity method can be used to compute the free energy function
of this class of models. Cavity method was first proposed to reproduce the replica
results of the Sherrington–Kirkpatrick model [8], and further reformulated in the
study of neural networks [9], andwas finally proposed at the concise physics level and
systematic mathematical level on the Bethe lattice, a broad class of glass models of
finite connectivities [5]. We will also explore the core physics assumption behind the
cavity method in detail in a multi-spin interaction model. The multi-spin interaction
models like the above two cases can be analogously treated.

1 The computational complexity is defined in the worst-case setting.
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The multi-spin interaction model can be also defined in the context of information
transmission, for which we shall give a concrete example. Let us consider the case
that we want to send a message to a receiver, and the message may be perturbed
during transmission because of the noise in the channel. It is a highly non-trivial
task for the receiver to retrieve the original message from the perturbed one. One
solution is to introduce redundancy to the originalmessage at the sender site. Then the
receiver can correct some transmission errors according to the redundancy. In 1948,
Claude Shannon proved that error-free transmission is possible when the code rate
is below the channel capacity, which establishes a fundamental bound for designing
engineering practical codes [10]. Numerous efforts have been devoted to design the
codes approaching Shannon’s bound (channel capacity). Among them, the Sourlas
code is the first one in physics [11], which relates error-correcting codes to a spin
glass model.

It is easy to figure out how to construct a Sourlas code. Supposed that we have
an N -bit binary original message ξ ∈ {±1}N , and then encode them into an M-bit
transmitted message J0 = {J 0

1 , J 0
2 , . . . , J 0

M }. The ath bit of J 0 is the product of a
subset ∂a of randomly selected original message bits,

J 0
a =

∏

i∈∂a

ξi . (2.5)

We then denote Ja as the ath bit of the received message, which may not be equal to
the transmitted message due to the channel noise flipping message bits. We further
assume that each bit of transmitted messages can be independently flipped with the
same probability p. Hence, the conditional probability of a received message given
a transmitted one reads

P(Ja|J 0
a ) = pδ(Ja + J 0

a ) + (1 − p)δ(Ja − J 0
a ). (2.6)

To decode the sent message, we write the computational task as a statistical
mechanics problem with the following Hamiltonian [12]:

H(σ ) = −
M∑

a=1

Ja
∏

i∈∂a

σi , (2.7)

where σi is the dynamical binary spin variable for decoding the original message
{ξi }. What we need to do is computing the posterior probability P(σ |J) which is
given by

P(σ |J) = exp(−βH(σ ))

Z
, (2.8)

where β is the inverse temperature, and Z is the partition function. This decoding
process amounts now to searching for the ground state of the statistical mechanics
problem. The energy of themodel takes aminimal value if

∏
i∈∂a σi = Ja . According
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to the canonical ensemble theory, all emergent properties of the decoding process
are included in the partition function that is mathematically formulated as follows:

Z =
∑

{σi }
exp(−βH(σ )). (2.9)

2.2 Cavity Method

In this section, we apply the cavity approximation to compute the partition func-
tion. Notice that a direct calculation of Eq. (2.9) involves in summing up 2N terms,
which is computationally impossible once N > 30. The cavity method can reduce
the computational cost down to the order of O(N ) for a sparsely connected factor
graph model. Let us explain this in detail as follows.

Themodel can be represented by a factor graph [13], illustrating how spins interact
with each other (see Fig. 2.1). Because we aim at analyzing the Boltzmann distri-
bution, i.e., the posterior [Eq. (2.8)], we use the probabilistic language, for the goal
of computing the marginal probability as well. To achieve this, we should modify
the original graph that allows strong correlations among variables. If we add one
function node a to the original system (see Fig. 2.2), the Hamiltonian of the new
system can be written as the sum of the Hamiltonian of the original system and the
change caused by the newly added function node. More precisely,

H new = H old − Ja
∏

i∈∂a

σi . (2.10)

It then proceeds that

i j k

a b c d e f M

N... ...

...
Fig. 2.1 Factor graph representation of a random construction of the Sourlas codes. Circles are
spin variables (variable nodes) {σi }, and squares are received message (function nodes) {Ja}. In the
figure, we only show three message bits, and each square is connected to them. In fact, the square
can be connected to other different message bits (not shown), thereby forming a sparse random
graph, where the degree of variable nodes follows a Poisson distribution
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a

j

k

l

i

b

c

m

n

Fig. 2.2 Addition of the function node a to original system (outside the shadow part). We call the
shadow part a cavity, and the nodes {i, j, k, l} serve as the boundary of the cavity

Znew =
∑

{σi }Ni=1

exp

(
−βH old + β Ja

∏

i∈∂a

σi

)

= Zold
∑

{σi }Ni=1

exp(−βH old)

Zold
exp

(
β Ja

∏

i∈∂a

σi

)
.

(2.11)

It is easy to see that exp(−βH old)

Zold is exactly the joint probability distribution of {σi }Ni=1
in the old system. One can find that exp(β Ja

∏
i∈∂a σi ) only relates to {σi |i ∈ ∂a},

and then we can divide the configuration sum into two parts: one involves in only
variable nodes with direct connections to the newly added functional node a, and the
other involves in the rest. We then have

Znew = Zold
∑

{σi |i∈∂a}

∑

{σi |i /∈∂a}

exp(−βH old)

Zold
exp(β Ja

∏

i∈∂a

σi )

= Zold
∑

{σi |i∈∂a}
exp(β Ja

∏

i∈∂a

σi )
∑

{σi |i /∈∂a}

exp(−βH old)

Zold
.

(2.12)

The last summation in Eq. (2.12) is exactly the marginal probability distribution of
{σi |i ∈ ∂a} in the old system. Compared with the new system, the old system has a
cavity in the positionwhere the function nodea is added to the new system.Therefore,
we denote the marginal probability as a cavity distribution Pcavity({σi |i ∈ ∂a}) and
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call {σi |i ∈ ∂a} as the boundary of the cavity. It is reasonable to assume that variable
nodes on the boundary of the cavity are weakly correlated, because of the weak
couplings in a fully connected system or the sparsely connected topology of a sparse
model. This assumption is exact if the underlying factor graph is a tree. Thus, the
Pcavity({σi |i ∈ ∂a}) can be factorized as

Pcavity({σi |i ∈ ∂a}) ≈
∏

i∈∂a

qi→a(σi ), (2.13)

where qi→a denotes the distribution of σi without the presence of the function node a.
Let us thendefine a cavitymagnetizationmi→a ≡ qi→a(σi = +1) − qi→a(σi = −1),
and thus, qi→a(σi ) = 1+σi mi→a

2 . Then Znew can be rewritten as

Znew = Zold
∑

{σi |i∈∂a}
exp(β Ja

∏

i∈∂a

σi )
∏

i∈∂a

1 + σimi→a

2

= Zold cosh(β Ja)

(
1 + tanh(β Ja)

∏

i∈∂a

mi→a

)
.

(2.14)

According to the free energy definition F = −1/β ln Z , the free energy shift due
to adding the function node a is given by

− β�Fa = ln
Znew

Zold
= ln

[
cosh(β Ja)

(
1 + tanh(β Ja)

∏

i∈∂a

mi→a

)]
. (2.15)

Similarly, if we add one variable node i and its neighboring function nodes {b|b ∈
∂i} to the system (see Fig. 2.3),2 the partition function of the new system reads

Znew =
∑

σ old

∑

σi

exp

⎛

⎝−βH old + β
∑

b∈∂i

Jb
∏

j∈∂b

σ j

⎞

⎠

=
∑

σ old

∑

σi

exp

⎛

⎝−βH old + β
∑

b∈∂i

Jbσi

∏

j∈∂b\i
σ j

⎞

⎠

= Zold
∑

σ old

∑

σi

exp(−βH old)

Zold
exp

⎛

⎝β
∑

b∈∂i

Jbσi

∏

j∈∂b\i
σ j

⎞

⎠ ,

(2.16)

where j ∈ ∂b\i denotes the set of variable nodes with connections to the function
node b, yet the node i is excluded. The subset of nodes {σ j | j ∈ ∂b\i, b ∈ ∂i} is the
boundary of the cavity (see Fig. 2.3). We can first sum over the configuration of all

2 This operation will make the definition of cavity probabilities reasonable.
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a

j

k

l

i

b

c

m

n

Fig. 2.3 Adding a variable node i together with its neighboring function nodes {a, b, c} to the
original system (outside the cavity). The subset { j, k, l,m, n . . .} denotes the boundary of the cavity

variable nodes that are not at the boundary of the cavity (except i), akin to what we
have done in Eq. (2.12). Using Eq. (2.13), we then arrive at the following result:

Znew = Zold
∑

{σ j | j∈∂b\i;b∈∂i}

∑

σi

Pcavity({σ j | j ∈ ∂b\i; b ∈ ∂i}) exp
(∑

b∈∂i

β Jbσi
∏

j∈∂b\i
σ j

)

≈ Zold
∑

{σ j | j∈∂b\i;b∈∂i}

∑

σi

∏

b∈∂i

∏

j∈∂b\i
q j→b(σ j ) exp

(∑

b∈∂i

β Jbσi
∏

j∈∂b\i
σ j

)

= Zold
∑

σi

∑

{σ j | j∈∂b\i;b∈∂i}

∏

b∈∂i

∏

j∈∂b\i
q j→b(σ j ) exp

(∑

b∈∂i

β Jbσi
∏

j∈∂b\i
σ j

)

= Zold
∑

σi

∏

b∈∂i

∑

{σ j | j∈∂b\i}

∏

j∈∂b\i
q j→b(σ j ) exp

(
β Jbσi

∏

j∈∂b\i
σ j

)

= Zold
∑

σi

∏

b∈∂i

∑

{σ j | j∈∂b\i}

∏

j∈∂b\i

1 + σ jm j→b

2
exp

(
β Jbσi

∏

j∈∂b\i
σ j

)

= Zold

(
∏

b∈∂i

�+
b→i +

∏

b∈∂i

�−
b→i

)
,

(2.17)
where
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�+
b→i =

∑

{σ j | j∈∂b\i}

∏

j∈∂b\i

1 + σ jm j→b

2
exp

⎛

⎝β Jb × (+1) ×
∏

j∈∂b\i
σ j

⎞

⎠

= cosh(β Jb)

⎛

⎝1 + tanh(β Jb)
∏

j∈∂b\i
m j→b

⎞

⎠ ,

(2.18)

�−
b→i =

∑

{σ j | j∈∂b\i}

∏

j∈∂b\i

1 + σ jm j→b

2
exp

⎛

⎝β Jb × (−1) ×
∏

j∈∂b\i
σ j

⎞

⎠

= cosh(β Jb)

⎛

⎝1 − tanh(β Jb)
∏

j∈∂b\i
m j→b

⎞

⎠ .

(2.19)

Hence, the free energy shift due to adding the variable node i together with its
neighboring function nodes {b ∈ ∂i} is given by

− β�Fi = ln
Znew

Zold
= ln

[
∏

b∈∂i

�+
b→i +

∏

b∈∂i

�−
b→i

]
. (2.20)

Finally, the total free energy is given by

F =
∑

i

�Fi +
∑

a

�Fa −
∑

a

|∂a|�Fa, (2.21)

where |∂a| is the number of variable nodes connecting to the function node a. The last
term of Eq. (2.21) is to ensure that each node’s contribution to the total free energy
has been counted only once. Once we have access to {m j→b}, we can calculate the
free energy function. In the next section, we explain how to calculate {mi→a}.

2.3 From Cavity Method to Message Passing Algorithms

According to the cavity assumption, the cavity magnetization {mi→a} can be itera-
tively constructed, because the local structure of a random factor graph is statistically
homogeneous. Note that mi→a is the expectation value of σi without the contribu-
tion from the function node a, which is expected from the definition of the cavity
operation. Hence, mi→a can be rewritten as follows:

mi→a =
∑

σ σi exp(−βHi→a(σ ))∑
σ exp(−βHi→a(σ ))

, (2.22)
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where Hi→a denotes the Hamiltonian without the interaction a, which reads

Hi→a = Hcavity −
∑

b∈∂i\a
Jbσi

∏

j∈∂b\i
σ j , (2.23)

where Hcavity is the Hamiltonian of the cavity system where the variable node i
together with its neighboring function nodes b ∈ ∂i (except a) are all removed from
the original system.

Similar to what we have done in Sect. 2.2, we can sum over all possible configu-
rations of variable nodes not on the boundary of the cavity at first, and we, thus, get
the marginal distribution of the boundary nodes in the cavity system. We then have

mi→a =
∑

σ σi exp(−βHi→a(σ ))

Zcavity∑
σ exp(−βHi→a(σ ))

Zcavity

=
∑

σi

∑
B σi Pcavity(B) exp(

∑
b∈∂i\a β Jbσi

∏
j∈∂b\i σ j )∑

σi

∑
B Pcavity(B) exp(

∑
b∈∂i\a β Jbσi

∏
j∈∂b\i σ j )

,

(2.24)

where Zcavity denotes the partition function related to Hcavity, and B ≡ {σ j | j ∈
∂b\i; b ∈ ∂i\a}, which denotes the boundary of the cavity. Then we factorize the
cavity probability according to the cavity approximation:

Pcavity(B) ≈
∏

b∈∂i\a

∏

j∈∂b\i
q j→b(σ j ). (2.25)

Using the same techniques as in Eq. (2.17), we finally arrive at

mi→a =
∏

b∈∂i\a �+
b→i − ∏

b∈∂i\a �−
b→i∏

b∈∂i\a �+
b→i + ∏

b∈∂i\a �−
b→i

. (2.26)

If we define the conjugate cavity magnetization as

m̂b→ j ≡ tanh(β Jb)
∏

j∈∂b\i
m j→b, (2.27)

we can then write Eq. (2.26) into the following form:

mi→a =
∏

b∈∂i\a(1 + m̂b→i ) − ∏
b∈∂i\a(1 − m̂b→i )∏

b∈∂i\a(1 + m̂b→i ) + ∏
b∈∂i\a(1 − m̂b→i )

. (2.28)

The above expression can be transformed into the language of cavity fields, e.g.,
a cavity local field hi→a and cavity bias ua→i as also defined in the seminal work [5].
We can then use these fields or biases to parameterize the cavity probability:
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qi→a(σi ) ≡ exp(βhi→aσi )

2 cosh βhi→a
,

pa→i (σi ) ≡ exp(βua→iσi )

2 cosh βua→i
,

(2.29)

where pa→i (σi ) = 1+σi m̂a→i
2 . It then proceeds that

mi→a = tanh βhi→a,

m̂a→i = tanh βua→i .
(2.30)

Therefore, Eqs. (2.27) and (2.28) turn out to be

hi→a = 1

β

⎛

⎝
∑

b∈∂i\a
βub→i

⎞

⎠ ,

ua→i = 1

β
tanh−1

[
tanh(β Ja)

∏

j∈∂a\i
tanh(βh j→a)

]
.

(2.31)

Equation (2.31) is the very message passing equation in the Sourlas-code scenario.
In essence, the cavity method is a probabilistic iterative method. One can iteratively
solve these equations, until a fixed point of messages ({mi→a}) is reached. These
messages are then used to evaluate the full magnetization mi as follows:

mi = tanh

(
∑

b∈∂i

βub→i

)
, (2.32)

and the sent message can be decoded by the maximizer of the posterior marginal
(MPM), i.e., σi = argmaxσi Pi (σi ), where Pi (σi ) = 1+σi mi

2 . In addition, the free
energy and other thermodynamic quantities of interest can be evaluated according to
the derived formulas. The computational complexity is clearly of the order of O(N )

for a sparsely connected factor graph and the orderO(N 2) in the case that all variable
nodes connect to each function node. We remark that this procedure is quite general
and can be adapted to learning problems of a variety of neural networks, which we
shall introduce in the remaining chapters.
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Chapter 3
Variational Mean-Field Theory
and Belief Propagation

In the previous chapter, we have introduced the cavity method and its application to
computing the approximate free energy of a multi-spin interaction model, and the
approximation is equivalent to the Bethe approximation, which we shall provide an
in-depth introduction in this chapter. In this chapter, we apply the variational method
together with the mean-field approximation (MFA) and Bethe approximation (BA)
to construct the free energy of the multi-spin interaction model. We show that the
belief propagation (BP) algorithm in computer science can be derived under the
variational framework, which is in fact equivalent to the cavity method in physics.
Furthermore,we emphasize that BA is amore accurate approximation,which reduces
to MFA when the coupling is relatively weak or when a high-temperature limit is
performed. Finally, we give a brief introduction of the inverse Ising model, where
model parameters (couplings and fields) can be learned by using the mean-field
methods. Besides being a useful tool in statistical physics, the BP algorithm is also
an efficient way to solve many important inference problems in areas of computer
science, modern coding and learning in neural networks—one focus of this book.

3.1 Variational Method

The variational method is an important technique for statistical inference problems.
With the target functionwewant to optimize and some constraints the problem should
satisfy, we can apply the variation of model parameters on the target function. We
take a simple example of the derivation of the Boltzmann distribution in statistical
physics. The entropy of a system in statistical physics can be defined by

S = −k
∑

r

Pr ln Pr , (3.1)

where k indicates the Boltzmann constant, r is the index of a thermodynamic state
and Pr is the to-be-determined distribution of the state r . According to the theory of
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thermodynamics, the system is in equilibriumwhen the entropy reaches itsmaximum,
and the distribution must meet the following two constraints:

∑

r

Pr = 1, (3.2)

∑

r

Er Pr = μ, (3.3)

which correspond to the normalization of a probability measure and a target mean
energy levelμ of the system, respectively. Hence, we can use the Lagrangemultiplier
method:

L = S + λ1

(∑

r

Pr − 1
)

+ λ2

(∑

r

Er Pr − μ
)
, (3.4)

where λ1 and λ2 are the Lagrange multipliers for the two constraints, respectively.
Then, the equilibrium requires that ∂L

∂Pr
= 0, and we finally arrive at

Pr = e−βEr

Z
,

Z =
∑

r

e−βEr ,
(3.5)

where the inverse temperature β = 1
kT can be deduced from the second law of ther-

modynamics, and Z is the partition function, namely the normalization constant
to enforce the first constraint. In the following, we assume k = 1 for optimization
problems in a high-dimensional parameter space.

In sum, from the Lagrange multiplier method with a little knowledge from the
equilibrium thermodynamics, we derive the well-known Boltzmann distribution,
where the inverse temperature clearly tunes the energy level of the system [1].

3.2 Variational Free Energy

The behavior of the free energy contributes to the emergent behavior of a thermody-
namic system.However, calculating the free energy in a brute-forceway is intractable
due to the O(2N ) computational complexity. To overcome the barrier, the variational
method provides an effective way to construct an approximate free energy. We take
an example of the above-mentioned multi-spin interaction model which is captured
by the following Boltzmann distribution:

P(x) = e−βE(x)

Z
,

Z =
∑

x

e−βE(x),
(3.6)
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where x = {x1, x2, . . . , xN } represents the state of N spins in the system. The energy
E(x) is given by

E(x) = −
∑

a

Ja
∏

i∈∂a

xi , (3.7)

where a is the index of the interaction, and i ∈ ∂a specifies the set of spins that
participate in the ath interaction where we use xa to represent these spins. Ja is the
coupling strength of the ath interaction. The inverse temperature here can be set to
an arbitrary value, and in an equivalent way, the temperature can be absorbed into
the coupling Ja . We, thus, set β = 1 without loss of generality. We further define
fa(xa) = eJa

∏
i∈∂a xi , which denotes the contribution of the ath interaction to the

Boltzmann measure. Thus, we can rewrite the distribution P(x) and energy E(x)

into the following forms:

P(x) = 1

Z

∏

a

fa(xa), (3.8)

E(x) = −
∑

a

ln fa(xa). (3.9)

These expressions facilitate the following derivation of BP algorithm.
The Helmholtz free energy reads

FH = − ln Z . (3.10)

Aswementioned above, an exact computation of theHelmholtz free energy is impos-
sible for a large-size system. Instead,we introduce a trial probability distributionb(x)

andwrite the free energy, which is called the Gibbs free energywith some parameters
(e.g., magnetizations) to be optimized:

F(b) = U (b) − H(b), (3.11)

where we define U (b) as the variational internal energy:

U (b) =
∑

x

b(x)E(x), (3.12)

and H(b) as the variational entropy:

H(b) = −
∑

x

b(x) ln b(x). (3.13)

It is then necessary to compute the difference between the Gibbs free energy and the
Helmholtz free energy, as given by
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F(b) − FH =
∑

x

b(x)E(x) +
∑

x

b(x) ln b(x) + ln Z

=
∑

x

b(x)(− ln Z − ln P(x)) +
∑

x

b(x) ln b(x) + ln Z

=
∑

x

b(x) ln
b(x)

P(x)
= D(b||P),

(3.14)

where D(b||P) is the Kullback–Leibler divergence between two probability distri-
butions b(x) and P(x), which is always non-negative and is zero only if b(x) =
P(x),∀x. Therefore, F(b) ≥ FH and F(b) = FH only if b(x) = P(x),∀x.

The above analysis shows that the trial probability distribution b(x) yielding a
lower Gibbs free energy will have a smaller distance from the true distribution P(x).
That is to say, we transform the original free energy estimation problem to a (Gibbs)
free energy minimization problem. To obtain a more accurate free energy, we must
find a b(x) to minimize the Gibbs free energy F(b), which is exactly what the
variational method wants to do. To proceed, we have to specify the trial probability
b(x) by introducing the so-called variational parameters, which can be physics-
relevant quantities. In the next sections, we introduce two kinds of approximations
for b(x), which are mean-field and the Bethe approximations.

3.2.1 Mean-Field Approximation

The mean-field approximation for b(x) is written in a factorized form:

bMF (x) =
∏

i

bi (xi ) =
∏

i

1 + mi xi
2

, (3.15)

where m is the magnetization vector of spins x. This approximation is the naive one
that assumes each spin behaves independently of each other. Note that xi can only
take two values±1 (e.g., spin up and down, respectively). Given the form of bMF (x),
we can compute the mean-field internal energy and mean-field entropy as follows:

UMF =
∑

x
bMF (x)E(x)

=
∑

x

∏

i

bi (xi )

⎛

⎝−
∑

a
Ja

∏

i∈∂a

xi

⎞

⎠

= −
∑

a
Ja

〈
∏

i∈∂a

xi

〉

= −
∑

a
Ja

∏

i∈∂a

mi ,

(3.16)

and



3.2 Variational Free Energy 21

HMF = −
∑

x
bMF (x) ln bMF (x)

= −
∑

x

∏

i

1 + mi xi
2

ln
∏

i

1 + mi xi
2

= −
∑

i

∑

x

∏

j

1 + m j x j
2

ln
1 + mi xi

2

= −
∑

i

∑

xi

∑

x\xi

∏

j ( �=i)

1 + m j x j
2

1 + mi xi
2

ln
1 + mi xi

2

= −
∑

i

∑

xi

1 + mi xi
2

ln
1 + mi xi

2

=
∑

i

Si ,

(3.17)

where Si is defined as the entropy of spin xi , and the symbol \ indicates the operation
of exclusion. Thus, the mean-field free energy can be derived as follows:

FMF = UMF − HMF

= −
∑

a

Ja
∏

i∈∂a

mi +
∑

i

∑

xi

1 + mi xi
2

ln
1 + mi xi

2
.

(3.18)

The normalization constraint is automatically satisfied by the factorized form of
the naive mean-field distribution [Eq. (3.15)]. The magnetization now becomes the
variational parameter for the trial probability bMF (x). To minimize the upper bound
of the Helmholtz free energy, we have to compute ∂FMF

∂mi
and set the gradient to zero:

∂FMF

∂mi
= −

∑

a

Ja
∏

j∈∂a\i
m j +

∑

xi

xi
2
ln

1 + mi xi
2

+ xi
2

= −
∑

a

Ja
∏

j∈∂a\i
m j + 1

2
ln

1 + mi

1 − mi
= 0,

(3.19)

and finally, we derive the recursive-form of mi :

mi = tanh

(∑

a∈∂i

Ja
∏

j∈∂a\i
m j

)
. (3.20)

To obtain the fixed-point (equilibrium) values of m, we can run these equations until
a stationary point is reached. Using these equilibrium magnetizations, we can obtain
the value of the Gibbs free energy [2].

However, the spin-independence assumption of the naive mean-field method may
not be accurate, especially when a low-temperature thermodynamic phase is of inter-
est. We need to consider the correlations among the spins in a short-range region of
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Function node

1 2 3 4

A B C

Fig. 3.1 Regions in a factor graph. Solid circles are defined as regions, while the dashed circle is
not a valid region

the factor graph, which is precisely the concept of the Bethe approximation, which
we shall explore in the next section.

3.2.2 Bethe Approximation

The Bethe approximation [3] is an extension of the classic mean-field method, taking
into account correlations between nearest neighboring sites. To introduce the Bethe
approximation, we first define the concept of region in the factor graph. As Fig. 3.1
shows, the region is defined by a set of function nodes and all the variable nodes
connected to these functional nodes. Note that the function node set can be empty.
Variable nodes and functional nodes represent spins and interactions in the multi-
spin interaction model. In this setting, we can introduce the region energy ER(xR),
the region internal energy UR(bR), the region entropy HR(bR) and the region free
energy FR(bR) as follows:

ER(xR) = −
∑

a∈R

ln fa(xa), (3.21)

UR(bR) =
∑

xR

bR(xR)ER(xR), (3.22)

HR(bR) = −
∑

xR

bR(xR) ln bR(xR), (3.23)

FR(bR) = UR(bR) − HR(bR), (3.24)

where xR are the variable nodes in the region R, and bR(xR) is the joint distribution
of xR . The basic idea of a region-based free energy approximation is to break up the
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factor graph into regions and then sum up their contributions to approximate the true
free energy, where all the variable nodes and function nodes should be summed up
only once. Because overlaps between different regions cannot be avoided in a non-
naive approximation, counting numbers CR (an integer that may be zero or negative)
must be introduced to avoid double calculation. Given a region setR, the total internal
energy UR and entropy HR can be written as

UR =
∑

R∈R
CRUR(bR), (3.25)

HR =
∑

R∈R
CRHR(bR), (3.26)

with the following two constraints for counting numbers:

∑

R∈R
I[a ∈ R]CR = 1, (3.27)

∑

R∈R
I[i ∈ R]CR = 1, (3.28)

where I[a ∈ R] = 1 when the function node a is in the region R, and takes zero
otherwise. I[i ∈ R] has a similar meaning for variable nodes.

In the Bethe approximation, the factor graph is broken into two kinds of regions
(see Fig. 3.2), which are a large region RL with one functional node and the variable
nodes connected to it, and a small region RS with only one variable node. Under this
division, counting numbers can be derived asCRL = 1 andCRS = 1 − di , where di is
the number of the function nodes connected to the variable node i in the small region.
These counting numbers can also be derived from the identityCR = 1 − ∑

S∈S(R) CS ,
where S(R) denotes the region set that is the set of super-regions of R. If the set
of variable and function nodes in R1 are a subset of nodes in R2, then R2 is the
super-region of R1 [4]. Thus, we can compute the Bethe internal energy UBethe and
the Bethe entropy HBethe as follows:

Variable node

Function node

Large Region Small Region

Fig. 3.2 Region division in the Bethe approximation
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UBethe = −
∑

a

∑

xa

ba(xa) ln fa(xa), (3.29)

HBethe = −
∑

a

∑

xa

ba(xa) ln ba(xa) +
∑

i

(di − 1)
∑

xi

bi (xi ) ln bi (xi ), (3.30)

where we replace bRL (xRL ) and bRS (xRS ) with ba(xa) and bi (xi ), respectively. The
Bethe free energy is then given by

FBethe = −
∑

a

∑

xa

ba(xa) ln fa(xa) +
∑

a

∑

xa

ba(xa) ln ba(xa)

−
∑

i

(di − 1)
∑

xi

bi (xi ) ln bi (xi ),
(3.31)

which is the target function to minimize later. By taking into account the nearest-
neighbor correlations, the trial probability distribution can also be written in a com-
pact form [4, 5]:

bBA(x) =
∏

a ba(xa)∏
i bi (xi )

di−1
, (3.32)

which is automatically normalized and exact when the factor graph is a tree, but still
a good approximation when the factor graph is not tree-like. A rigorous proof is hard,
but the approximation should be compared with simulations in practice. Inserting
the form of bBA(x) into the Gibbs free energy, one can derive the same form as that
in Eq. (3.31).

Before using the Lagrange multiplier method, we first formulate the probability
constraints as follows:

∑

xi

bi (xi ) = 1, ∀i; (3.33)

∑

xa

ba(xa) = 1, ∀a; (3.34)

∑

xa\xi
ba(xa) = bi (xi ), ∀(i, a). (3.35)

Finally, the Lagrange objective function reads

L = −
∑

a

∑

xa

ba(xa) ln fa(xa) +
∑

a

∑

xa

ba(xa) ln ba(xa)

−
∑

i

(di − 1)
∑

xi

bi (xi ) ln bi (xi ) +
∑

i

λi

(∑

xi

bi (xi ) − 1
)

+
∑

a

λa

(∑

xa

ba(xa) − 1
)

+
∑

i,a

∑

xi

ρi,a(xi )
( ∑

xa\xi
ba(xa) − bi (xi )

)
.

(3.36)
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Fig. 3.3 Message passing process in the BP algorithm. (Left Panel) cavity probabilities converge
to a variable node; (Right panel) cavity probabilities converge to a function node

After performing the variation on L , we can obtain the form of the spin distribution
bi (xi ) and joint distribution ba(xa) [4]:

bi (xi ) = 1

Zi

∏

a∈∂i

Pa→i (xi ), (3.37a)

ba(xa) = 1

Za
fa(xa)

∏

i∈∂a

∏

b∈∂i\a
Pb→i (xi ), (3.37b)

where we define Pa→i (xi ) and Pi→a(xi ) as the messages passing between the func-
tional nodes and variable nodes in two directions as illustrated in Fig. 3.3. These two
messages obey the following iterative equations:

Pa→i (xi ) =
∑

x j : j∈∂a\i
fa(xa)

∏

j∈∂a\i
Pj→a(x j ), (3.38a)

Pi→a(xi ) = 1

Zi→a

∏

b∈∂i\a
Pb→i (xi ). (3.38b)

Note that Eq. (3.38a) is compatible with the marginal probability constraint used to
write the constrained Bethe free energy, while Eq. (3.38b) follows directly from the
result of bi (xi ) by just excluding the function node a. Finally, the (joint) marginal
probabilities bi (xi ), ba(xa) can be interpreted as beliefs and written in an explicit
form as

bi (xi ) ∝
∏

a∈∂i

Pa→i (xi ), (3.39a)

ba(xa) ∝ fa(xa)
∏

i∈∂a

Pi→a(xi ), (3.39b)
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which is consistent with Eq. (3.37).
Equation (3.38) is also called the belief propagation (BP) algorithm in computer

science, where we can perform the iteration of the messages {Pa→i (xi ), Pi→a(xi )} to
their fixed point and calculate the beliefs bi (xi ) and ba(xa). The fixed points of the BP
algorithm correspond to stationary points of the constrained Bethe free energy [6].
Depending on specific settings, the number of stationary points may be different,
being finite or exponentially large. For example, if the factor graph is loopy, or the
model has a complex low-temperature phase, the BP iteration may not converge, or
oscillate among several solutions. Note that the cavity method allows an extension
to handling the case of exponentially many states (in physics, corresponding to one-
step replica symmetry breaking, see Chap. 9). The probability distributions of cavity
fields over the states are then required to be introduced. We will provide an in-depth
discussion about this point in Chap. 9.

The messages Pi→a(xi ) here can be interpreted as the probability distribution of
the variable node i with the removal of function node a, which is similar to the
definition in the cavity method. Actually, we can prove that the BP equations are
equivalent to the cavity equations as follows. First, we substitute the expression of
Pb→i (xi ) into Pi→a(xi ) in the BP equation, and we obtain

Pi→a(xi ) = 1

Zi→a

∏

b∈∂i\a

∑

x j : j∈∂b\i
fb(xb)

∏

j∈∂b\i
Pj→b(x j )

= 1

Zi→a

∏

b∈∂i\a

∑

x j : j∈∂b\i
eJb

∏
j∈∂b x j

∏

j∈∂b\i

1 + m j→bx j

2
.

(3.40)

We then define A+
b = ∑

x j : j∈∂b\i e
Jb

∏
j∈∂b\i x j

∏
j∈∂b\i

1+m j→bx j

2 , where we take xi =
+1. A−

b follows the similar definition with xi = −1. Thus, Zi→a = ∏
b∈∂i\a A

+
b +∏

b∈∂i\a A
−
b . After a few algebra operations, A+

b and A−
b can be written, respectively,

as

A+
b = cosh Jb

⎛

⎝1 + tanh Jb
∏

j∈∂b\i
m j→b

⎞

⎠ , (3.41)

A−
b = cosh Jb

⎛

⎝1 − tanh Jb
∏

j∈∂b\i
m j→b

⎞

⎠ , (3.42)

which is exactly the same as that derived by the cavitymethod in the previous chapter.
According to the definition, we can then derive mi→a:
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mi→a =
∑

xi

Pi→a(xi )

=
∏

b∈∂i\a A+
b − ∏

b∈∂i\a A−
b∏

b∈∂i\a A+
b + ∏

b∈∂i\a A−
b

=
∏

b∈∂i\a(1 + tanh Jb
∏

j∈∂b\i m j→b) − ∏
b∈∂i\a(1 − tanh Jb

∏
j∈∂b\i m j→b)∏

b∈∂i\a(1 + tanh Jb
∏

j∈∂b\i m j→b) + ∏
b∈∂i\a(1 − tanh Jb

∏
j∈∂b\i m j→b)

.

(3.43)

After introducing an auxiliary variable ub→i through tanh ub→i =
tanh Jb

∏
j∈∂b\i m j→b, we finally obtain

mi→a = tanh

⎛

⎝
∑

b∈∂i\a
ub→i

⎞

⎠ , (3.44a)

tanh ub→i = tanh Jb
∏

j∈∂b\i
m j→b, (3.44b)

which is the standard cavity equation when β = 1.
The Bethe approximation is merely a pair approximation of a more general

method—cluster variational method [5]. The cluster variational method is able to
treat arbitrary large clusters of correlated sites, and yet, the computational complex-
ity increases. Recent developments also include loop corrections for probabilistic
inference on factor graphs [7, 8].

3.2.3 From the Bethe to Naive Mean-Field Approximation

In the naive mean-field approximation, we use a factorized form of the trial proba-
bility distribution that neglects the correlation among spins. In contrast, the Bethe
approximation considers a short-range correlation among spins, where it is expected
that in a high temperature, even these short-range correlations become unimportant,
and thus, the naive mean-field approximation will be recovered. More precisely, we
take an example of a two-body interaction model. Suppose our model is a two-body
interaction model with inverse temperature β. In this setting, the mean-field iteration
equations are given by

mi = tanh
(
β

∑

j∈∂i

Ji jm j

)
. (3.45)

Next, we derive this equation from the Bethe approximation.
In the Bethe approximation, the cavity iteration equations are given by
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mi→a = tanh
∑

b∈∂i\a
ub→i , (3.46a)

tanh ub→i = tanh β Jb
∏

j∈∂b\i
m j→b, (3.46b)

where mi→a can be derived as

mi→a = tanh

⎛

⎝
∑

b∈∂i\a
ub→i

⎞

⎠

= tanh

(
∑

b∈∂i

ub→i − ua→i

)

= tanh(tanh−1(mi ) − ua→i )

= mi − tanh β Ja
∏

j∈∂a\i m j→a

1 − mi tanh β Ja
∏

j∈∂a\i m j→a
,

(3.47)

where we have used the identity tanh(x + y) = tanh x+tanh y
1+tanh x tanh y . Considering the two-

body interaction, we have

mi→ j = mi − tanh β Ji jm j→i

1 − mi tanh β Ji jm j→i
, (3.48a)

m j→i = m j − tanh β Ji jmi→ j

1 − m j tanh β Ji jmi→ j
. (3.48b)

We can then eliminate mi→ j and m j→i in the cavity equation, by obtaining the non-
cavity functions of m j→i and mi→ j as a function of single magnetizations. We first
have the following expressions based on Eq. (3.48) [9]:

mi→ j = f (mi ,m j , tanh β Ji j ), (3.49)

m j→i = f (m j ,mi , tanh β Ji j ), (3.50)

f (a, b, t) =1 − t2 − √
(1 − t2)2 − 4t (a − bt)(b − at)

2t (b − at)
. (3.51)

Thus, we can write a non-cavity version of mi as follows:

mi = tanh
( ∑

j∈∂i

tanh−1( f (m j ,mi , tanh β Ji j ) tanh β Ji j )
)
. (3.52)

Since we assume β Ji j is weak (e.g., in a high-temperature phase), we can perform
the Taylor expansions like tanh−1 x ≈ x , tanh x ≈ x , (1 + x)a ≈ 1 + ax + 1

2a(a −
1)x2, when x is a small quantity, and we finally get
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mi = tanh
( ∑

j∈∂i

(β Ji jm j − β2 J 2
i j (1 − m2

j )mi )
)
, (3.53)

where the second term in the summation is called the Onsager reaction term, a
characteristic of a high-temperature expansion solution of a spin glass model [10,
11], which we shall introduce in more details later. Neglecting the second-order term
of couplings, one recovers the naive mean-field equation.

3.3 Mean-Field Inverse Ising Problem

In the previous sections, we describe how to find the statistical physics solutions of an
equilibrium thermodynamic problem under some approximations, which is exactly
a direct problem. However, if we acquire data samples from an unknown model,
we can predict the model parameters, e.g., couplings and fields, from these raw data
samples, which is called the inverse problem. The direct problem can provide insights
into the inverse problem. Let us explain this in more details.

An Ising model considering only up to pairwise interactions is described by

H(σ ) = −
∑

i< j

Ji jσiσ j −
∑

i

hiσi , (3.54a)

P(σ ) = 1

Z
e
∑

i< j Ji jσiσ j+∑
i hiσi . (3.54b)

Note that β has been absorbed into the model parameters in the current setting. Given
measured magnetizationsmi = 〈σi 〉data and correlation functions Ci j = 〈σiσ j 〉data −
mim j , what wewant to estimate is the coupling constants and external fields {Ji j , hi },
which is a typical unsupervised learning problem. This is exactly the Boltzmann
machine learning [12]. It starts from a set of initial parameters {Ji j , hi } and then
updates the parameters by an increment:

�Ji j =η(〈σiσ j 〉data − 〈σiσ j 〉Ising), (3.55a)

�hi =η(〈σi 〉data − 〈σi 〉Ising), (3.55b)

where η is a predefined learning rate. The iteration runs until the model average and
data average match with each other within a certain accuracy. The model average
can be estimated by the Monte Carlo algorithms, which we shall introduce in the
following chapter. However, when the system size is large, the mean-field method is
relatively fast.

To carry out the inference, we first compute the magnetization:

mi = ∂ log Z(J ∗
i j , h

∗
i )

∂hi
=

∑

{σ }
σi
e
∑

i< j J
∗
i jσiσ j+∑

i h
∗
i σi

Z
, (3.56)
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and then we apply the fluctuation-response theorem [13]:

∂mi

∂h j
=

∑

{σ }
σiσ j

e
∑

i< j J
∗
i jσiσ j+∑

i h
∗
i σi

Z

−
∑

{σ }
σi
e
∑

i< j J
∗
i jσiσ j+∑

i h
∗
i σi

Z

∑

{σ }
σ j

e
∑

i< j J
∗
i jσiσ j+∑

i h
∗
i σi

Z

=Ci j = 〈σiσ j 〉data − mim j .

(3.57)

The symbol with the superscript ∗ indicates the current estimates of the model
parameters. These steps amount to the expectation step of a standard Expectation-
Maximization procedure [14]. The updating procedure in Eq. (3.55) corresponds to
the M step.

Using the above relationship Ci j = ∂mi
∂h j

and the naive mean-field equation mi =
tanh(hi + ∑

k �=i Jikmk), we get

Ci j = (1 − m2
i )

[
δi j +

∑

k �=i

JikCkj

]
,

C = P + PJC,

(3.58)

where P is a diagonal matrix with Pi j = (1 − m2
i )δi j . Finally, we obtain the naive

mean-field (nMF) solution of the inverse Ising problem:

J nMF
i j = (P)−1

i j − (C)−1
i j . (3.59)

The external fields can then be reconstructed based on the predicted couplings. The
naive mean-field solution is the simplest one among other mean-field methods,
including high-temperature expansion, small-correlation expansion and the Bethe
approximation [2, 15].
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Chapter 4
Monte Carlo Simulation Methods

A few systems in equilibrium physics can be analytically solved. It is, therefore,
necessary to develop numerical techniques to estimate the equilibrium properties
of a physics system. For example, given the Hamiltonian of the Ising model, it still
requiresO(2N ) time complexity to directly compute expected energy, where N is the
number of spins. To either check how accurate a crude approximation is, e.g., mean-
field approximation or the Bethe approximation, or estimate the typical energy level
of a statistical mechanics model that cannot be analytically solved, we rely on the
Monte Carlo simulation techniques, including their variants, which are widely used
not only in the physics field itself but also in the machine learning community. For
example, the Gibbs sampling is performedwith the classicalMonte Carlomethods or
its variants with the help of importance sampling. In this chapter, we will introduce
the basic knowledge about the sampling method and its applications to standard
physics models.

4.1 Monte Carlo Method

The main idea of the Monte Carlo method is simple. For example, calculating a
multi-dimensional integral can be carried out by drawing a set of samples according
to a predefined distribution. We first introduce the standard steps to implement the
Monte Carlo method:

• Transforming the original problem of interest to a statistical problem, like calcu-
lating the expectation of some random variables under a specific distribution.

• Sampling random variables from the specific distribution.
• Using the samples from the second step to compute any quantity of interest and
obtaining the result of the problem.

We give here a representative example of estimating an integral or a sum:
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〈A〉 =
∫

A(x) f (x)dx,

〈A〉 =
∑
x

A(x)p(x).
(4.1)

To calculate the above expectations, one can sample random variables from the
distribution f (x) or p(x) and then obtain a sample collection {x1, x2, x3, . . . , xM} of
the size M . Finally, {A(x1), A(x2), A(x3), . . . , A(xM)} can be obtained. As A(xi ) is
independently estimated, the law of large number implies that

lim
M→∞ P

(∣∣∣∣∣
1

M

M∑
i=1

A(xi ) − 〈A〉
∣∣∣∣∣ < ε

)
= 1,∀ε > 0. (4.2)

Thus, the expectation can be estimated as

〈A〉 � 1

M

∑
xi

A(xi ). (4.3)

As the collected samples {x1, x2, x3, . . . , xM} are independent and identically dis-
tributed, the statistical error due to the sampling is related to the variance of A and
can be estimated to be of the order of O(M− 1

2 ) [1]. Moreover, the Monte Carlo
estimator is unbiased. Given a large number of the Monte Carlo samples, the empir-
ical estimation converges to the true expectation we want to compute [2]. Interested
readers can figure out the procedure as the above description to estimate the integral∫ ∞
−∞ x2Dx, whereDx indicates the random variable x is a standardGaussian variable.
The Monte Carlo estimation can be compared with the analytic result of 1. As the
number of random samples increases, the estimation will approach the exact result.
In the remaining chapters, we will also show this kind of method is also very effec-
tive and popular to solve the saddle-point equations of the replica method applied to
solve a variety of neural network models.

4.2 Importance Sampling

In the Monte Carlo simulation, sampling a distribution is usually required, e.g.,
the Gaussian distribution as mentioned in the previous section. Unfortunately, most
distributions are very challenging to sample, e.g., the Boltzmann distribution in sta-
tistical physics. Here, we shall introduce some basic strategies to generate random
samples from distributions that are more complicated than the commonly used ones,
such as uniform, Poisson and Gaussian distributions.

By introducing a simple trial distribution, say q(x) that is easy to sample, we can
recast Eq. (4.1) as
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〈A〉 =
∫

A(x) f (x)
q(x)

q(x)dx,

〈A〉 =
∑
x

A(x)p(x)
q(x)

q(x).
(4.4)

The expectations 〈A〉 f and 〈A〉p are then transformed to 〈 A(x) f (x)
q(x) 〉q , and 〈 A(x)p(x)

q(x) 〉q .
Therefore, we can first sample the distribution q(x) to get samples {x1, x2, x3, . . . ,
xM} and then calculate the expectations:

〈A〉 �
∑M

i=1 A(xi )p(xi )/q(xi )
M

, (4.5)

where the factor p(xi )
q(xi )

can be thought of as an importance weight of the sample
xi in computing the expectation. This estimation is, thus, called the importance
sampling [2].When q(xi ) = p(xi ), the importance sampling turns out to be Eq. (4.3).
Choosing a trial distribution is important; otherwise, the Monte Carlo estimation
will become noisy with a large variance, being very slow to converge to a quantity
of satisfied accuracy. An annealed importance sampling is introduced to build a
suitable q(x) starting from a trivial one [p0(x)]. A common scheme specifying the
intermediate distribution is given by

p j (x) = p0(x)1−β j pn(x)β j , (4.6)

where 0 = β0 < β1 < · · · < βn = 1. In other words, p j (x) interpolates between
p0(x) and pn(x) = p(x). The samples can then be sequentially generated by design-
ing an appropriate transition probability of two states. Interested readers can find the
original paper [3] for implementation details.

4.3 Markov Chain Sampling

To realize a sampling where a sequence of samples are generated, one can construct
a Markov chain during sampling. The Markov property implies that the next state of
a dynamics is only related to the current state, and the conditional probability can be
written as

P
[
St+1|S1, . . . ,St

] = P
[
St+1|St

]
, (4.7)

where St is the state at time t . A Markov chain obeys the Markov property for
its dynamics. One can construct a time-homogeneous Markov chain by setting up
an initial distribution π(S0) together with the transition probability W (S → S′).
A stationary distribution π(S′) can, thus, be identified by satisfying the following
condition:
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π(S′) =
∑
S

W (S → S′)π(S). (4.8)

The task of designing aMarkov chain becomes simple if the detailed balance criterion
is obeyed [1], i.e.,

W (S → S′)π(S) = W (S′ → S)π(S′). (4.9)

The detailed balance criterion guarantees that the designed Markov chain converges
to the target distribution [Eq. (4.8)] [1].

4.4 Monte Carlo Simulations in Statistical Physics

In statistical physics, an equilibrium system is described by the Boltzmann distribu-
tion:

Peq(s) = 1

Z
e−βH(s), (4.10)

where the partition function Z = ∑
s e

−βH(s), andH(s) is the system’s Hamiltonian.
Then the expectation or thermal average of an observable O(s) is given by

〈O〉 = 1

Z

∑
s

O(s)e−βH(s). (4.11)

The partition function is usually intractable, making an analytic estimation of ther-
modynamic quantities impossible. TheMarkov Chain Monte Carlo (MCMC) is then
useful for estimating the quantities of interest. To illustrate the MCMC method, we
simulate the SKmodel as an example. The SKmodel is a fully connected mean-field
glass model, and the statistical mechanics properties were first studied analytically
in the seminal work [4]. The Hamiltonian is given by

H = −1

2

∑
i 	= j

Ji jσiσ j , (4.12)

where the spin σi = ±1, and the couplings follow independently a Gaussian distri-
bution of zero mean and variance 1/N . The model has a paramagnetic-to-spin glass
transition at the critical temperature T = 1. By using the MCMC method, we can
acquire the equilibrium properties of the SKmodel, which can be compared with the
theoretical analysis.

Next,we introduce twoMonteCarlo techniques to numerically evaluate themodel.
But we emphasize that both methods are generally applicable to other similar mod-
els, for which an exact computation of relevant thermodynamic quantities may be
impossible.
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4.4.1 Metropolis Algorithm

The detailed balance condition of the Boltzmann distribution can be written as fol-
lows:

Peq(si )W (si → s j ) = Peq(s j )W (s j → si ), (4.13)

where W (si → s j ) is the transition probability from state si to state s j . The ratio
between two transition probabilities can be rewritten as

W (si → s j )
W (s j → si )

= e−β�H(si ,s j ), (4.14)

where �H(si , s j ) = H(s j ) − H(si ), and the Boltzmann distribution is used. Our
purpose is to find a transition probability matrix satisfying the detailed balance con-
dition. In fact, choosing the transition probability form is not unique, and there are
two frequently used forms. One is the Metropolis algorithm:

W (si → s j ) =
{
1, �H(si , s j ) < 0;
e−β�H(si ,s j ), �H(si , s j ) ≥ 0,

(4.15)

which can be also recast into the formW (si → s j ) = min(e−β�H(si ,s j ), 1). A pseudo-
code is given in Algorithm 4.1. Another popular choice is the heat-bath algorithm:

W (si → s j ) = e−β�H(si ,s j )

1 + e−β�H(si ,s j )
. (4.16)

It can be verified that the Metropolis dynamics is always more likely to accept an
attempt of spin changes that leads to a small change of energy. In addition, if we
define the transition probability as a function F(e−β�H ), it can be also verified that
the above two choices satisfy F(x)

F(1/x) = x for all x , compatible with the detailed
balance criterion.

For a fast sampling, we can flip just one single spin (rather than a small group of
spins) at each step of theMetropolis dynamics, and then, we can obtain the following
transition rule:

W (σi → −σi ) = 1

2
[1 − σi tanh βhi ], (4.17)

where hi = ∑
j 	=i Ji jσ j is the local field acting on the spin σi . This rule is derived

from the heat-bath choice.
A random initial state is far from equilibrium with a high probability, and thus,

a Markov chain dynamics requires a relaxation time for the system to reach the
equilibrium state. This time scale is called the equilibration time τeq . In practice, τeq
is measured in the unit of theMonte Carlo sweep (MCS), inwhich oneMCS equals to
N proposed single-spin-updates. To verify whether the system arrives at equilibrium,
it is necessary in practice to check the evolution of some observables, e.g., energy.
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Fig. 4.1 Evolutions of the energy density of the SK model with N = 500 and Ji j ∼ N(0, 1/N ).
a Metropolis Monte Carlo simulation. b Parallel Tempering Monte Carlo. The dashed lines are the
corresponding predictions of replica theory. The time step is a measure in the unit of the Monte
Carlo step (MCS). Each step means a sweep of all spins for the proposed update. β defines the
inverse temperature

Algorithm 4.1Metropolis Algorithm
Input: The number of samples M , temperature T , τeq , δt
Output: A collection of samples
1: Initialize configuration S randomly;
2: Initialize i = 0;
3: Initialize counter = 0;
4: while (i< M) do
5: generate a trial state S′;
6: compute W (S′ → S|T );
7: if W > rand(0, 1) then
8: S = S′
9: if [(counter > τeq ) and (counter % δt==0))] then
10: Append S to the sample collection.
11: i = i+1
12: counter = counter + 1
13: return the sample collection.

As shown in Fig. 4.1a, the energy of the SKmodel arrives at equilibrium at about τeq
MCSs, which depends on the temperature. After the relaxation, the energy fluctuates
around a typical value, which could be predicted by theory. Therefore, samples can be
collected after τeq MCSs to estimate equilibrium values of thermodynamic quantities
of interest.

Even if the dynamics reaches a steady state, an independent sampling of the
equilibrium state requires a certain number of MCSs separating two consecutive
samplings. Therefore, we need to compute a time-dependent autocorrelation function
of any observable O:

CO(t) = 〈O (t0)O (t0 + t)〉 − 〈O(t0)〉〈O(t0 + t)〉
〈O2(t0)〉 − 〈O(t0)〉2

, (4.18)
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Fig. 4.2 The relaxation dynamics of the autocorrelation function for the same SK model defined
in Fig. 4.1

where 〈· 〉 indicates a thermal average, and t0 denotes the starting time. In general,
CO(t) ∼ exp (−t/τauto), and τauto is the corresponding time scale. The correlation
length diverges at a continuous phase transition, while the autocorrelation time also
diverges at the transition, which is also called the critical slowing down phenomenon.
In glass physics, the Edwards–Anderson order parameter qEA = 1

N

∑
i 〈σi 〉2 [5],

which can be treated as the long-time limit of the time-dependent autocorrela-
tion function qEA = limt→∞ C(t), where C(t) = 1

N

∑
i 〈σi (0)σi (t)〉. The Edwards–

Anderson order parameter can also be used to detect ergodicity breaking. A typical
example of the autocorrelation profile is shown in Fig. 4.2 for the SK model at
different temperatures.

4.4.2 Parallel Tempering Monte Carlo

When we are interested in a low-temperature phase for a spin glass model (e.g., the
Sherrington–Kirkpatrick model, the Hopfield model, etc.), the Metropolis algorithm
is easy to get trapped in a local minimum, once the Gibbs measure is decomposed
into an exponential (in the number of degrees of freedom) number of metastable
states. In general, there does not exist one efficient local dynamics method over-
coming this challenging fair-sampling problem. However, there do exist a variety of
sampling heuristics. One well-known example is the simulated annealing [6], where
the starting temperature for the Metropolis sampling is much higher than the target
low temperature, and the dynamics is run at each intermediate decreasing temper-
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ature for a certain number of MCSs, and finally, a ground state of lower energy is
expected to be reached by the annealing process.

The other more efficient one is the parallel tempering method [7], focusing on
overcoming energy barriers by simulating several copies of the original system at
different temperatures. In this method, M replicas without interaction, which means
replicas are independent, are used to construct an ensemble. The mth replica has the
original Hamiltonian H(Xm) and obeys the Boltzmann distribution with an inverse
temperature βm . The corresponding inverse temperatures satisfy βm < βm+1 for con-
venience. Then the state of the ensemble can be described by an extended state
{X} = {X1, X2, . . . , XM }, and the partition function of the ensemble is given by

Z =
∑
{X}

exp

(
−

M∑
m=1

βmH (Xm)

)
=

M∏
m=1

Z (βm) , (4.19)

where Z (βm) is the partition function of the original systemwith βm . The probability
of the extended state with a temperature set can be written as

P({X, β}) =
M∏

m=1

Peq (Xm, βm) = 1

Z exp

(
−

M∑
m=1

βmH (Xm)

)
. (4.20)

To construct the detailed balance condition, we only consider exchanging config-
urations between two replicas. For example, the extended state {. . . ; X, βm; . . . ; X ′,
βn; . . .} changes to {. . . ; X ′, βm; . . . ; X, βn; . . .} with a transition probability
W (X ′, βm; X, βn|X, βm; X ′, βn). The detailed balance condition can, thus, bewritten
as

P({. . . ; X, βm; . . . ; X ′, βn; . . .})W (X ′, βm; X, βn|X, βm; X ′, βn)

= P({. . . ; X ′, βm; . . . ; X, βn; . . .})W (X, βm; X ′, βn|X ′, βm; X, βn).
(4.21)

It is then easy to derive the ratio between the two transition probabilities:

W (X ′, βm; X, βn|X, βm; X ′, βn)

W (X, βm; X ′, βn|X ′, βm; X, βn)
= exp(−�), (4.22)

where
� = (βn − βm)

(H(X) − H (
X ′)) . (4.23)

A reasonable choice of the transition probability can then be expressed as follows:

W (X ′, βm; X, βn|X, βm; X ′, βn) =
{
1, for � < 0,
exp(−�), for � > 0.

(4.24)

In sum, the parallel temperingMonteCarlo can be implemented by the following pro-
cedure. First, using the conventional MCMC method to simulate each replica in the
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ensemble for a certain number ofMCSs. Then configurations of twoneighboring tem-
peratures are exchanged with the transition probability W (X ′, βm; X, βm+1|X, βm;
X ′, βm+1). In general, arbitrary pairs of replicas (say, at two different temperatures
Tn and Tm) with associated microscopic configurations can undergo temperature
switching [8]. We remark that the probability for the temperature exchange between
nonadjacent replicas decreases exponentially, yet essential to speed up crossing the
high energy barriers [8].

Finally, an expectation of any observable O can be obtained:

〈O〉βm = 1

M

M∑
t=1

O (Xm(t)) . (4.25)

A pseudo-code for the parallel tempering method is shown in Algorithm 4.2.

Algorithm 4.2 Parallel tempering Monte Carlo
Input: The number of samples L , βmax , βmin , and the number of temperatures M .
Output: Sample collection.
1: Initialize β1 = βmin , βM = βmax ;
2: Linear initialization of β: βm = β1 + (βM − β1)

m−1
M−1 ;

3: Initialize the extended state randomly: {X} = {X1, X2, . . . , XM };
4: Initialize i = 0;
5: Initialize counter = 0;
6: while (i< L) do
7: Applying the MCMC (e.g., the Metropolis method) for each replica for a few MCSs
8: for βm in {β1, β2, . . . , βM−1} do
9: compute � = (βm+1 − βm) (H(Xm) − H (Xm+1)).
10: if exp(−�) > rand(0, 1) then
11: Swap Xm and Xm+1.
12: Append {X} to the sample collection.
13: i = i+1
14: return the sample collection.

A high-temperature phase has a fast dynamics, while a low-temperature phase
has a very slow dynamics, due to the potential rugged energy landscape. To ensure
a proper acceptance ratio, the acceptance probability e−� should be of order of one.
According to Eq. (4.23), one has

− � = δ (H (Xn+1) − H (Xn)) ∼ δ2
d

dβ
E, (4.26)

where δ indicates the small inverse-temperature difference, and E = 〈H〉 is themean
thermal energy and is an extensive quantity. To ensure the acceptance probability is
of order one, the difference between neighboring temperatures δ should be of order
1√
N
, implying that a number of order

√
N of replicas are required [7]. In essence, the
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new configuration from the fast mixing chain allows the chains at a low temperature
to sample the state space more efficiently, compared with a pure Metropolis local
dynamics.
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Chapter 5
High-Temperature Expansion

In this chapter, we introduce one important theoretical technique—high-temperature
expansion, to derive theThouless–Anderson–Palmer (TAP) equation, a seminal equa-
tion in standard spin glass theory (Thouless et al. in Phil. Mag. 35(3):593, 1977
[1]; Plefka in J. Phys. A 15(6):1971, 1982 [2]; Georges and Yedidia in J. Phys. A:
Math. Gen. 24:2173, 1991 [3]). This technique is quite popular and useful even
in machine learning community, acting as a perturbation analysis to derive efficient
algorithms for inference and learning (Maillard et al. in J. Stat. Mech.: Theory Exper.
2019(11):113301, 2019 [4]).

5.1 Statistical Physics Setting

In statistical physics, given a Hamiltonian H , the corresponding partition function
is defined as

Z =
∑

σ

e−βH(σ ), (5.1)

which is the normalization constant of the Boltzmann distribution. The inverse tem-
perature β = 1/T , and σ denotes the configuration vector. The average of any ther-
modynamic quantity A(σ ) with respect to the Boltzmann distribution is given by

〈A〉 =
∑

σ

A(σ )P(σ ), (5.2)

where the Boltzmann distribution P(σ ) = e−βH(σ )

Z . The internal energy E(β) is, thus,
defined as

E(β) = 〈H〉 =
∑

σ

H(σ )P(σ ). (5.3)

According to the probabilistic interpretation, the entropy is defined as
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S(β) = −
∑

σ

P(σ ) ln P(σ ). (5.4)

The Helmholtz free energy is, thus, defined by

F(β) = E(β) − T S(β) = − 1

β
ln Z(β). (5.5)

In a complex system, like a neural network, the Boltzmann distribution is com-
monly hard to compute (including uniform sampling). However, the variational
method approximates the intractable distribution P(σ ) by Q(σ ) which belongs to
a family M of tractable distributions. The distribution Q is chosen such that it
minimizes a certain distance measure D(Q, P) within the family M. For example,
D(Q, P) can be chosen as the Kullback–Leibler (KL) divergence between Q and
P:

KL(Q||P) =
∑

σ

Q(σ ) ln
Q(σ )

P(σ )
=
〈
ln

Q

P

〉

Q

, (5.6)

where 〈· · · 〉Q denotes an expectation with respect to Q. Inserting P(σ ) = e−βH(σ )

Z
into Eq. (5.6), we get

KL(Q||P) = ln Z + βE[Q] − S[Q] = ln Z + βF[Q], (5.7)

where the variational energy is then defined by

E[Q] =
∑

σ

Q(σ )H(σ ), (5.8)

and the entropy of the trial distribution Q is given by

S[Q] = −
∑

σ

Q(σ ) ln Q(σ ). (5.9)

The variational free energy is, thus, given by

F[Q] = E[Q] − T S[Q]. (5.10)

We remark that F[Q] constructs an upper bound to the Helmholtz free energy, due
to the non-negativity of the KL divergence. The bound is tight once Q = P .

To proceed, we introduce the Gibbs free energy Gβ(m) under the distribution Q
as follows:

Gβ(m) = min
Q

{F[Q]|〈σ 〉Q = m}. (5.11)
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The Helmholtz free energy is just a thermodynamic value equal to E − T S at equi-
librium, but the Gibbs free energy is a function that gives the value of E − T S when
some constraints (e.g., magnetizations) are applied. The advantage of working with
a Gibbs free energy instead of a direct computation of the Helmholtz free energy is
that it is much easier to apply intuitive approximations, as we explain below.

We thenminimize the Gibbs free energy in the following steps. First, we constrain
the minimization in the family of distributions satisfying 〈σ 〉Q = m for fixedm. By
adding a Lagrange multiplier λ, we obtain

Gβ(m,λ) = E[Q] − T S[Q] − 1

β

∑

i

λi (〈σi 〉Q − mi )

=
∑

σ

Q(σ )H(σ ) − T S[Q] − 1

β

∑

σ

∑

i

λiσi Q(σ ) + 1

β

∑

i

λimi

=
∑

σ

Q(σ )[H(σ ) − 1

β

∑

i

λiσi ] − T S[Q] + 1

β

∑

i

λimi .

(5.12)
Equation (5.12) is of the form of the variational free energy [Eq. (5.10)], where H(σ )

is replaced by H(σ ) −∑i
λi
β
σi . Hence, the valid distribution is given by

Qλ(σ ) = e−βH(σ )+∑i λiσi

Zλ

, (5.13)

where Zλ =∑σ e
−βH(σ )+∑i λiσi . This equation comes from the fact that the varia-

tional free energy takes a minimum when Q is the Boltzmann distribution P(σ ).
Inserting this distribution back into Eq. (5.12) yields

Gβ(m,λ) = − 1

β
ln
∑

σ

e−βH(σ )+∑i λiσi + 1

β

∑

i

λimi

= − 1

β
ln
∑

σ

e−βH(σ )+∑i λiσi−∑i λi mi .

(5.14)

The constraint 〈σ 〉Q = m has been enforced by the Lagrange multiplier λ that is
determined by

βGβ(m) = max
λ

{
− ln

∑

σ

e−βH(σ )+∑i λiσi +
∑

i

λimi

}
. (5.15)

The max operation is related to the property of the Hessian matrix. By using the
Lagrangian multiplier method, we carry out the derivatives:

∂
(−βGβ(m,λ)

)

∂λi
= 〈σi 〉Q − mi = 0 ⇒ mi = 〈σi 〉Q, (5.16)
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∂
(−βGβ(m,λ)

)

∂mi
=
∑

j

∂

∂λ j

[−βFβ(λ)
] ∂λ j

∂mi
− λi −

∑

j

∂λ j

∂mi
m j

=
∑

j

∂λ j

∂mi
(〈σ j 〉λ − m j ) − λi

= −λi

= 0,

(5.17)

where −βFβ(λ)
def= ln Zλ. Finally, we obtain

minmGβ(m) = F[P] = − 1

β
ln Z . (5.18)

Note that Gβ(m) is a convex function with a unique minimum at meq. In sum, the
approximate computation of Gβ(m) can be used to get an approximation for the true
free energy F[P] as well.

5.2 High-Temperature Expansion

In this section, we apply the high-temperature expansion to approximate the true
Helmholtz free energy. We first introduce the seminal Sherrington–Kirkpatrick (SK)
model. This model was introduced in 1975 as a simple model of spin glass [5]. It is
actually an Ising model with disordered couplings. For simplicity, we ignore external
fields here. The Hamiltonian of the model is given by

H(σ ) = −
N∑

i< j

Ji jσiσ j , (5.19)

where couplings Ji j are independent and are Gaussian random variables for i < j
withmean J0 (herewe just assume J0 to be 0) and variance J 2/N . Ji j acts as quenched
disorder for the model.

The Gibbs free energy is unfortunately intractable, making an optimization in the
magnetization space challenging as well. Therefore, we need to consider a perturba-
tion analysis of the free energy, e.g., in termsof high temperatures. The approximation
accuracy can be controlled by including higher orders of expansion.

We define a new partition function associated with the Hamiltonian as follows:

Z̃β =
∑

σ

e−β H̃(σ ), (5.20)

where the modified Hamiltonian is given by
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H̃(σ ) = H(σ ) −
∑

i

λi (β)

β
(σi − mi ) = −1

2

∑

i �= j

Ji jσiσ j −
∑

i

λi (β)

β
(σi − mi ) ,

(5.21)
where we write λi (β) as an explicit function of the temperature, because λi is used
to enforce the magnetization that depends on the temperature. The relation between
the Gibbs free energy and the new partition function is

− βGβ(m,λ) = ln Z̃β. (5.22)

We then carry out the Taylor expansion at β = 0:

− βGβ(m) = ln Z̃β

∣∣∣
β=0

+ ∂

∂β
ln Z̃β

∣∣∣∣
β=0

β + ∂2

∂β2
ln Z̃β

∣∣∣∣
β=0

β2

2
+ · · · . (5.23)

At β = 0, we obtain

Z̃β

∣∣∣
β=0

=
∑

σ

e
∑

i λi (σi−mi )

=
∏

i

∑

σi

eλi (σi−mi )

=
∏

i

e−λi mi
∏

i

(2 cosh λi ) .

(5.24)

Because

∂ ln Z̃β=0

∂λi
= −mi + tanh (λi ) = 0 ⇒

{
mi = tanh (λi )

λi = atanh (mi )
, (5.25)

then we can calculate the first term:

ln Z̃β |β=0 = −
∑

i

atanh (mi )mi +
∑

i

ln (2 cosh (atanhmi ))

= −
∑

i

1

2
mi ln

1 + mi

1 − mi
+
∑

i

ln
[
e− 1

2 ln
1+mi
1−mi + e

1
2 ln

1+mi
1−mi

]

= −
∑

i

1

2
mi ln

1 + mi

1 − mi
+
∑

i

ln

((
1 + mi

1 − mi
+ 1

)√
1 − mi

1 + mi

)

=
∑

i

(
−mi

2
ln

1 + mi

2
+ mi

2
ln

1 − mi

2

)
+
∑

i

ln
2√

(1 − mi ) (1 + mi )

= −
∑

i

(
1 + mi

2
ln

1 + mi

2
+ 1 − mi

2
ln

1 − mi

2

)
.

(5.26)



48 5 High-Temperature Expansion

Here, we have used the mathematical identity: atanhmi = 1
2 ln

1+mi
1−mi

. The second
term is given by

∂ ln Z̃β

∂β

∣∣∣∣∣
β=0

= 1

Z̃β

∑

σ

[
(−H)e−β H̃ +

∑

i

∂λi

∂β
(σi − mi ) e

−β H̃

]

= − 〈H〉|β=0

= 1

2

∑

i �= j

Ji jmim j .

(5.27)

Note that the thermal average is carried out under the Boltzmann measure of H̃(σ ),
and the correlation between two spins is negligible in the high-temperature limit.
The third term is given by

∂2

∂β2 ln Z̃β = −∂〈H〉
∂β

= − ∂

∂β

[
∑

σ

He−β H̃

Z̃β

]

= −
[
∑

σ

e−β H̃

Z̃β

H

(
−H +

∑

i

∂λi

∂β
(σi − mi )

)
−
∑

σ

He−β H̃

Z̃β

· ∂ ln Z̃β

∂β

]

= −
〈
H

(
−H +

∑

i

∂λi

∂β
(σi − mi )

)
− H(−〈H〉)

〉

=
〈
H

(
H − 〈H〉 −

∑

i

∂λi

∂β
(σi − mi )

)〉

:= 〈uH〉.
(5.28)

Here, we have introduced a very useful operator u as follows [3]:

u := H − 〈H〉 −
∑

i

∂λi

∂β
(σi − mi ) = H − 〈H〉 − k (5.29)

where k :=∑i
∂λi
∂β

(σi − mi ). Because

∂ ln Z̃β

∂mi
= −λi

Z̃β

Z̃β

= −λi , (5.30)

we have the following result:
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∂λi

∂β

∣∣∣∣
β=0

= − ∂

∂β

∂ ln Z̃β

∂mi
= − ∂

∂mi

∂ ln Z̃β

∂β

= −1

2

∂

∂mi

∑

i �= j

Ji jmim j = −
∑

j (�=i)

Ji jm j .

(5.31)

We, thus, conclude that

u|β=0 = −1

2

∑

i �= j

Ji jσiσ j + 1

2

∑

i �= j

Ji jmim j +
∑

i

∑

j ( j �=i)

Ji jm j (σi − mi )

= −1

2

∑

i �= j

Ji j (σi − mi )
(
σ j − m j

)
.

(5.32)

To proceed, we should first calculate the mean and variance of u:

〈u〉 = 0, (5.33)

and

〈
u2
〉 = 〈u (H − 〈H〉 − k)〉 = 〈uH〉 − 〈u〉〈H〉 − 〈ku〉 = 〈uH〉. (5.34)

We can prove above Eqs. (5.33) and (5.34) by using the following identity:

d

dβ
〈O〉 = 1

Z̃β

∑

σ

Oe−β H̃

(
−H +

∑

i

∂λi (β)

∂β
(σi − mi )

)

+
∑

σ Oe−β H̃

Z̃β

[
−∂ ln Z̃β

∂β

]
+
∑

σ
∂O
∂β
e−β H̃

Z̃β

=
〈
∂O

∂β

〉
− 〈Ou〉,

(5.35)

where O is any observable, and

d

dβ
〈σi 〉 = 0 =

〈
∂σi

∂β

〉
− 〈σi u〉 = −〈σi u〉,

〈(σi − mi ) u〉 = 0,

〈ku〉 = 0.

(5.36)

Note that the full derivative vanishes due to the constrained magnetization [i.e., as a

constant, see also Eq. (5.11)]. Therefore, we can obtain ∂2

∂β2 ln Z̃β

∣∣∣
β=0

by calculating
〈
u2
〉 |β=0:
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∂2

∂β2
ln Z̃β

∣∣∣∣
β=0

= 〈u2〉 |β=0

= 1

4

∑

i �= j,k �=l

Ji j Jkl
〈
(σi − mi )

(
σ j − m j

)
(σk − mk) (σl − ml)

〉

� 1

2

∑

i �= j

J 2
i j

〈
(σi − mi )

2
(
σ j − m j

)2〉

= 1

2

∑

i �= j

J 2
i j

(
1 − m2

i

) (
1 − m2

j

)
,

(5.37)
where we have used the formula:

〈
(σi − mi )

2
〉 = 1 − 2m2

i + m2
i = 1 − m2

i . Finally,
we obtain

−βGβ(m) = −
∑

i

(
1 + mi

2
ln

1 + mi

2
+ 1 − mi

2
ln

1 − mi

2

)

+ 1

2
β
∑

i �= j

Ji jmim j + β2

4

∑

i �= j

J 2
i j

(
1 − m2

i

) (
1 − m2

j

)+ O(β3).

(5.38)
The first term on the right side of the above equation is called the mean-field varia-
tional entropy. The second term is the mean-field variational energy. The third term
corresponds to the Onsager reaction correction. All three terms construct the TAP
free energy for the SK model.

To minimize the free energy, we carry out the differentiation with respect to {mi },

∂
(−βGβ(m)

)

∂mi
= − atanh(mi ) + β

∑

j (�=i)

Ji jm j + β2

2

∑

j (�=i)

J 2
i j

(
1 − m2

j

)
(−2mi ) = 0,

(5.39)
and finally obtain the self-consistent equation (the so-called TAP equation):

mi = tanh

⎛

⎝β
∑

j (�=i)

Ji jm j − β2
∑

j (�=i)

J 2
i j

(
1 − m2

j

)
mi

⎞

⎠ . (5.40)

Thefirst termon the right-hand side represents the standardmean-field approximation
of local fields. The second term is called the Onsager reaction field added to remove
the effects of self-response [6]. If we consider the external fields {hi }, the TAP
equation becomes

mt+1
i = tanh

⎛

⎝βhi + β
∑

j (�=i)

Ji jm
t
j − β2

∑

j (�=i)

J 2
i j

(
1 − (mt

j )
2
)
mt−1

i

⎞

⎠ , (5.41)
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where we have put the correct time indexes for iteration [7]. In the thermodynamic
limit, the TAP approximation becomes exact for the SK model, as the terms O(β3)

vanish. The fixed points of TAP are the stationary points of the TAP free energy. At
low temperatures, the TAP equation have many solutions withmi �= 0, which can be
interpreted as stable or metastable thermodynamic states [8, 9].

5.3 Properties of the TAP Equation

In this section, we study the behavior of the solution of the TAP equation [Eq. (5.40)
where external fields are added] around the spin glass transition point [6]. Because
Ji j are assumed to be independent random variables (for i < j) with zero mean and
the variance J 2/N . The Onsager term of the TAP equation becomes

β2
N∑

j (�=i)

J 2
i j

(
1 − m2

j

)
mi = β2 J 2mi − β2

N∑

j (�=i)

J 2
i jm

2
jmi , (5.42)

when N → ∞ (the law of large numbers applies). Around the spin glass transition
point, we assume that the magnetizations {mi } are small, expand the right-hand side
of the TAP equation to the first order in m and finally arrive at

mi = β
∑

j

Ji jm j + βhi − β2 J 2mi . (5.43)

We also assume that hi is not dominant. For the symmetric matrix J, we have J =
Q�QT, where Q is the orthogonal matrix, and � = diag(λ1, λ2, . . . , λN ) in which
{λi } are eigenvalues of the interaction matrix J. Let us write Ji j in the following
form:

Ji j =
∑

n

QinQ jnλn. (5.44)

To proceed, we define the λ-magnetization and λ-field by [6]

mλn =
∑

i

Qinmi , hλn =
∑

i

Qinhi . (5.45)

Then we have the following result:
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β
∑

i

Qin

∑

j

Ji jm j = β
∑

i

Qin

∑

j

∑

m

QimQ jmλmm j

= β
∑

m

λm

∑

i

QinQim

∑

j

Q jmm j

= βλn

∑

j

Q jnm j

= βλnmλn ,

(5.46)

where we have used the orthogonal condition:
∑

i QinQim = δnm . Then we can
rewrite Eq. (5.43) as

mλ = βmλλ + βhλ − β2 J 2mλ. (5.47)

We can, thus, conclude that the λ-susceptibility can be expressed as [10]

χλ = ∂mλ

∂hλ

= β

1 − βλ + (β J )2
. (5.48)

In addition, the eigenvalues of the randommatrix J follow thewell-known semi-circle
law1 [11]:

ρ (λ) =
√
4J 2 − λ2

2π J 2
. (5.49)

It is easy to derive from Eq. (5.48) that the susceptibility corresponding to the largest
eigenvalue λ = 2J diverges at Tg = J , suggesting a continuous phase transition. The
location of this transition agrees exactly with that obtained from the replica result [5].

An alternative way to see the stability condition of the paramagnetic phase is to
compute the Hessian matrix:

Hi j = ∂2(βGβ(m))

∂mi∂m j

∣∣∣∣
m=0

= −β Ji j + (β2 J 2 + 1)δi j . (5.50)

The stability condition is that all the eigenvalues of the Hessian matrix should be
positive, leading to the same result as above. The susceptibility matrix χi j = ∂mi

∂h j

is related to the Hessian matrix as (H−1)i j = β−1χi j = 〈σiσ j 〉c followed from the
linear response theory. The subscript c denotes the connected two-point correlation.
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Chapter 6
Nishimori Line

In this chapter, we introduce the Nishimori line as an important concept, i.e., Nishi-
mori temperature or constraint, on spin glass models of broad contexts. This concept
was first discovered in the traditional two-body interaction spin glass model [1, 2],
which demonstrated that on a special temperature, the model energy of a complex
glass model is analytic, and the replica symmetry breaking (RSB) phase (introduced
in Chap. 9) is not dominant for ground states, and thus, the underlying physics is
greatly simplified. The concept was later connected to the Bayes optimal setting of
statistical inference problems [3–6]. Thus, this concept is an important theoretical
perspective to understand the Bayesian learning process, one of the most popular
paradigms in the deep learning era. Here, we introduce the basic knowledge about
this concept first, and we leave more applications to later chapters of learning theory.

6.1 Model Setting

The original model Hidetoshi Nishimori used to derive the special temperature is
defined as follows:

H = −
∑

i< j

Ji jσiσ j , (6.1)

where Ji j acts as a quenched disorder. The coupling distribution function is specified
as follows:

P(Ji j ) = pδ(Ji j − J ) + (1 − p)δ(Ji j + J ), (6.2)

where p denotes a ferromagnetic bias for the coupling, and J is a positive constant.
Each coupling is generated independently from this binomial distribution.

Let Ji j = Jτi j , where τi j = ±1. For the sake of convenience, we then introduce
an auxiliary temperature βp to parameterize the original distribution P(Ji j ):
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P(Ji j ) = P(τi j ) = eβpτi j

2 cosh βp
, (6.3a)

βp = 1

2
ln

(1 − p

p

)
. (6.3b)

The form of βp ensures that the two forms of the coupling distribution are equiva-
lent. Readers can easily verify this point by considering both possible values of the
coupling.

6.2 Exact Result for Internal Energy

According to the model definition, the internal energy can be written as follows:

〈H〉τ ,σ =
∑

τ

P(τ )
∑

σ

P(σ )

⎛

⎝−J
∑

i< j

τi jσiσ j

⎞

⎠

=
∑

τ

eβp
∑

i< j τi j

(2 cosh βp)NB

∑

σ

eβ J
∑

i< j τi jσiσ j

∑
σ e

β J
∑

i< j τi jσiσ j

⎛

⎝−J
∑

i< j

τi jσiσ j

⎞

⎠ ,

(6.4)

where NB is the number of interactions (also called bonds in a lattice model). Note
that P(τ ) is factorized, as the {τi j } are independent. We further remark that the
Hamiltonian of the model is invariant under the following gauge transformation:

τi j → τi j si s j , (6.5)

σi → σi si . (6.6)

Note that {si } is also an Ising-valued configuration. Therefore, we apply this trans-
formation to the model internal energy as follows:

〈H〉τ ,σ = −
∑

τ

eβp
∑

i< j τi j si s j

(2 cosh βp)NB

∑
σ e

β J
∑

i< j τi jσiσ j J
∑

i< j τi jσiσ j
∑

σ e
β J

∑
i< j τi jσiσ j

= − 1

2N
∑

τ

∑
s e

βp
∑

i< j τi j si s j

(2 cosh βp)NB

∑
σ e

β J
∑

i< j τi jσiσ j J
∑

i< j τi jσiσ j
∑

σ e
β J

∑
i< j τi jσiσ j

= − 1

2N
∑

τ

Z s

(2 cosh βp)NB

∑
σ e

β J
∑

i< j τi jσiσ j J
∑

i< j τi jσiσ j

Zσ

,

(6.7)

where 2N is introduced to cancel the sum operation
∑

s •. Clearly, when β J = βp,
the partition functions Zs and Zσ cancel with each other. Then, we have
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〈H〉τ ,σ = − 1

2N
1

(2 cosh βp)NB

∑

τ

∑

σ

eβ J
∑

i< j τi jσiσ j J
∑

i< j

τi jσiσ j

= − 1

2N
1

(2 cosh βp)NB

∂

∂β

∑

τ

∑

σ

eβ J
∑

i< j τi jσiσ j

= − 1

2N
1

(2 cosh βp)NB

∂

∂β

∑

σ

∏

i< j

∑

τi j

eβ Jτi jσiσ j

= − 1

2N
1

(2 cosh βp)NB

∂

∂β

∑

σ

(2 cosh βp)
NB

= −NB J tanh βp.

(6.8)

Therefore, under the Nishimori temperature β J = βp, the internal energy for the
model has an analytical expression. In general, the internal energy does not have a
closed-form expression.

6.3 Proof of No RSB Effects on the Nishimori Line

In this section, we will prove that, using the gauge transformation, the distribution
of spin glass order parameters does not have a complex structure on the Nishimori
line (βp) and coincides exactly with the distribution of magnetizations.

The magnetization distribution is defined as follows:

Pm(x; k) =
∑

τ

ekp
∑

i< j τi j

(2 cosh kp)NB

∑

σ

ek
∑

i< j τi jσiσ j

∑
σ e

k
∑

i< j τi jσiσ j
δ

(
x − 1

N

∑

i

σi

)
, (6.9)

where we have defined k = β J and kp = βp. Double averages are performed in the
definition of themagnetization distribution: the one overσ is the thermal average, and
the other over τ is the disorder average. Both averages are standard thermodynamic
operations in the spin glass theory. The disorder average is usually challenging.

Next, we apply the following gauge transformation:

τi j → τi j si s j , (6.10)

σi → σi si . (6.11)

Then, Pm(x; k) changes to

Pm(x; k) = 1

2N
∑

τ

∑

s

ekp
∑

i< j τi j si s j

(2 cosh kp)NB

∑

σ

ek
∑

i< j τi jσiσ j

∑
σ e

k
∑

i< j τi jσiσ j
δ

(
x − 1

N

∑

i

σi si

)
.

(6.12)
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This form of Pm(x; k) can be further simplified to make the underlying physics more
transparent. A simple algebraic manipulation leads to

Pm(x; k) = 1

2N
∑

τ

∑

s

ekp
∑

i< j τi j si s j

(2 cosh kp)NB

∑

σ

ek
∑

i< j τi jσiσ j

∑
σ e

k
∑

i< j τi jσiσ j
δ

(
x − 1

N

∑

i

σi si

)

×
∑

s′ e
kp

∑
i< j τi j s ′

i s
′
j

∑
s e

kp
∑

i< j τi j si s j
.

We then perform the second gauge transformation: τi j → τi j s ′
i s

′
j , σi →

σi s ′
i , and si → si s ′

i , resulting in

Pm(x; k) =
∑

τ

ekp
∑

i< j τi j

(2 cosh kp)NB

∑

s

ekp
∑

i< j τi j si s j

∑
s e

kp
∑

i< j τi j si s j

×
∑

σ

ek
∑

i< j τi jσiσ j

∑
σ e

k
∑

i< j τi jσiσ j
δ

(
x − 1

N

∑

i

σi si

)

=
∑

τ

P(τ )
∑

σ

P(σ )
∑

s

P(s)δ

(
x − 1

N

∑

i

σi si

)

=Pq(x; k, kp),

(6.13)

where P(σ ) and P(s) are the Boltzmann measures with (rescaled) inverse tempera-
ture k and kp, respectively.

Under the Nishimori temperature, Pm(x; kp) = Pq(x; kp, kp) = Pq(x; kp). We,
thus, conclude that the distribution of spin glass order parameter (overlap q =
1
N

∑
i σi si ) shares the same form as the magnetization distribution. It is well known

that the magnetization distribution in statistical physics is simple, while the over-
lap distribution can be very complex (e.g., when replica symmetry breaking effects
dominate the phase space, like in the SK model). The two equivalent distributions
on the Nishimori line suggest an absence of spin glass phase for the ground states.
However, RSB may be needed to describe the metastable (out of equilibrium) states
of the system (e.g., in the study [7]). Altogether, on the Nishimori line, the system
never enters the glassy phase and the dominant thermodynamic phase is always a RS
type.
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Chapter 7
Random Energy Model

In this chapter, we briefly introduce the well-known random energy model (Derrida
in Phys. Rev. Lett. 45:79, 1980 [1]; Derrida in Phys. Rev. B 24(5):2613, 1981 [2]),
which is the infinite-body interaction limit of p-spin interaction models, but still cap-
tures characteristics of spin glasses (Gross and Mezard in Nuclear Phys. 240(4):431,
1984 [3]). Here, we focus on basic concepts and their connections to frozen phases
commonly observed in other constraint satisfaction problems, e.g., binary Perceptron
(introduced in Chap.13).

7.1 Model Setting

We consider Ising-type spins, whose interaction follows the Hamiltonian:

H(σ ) = −
∑

1≤i1...i p≤N

Ji1...i pσi1 · · · σi p , (7.1)

where the coupling follows the Gaussian distribution defined by

P(Ji1...i p ) =
√

N p−1

π J 2 p! exp
[
− J 2

i1...i p
N p−1

J 2 p!

]
, (7.2)

where J is positive, and the scaling of variance ensures that extensive energy is
well-defined. A generalized Hopfied model with multi-body interactions can also be
included in this class of models [4]. In this scaling, it is easy to verify that p = 2
corresponds to the standard Sherrington–Kirkpatrick model.

We are interested in the distribution of the energy level E , to see if this distribution
becomes simple in the limit p → ∞. In general, the distribution can be very complex.
According to the definition, we have
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P(E) = δ(E − H(σ ))

=
∫

d Ê

2π
exp

⎡

⎣i Ê E + i Ê
∑

1≤i1...i p≤N

Ji1...i pσi1 · · · σi p

⎤

⎦

=
∫

d Ê

2π
ei Ê E

∏

1≤i1...i p≤N

ei Ê Ji1 ...i p σi1 ···σi p ,

(7.3)

where the quenched-disorder average (indicated by the over-bar) can be explicitly
calculated out as follows:

ei Ê Ji1 ...i p σi1 ···σi p =
∫

P(Ji1...i p )d Ji1...i p e
i Ê Ji1 ...i p σi1 ···σi p

= exp

[
(i Êσi1 · · · σi p )

2 J 2 p!
4N p−1

]
.

(7.4)

Note that the total number of the products in Eq. (7.3) can be approximated by N p

p!
when N → ∞. Therefore, we finally arrive at

P(E) =
∫

d Ê

2π
ei Ê E+ (i Ê)2N J2

4

= 1√
Nπ J 2

e− E2

N J2 ,

(7.5)

which is exactly a Gaussian distribution with zero mean and a fluctuation of the order
O(

√
N ).

The Gaussian distribution of energy levels in p-spin interaction models does not
imply any information about whether the energy levels are correlated or not. To
address this question, we derive the joint distribution of two energy levels, say E1

and E2, as follows:

P(E1, E2, q) = δ(E1 − H(σ1))δ(E2 − H(σ2))

=
∫∫

d Ê1 Ê2
4π2

ei(Ê1E1+Ê2E2)exp

⎡

⎣i

⎛

⎝Ê1
∑

i1<···<i p

Ji1 ...i p σ1
i1

· · · σ1
i p

+ Ê2
∑

i1<···<i p

Ji1 ...i p σ2
i1

· · · σ2
i p

⎞

⎠

⎤

⎦

=
∫∫

d Ê1 Ê2
4π2

ei(Ê1E1+Ê2E2)
∏

i1<···<i p

exp
(
i Ê1 Ji1 ...i p σ1

i1
· · · σ1

i p
+ i Ê2 Ji1 ...i p σ2

i1
· · · σ2

i p

)
,

(7.6)
where we have defined the overlap between two configurations as q = 1

N

∑
i σ

1
i σ 2

i .
To proceed, we must calculate the disorder average in the above expression of
P(E1, E2, q). The disorder average is carried out as follows:
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exp
[
i Ê1 Ji1...i pσ

1
i1

· · · σ 1
i p

+ i Ê2 Ji1...i pσ
2
i1

· · · σ 2
i p

]

=
∫

d Ji1...i p P(Ji1...i p ) exp
(
i Ê1 Ji1...i pσ

1
i1 · · · σ 1

i p + i Ê2 Ji1...i pσ
2
i1 · · · σ 2

i p

)

= exp

[
(i Ê1)

2 + (i Ê2)
2 + 2J 2 p!(i Ê1)(i Ê2)

4N p−1
(σ 1

i1 · · · σ 1
i pσ

2
i1 · · · σ 2

i p )

]
,

(7.7)

where we have used the fact that spin takes a binary value ±1. Inserting the disorder
average into Eq. (7.6), we obtain

P(E1, E2, q) =
∫∫

d Ê1 Ê2
4π2 ei(Ê1E1+Ê2E2)

×
∏

i1<···<i p

exp

[
(i Ê1)

2 + (i Ê2)
2 + 2J2 p!(i Ê1)(i Ê2)

4N p−1 (σ 1
i1

· · · σ 1
i p

σ 2
i1

· · · σ 2
i p

)

]

=
∫∫

d Ê1 Ê2
4π2 ei(Ê1E1+Ê2E2) exp

[
J2N

4

(
(i Ê1)

2 + (i Ê2)
2 + 2q p(i Ê1)(i Ê2)

)]
.

(7.8)
To arrive at the last equality, we have used the relationship p!∑N

i1<i2<···<i p
• �∑

i1,i2,...,i p
• for large N , together with the definition of the overlap q. Finally, calcu-

lating the Gaussian integral out in Eq. (7.8), we conclude that the joint distribution
parameterized by q and J is given by

P(E1, E2, q) = 1

π J2N
√
1 − q2p

exp

[
2E1E2q p − E2

1 − E2
2

J2N (1 − q2p)

]

=
[
Nπ J2(1 + q p)Nπ J2(1 − q p)

]−1/2
exp

[
− (E1 + E2)

2

2J2N (1 + q p)
− (E1 − E2)

2

2J2N (1 − q p)

]
.

(7.9)

Supposed that |q| < 1, we immediately have P(E1, E2, q)
p→∞−−−→ P(E1)P(E2),

where P(E1) and P(E2) are the Gaussian distributions derived before. This implies
that the energy levels are uncorrelated, and each of them follows exactly the Gaussian
distribution.

7.2 Phase Diagram

The above mathematical results draw concise physics pictures of the infinite-body
interaction model. We can then easily compute the typical number of configurations
with predefined energy level E ,

〈n(E)〉 = 2N P(E) = 1√
πN J 2

e
N

(
ln 2−

(
E
N J

)2)

. (7.10)
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One can then derive a critical energy level E0 = N J
√
ln 2, above which (in the

absolute value) no configurations exist. However, for |E | < E0, there are expo-
nentially many configurations at the corresponding energy level. In the thermo-
dynamic limit, the entropy density (per spin) below the critical energy level is

given by s(E) = limN→∞ ln〈n(E)〉
N = ln 2 −

(
ε
J

)2
, where ε denotes the energy den-

sity. According to the thermodynamic relationship dS
dE = 1

T , one can also obtain the

expression for the energy level ε = − J 2

2T , which also determines the critical temper-
ature Tc = J

2
√
ln 2

where the entropy vanishes.
Finally, the equilibrium property of the random energy model is summarized by

the free energy profile (F = E − T S):

F/N =
{

−T ln 2 − J 2

4T T > Tc
−J

√
ln 2 T < Tc

. (7.11)

This implies that below the critical temperature, the free energy of the system does
not depend on the temperature, due to the vanishing entropy for a system of dis-
crete degrees of freedom. The vanishing entropy suggests that the system enter a
frozen glassy phase—the transition is continuous in the thermodynamic sense (no
latent heat). This frozen glassy phase is also discovered in the Gallager codes [5, 6]
and binary Perceptron [7–9]. We finally remark that the one-step replica symmetry
breaking (see Chap. 9) was confirmed to be exact for the random energy model [3].
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Chapter 8
Statistical Mechanical Theory
of Hopfield Model

Hopfield model is a well-known abstract model of associative memory in the
brain (Amari in Biolog. cybern. 26:175, 1977 [1]; Hopfield in Proc. Natl. Acad. Sci.
USA 79:2554, 1982 [2]). Its equilibrium properties were first analyzed in the seminal
paper (Amit et al. in Phys. Rev. Lett. 55(14):1530, 1985 [3]) by Amit, Gutfreund and
Sompolinsky. To obtain the phase diagram, the replica method developed originally
in spin glass theory was used and then became popular in neural network research.
This work also opened a new discipline—computational/theoretical neuroscience,
being an important branch of worldwide brain projects in this new century. In this
chapter, we will introduce in detail physics of this model, including phase transitions
in associative memory, by an in-depth application of the replica trick (Mézard et al.
in Spin Glass Theory and Beyond. World Scientific, Singapore, 1987 [4]).

8.1 Hopfield Model

In the Hopfield network, all neurons are connected with each other by real-valued
weights (see Fig. 8.1). Randomly generated patterns can be stored in this network
by assigning the weights wi j in a Hebbian way (i.e., cells that fire together, wire
together). After assigning all the weights, if one feeds a distorted pattern to the
network, the network dynamics can converge to the correct undistorted pattern by
locally updating the neural state.

In the Hopfield model, the state of neuron i at time step t takes binary values (±1)

Si (t) =
{

−1 inactive

1 active
. (8.1)

The update rule takes the form
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Fig. 8.1 Typical structure of
a Hopfield network. The
circles represent neurons,
and the lines with arrows
represent symmetric weights
between two neurons
(wi j = wji ). Every neuron is
connected to all other
neurons

Si (t + 1) ← sgn

⎛
⎝∑

j

wi j S j (t) − θi

⎞
⎠ , (8.2)

where sgn(x) =

⎧⎪⎨
⎪⎩
1 x > 0

0 x = 0

−1 x < 0

, and θi is the firing bias of the neuron Si . In fact, this

rule is a zero-temperature Monte Carlo dynamics of the model.
Now we need to choose the right weights {wi j } to ensure that the binary patterns

{ξ (μ)} are attractors. If one feeds an input S(t = 0) close to one of stored patterns
(say ξ (ν)) to the network, the network is expected to converge to ξ (ν).

We consider a simple setting for the network, namely storing just one pattern, say
ξ 1. We can choose the weights according to the following Hebbian rule:

wi j = 1

N
ξ

(1)
i ξ

(1)
j , (8.3)

for i �= j , and θi = 0. Usually we set wii = 0 for all i . To check this rule, we feed
the pattern ξ (1) to the network

N∑
j=1

wi jξ
(1)
j = 1

N

N∑
j=1

ξ
(1)
i ξ

(1)
j ξ

(1)
j = 1

N

N∑
j=1

ξ
(1)
i = ξ

(1)
i . (8.4)

Therefore
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Fig. 8.2 The energy landscape of theHopfield network.Minima in the energy function are attractors
in the state space. But not every attractor corresponds to a stored pattern. These metastable states
are referred to as spurious memories (e.g., a linear combination of several stored patterns [5])

sgn

⎛
⎝ N∑

j=1

wi jξ
(1)
j

⎞
⎠ = ξ

(1)
i ⇒ S(t > 0) = ξ (1). (8.5)

If we feed the reversed pattern −ξ (1) to the network

sgn

⎛
⎝−

N∑
j=1

wi jξ
(1)
j

⎞
⎠ = −ξ

(1)
i ⇒ S(t > 0) = −ξ (1) . (8.6)

Therefore, if ξ (1) is an attractor, then −ξ (1) is an attractor as well. This is a general
property of the Hopfield model, as we shall show by writing down the Hamiltonian.

In equilibrium statistical physics, the Hamiltonian (the energy function) is defined
as

H = −1

2

N∑
i, j

wi j Si S j , (8.7)

where wi j = 1/N
∑P

μ=1 ξ
μ

i ξ
μ

j , which is symmetric, ensuring that an equilibrium
state exists.Note that the pattern entries are independently selected as P(ξ

μ

i = ±1) =
1/2. Under the zero-temperature dynamics of the model, the Hamiltonian H remains
unchanged or decrease. To show this, neglecting the firing bias, we consider the
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update

S′
k = sgn

⎛
⎝∑

j

wk j S j

⎞
⎠ , (8.8)

and thus either S′
k = Sk or S′

k = −Sk . In the first case, H remains unchanged. In the
other case,

H ′ − H =
∑
j (�=k)

wkj Sk S j +
∑
i(�=k)

wik Si Sk = 2
∑
j (�=k)

wkj Sk S j . (8.9)

Because the sign of
∑

j wk j S j is the same as S′
k and S′

k = −Sk , it then follows that

H ′ − H < 0. (8.10)

Hence, either H remains unchanged or its value decreases in one update step. After
a sufficient number of updates, the energy function falls into a certain minimum,
which is expected to correspond to a stored pattern (Fig. 8.2). This derivation can
be cross-checked by implementing a zero-temperature Monte Carlo sampling on the
Hamiltonian of Hopfield model.

8.2 Replica Method

In the thermodynamic limit, the free energy has the self-averaging property, i.e.,
−β f = 〈ln Z〉, where Z is the partition function. As the number of degrees of free-
dom grows, the single-sample value of the free energy will converge sharply to the
quenched average value. However, the expression 〈ln Z〉, namely the quenched aver-
age, is difficult to calculate in a directway,whereas 〈Z〉, namely the annealed average,
is much easier to calculate. However, in most contexts of interest, 〈ln Z〉 �= ln〈Z〉.
In fact, the annealed average provides an upper bound to the quenched average, due
to the Jensen’s inequality. The replica trick can be used to make a transformation
of this calculation by introducing many copies of the original systems. Then the
original interaction system can be decoupled to an equivalent system where correla-
tions among replicas are considered,which greatly simplifies the original challenging
computation.

In mathematics, we have

ln Z = lim
n→0

Zn − 1

n
. (8.11)

Then we calculate the expectation
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〈ln Z〉 = lim
n→0

〈Zn〉 − 1

n
= lim

n→0

ln〈Zn〉
n

, (8.12)

where 〈·〉 is the disorder average over ξ . Since Zn 	 1 + n ln Z + · · · , we have
〈Zn〉 	 1 + n〈ln Z〉 · · · . Therefore

lim
n→0

ln〈Zn〉
n

= lim
n→0

ln(1 + n〈ln Z〉)
n

= lim
n→0

n〈ln Z〉
n

= 〈ln Z〉 , (8.13)

where when n is small enough, we can take the expansion like Zn = en ln Z = 1 +
n ln Z + · · · . The averaged free energy per spin can thus be calculated by

f = lim
n→0

lim
N→∞

− ln〈Zn〉
βnN

. (8.14)

We first assume that n is an integer (for the power), and after the calculation of
〈Zn〉, we carry out the limit of 〈ln Z〉 as n approaches 0. This seems hard to understand
in physics; whereas the results must be compared with physics simulations of the
model. In this sense, the cavity approximation is more physically transparent than
the replica trick, although in most (we are not sure if all is suitable) cases, both
methods yields the same result. We remark that the order of the two limits (n → 0
and N → ∞) has been exchanged for the purpose of applying the Laplace method in
the thermodynamic limit. This operation is also not mathematically rigorous. But the
final result is usually in consistent with physics intuition and numerical simulations.

Next, we suppose that the network is able to store P random patterns (P =
αN , and α denotes the memory load). Note that H = − 1

2

∑N
i, j wi j Si S j and wi j =

1
N

∑P
μ=1 ξ

μ

i ξ
μ

j . Therefore

〈
Zn
〉 =

〈
Tr exp

⎡
⎣ β

2N

N∑
i, j

P∑
μ=1

n∑
ρ=1

ξ
μ

i ξ
μ

j S
ρ

i S
ρ

j

⎤
⎦〉

=
〈
Tr exp

⎡
⎣ β

2N

∑
ρ,μ

(∑
i

ξ
μ

i S
ρ

i

)⎛⎝∑
j

ξ
μ

j S
ρ

j

⎞
⎠
⎤
⎦〉

=
〈
Tr exp

⎡
⎣βN

2

∑
ρ,μ

(
1

N

∑
i

ξ
μ

i S
ρ

i

)2
⎤
⎦
〉

=
〈
Tr
∏
ρ,μ

exp

⎡
⎣βN

2

(
1

N

∑
i

ξ
μ

i S
ρ

i

)2
⎤
⎦
〉

,

(8.15)

where Tr means the summation over all configurations {S}, and 〈· 〉 means the
quenched disorder average over the random patterns.
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To linearize the quadratic term, we apply the following Gaussian integral:

eab
2 =

√
a

π

∫
e−ax2+2abxdx, (8.16)

by carrying out the following substitutions:

⎧⎪⎨
⎪⎩
b → 1

N

∑
i ξ

μ

i S
ρ

i

x → mμ
ρ

a → βN
2

. (8.17)

It is then natural to introduce integrals over mμ
ρ

〈
Zn
〉 =

〈
Tr
∫ ∏

ρ,μ

√
βN

2π
dmμ

ρ exp

[
−βN

2

(
mμ

ρ

)2 + βmμ
ρ

∑
i

ξ
μ

i S
ρ

i

]〉

=
〈
Tr
∫ ∏

ρ,μ

√
βN

2π
dmμ

ρ exp

[
−βN

2

∑
ρ,μ

(
mμ

ρ

)2 + β
∑
ρ,μ

mμ
ρ

∑
i

ξ
μ

i S
ρ

i

]〉

=
〈
Tr
∫ ∏

ρ,μ

√
βN

2π
dmμ

ρ exp

⎡
⎣−βN

2

∑
μ≥2

∑
ρ

(
mμ

ρ

)2 +

β
∑
μ≥2

∑
ρ

mμ
ρ

∑
i

ξ
μ

i S
ρ

i −βN

2

∑
ρ

(
m1

ρ

)2 + β
∑

ρ

m1
ρ

∑
i

ξ 1
i S

ρ

i

]〉
.

(8.18)
In the above equation, we have separated the first pattern from other patterns. We
further assume that only the first pattern (μ = 1) is retrieved, and thus the overlap
mμ

ρ ∼ O(1) (the definition of the overlapwill become clear in the following analysis).
We next consider those non-retrieved patterns (μ ≥ 2). Because 〈∑i ξ

μ

i S
ρ

i 〉ξ = 0 and〈(∑
i ξ

μ

i S
ρ

i

)2〉
ξ

= N + 〈∑i �= j ξ
μ

i ξ
μ

j S
ρ

i S
ρ

j 〉ξ = N , the order of mμ
ρ (μ ≥ 2) is given

by

mμ
ρ = 1

N

∑
i

ξ
μ

i S
ρ

i ≈ O
(

1√
N

)
. (8.19)

To use an mμ
ρ of O(1), we rescale the original mμ

ρ → mμ
ρ√

βN
. Then we get
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〈
Zn
〉 = (

1√
2π

)n(P−1)
〈
Tr
∫ ∏

ρ,μ>1

dmμ
ρ

∏
ρ

√
βNdm1

ρ exp

⎡
⎣−1

2

∑
μ≥2

∑
ρ

(
mμ

ρ

)2 +
√

β

N

∑
μ≥2

∑
ρ

mμ
ρ

∑
i

ξ
μ

i S
ρ

i − βN

2

∑
ρ

(
m1

ρ

)2 + β
∑

ρ

m1
ρ

∑
i

ξ 1
i S

ρ

i

〉
.

(8.20)
For the part of μ ≥ 2 involving in non-condensed patterns, we have

〈
exp

⎡
⎣√ β

N

∑
μ≥2

∑
ρ

mμ
ρ

∑
i

ξ
μ

i S
ρ

i

⎤
⎦
〉

ξ
μ

i :μ>1

∝ exp

⎡
⎣∑

μ≥2,i

ln cosh

(√
β

N

∑
ρ

mμ
ρ S

ρ

i

)⎤⎦

∼= exp

⎡
⎣∑

μ≥2

∑
i

β

2N

(∑
ρ

mμ
ρ S

ρ

i

)2
⎤
⎦ ,

(8.21)

where we have used the formula 〈exp(Aξ)〉{ξ=±1} = exp(−A) + exp(A) =
2 cosh(A) ∝ exp(ln cosh(A)), and taken the approximation ln cosh x = x2

2 + · · · as
x → 0.

We can then write down the following expressions:

∑
ρ

(
mμ

ρ

)2 =
∑
ρ,σ

mμ
ρ δρσm

μ
σ , (8.22)

and
1

N

∑
i

(∑
ρ

mμ
ρ S

ρ

i

)2

= 1

N

∑
i

∑
ρ

mμ
ρ S

ρ

i

∑
σ

mμ
σ S

σ
i

=
∑
ρ,σ

mμ
ρ

1

N

∑
i

Sρ

i S
σ
i m

μ
σ

:=
∑
ρ,σ

mμ
ρqρσm

μ
σ .

(8.23)

To further simplify the formulas, we define

κρσ = δρσ − β

N

∑
i

Sρ

i S
σ
i := δρσ − βqρσ , (8.24)

and in the matrix form
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K = I − βQ, (8.25)

where

qρσ =
{

1
N

∑
i S

ρ

i S
σ
i ρ �= σ

1 ρ = σ
, (8.26)

and K, Q are symmetric n × n matrices with elements κρσ and qρσ , respectively. I
is an identity matrix.

Thus, we need to introduce qρσ by an integral of a Dirac delta function, and obtain

〈Zn〉 ∝ Tr
∫ ∏

ρ,σ

dqρσ δ

(
qρσ − 1

N

∑
i

Sρ

i S
σ
i

)

×
∏

μ≥2,ρ

dmμ
ρ exp

⎡
⎣−1

2

∑
μ≥2

∑
ρ,σ

mμ
ρ κρσm

μ
σ

⎤
⎦

×
〈∫ ∏

ρ

dm1
ρ exp

[
−βN

2

∑
ρ

(
m1

ρ

)2 + βN

N

∑
ρ

m1
ρ

∑
i

ξ 1
i S

ρ

i

]〉
ξ 1

,

(8.27)

where we have neglected irrelevant prefactors. By using the multivariate Gaussian
integral ∫

Rn

dme−MTKM =
√

πn

det(K)
, (8.28)

we get

∫ ∏
μ≥2,ρ

dmμ
ρ exp

⎡
⎣−1

2

∑
μ≥2

∑
ρ,σ

mμ
ρ κρσm

μ
σ

⎤
⎦ = C

(detK)
P−1
2

, (8.29)

where C is a constant. Because det(eK) = eTrK, and detK = eTr lnK, we have

(detK)−
P−1
2 = e− P−1

2 Tr lnK = e− P−1
2 Tr ln[I−βQ] . (8.30)

By using the Fourier representation of the Dirac delta function

δ(x) = 1

2π

∫ +∞

−∞
e−ikxdk , (8.31)

we obtain
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Tr
∫ ∏

ρ

dm1
ρ

∏
ρ,σ

dqρσ δ

(
qρσ − 1

N

∑
i

Sρ
i S

σ
i

)
· I

∝ Tr
∫ ∏

ρ

dm1
ρ

∏
ρ,σ

dqρσ drρσ exp

⎡
⎣− Nαβ2

2

∑
ρ,σ

rρσ qρσ + αβ2

2

∑
i,ρ,σ

rρσ S
ρ
i S

σ
i

⎤
⎦ · I ,

(8.32)

where the symbol I represents the other non-shown parts in Eq. (8.27), and we
have rescaled rρσ → − iNαβ2

2 rρσ (after the transformation, rρσ ∼ O(1)), and used
α = P/N .

Then we define the Si -dependent part as

〈
Tr exp

⎡
⎣β

∑
ρ

m1
ρ

∑
i

ξ 1
i S

ρ

i + αβ2

2

∑
i,ρ,σ

rρσ S
ρ

i S
σ
i

⎤
⎦
〉

ξ 1

=
〈
exp

{∑
i

ln Tr exp

(
β
∑

ρ

m1
ρξ

1
i S

ρ + αβ2

2

∑
ρ,σ

rρσ S
ρSσ

)}〉
ξ 1

= exp

⎧⎨
⎩N

〈
ln Tr exp

(
β
∑

ρ

m1
ρξ

1Sρ + αβ2

2

∑
ρ,σ

rρσ S
ρSσ

)〉
ξ 1

⎫⎬
⎭

:= exp
{
N
〈
ln Tr exp(βHξ 1)

〉
ξ 1

}
,

(8.33)

where we have used the fact that the sum over i is equivalent to taking the average
over the pattern configuration because of i.i.d properties of the random pattern, and
we have defined

βHξ 1 = 1

2
αβ2

∑
ρ,σ

rρσ S
ρSσ + β

∑
ρ

m1
ρξ

1Sρ , (8.34)

where ξ 1 is just a typical entry of the random pattern vector.
Finally, we obtain

〈
Zn
〉 ∝ ∫ ∏

ρ

dm1
ρ

∏
ρ,σ

dqρσdrρσ exp

[
−N

2
αβ2

∑
ρ,σ

rρσqρσ

]

× exp

[
− P − 1

2
Tr ln[I − βQ]

]
exp

[
−βN

2

∑
ρ

(
m1

ρ

)2 + N
〈
ln Tr eβHξ1

〉
ξ 1

]
.

(8.35)
Because we assume that N is large enough, we can use the Laplace’s method, which
is ∫ b

a
eN f (z)dz ≈

√
2π

−N f ′′(z0)
eN f (z0). (8.36)
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where z0 is the maximum point. Thus, we can perform the approximation 〈Zn〉 ∼
eNF(θ∗), where F(θ∗) = maxθ F(θ). Here, we use θ to indicate the order parameter
set of the model.

Then the quenched disorder averaged free energy becomes

〈ln Z〉 = lim
n→0

ln〈Zn〉
n

= lim
n→0

ln eNF(θ∗)

n
= N lim

n→0

F(θ∗)
n

, (8.37)

where

F
(
rρσ , qρσ ,m1

ρ

) = −αβ2

2

∑
ρ,σ

rρσqρσ − α

2
Tr ln[I − βQ]

− β

2

∑
ρ

(
m1

ρ

)2 + 〈
ln Tr eβHξ1

〉
ξ 1 .

(8.38)

We have taken the approximation P − 1 	 P = αN as N is large enough. Note that
(rρσ , qρσ ,m1

ρ) is the order parameter set of the model. Their physical meanings will
be clear in the following analysis.

To calculate the maximum of F
(
rρσ , qρσ ,m1

ρ

)
, we first calculate the derivatives

of F
(
rρσ , qρσ ,m1

ρ

)
with respect to the order parameters.

First, we take a derivative with respect to qρσ ,

∂F

∂qρσ

= 0 ⇒ ∂

∂qρσ

⎡
⎣−Nαβ2

2

∑
ρ,σ

rρσqρσ + β

2
(
√

βN )2
∑
μ≥2

∑
ρ,σ

mμ
ρqρσm

μ
σ

⎤
⎦ = 0 ,

(8.39)
where the second term inside the bracket comes from the original formula [Eq. (8.27)]
in which the integral over {mμ

ρ } is kept. Note that the magnetization is rescaled back.
We then obtain the conjugated order parameter

rρσ = 1

α

∑
μ≥2

mμ
ρm

μ
σ , (8.40)

where we need to use the rescaling mμ
ρ → mμ

ρ√
βN

that is done before. rρσ is thus
understood as the sumof effects of non-condensed patterns (only one retrieved pattern
here).

Second, we take a derivative with respect to mμ
ρ [see the original formula

Eq. (8.20)]
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∂F

∂mμ
ρ

= 0 ⇒ ∂

∂mμ
ρ

[
−βN

2

(
mμ

ρ

)2 + βmμ
ρ

∑
i

ξ
μ

i S
ρ

i

]
= 0 , (8.41)

and obtain

mμ
ρ = 1

N

∑
i

ξ
μ

i S
ρ

i . (8.42)

The parameter mμ
ρ is exactly the overlap between the state of the system and the μth

pattern, characterizing the quality of memory retrieval.
Finally, from the requirement of a stationary free energy [see Eq. (8.32)]

∂F

∂rρσ

= 0 ⇒ ∂

∂rρσ

⎡
⎣−Nαβ2

2

∑
ρ,σ

rρσqρσ + αβ2

2

∑
i,ρ,σ

rρσ S
ρ

i S
σ
i

⎤
⎦ = 0 , (8.43)

we obtain the Edwards–Anderson order parameter

qρσ = 1

N

∑
i

Sρ

i S
σ
i . (8.44)

qρσ is understood as the mutual overlap of two pure states in general. If a single state
dominates the phase space, the Edwards–Anderson order parameter characterizes
the size of that state.

8.2.1 Replica-Symmetric Ansätz

To proceed, we need to make an approximation about the overlap matrix, i.e., con-
sidering the simplest form—the overlap is invariant under permutation of replica
indexes. This is called the replica symmetry (RS) ansätz

⎧⎨
⎩
rρσ = r, ∀ρ, σ

m1
ρ = m, ∀ρ

qρσ = q, ∀ρ �= σ

. (8.45)

Then we have

F(r, q,m) = −αβ2

2
rq
(
n2 − n

)− αβ2

2
nr − α

2
Tr ln[I − βQ]

− β

2
nm2 + 〈

ln Tr eβHξ1
〉

,

(8.46)

and
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〈ln Z〉 = Nαβ2rq

2
− Nαβ2r

2
− αN

2
lim
n→0

Tr ln[I − βQ]
n

− βNm2

2

+ N lim
n→0

〈
ln Tr eβHξ1

〉
n

,

(8.47)

where

βHξ 1 = βmξ 1
∑

ρ

Sρ + 1

2
αβ2r

∑
ρ,σ

SρSσ . (8.48)

First, we calculate the last term of 〈ln Z〉.

Tr eβHξ1 = Tr eβmξ 1
ρ Sρ+ 1
2 αβ2r(

∑
ρ Sρ)

2

:= Tr eA(
ρ Sρ)
2+B
ρ Sρ

= Tr

√
A

π

∫
dz e−Az2+2Az

∑
ρ Sρ+B
ρ Sρ

=
√

A

π

∫
dz e−Az2 Tr

∏
ρ

e(2Az+B)Sρ

=
√

αβ2r

2π

∫
dz e− 1

2 αβ2r z2
[
2 cosh

(
αβ2r z + βmξ 1

)]n
=
√

αβ2r

2π

∫
dz e− 1

2 αβ2r z2+n ln[2 cosh(αβ2r z+βmξ 1)]

=
√

1

2π

∫
dz e− 1

2 z
2+n ln[2 cosh(β

√
αr z+βmξ 1)] .

(8.49)

Note that A and B are auxiliary variables in intermediate computations. The limit of
the above term is clearly given by

lim
n→0

Tr eβHξ1 =
√

1

2π

∫
dz e− 1

2 z
2 = 1 . (8.50)

Thus, we can obtain the limit by the derivative with respect to n
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lim
n→0

〈
ln Tr eβHξ1

〉
n

=
〈
lim
n→0

d
dn Tr e

βHξ1

Tr eβHξ1

〉

=
〈√

1

2π
lim
n→0

d

dn

∫
dz e− 1

2 z
2+n ln[2 cosh(β

√
arz+βmξ 1)]

〉

=
〈√

1

2π
lim
n→0

∫
dz e− 1

2 z
2 d

dn

[
2 cosh

(
β
√

αr z + βmξ 1)]n〉

=
〈√

1

2π
lim
n→0

∫
dz e− 1

2 z
2 [
2 cosh

(
β
√

αr z + βmξ 1
)]n

ln
[
2 cosh

(
β
√

αr z + βmξ 1
)] 〉

=
〈√

1

2π

∫
dz e− 1

2 z
2
lim
n→0

[
2 cosh

(
β
√

αr z + βmξ 1
)]n

ln
[
2 cosh

(
β
√

αr z + βmξ 1
)] 〉

=
〈√

1

2π

∫
dz e− 1

2 z
2
ln
[
2 cosh

(
β
√

αr z + βmξ 1
)]〉

=
∫

Dz
〈
ln
[
2 cosh

(
β
√

αr z + βmξ 1
)]〉

.

(8.51)

Then we calculate the third term of 〈ln Z〉. SinceQ is a symmetric matrix, we can
diagonalize this matrix and get

AQA−1 = � = diag(λ1, λ2, . . . , λn) . (8.52)

We can thus expand ln[I − βQ] to a power series with respect to Q (here we take
the formula ln(1 − x) = −∑∞

n=1
xn

n ) and obtain

Tr ln[I − βQ] = Tr
{
A · ln[I − βQ] · A−1

}
= −Tr

{ ∞∑
l=1

βl
(
AQA−1

)l
l

}

= −Tr

{ ∞∑
l=1

βl(�)l

l

}

= −
∞∑
l=1

βl

l

n∑
i=1

λl
i =

n∑
i=1

ln [1 − βλi ] .

(8.53)
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This result is equivalent to the matrix identity: Tr lnK = ln detK for a positive
definite matrix.

Then we calculate the eigenvalues of Q by

∣∣∣∣∣∣∣∣∣

1 − λ q · · · q
q 1 − λ · · · q
...

...
...

q q · · · 1 − λ

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

1 − λ + (n − 1)q 1 − λ + (n − 1)q · · · 1 − λ + (n − 1)q
q 1 − λ · · · q
...

...
...

q q · · · 1 − λ

∣∣∣∣∣∣∣∣∣

= [1 − λ + (n − 1)q]

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
q 1 − λ · · · q
...

...
...

q q · · · 1 − λ

∣∣∣∣∣∣∣∣∣

= [1 − λ + (n − 1)q]

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
0 1 − λ − q · · · 0
...

...
...

0 0 · · · 1 − λ − q

∣∣∣∣∣∣∣∣∣
= [1 − λ + (n − 1)q](1 − q − λ)n−1 = 0 .

(8.54)

Thus,Q have one eigenvalue with the value (1 + (n − 1)q) and (n − 1) eigenvalues
with values (1 − q). Then the trace turns out to be

Tr ln[I − βQ] = ln(1 − β + βq − nβq) + (n − 1) ln(1 − β + βq) , (8.55)

and

lim
n→0

Tr ln[I − βQ]
n

= lim
n→0

[
ln( 1−β+βq−nβq

1−β+βq )

n
+ ln(1 − β + βq)

]

= − βq

1 − β + βq
+ ln(1 − β + βq) ,

(8.56)

where we calculate the limit by the L′Hospital’s rule.
Taken all together, the free energy of the Hopfield model can be written as
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−β f = 1

N
〈ln Z〉

= αβ2

2
r(q − 1) − α

2

[
ln(1 − β + βq) − βq

1 − β + βq

]
− β

2
m2

+
∫

Dz
〈
ln
[
2 cosh

(
β
√

αr z + βmξ 1
)]〉

.

(8.57)

To complete the Laplace method, we finally derive the saddle-point equations for
all order parameters in the RS ansätz. More precisely, we take derivatives of the free
energy with respect to all the order parameters

⎧⎪⎨
⎪⎩

∂(−β f )
∂r = 0

∂(−β f )
∂m = 0

∂(−β f )
∂q = 0

, (8.58)

and get

q = − 1

β
√
2παr

∫
dze− 1

2 z
2
z
〈
tanh

(
β
√

αr z + βmξ 1
)〉+ 1

= 1

β
√
2παr

∫
dz

de− 1
2 z

2

dz

〈
tanh

(
β
√

αr z + βmξ 1)〉+ 1

= 1

β
√
2παr

e− 1
2 z

2 〈
tanh

(
β
√

αr z + βmξ 1
)〉∣∣∣∣

+∞

−∞

−
∫

Dz
〈
1 − tanh2

(
β
√

αr z + βmξ 1
)〉+ 1

=
∫

Dz
〈
tanh2

(
β
√

αr z + βmξ 1)〉
=
∫

Dz tanh2 β(
√

αr z + m) .

(8.59)

Moreover, r and m can be analogously computed, which leads to the following
saddle-point equations for the associative memory model.

q =
∫

Dz tanh2 β(
√

αr z + m) , (8.60)

m =
∫

Dz〈ξ tanh β(
√

αr z + mξ)〉 =
∫

Dz tanh β(
√

αr z + m) , (8.61)

r = q

(1 − β + βq)2
. (8.62)

Phase transitions can be deduced from an analysis of the behavior of these equations
and the corresponding free energy function.
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8.2.2 Zero-Temperature Limit

Under the replica-symmetric assumption, as T → 0 (β → ∞), we have

tanh(βx) → sign(x) =

⎧⎪⎨
⎪⎩
1 x > 0

0 x = 0

−1 x < 0

, (8.63)

Equation (8.61) becomes

m =
∫

Dz sign(
√

αr z + m) + O(T )

= erf

(
m√
2αr

)
+ O(T ) .

(8.64)

On the other hand, as β → ∞

1 − q =
∫

dz√
2π

e− z2

2
(
1 − tanh2 β(

√
αr z + m)

)
	 1√

2π
e− z2

2

∣∣∣∣
tanh2 β(

√
αr z+m)=0

∫
dz
(
1 − tanh2 β(

√
αr z + m)

)
= 1√

2π
e− m2

2αr
1

β
√

αr

∫
dz

∂

∂z
tanh β(

√
αr z + m)

= 2√
2π

1

β
√

αr
e− m2

2αr .

(8.65)

Equation (8.60) thus yields q = 1 − CT , where

C
def=
√

2

πrα
e− m2

2αr . (8.66)

Using these intermediate results, Eq. (8.62) becomes r = (1 − C)−2.
The equations ofm and r can be reduced to one equation, by defining an auxiliary

variable y = m/
√
2αr . We then have

erf(y) = y

(√
2α + 2√

π
e−y2

)
. (8.67)

One solution is given by y = m = 0, which is a spin glass (SG) solution. For α ≥
αc = 0.138, this is the unique solution. For a < αc, Ferromagnetic solutions m �= 0
appear (2P such solutions, due to the model symmetry). At α = αc, the overlap m
takes the value m = 0.967 [6].
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Fig. 8.3 The error probability as a function of α at T = 0

Equation (8.67) can be solved numerically. By using the relation m = erf(y), we
can obtain the values of m. The error probability is given by Perror = (1 − m)/2,
which is shown in Fig. 8.3. From the plot, we can see that there is a critical value
αc = 0.138 where the error probability jumps to 1/2, indicating a discontinuous
transition to a spin glass phase.Whenα < αc, the error probability is quite low,which
means that the network can reliably retrieve one of the stored patterns.When α > αc,
the error probability is 1/2, suggesting the network could not have a significant
memory.

8.3 Phase Diagram

By solving Eqs. (8.61), (8.60) and (8.62) numerically, we can obtain the phase dia-
gram of the Hopfield network (Fig. 8.4) [3, 6]. At a very high temperature, the
thermal noise impairs the retrieval process, thereforem = 0, q = 0 and r = 0. Inter-
esting, from an inverse Ising perspective, given the configurations from this phase,
the couplings of the model can be easily inferred by a reverse engineering process
[7, 8]. As the temperature is lowered down, the paramagnetic phase becomes unsta-
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ble at a critical temperature-load line (Tg(α)), which can be obtained analytically
through a linear stability analysis of Eq. (8.60), i.e., Tg = 1 + √

α, where α is the
memory load.

On the other hand, with decreasing memory load, the spin glass phase becomes
metastable at a critical line TM(α), where the retrieval phase becomes locally stable.
This transition is thus a first-order phase transition. In this phase, spurious states (i.e.,
a linear combination of several stored patterns) also emerge asmetastable states.Once
α < 0.051, the retrieval phase becomes globally stable when a critical temperature
line Tc is crossed. The discontinuous transition point can be obtained by analyzing
the saddle-point equation, and equaling the free energies of two competing phases.
TM 	 1 − 1.95

√
α, and Tc 	 1 − 2.6

√
α [6].

At T = 0, the entropy per spin S = − ∂ f
∂T

∣∣∣
T→0

= − 1
2α[ln(1 − C) + C/(1 − C)]

with C = β(1 − q) is negative for all replica-symmetric solutions, which is unphys-
ical. Below the dashed line (so-called AT line in spin glass theory; see Chap. 9) in
Fig. 8.4, the retrieval states become unstable, the replica symmetry breaking (RSB)
effects should be considered (a general introduction of RSB will be presented in

0 0.05 0.138

1

P

SG

Retrieval

stable metastable

Fig. 8.4 Thephase diagramofHopfieldmodel (adapted fromRef. [3]). Three phases (paramagnetic,
spin glass and retrieval) exist. The paramagnetic phase is separated by a continuous transition to
the spin glass phase (Tg line). The phase transition from retrieval phase to spin glass phase on the
TM is discontinuous. Below Tc line, the retrieval phase becomes globally stable. Below the dash
line (TR), the replica-symmetric solution becomes unstable
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Chap. 9). In physics, this implies that the permutation symmetry of replica indexes
in the overlap matrix does not hold, requiring that a higher level of approximation
should be taken. However, as shown in the Fig. 8.4, the RSB effect in the retrieval
phase is very weak. As α → ∞, the Hopfield model reduces to the well-known SK
model.

8.4 Hopfield Model with Arbitrary Hebbian Length

In this section, we generalize the standard Hopfield model to the case of arbitrary
Hebbian length. This is inspired by the Monkey experiments where the monkey is
trained to recognize and match visual stimuli, the temporal order of the stimulus pre-
sentations is maintained during training. The experiments revealed that the monkey’s
temporal cortex is able to convert the temporal association of stimuli into a spatial cor-
relation in the patterns of sustained activities [9, 10]. This experimental resultwasfirst
modeled by Griniasty et.al. [11], who takes one Hebbian length into the construction
of the coupling matrix, i.e., the neighboring patterns in the sequence of presentation
contribute to Hebbian learning. In this model, a novel phase of correlated- attractors
emerges due to this revised Hebbian rule. The correlated attractor triggered by one
stimulus pattern becomes correlated with neighboring patterns around the stimulus,
although the patterns themselves are all independent.

Motivated by the observation that Hebbian learning can occur in a wider learning
window [12, 13], we propose to extend the Hebbian length to an arbitrary value [14],
and thus define the following coupling matrix of neurons:

Ji j = 1

N

P∑
μ=1

[
cξμ

i ξ
μ

j + γ

d∑
r=1

(
ξ

μ

i ξ
μ+r
j + ξ

μ+r
i ξ

μ

j

)]
, (8.68)

where c specifies the standard Hebbian strength, γ specifies the coupling strength
between r -separated patterns, and d is thus the Hebbian length of our model. The
case of d = 1 has been studied by previous works [11, 15], while d = 0 recovers the
standard Hopfield model [1–3]. ξ

μ

i follows independently a binomial distribution,
i.e., p(ξμ

i = ±1) = 1
2δ(ξ

μ

i + 1) + 1
2δ(ξ

μ

i − 1).We are interested in the limit of large
values of P and N , thereby defining α = P

N . α is also called the memory load of the
associative memory model.

8.4.1 Computation of the Disorder-Averaged Free Energy

The matrix J can be recast into the form
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J = 1

N
ξTXξ , (8.69)

whereX is a P × P circulant matrix, a special form of Toeplitz matrix with elements

Xμη = cδμη + γ

d∑
r=1

(
δμ,(η+r) mod P + δμ,(η−r) mod P

)

= (c − γ )δμη + γ

d∑
r=−d

δμ,(η+r) mod P .

(8.70)

The mth eigenvalue of X is given by [16]

λm =
P−1∑
k=0

X1(k+1)e
−2π imk/P

=
P−1∑
k=0

X1(k+1) cos

(
2π

mk

P

)

=
P−1∑
k=0

[
cδ0k + γ

d∑
r=1

(δ0,(k+r) mod P + δ0,(k−r) mod P)

]
cos

(
2π

mk

P

)

= c + γ

d∑
r=1

[
cos

(
−2π

mr

P

)
+ cos

(
2π

mr

P

)]

= c + 2γ
d∑

r=1

cos
(
2π

mr

P

)
,

(8.71)

for m = 0, 1, . . . , P − 1.
The Hamiltonian of the model is defined by

H(s) = −1

2

∑
i �= j

Ji j si s j . (8.72)

The partition function is thus given by

Z = Tr exp

[
β

2N
sTξTXξs

]
, (8.73)

where Tr indicates the summation over all discrete states s. In general, to compute a
disorder averaged free energy (〈−T ln Z〉) is a computationally hard task. However,
the well-known replica trick developed in spin glass theory [4] can be used to get
around the difficulty, but assumptions on the replica matrix are required (detailed
below). The replica method uses the mathematical identity
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〈ln Z〉 = lim
n→0

ln 〈Zn〉
n

, (8.74)

where 〈 · 〉 denotes the expectation over the distribution of ξ . To proceed, we have to
compute an integer-power of the partition function

Zn = Tr exp

[
β

2N

n∑
a=1

(
sa
)T

ξTXξsa
]

. (8.75)

We consider the situation where there are S condensed (or foreground) patterns
and P − S non-condensed (or background) patterns, which is reasonable in our
current setting. The choice of S can be justified a posterior, e.g., through solving the
mean-field dynamics or saddle-point equations. Thus, we can reorganize the matrix
X as a block matrix, i.e.

X =
[
XFF XFB

XBF XBB

]
, (8.76)

where XFF ∈ R
S×S , XT

BF = XFB ∈ R
S×(P−S) and XBB ∈ R

(P−S)×(P−S).
It then follows that

Zn = Tr exp

⎡
⎣ β

2N

∑
a,i, j,μ∈B,ν∈B

sai ξ
μ

i Xμνξ
ν
j s

a
j + β

N

∑
a,i, j,μ∈B,ν∈F

sai ξ
μ

i Xμνξ
ν
j s

a
j

+ β

2N

∑
a,i, j,μ∈F,ν∈F

sai ξ
μ

i Xμνξ
ν
j s

a
j

⎤
⎦ .

(8.77)
We then diagonalize the submatrix XBB as Xμν

BB = ∑
σ λσησ

μησ
ν , where λσ and ησ

μ

are denoted as its eigenvalues and eigenvectors, respectively. We thus obtain

Zn =Tr exp

⎡
⎢⎣ β

2N

∑
a,σ

λσ

⎛
⎝∑

i,μ∈B
sai ξ

μ
i ησ

μ

⎞
⎠

2

+ β

N

∑
a,i, j,μ∈B,ν∈F

sai ξ
μ
i Xμνξ

ν
j s

a
j

⎤
⎥⎦

+ β

2N

∑
a,i, j,μ∈F,ν∈F

sai ξ
μ
i Xμνξ

ν
j s

a
j

⎤
⎦

=Tr
∏
a,σ

∫
Dxaσ exp

⎡
⎣ ∑
i,μ∈B

ξ
μ
i√
N

⎛
⎝∑

a,σ

sai ησ
μ

√
βλσ x

a
σ + β√

N

∑
a, j,ν∈F

sai Xμνξ
ν
j s

a
j

⎞
⎠

+ β

2N

∑
a,i, j,μ∈F,ν∈F

sai ξ
μ
i Xμνξ

ν
j s

a
j

⎤
⎦ ,

(8.78)
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where we have used the Hubbard–Stratonovich transformation, i.e., exp
[
1
2b

2
] =∫

Dx exp [±bx], where Dx = 1√
2π

exp
(
− x2

2

)
dx .

We then define

�B = exp

⎡
⎣∑

i,μ∈B

ξ
μ

i√
N

⎛
⎝∑

a,σ

sai η
σ
μ

√
βλσ x

a
σ + β√

N

∑
a, j,ν∈F

sai Xμνξ
ν
j s

a
j

⎞
⎠
⎤
⎦ , (8.79)

and

�F = exp

⎡
⎣ β

2N

∑
a,i, j,μ∈F,ν∈F

sai ξ
μ

i Xμνξ
ν
j s

a
j

⎤
⎦ . (8.80)

Taking the disorder average over {ξμ

i }, we write the result as

〈
Zn
〉 =

〈
Tr
∏
a,σ

∫
Dxaσ�B�F

〉
. (8.81)

We first carry out the average over the distribution of background patterns, which
yields

〈�B〉 = exp

⎧⎨
⎩ 1

2N

∑
i,μ∈B

⎡
⎣∑

a

sai

⎛
⎝∑

σ

ησ
μ

√
βλσ x

a
σ + β√

N

∑
j,ν∈F

Xμνξ
ν
j s

a
j

⎞
⎠
⎤
⎦

2⎫⎬
⎭ .

(8.82)
Introducing the state overlap as one order parameter: qab = 1

N

∑N
i sai s

b
i for a �= b,

and ma
μ = 1

N

∑
i ξ

μ

i s
a
i as another order parameter, we have

〈�B〉 =
∫ ∏

a �=b

dqabdq̂ab
2π/N

∏
a,μ∈F

dma
μdm̂

a
μ

2π/N

× exp

⎡
⎣−1

2
N
∑
a �=b

q̂abqab + 1

2

∑
a �=b

q̂ab
∑
i

sai s
b
i − N

∑
a,μ∈F

ma
μm̂

a
μ +

∑
a,μ∈F

m̂a
μ

∑
i

ξ
μ
i s

a
i

⎤
⎦

× exp

⎡
⎣1

2

∑
μ∈B

∑
a

(∑
σ

ησ
μ

√
βλσ x

a
σ + β

√
N
∑
ν∈F

Xμνm
a
ν

)2
⎤
⎦

× exp

⎡
⎣1

2

∑
μ∈B

∑
a �=b

qab

(∑
σ

ησ
μ

√
βλσ x

a
σ + β

√
N
∑
ν∈F

Xμνm
a
ν

)

×
(∑

σ

ησ
μ

√
βλσ x

b
σ + β

√
N
∑
ν∈F

Xμνm
b
ν

)]
.

(8.83)
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In the above derivations, we have inserted Dirac delta functions for defining those
order parameters, and then applied the integral representations of these delta func-
tions. The hatted order parameters are the byproducts of conjugated counterparts.

Under the replica symmetric ansätz with qab = q and q̂ab = q̂ for a �= b, ma
μ =

mμ and m̂a
μ = m̂μ, we arrive at

〈�B〉 =
∫

dqdq̂

(2π/N )n(n−1)

dmdm̂

(2π/N )nS
− Nn

∑
μ∈F

mμm̂μ exp

[
−1

2
Nn(n − 1)q̂q

+1

2
q̂
∑
a �=b

∑
i

sai s
b
i +

∑
a,μ∈F

m̂μ

∑
i

ξ
μ
i s

a
i

⎤
⎦× exp

⎡
⎣1

2

∑
μ∈B

∑
a

(∑
σ

ησ
μ

√
βλσ x

a
σ

+β
√
N
∑
ν∈F

Xμνmν

)2
⎤
⎦× exp

⎡
⎣q

2

∑
μ∈B

∑
a �=b

(∑
σ

ησ
μ

√
βλσ x

a
σ + β

√
N
∑
ν∈F

Xμνmν

)

×
(∑

σ

ησ
μ

√
βλσ x

b
σ + β

√
N
∑
ν∈F

Xμνmν

)]

=
∫

dqdq̂

(2π/N )n(n−1)

dmdm̂

(2π/N )nS
exp

⎡
⎣−1

2
Nn(n − 1)q̂q + 1

2
q̂
∑
a �=b

∑
i

sai s
b
i − Nn

∑
μ∈F

mμm̂μ

+
∑

a,μ∈F
m̂μ

∑
i

ξ
μ
i s

a
i

⎤
⎦× exp

⎡
⎣1 − q

2

∑
μ∈B

∑
a

(∑
σ

ησ
μ

√
βλσ x

a
σ + β

√
N
∑
ν∈F

Xμνmν

)2
⎤
⎦

× exp

⎡
⎣q
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∑
μ∈B

(∑
a,σ

ησ
μ

√
βλσ x

a
σ + βn

√
N
∑
ν∈F

Xμνmν

)2
⎤
⎦ .

(8.84)

We apply the Hubbard–Stratonovich transformation once again, and obtain

〈�B〉 =
∫

dqdq̂

(2π/N )n(n−1)

dmdm̂

(2π/N )nS

∏
μ,a

Dyaμ
∏
μ

Dzμ
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⎡
⎣−1

2
Nn(n − 1)q̂q + 1

2
q̂
∑
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∑
i

sai s
b
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∑
μ∈F
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i

ξ
μ
i s

a
i

⎤
⎦

× exp

⎡
⎣√1 − q
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∑
a
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σ

ησ
μ

√
βλσ x
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σ + β

√
N
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ν∈F

Xμνmν
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yaμ

⎤
⎦

× exp
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⎣√
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∑
μ∈B

(∑
a,σ

ησ
μ

√
βλσ x

a
σ + βn

√
N
∑
ν∈F

Xμνmν

)
zμ

⎤
⎦ .

(8.85)
By collecting terms containing xaσ , we have



86 8 Statistical Mechanical Theory of Hopfield Model

〈�B〉 =
∫

dqdq̂

(2π/N )n(n−1)

dmdm̂

(2π/N )nS

∏
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∏
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Dzμ
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ξ
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⎤
⎦
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√

βλσ

∑
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ησ
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(√
1 − qyaμ + √
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)⎤⎦

× exp

⎡
⎣β

√
N

∑
a,μ∈B

∑
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Xμνmν
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1 − qyaμ + √
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)⎤⎦ .

(8.86)

According to the definition of the overlap, �F can be written as

�F = exp

⎡
⎣βnN

2

∑
μ∈F,ν∈F

mμXμνmν

⎤
⎦ . (8.87)

Collecting all the results derived above, we have

〈
Zn 〉 = Tr

∫ ∏
a,σ

Dxaσ
dqdq̂

(2π/N )n(n−1)

dmdm̂

(2π/N )nS

∏
μ,a

Dyaμ
∏
μ

Dzμ

× exp

⎡
⎣−1

2
Nn(n − 1)q̂q + 1

2
q̂
∑
a �=b

∑
i

sai s
b
i − Nn

∑
μ∈F

mμm̂μ

⎤
⎦

×
〈
exp

⎡
⎣ ∑
a,μ∈F

m̂μ

∑
i

ξ
μ
i s

a
i

⎤
⎦〉× exp

⎡
⎣∑

a,σ

xaσ
√

βλσ

∑
μ∈B

ησ
μ

(√
1 − qyaμ + √

qzμ
)⎤⎦

× exp

⎡
⎣β

√
N

∑
a,μ∈B

∑
ν∈F

Xμνmν

(√
1 − qyaμ + √

qzμ
)⎤⎦

× exp

⎡
⎣βnN

2

∑
μ∈F,ν∈F

mμXμνmν

⎤
⎦ .

(8.88)
We define the term summing over {sai } as
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〈�S〉 =
〈
Tr exp

⎡
⎣1

2
q̂
∑
a �=b

∑
i

sai s
b
i +

∑
a,μ∈F

m̂μ

∑
i

ξ
μ

i s
a
i

⎤
⎦
〉

= exp

[
−nN

2
q̂

]
Tr

〈∏
i

exp

⎡
⎣1

2
q̂

(∑
a

sai

)2

+
∑
a,μ∈F

m̂μξ
μ

i s
a
i

⎤
⎦〉

= exp

[
−nN

2
q̂

]⎧⎨
⎩
〈
Tr exp

⎡
⎣1

2
q̂

(∑
a

sa
)2

+
∑
a,μ∈F

m̂μξμsa

⎤
⎦〉
⎫⎬
⎭

N

.

(8.89)
Applying the Hubbard–Stratonovich transformation, we obtain

〈�S〉 = exp

[
−nN

2
q̂

]⎧⎨
⎩
〈∫

Dz
∏
a

Tr exp

⎡
⎣√q̂saz +

∑
μ∈F

m̂μξμsa

⎤
⎦
〉⎫⎬
⎭

N

= exp

[
−nN

2
q̂

]⎧⎨
⎩
〈∫

Dz
∏
a

2 cosh

⎡
⎣√q̂z +

∑
μ∈F

m̂μξμ

⎤
⎦
〉⎫⎬
⎭

N

= exp

[
−nN

2
q̂

]
exp

⎧⎨
⎩N ln

⎡
⎣〈∫ Dz 2n coshn

⎛
⎝√q̂z +

∑
μ∈F

m̂μξμ

⎞
⎠〉

⎤
⎦
⎫⎬
⎭ .

(8.90)
In the limit n → 0,

〈�S〉 = exp

[
−nN

2
q̂

]
exp

⎧⎨
⎩nN

〈∫
Dz ln

⎡
⎣2 cosh

⎛
⎝√q̂z +

∑
μ∈F

m̂μξμ

⎞
⎠
⎤
⎦〉
⎫⎬
⎭ .

(8.91)
Taken together, we have
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〈
Zn 〉 = ∫ ∏

a,σ

Dxaσ
dqdq̂

(2π/N )n(n−1)

dmdm̂

(2π/N )nS

∏
μ,a

Dyaμ
∏
μ

Dzμ

× exp

⎡
⎣−1

2
Nn(n − 1)q̂q − nN

2
q̂ − Nn

∑
μ∈F

mμm̂μ + βnN

2

∑
μ∈F,ν∈F

mμXμνmν

⎤
⎦

× exp

⎡
⎣∑

a,σ

xaσ
√

βλσ

∑
μ∈B

ησ
μ

(√
1 − qyaμ + √

qzμ
)⎤⎦

× exp

⎡
⎣β

√
N

∑
a,μ∈B

∑
ν∈F

Xμνmν

(√
1 − qyaμ + √

qzμ
)⎤⎦

× exp

⎧⎨
⎩nN

〈∫
Dz ln

⎡
⎣2 cosh

⎛
⎝√q̂z +

∑
μ∈F

m̂μξμ

⎞
⎠
⎤
⎦〉
⎫⎬
⎭ .

(8.92)

To proceed, we first denote the vectors ya = [yaμ;μ ∈ B]T, z = [zμ;μ ∈ B]T,
m = [mμ;μ ∈ F]T, m̂ = [m̂μ;μ ∈ F]T and ξ F = [ξμ;μ ∈ F]T. Integrating out
{xaσ }, we get
∫ ∏

a,σ

Dxaσ exp

⎡
⎣∑

a,σ

xaσ
√

βλσ

∑
μ∈B

ησ
μ

(√
1 − qyaμ + √

qzμ
)⎤⎦

= exp

⎡
⎣1

2
β

∑
a,σ,μ∈B,ν∈B

λσ ησ
μησ

ν (
√
1 − qyaμ + √

qzμ)(
√
1 − qyaν + √

qzν)

⎤
⎦

= exp

⎡
⎣1

2
β

∑
a,μ∈B,ν∈B

Xμν(
√
1 − qyaμ + √

qzμ)(
√
1 − qyaν + √

qzν)

⎤
⎦

= exp

⎡
⎣1

2
β(1 − q)

∑
a,μ∈B,ν∈B

yaμXμν y
a
ν + β

√
(1 − q)q

×
∑

a,μ∈B,ν∈B
zμXμν y

a
ν + 1

2
nβq

∑
μ∈B,ν∈B

zμXμν zν

⎤
⎦

= exp

[
1

2
β(1 − q)

∑
a

(ya)TXBBya + β
√

(1 − q)q
∑
a

zTXBBya + 1

2
nβqzTXBBz

]
.

(8.93)

Collecting all terms containing {yaμ}, we get
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∫ ∏
μ,a

dyaμ√
2π

∏
a

exp

⎡
⎣−1

2

∑
μ∈B,ν∈B

yaμ
(
δμν − β(1 − q)Xμν

)
yaν

⎤
⎦

× exp

⎡
⎣β

√
1 − q

∑
ν∈B

⎛
⎝∑

μ∈F

√
N Xνμmμ + √

q
∑
μ∈B

zμXμν

⎞
⎠ yaν

⎤
⎦

=
∫ ∏

μ,a

dyaμ√
2π

∏
a

exp

[
−1

2
(ya)T (I − β(1 − q)XBB) ya

]

× exp
[
β
√
1 − q

(√
NmTXFB + √

qzTXBB

)
ya
]

= 1√
[det (I − β(1 − q)XBB)]n

exp

[
1

2
nβ2(1 − q)

(√
NmTXFB + √

qzTXBB

)

· (I − β(1 − q)XBB)−1
(√

NXBFm + √
qXBBz

)]
= 1√

[det (I − β(1 − q)XBB)]n
exp

[
1

2
nNβ2(1 − q)mTXFB (I − β(1 − q)XBB)−1 XBFm

]

× exp

[
1

2
nβ2(1 − q)qzTXBB (I − β(1 − q)XBB)−1 XBBz

]

× exp
[
nβ2(1 − q)

√
NqmTXFB (I − β(1 − q)XBB)−1 XBBz

]
,

(8.94)
where I indicates an identity matrix.

We then collect all terms containing {zμ}, integrate out {zμ} in the limit n → 0,
and finally obtain

∫ ∏
μ

dzμ√
2π

exp

{
−1

2
zT
[
I − nβqXBB − nβ2(1 − q)qXBB (I − β(1 − q)XBB)−1 XBB

]
z
}

× exp
{
βn
√
qN

[
mTXFB + β(1 − q)mTXFB (I − β(1 − q)XBB)−1 XBB

]
z
}

= exp

{
−1

2
ln det

[
I − nβqXBB − nβ2(1 − q)qXBB (I − β(1 − q)XBB)−1 XBB

]}
,

(8.95)
where to arrive at the last equality, we consider the limit of n → 0 (i.e., neglecting
terms involving O(n2)).

To sum up, we rewrite 〈Zn〉 as
〈
Zn 〉 = ∫

dqdq̂

(2π/N )n(n−1)

∏
μ

dmμdm̂μ

(2π/N )nS
× exp

{
nN

〈∫
Dz ln

[
2 cosh

(√
q̂z + m̂Tξ F

)]〉}

× exp

[
−1

2
Nn(n − 1)q̂q − nN

2
q̂ − NnmTm̂ + βnN

2
mTXFFm

]

× exp
[
−n

2
ln det (I − β(1 − q)XBB)

]

× exp

[
nNβ2(1 − q)

2
mTXFB (I − β(1 − q)XBB)−1 XBFm

]

× exp

{
−1

2
ln det

[
I − nβqXBB − nβ2(1 − q)qXBB (I − β(1 − q)XBB)−1 XBB

]}
.

(8.96)
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By applying the Laplace’s method, we get the averaged free energy as

−β f ≡ 1

N
〈ln Z〉 =

〈∫
Dz ln

[
2 cosh

(√
q̂z + m̂Tξ F

)]〉
+ 1

2
q̂q − 1

2
q̂ − mTm̂ + β

2
mTXFFm

− 1

2N
ln det (I − β(1 − q)XBB) + β2(1 − q)

2
mTXFB (I − β(1 − q)XBB)−1 XBFm

− lim
n→0

1

2nN
ln det

[
I − nβqXBB − nβ2(1 − q)qXBB (I − β(1 − q)XBB)−1 XBB

]
,

(8.97)
where the last two terms can be further simplified as follows:

− 1

2N
ln det (I − β(1 − q)XBB) = − 1

2N

∑
σ

ln [1 − β(1 − q)λσ ] ; (8.98)

and

− lim
n→0

1

2nN
ln det

[
I − nβqXBB − nβ2(1 − q)qXBB (I − β(1 − q)XBB)−1 XBB

]
= − lim

n→0

1

2nN

∑
σ

ln

[
1 − nβqλσ − nβ2(1 − q)qλ2

σ

1 − β(1 − q)λσ

]

= 1

2N

∑
σ

βqλσ

1 − β(1 − q)λσ

.

(8.99)
Finally, the averaged free energy is given by

1

N
〈ln Z〉 =

〈∫
Dz ln

[
2 cosh

(√
q̂z + m̂Tξ F

)]〉
+ 1

2
q̂q − 1

2
q̂ − mTm̂ + β

2
mTXFFm

− 1

2N

∑
σ

ln [1 − β(1 − q)λσ ] + β2(1 − q)

2
mTXFB (I − β(1 − q)XBB)−1 XBFm

+ 1

2N

∑
σ

βqλσ

1 − β(1 − q)λσ

.

(8.100)
We rescale q̂ by β2q̂ , and m̂ by βm̂. We then define

K = XFF + β(1 − q)XFB (I − β(1 − q)XBB)−1 XBF . (8.101)

The stationary condition of the free energy with respect tom implies that m̂ = Km.
Therefore, the free energy can be reorganized as follows:
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−β f = β2q̂

2
(q − 1) − β

2
mTKm − α

2

∫ 1

0
du ln [1 − β(1 − q)�(u)]

+ αβq

2

∫ 1

0
du

�(u)

1 − β(1 − q)�(u)
+
〈∫

Dz ln
[
2 cosh

(
β
√
q̂z + βm̂Tξ F

)]〉
,

(8.102)
where �(u) = c + 2γ

∑d
r=1 cos(2πru). In the limit P → ∞, it can be proved that

XBB is asymptotically equivalent to X [16]. Therefore, the summation over σ can
be replaced by an integral using the eigenvalue of the circulant matrix X.

8.4.2 Derivation of Saddle-Point Equations

The order parameter should take values optimizing the free energy function, leading
to the saddle-point equations (SDE). The saddle-point equation of q is given by

q − 1 + 1

β
√
q̂

〈∫
Dz z tanh

(
β
√
q̂z + βm̂Tξ F

)〉
= 0 ; (8.103)

q − 1 +
〈∫

Dz
[
1 − tanh2

(
β
√
q̂z + βm̂Tξ F

)]〉
= 0 ; (8.104)

q =
〈∫

Dz tanh2
(
β
√
q̂z + βm̂Tξ F

)〉
. (8.105)

The saddle-point equation ofm is given by

m =
〈
ξ F

∫
Dz tanh

(
β
√
q̂z + βm̂Tξ F

)〉
. (8.106)

The saddle-point equation of m̂ is given by

m̂ = XFFm + β(1 − q)XFB (I − β(1 − q)XBB)−1 XBFm := Km , (8.107)

where K = XFF + β(1 − q)XFB (I − β(1 − q)XBB)−1 XBF , as derived at the end
of the previous section. The saddle-point equation of q̂ is given by

q̂ = 1

N

∑
σ

qλ2
σ

[1 − β(1 − q)λσ ]
2 + mTXFB (I − β(1 − q)XBB)−2 XBFm

= αq
∫ 1

0

�2(u)du

(1 − β(1 − q)�(u))2
− β−1mT ∂K

∂q
m .

(8.108)
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Finally, the saddle-point equations are summarized as follows:

m̂ = Km , (8.109a)

q =
〈∫

Dz tanh2
(
β
√
q̂z + βm̂Tξ F

)〉
, (8.109b)

q̂ = αq
∫ 1

0
du

�2(u)

(1 − β(1 − q)�(u))2
− β−1mT ∂K

∂q
m , (8.109c)

m =
〈
ξ F

∫
Dz tanh

(
β
√
q̂z + βm̂Tξ F

)〉
. (8.109d)

We next determine the critical temperature between the paramagnetic phase
and spin glass phase. In the spin glass phase, q �= 0 but m = 0. Expanding q =〈∫

Dz tanh2
(
β
√
q̂z + βm̂Tξ F

)〉
, and q̂ = αq

∫ 1
0 du �2(u)

(1−β(1−q)�(u))2
+ mT ∂K

∂Cm [C ≡
β(1 − q)] in powers of q and q̂ , we have

q 	 β2q̂ 	 β2αq
∫ 1

0
du

�2(u)

(1 − β�(u))2
+ O(q2) . (8.110)

Tg can then be obtained by solving

1 = α

∫ 1

0
du

�2(u)(
Tg − �(u)

)2 . (8.111)

For the standard Hopfield model, Eq. (8.111) can be analytically solved with the
result Tg = 1 + √

α.

8.4.3 Computation Transformation to Solve the SDE

To solve the SDE numerically is challenging, due to the computation of K, which
involves the block structure of X. To get rid of dependence on N and P (we are only
interested in the large N and P limit), we propose the following numerical technique.
We first define C = β(1 − q).

Note that if C = 0, K = XFF , ∂K
∂C = XFBXBF . Let

XX� =
[
H · · ·
· · · · · ·

]
, (8.112)

where H is an S × S symmetric matrix. Then, we have
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H = XFFX�
FF + XFBXBF = XFFX�

FF + ∂K
∂C

∣∣∣∣
C=0

. (8.113)

The matrix H can be computed as follows:

H =

⎡
⎢⎢⎢⎣

h0 h1 · · · hS−1

h1 h0 · · · hS−2
...

...
...

hS−1 hS−2 · · · h0

⎤
⎥⎥⎥⎦ , (8.114)

where

hl = 1

P

P−1∑
m=0

[
c + 2γ

d∑
r=1

cos

(
2πrm

P

)]2

exp

(
2π iml

P

)

=
∫ 1

0
dx

[
c − γ + γ

d∑
r=−d

exp (2π ir x)

]2

exp (2π ilx)

=
∫ 1

0
dx

[
c + 2γ

d∑
r=1

cos (2πr x)

]2

cos (2πlx) .

(8.115)

Finally, we arrive at

∂K
∂C

∣∣∣∣
C=0

= H − XFFX�
FF = H − (K|C=0)

2 . (8.116)

If C �= 0, we haveK = XFF − XFB
1

XBB−C−1I
XBF . To calculateK numerically in

the large P limit, we notice that

(X − C−1
I)−1 =

[
F−1
1 · · ·

· · · · · ·
]

, (8.117)

where F−1
1 ∈ R

S×S , and is a submatrix of (X − C−1
I)−1. Since X − C−1

I is a circu-
lantmatrix, its inversematrix canbe calculatedby (X − C−1

I)−1 = Circ(w0,w1, . . . ,

wP−1), where

wk =
∫ 1

0
dx

cos(2πkx)

c − C−1 + 2γ
∑d

r=1 cos(2πr x)
, (8.118)

for k = 0, 1, . . . , P − 1 in the limit P → ∞. Thus, F−1
1 can be written as
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F−1
1 =

⎡
⎢⎢⎢⎣

w0 w1 · · · wS−1

w1 w0 · · · wS−2
...

...
...

wS−1 wS−2 · · · w0

⎤
⎥⎥⎥⎦ . (8.119)

By using the matrix formula for the inverse of a block matrix, we can prove that
K can be expressed as

K = F1 + C−1
I . (8.120)

Hence, to calculate K numerically, we first calculate wk for k = 0, 1, . . . , S − 1 to
get F−1

1 , and then calculate its inverse matrix F1, and finally add the matrix C−1
I to

F1.
The term ∂K

∂C = − 1
β

∂K
∂q can be calculated as follows:

∂K
∂C

= ∂F1

∂C
− 1

C2
I = −F1

∂F−1
1

∂C
F1 − 1

C2
I , (8.121)

where the entry of ∂F−1
1

∂C is computed as

∂wk

∂C
= −

∫ 1

0
dx

C−2 cos(2πkx)[
c − C−1 + 2γ

∑d
r=1 cos(2πr x)

]2 , (8.122)

for k = 0, 1, . . . , S − 1.

8.4.4 Zero-Temperature Limit

In the limit T → 0 (β → ∞), it is easy to derive that

∫
Dz tanh(β(

√
q̂z + x)) =

√
2

π

∫ 1√
q̂
x

0
dz exp

(
−1

2
z2
)

+ O(T )

≡ erf

(
1√
2q̂

x

)
+ O(T ) ,

(8.123)

and
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dz√
2π

e−z2/2(1 − tanh2 β[az + b])
	 1√

2π
e−z2/2

∣∣∣
tanh2 β(az+b)=0

×
∫

dz
(
1 − tanh2 β[az + b])

= 1√
2π

e−b2/2a2 1

aβ

∫
dz

∂

∂z
tanh β[az + b]

=
√

2

π

1

aβ
e−b2/2a2 .

(8.124)

We thus obtain

m =
〈
ξ F erf

[
1√
2q̂

ξT
FKm

]〉
. (8.125)

In the limit T → 0, we also have

β(1 − q) = β

∫
Dz

〈
1 − tanh2

[
β
√
q̂z + βξT

FKm
]〉

=
√

2

π q̂

〈
exp

[
−
[
ξT
FKm

]2
2q̂

]〉

≡ C .

(8.126)

The conjugated order parameter q̂ is given by

q̂ = α

∫ 1

0
du

�2(u)

(1 − C�(u))2
+ mT ∂K

∂C
m, (8.127)

where in the zero-temperature limit q → 1.
The free energy at the zero-temperature limit is given by

− f = α

2

∫ 1

0
du

�(u)

1 − C�(u)
− Cq̂

2
− 1

2
mTKm +

〈
2a√
2π

e− b2

2a2 + b erf

(
b√
2a

)〉
,

(8.128)
where a = √

q̂ and b = m̂Tξ F .

8.4.4.1 The Spin Glass Solution

In the spin glass solution of the SDE, mμ = 0 for all μ = 1, 2, . . . , S. Hence, we
have

C =
√

2

π q̂
, (8.129)
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and

q̂ = α

∫ 1

0
du

�2(u)

(1 − C�(u))2
. (8.130)

We consider the simplest case of γ = 0 and c = 1. It immediately follows that

q̂ = α

(1 − C)2
. (8.131)

Therefore, C = (
1 +√

πα
2

)−1
recovering previous results in the Hopfield model.

8.4.4.2 The Retrieval Solution

The ferromagnetic phase have a single non-vanishing overlap, i.e., mμ = mδμ,1 ∼
O(1). They are named retrieval states, captured by the following equations:

m =
〈
ξ 1 erf

[
1√
2q̂

m
[
ξT
FK
]
1

]〉
, (8.132a)

C =
√

2

π q̂

〈
exp

[
−
[
m
[
ξT
FK
]
1

]2
2q̂

]〉
, (8.132b)

q̂ = α

∫ 1

0
du

�2(u)

[1 − C�(u)]2
+
[
∂K
∂C

]
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m2. (8.132c)

In the simplest case of γ = 0 and c = 1, we have K = I. The above equations
thus reduce to

m = erf

(
m√
2q̂

)
, (8.133a)

C =
√

2

π q̂
e− m2

2q̂ , (8.133b)

q̂ = α

(1 − C)2
. (8.133c)

This result gives thememory capacity of αc 	 0.138 beyondwhichm = 0, which
is exactly the memory capacity of the standard Hopfield network [3]. In the general
case, we consider in this section, it is necessary to solve the general equation numer-
ically.

Finally, we look at the phase diagram. As shown in Fig. 8.5a, we identify three
phases. One is the retrieval phase where only one overlap component is of the order
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Fig. 8.5 Phase diagram of the associative memory model in the (α, γ ) plane given c = 1. a The
phase boundary shown by the lines delimits the retrieval (R) phase from the region where the
correlated-attractor (CA) and spin glass (SG) phases compete with each other (above the boundary).
The boundary is the condition on which the retrieval phase loses its metastability from below. All
shown transitions are of the discontinuous type. When α = 0, the transition point is given by
γc = 0.5 for d = 1, while γc = 0.25 for d = 2. The inset shows the boundary line above which the
spin glass phase is dominant. Note that for d = 1, there exists a very narrow regime (indicated by
the shadow) within which the correlated-attractor phase is dominant. b Overlap profiles obtained
from the statistical mechanics theory. All overlap profiles are obtained by solving the saddle-point
equations of the model when α = 0 and d = 2 (or d = 1). All theoretical results are obtained by
assuming that S = 11, except that for negative values of γ , we use S = 15. Note that the results are
not sensitive to the value of S (e.g., S = 11 or S = 13)

one, i.e.,mμ = mδμν , where ν indicates the stimulating pattern. Given the value of α,
increasing the value of γ would finally make the retrieval phase lose its metastability,
after which the correlated-attractor phase becomes metastable. The line separating
these two phases is thus the first-order transition. The correlated-attractor phase is
characterized by the stimulus-induced attractors being highly correlated with a finite
number of patterns in the stored sequence. In other words, the value of the corre-
sponding overlap decays with the distance between the patterns in the sequence and
the one used as the stimulus. The numerical solutions of the saddle-point equations
obtained by the replica theory (see the zero-temperature limit) reproduce the key
features of the mean-field dynamics of the overlap [Fig. 8.5b], which corresponds to
α = 0 in our theory.

Our theory predicts that the value of d can be used to expand the correlation span of
the correlated-attractor, andmoreover reshape significantly the phase diagram.When
α = 0, the threshold for the dominant retrieval phase is γc = 0.5 for d = 1, but γc =
0.25 for d = 2. In the presence of a finite α, the retrieval phase loses its metastability
at a smaller value of γ for d = 2 than for d = 1 [Fig. 8.5a]. After that, the spin
glass phase characterized bymμ = 0 (∀μ) appears and competes with the correlated
attractor phase, until the point where the spin glass phase becomes dominant (global
minimum of the free energy), as shown in the inset of Fig. 8.5a. Remarkably, for
d = 1, we identify a narrow regime for γ > 0.5 [the shadow in Fig. 8.5a], where
the correlated-attractor phase becomes dominant. This regime shrinks gradually as
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γ increases. If noisy neural dynamics is allowed (e.g., at a non-zero temperature),
the spin glass phase would be replaced by a paramagnetic phase at a continuous
transition (see a detailed exploration in [17]). This transition line is also strongly
affected by the Hebbian length.

As α gets close to the spin glass line [the inset of Fig. 8.5b], the peak value of the
overlap in the correlated-attractor phase decreases, as expected from the significant
memory interference at a relatively large memory load. At α = 0, the correlation
profile of the correlated attractor phase is more robust for d = 2 against increasing
γ than the case of d = 1. Further increasing γ might leads to the result that the
correlation is not localized any more, and the network loses the association ability
about the stimuli.

In particular, our theoretical analysis also reproduces the unlearning effects
observed in the mean-field dynamics [14]. Furthermore, a critical strength of γc =
−0.25 for the oscillatory phase is predicted. γc = −0.5 for d = 1.When γ < γc, the
unlearning effect of non-concurrent anti-Hebbian terms becomes more evident, pre-
ferring some particular patterns rather than their sign-reversed counterparts. In other
words, the (spin reversal) symmetry in the Hamiltonian is broken, and the negative γ

selects particular patterns, which suggests that the energy landscape is reshaped and
further the information storage is re-optimized [18–20]. This intriguing phenomenon
thus establishes the connection between the Hebbian length, anti-Hebbian effect and
memory function of unlearning.
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Chapter 9
Replica Symmetry and Replica
Symmetry Breaking

In this chapter,we introduce underlying physics behind the concept of replica symme-
try, and replica symmetry breaking, which plays an important role in understanding
the spin glass models of neural networks. Replica symmetry ansätz is considered as
a first step of approximation to compute the quenched average of the free energy
function. When the ansätz becomes unstable or yields unphysical results, the per-
mutation symmetry of replica indexes must be broken, leading to a higher level of
approximation—replica symmetry breaking.

9.1 Generalized Free Energy and Complexity of States

In previous chapters, replica symmetry is usually assumed as the first step for a
statistical mechanical analysis of disordered systems (e.g., in the Hopfield model).
The underlying physics is that a single giant pure state dominates the phase space
of the model under investigation. In other words, the spin-spin correlation decays
over their distance, satisfying the cluster decomposition (clustering) property [1],
e.g., in a mean-field system of N particles, the correlation magnitude is of the order
O(1/

√
N ) [1]. This usually occurs at a relatively high temperature, as shown in the

dashed line of Fig. 9.1 As the temperature decreases, the giant state will split into
many well-separated pure states, characterized by a free energy profile with many
local minima separated by high barriers. Each minima corresponds to a fixed point
of either TAP equation or belief propagation equation [2]. It contributes a statistical
weight, i.e., e−βFα

∑
α e

−βFα
, where Fα indicates the free energy of the state with index α,

and β is an inverse temperature.
To describe the decomposition of the Gibbs measure [3], we need to introduce an

additional parameter characterizing the fluctuation of free energy levels, namely y,
as follows:

e−y� =
∑

α

e−yFα =
∫

d f eN (−y f +�( f )), (9.1)
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Fig. 9.1 Schematic illustration of how a clustered organization of the phase space emerges. Here,
we show only three clusters of configurations, within each of which the clustering property of a
pure state holds. The right panel shows the corresponding free energy landscape

where �( f ) encodes the complexity of exponentially many states, an extension of
the standard entropy in statistical mechanics.� denotes the replicated or generalized
free energy, taking into account fluctuations across many local minima with free
energy density fα in the free energy landscape. This is the so-called one-step replica
symmetry breaking (1RSB) scenario (later explained mathematically in detail in
the last section of this chapter). Accordingly, we have e−y� = ∑

α Zm
α , where the

original partition function of the αth state is weighted by a power m, which is thus
called the Parisi RSB parameter or Parisi parameter [4]. It then follows that one can
interpret y as a product of βm, which we shall discuss in detail later.

In the thermodynamic limit, the intractable integral in Eq. (9.1) can be estimated
by the Laplace approximation, resulting in

− yφ = max
f

{�( f ) − y f }, (9.2)

y = ∂�( f )

∂ f
. (9.3)

φ denotes the replicated free energy density (i.e., per spin). By a Legendre transform,
one obtains the following identities:

f = ∂(yφ)

∂y
, (9.4)

� = y( f − φ) = y2
∂φ

∂y
. (9.5)
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φ can be estimated by the cavity method at the 1RSB level. More precisely, by
adding one variable node (e.g., spin) into the original factor graph of the model, and
assuming a one-to-one correspondence among the pure states (at least with the lowest
free energy) before and after the cavity operations (including also the operation of
adding a function node, e.g., an interaction), we then have

e−yφnew
i =

∑

α

e−yFα−y�Fα
i = e−yφold

∑

α

ω(α)e−y�Fα
i

= e−yφold 〈e−y�Fi 〉,
(9.6)

where the weightω(α) = e−yFα

∑
a e

−yFα , and the angular bracket indicates an average over
all equilibrium states.

Analogously, we have the contribution of adding a function node as follows:

e−yφnew
a = e−yφold 〈e−y�Fa 〉. (9.7)

Therefore, the replicated free energy shift due to both cavity operations can be sum-
marized as follows:

− y�φi = ln〈e−y�Fi 〉, (9.8)

−y�φa = ln〈e−y�Fa 〉, (9.9)

where�Fi and�Fa are the free energy shifts under the cavity operations, and can be
estimated within each pure state, thereby having the same form with the RS theory.
Finally, applying the Bethe approximation at the 1RSB level, the replicated free
energy can be constructed by collecting two parts, given by

φ =
∑

i

�φi −
∑

a

(|∂a| − 1)�φa, (9.10)

where |∂a| denotes the degree of the function node a in the factor graph. The free
energy density and the complexity can be derived based on Eqs. (9.4) and (9.5)

f = 〈�Fie−y�Fi 〉
〈e−y�Fi 〉 −

∑

a

(|∂a| − 1)
〈�Fae−y�Fa 〉

〈e−y�Fa 〉 , (9.11)

� = y( f − φ). (9.12)

The mean-field spin glass models can be classified into two distinct categories.
One is the SK model, where the low temperature phase can be described as an
ultrametric hierarchy of states, or mathematically a full replica symmetry breaking
(fRSB), explained in detail later. The transition to the spin glass phase is of a second
order, accompanying a diverging correlation length. The other class is the p-spin
(p > 2) models or discontinuous glass models [5]. The transition to the spin glass
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phase is still second order (no latent heat) in the Ehrenfest sense, but the order
parameter (e.g., Edwards–Anderson order parameter) jumps at the transition, being
of the first-order characteristic. In spin glass theory, this transition is named the
random first-order transition [6]. The 1RSB scheme is known to be correct for the
p-spin spherical model [7, 8], where spin takes spherically-constrained continuous
values, but for the general case of the p-spin Ising model, the spin glass phase may
have a fRSB structure that occurs at a very low temperature [9]. Many complex
systems, including structural glasses1 and constraint satisfaction problems, fall in
this category, sharing many interesting properties [4, 6, 10].

In a typical example of discontinuous spin glass models, there exists a maximal
value of free energy such that�( fmax)determines the number ofmetastable states, so-
called threshold states trappingmost local algorithms, e.g., simulated annealing [11].
At the other end, �( fgs) = 0 determines the lower-bound estimate of the ground
state with the free energy fgs, corresponding to the maximum of �(y) at the 1RSB
level. However, the 1RSB scheme becomes unstable for the free energy above fG,
which is the Gardner energy where the fRSB scheme of a hierarchy of nested states
should be assumed. As a classic example, the Ising p-spin glass undergoes a first
discontinuous transition from a paramagnetic to a 1RSB phase at a relatively high
temperature, and then a continuous transition to a fRSB phase as the temperature
is lowered down to the Gardner temperature [5]. In addition, we have the following
relationship fgs ≤ fG ≤ fmax [12].

9.2 Applications to Constraint Satisfaction Problems

At the 1RSB level, the cavity method can be classified into two cases, depending on
different focuses on the probability measure of thermodynamics. We first introduce
the energetic cavity method [13]. In this case, as mentioned above, we can write the
1RSB re-weighting parameter y as a product βm. Then we obtain

− βmφ(β,m) = max
s,ε

{�(s, ε) + m(s − βε)}, (9.13)

where s and ε denotes the entropy density and energy density, respectively. Taking
the limit β → ∞ and m → 0 while keeping a finite value of y, we get

φε(y) = max
ε

{�(ε) − yε}. (9.14)

Note that the limit β → ∞ is the zero temperature limit commonly took in an opti-
mization problem to search for ground states of the model. �(ε) determines the
number of clusters of configurations with the energy density ε, andmoreover its zero-
value determines a SAT threshold, e.g., in random K -SAT problem (see Chap. 2).

1 Many interacting particles move with a local random environment for each particle.
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In a constraint satisfaction problem, each solution can be treated as an equilibrium
configuration of a traditional statistical mechanics model. These solutions may be
grouped into exponentially many clusters [14], and each cluster can be called a pure
state, thus their statistics can be captured by the 1RSB scheme. In a SAT regime,
where a solution satisfying all boolean constraints exists, or the ground sate energy
remains zero, an optimal value of y tends to be∞. However, when the SAT threshold
is crossed from below, the optimal y takes immediately a finite value [15].

The energetic cavity method at the y → ∞ (also m = 0) makes the Gibbs mea-
sure concentrate on the ground state with ε = 0 (SAT configurations), leading to
an efficient fully-distributed algorithm, namely survey propagation [13] for the ran-
dom K -SAT problem. This algorithm goes beyond the standard belief propagation
iteration that does not work when the constraint density (the number of boolean
constraints or clauses per variable) is larger than some threshold (still below the
SAT one). The salient feature is that, the cluster-to-cluster fluctuation is explicitly
taken into account in this advanced algorithm, which tells us the exact probability of
picking up a cluster randomly and finding a given variable frozen to one direction
within that cluster [13]. The survey propagation can thus solve the NP-hard problem2

in typical cases up to a threshold very close to the SAT threshold. This intriguing
property inspires many following up works in other kinds of constraint satisfaction
problems [4]. However, the algorithm does not work on the random K -XOR SAT
problem (see the first chapter), due to the freezing effects in clusters of solutions [16].
In addition, the algorithm requires a high computational complexity in optimization
problems where the ground state energy is non-zero.

If we focus our measure only on the SAT regime, i.e., ε = 0, then we can shift
our interest to the entropy part. This kind of cavity method is thus called the entropic
one. It is easy to write first that

�(ε = 0) = max
s

�(s, ε = 0) = �(m = 0), (9.15)

i.e., the energetic (m = 0) cavity method computes the complexity of the typical or
most numerous clusters, and clusters are weighted equally independent of their sizes.
This can be seen from the fact that ∂�(s)

∂s = −m. Generalizing to the entropic case,
we have

φ(m) = max
s

{�(s) + ms}, (9.16)

and by the Legendre transform

s = ∂φ(m)

∂m
, �(s) = φ(m) − ms. (9.17)

2 Whether the NP class is distinct or not from the P class that is solvable in polynomial time remains
an open problem in mathematics.
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ααc αs

m(α)

1
Σ

Σ(m = 1)

Σ(m = 0)

αsαcαd

Fig. 9.2 Schematic illustration of the Parisi parameter and the complexity of states. α denotes the
constraint density (the number of constraints per degree of freedom) in a constraint satisfaction
problem

The relationship m = − ∂�(s)
∂s can be easily derived under the saddle-point approx-

imation. It is physically clear that a given value of m selects the size of states (or
clusters), like the temperature parameter selecting the configuration at the RS level.
Note that, to detect if a 1RSB solution emerges in a model, a first test is to verify the
appearance of a non-trivial solution of the 1RSB equation at m = 1 (Fig. 9.2). At
the corresponding threshold, the point-to-set correlation function [14], an average of
the correlation between a randomly chosen variable and a variable set at a distance
� from it, sets in discontinuously for a discontinuous transition or continuously for
a continuous transition. This threshold is thus called the dynamical transition point
(αd ), many local algorithms (by local move—a few variables are changed at each
step, like Monte Carlo algorithms) are affected by this transition, due to thermo-
dynamically relevant (entropically dominant) clusters (at m = 1) prevail. Note that
the local stability of the RS solution coincides exactly with the dynamical thresh-
old for the continuous 1RSB transition. However, the local instability occurs after
a discontinuous transition [14]. A non-trivial ergodicity breaking takes place at the
dynamical transition, leading to impossible uniform sampling of solutions or equi-
librium configurations after this transition.

Further, increasing the constraint density, the thermodynamic value ofm will start
to decrease at the condensation threshold αc (Fig. 9.2), where the Gibbs measure
condensates on a few or sub-exponential (with the number of degrees of freedom)
number of clusters, i.e., the equilibrium value of m is determined by �(meq) = 0.
Depending on the specific problem, there may appear a freezing transition where the
thermodynamically dominant clusters contain a finite fraction of variables frozen into
the same specified direction [16]. The freezing transition at α f forms an algorithmic
barrier where a large-scale rearrangement of variables required for going from one
cluster to another one. For example, in random K -XOR SAT, αd = α f , and all
clusters have the same size, and for random 3-SAT problems, αc = αd .
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In the 1RSBphase, cavitymarginals fluctuate from one state (or cluster) to another
one. In general, a 1RSB equation can be written into a compact form as

P(mi→a) = 1

Zi→a

∏

b∈∂i\a

∫

dm̂b→iδ
(
mi→a − F ({m̂b→a})

)
Zm
i→a, (9.18)

where the RSmessagemi→a is now turned into a probability function, i.e., the survey
of messages among states (or clusters), and F denotes the RS iteration, which holds
within each state, and the cavity partition function Zi→a is now weighted in a power
m, acting as a statisticalweight in aMonteCarlo sampling—e−βm�Fi→a where the free
energy shift under the cavity operation�Fi→a can be constructed from theRS theory.
This re-weighting term discourages moving into states with high free energy [17,
18], in a similar way to a standard Monte Carlo sampling where a high energy state
is highly undesired during the process of searching for low-energy configurations.
The 1RSB iteration [Eq. (9.18)] can be derived from a variational principle on the
1RSB free energy function �(β,m) [19, 20], with respect to the functional order
parameter (the probability measure over the messages) and the Parisi parameterm or
y. We lastly remark that if the distribution P(mi→a) does not peak on a few isolated
values, then it cannot be parameterized by a few real numbers, thereby making it
impossible to derive an efficient algorithm like survey propagation.

Now, let us analyze the special case of m = 1. This special Parisi parameter
greatly simplifies the complex 1RSB equation, and make a numerical solution of
the equation using population dynamics [14, 17, 19] much less time-demanding.
Population dynamics is a special numerical techniques using a population of random
variables (being updated) to represent a probability distribution, particularly suitable
for solving the 1RSB equation that is a recursive probability function equation. In
this special case, we have

φ(β,m = 1) = ε − �(s, ε) + s

β
= ε − T stot. (9.19)

In the dynamical 1RSB regime, where the complexity �(m = 1) is positive, the RS
marginal probability and the free energy remains asymptotically exact. Moreover,
the correct total entropy deviates from the RS one only in the condensation phase or
phases after it. More precisely, stot = s∗(�(s∗) = 0) < sRS in this regime [4]. From
this sense, the dynamical transition is not a genuine transition.When�(m) vanishes,
a genuine, or ideal glass transition occurs, namely the Kauzmann transition [21]. At
this transition, the free energy has a discontinuity in its second derivative.

In some systems, there exists a frozen phase, e.g., in the random energy model,
or the binary perceptron learning problem [22, 23]. Therefore, for the αth state,
fα = εα , we have

e−Nβmφ(β,m) =
∑

α

e−Nβm fα =
∑

α

e−Nβmεα = e−Nβm fRS(βm), (9.20)
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from which, we can define an inverse temperature βs where the entropy vanishes,
sRS(βs) = 0, i.e., when β = βs , m = βs

β
= 1. As the temperature further decreases

(m decreases as well), the free energy is clamped to its zero-entropy value, like
that occurs in the random energy model. In this kind of models, the zero-entropy
condition is used to solve the entropy crisis, i.e., the free energy shows a maximum
at a finite temperature [18, 24]. In addition, the RS instability usually takes place
after the entropy crisis, there thus must exist a discontinuous transition before or at
the zero-entropy point [25].

9.3 More Steps of Replica Symmetry Breaking

As we know, the RS solution may be incorrect if long-range correlations emerge in
the system, e.g., the point-to-set correlation does not decay to zero [26]. This is also
called the sufficient condition. A necessary condition for the correct RS solution is
the non-divergence of the spin glass susceptibility χSG, defined as

χSG = 1

N

∑

i, j

(〈σiσ j 〉 − 〈σi 〉〈σ j 〉)2, (9.21)

where the angular brackets mean the thermal average and the overline means the
disordered average over model parameters. When these conditions are not satisfied,
high levels of approximation must be introduced, e.g., 1RSB, in other words, a small
perturbation breaks the replica symmetry, in accord with the (de Aleida-Thouless)
AT stability analysis within the replica scheme [27], i.e., via a perturbation analysis
in the replica space around the symmetric order parameters. If the 1RSB solution is

n m1 m1m2

RS 1RSB 2RSB
Fig. 9.3 Schematic illustrationof how theoverlapmatrix changes asmore advanced approximations
are introduced. n denotes the number of replicas, while mi denotes the size of subblocks when
considering a hierarchy of replica symmetry breaking
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unstable against further perturbations, either in terms of small changes in distribu-
tions or in terms of messages, like at a Gardner temperature, more levels of replica
symmetry breaking are required. In general, a 2-RSB theory involves an order param-
eter that is a distribution of distributions, and correspondingly, states can aggregate
into different clusters (inter-state susceptibility diverges), or each state can further
split into different states (intra-state susceptibility diverges) [25]. These susceptibil-
ities depend on different ways of handling the overlarge over the states with their
Boltzmann weights.

The overlap matrix in the replica theory can be interpreted in the matrix of the
overlap between pure states a and b [28–31], defined by

Qab = 1

N

∑

i

〈σi 〉a〈σi 〉b, (9.22)

where 〈•〉 represents the thermal average within that state. In terms of the Parisi
ansätz, the 1RSB corresponds to the n replicas divided into n/m1 identical clusters
of sizem1.Within each cluster, the permutation symmetry of replicas still holds. Then
we need two order parameters, q0 and q1 (q0 < q1) at the 1RSB level. In general, for
a k-step RSB, we have 1 = mk+1 < mk < · · · < m0 = n, i.e., by adding one level,
the diagonal block is further divided into mi/mi+1 subblocks, for each block qi+1 is
assigned (Fig. 9.3). In a mathematical form, we have

Qab = qi , if

⌈
a

mi

⌉

=
⌈

b

mi

⌉

and

⌈
a

mi+1

⌉


=
⌈

b

mi+1

⌉

, (9.23)

where �x� takes the smallest integer not larger than x . {qi } then form a sequence
of order parameters representing similarity of states in the hierarchical organization
of the phase space. The permutation symmetry among replicas is clearly broken
across different blocks. By an analytic continuation to n → 0, as usually adopted in
the last step of replica calculation, the relationship among mi becomes 0 = m0 <

m1 < · · · < mk+1 = 1. An observable measure reflecting replica symmetry effects
is defined by the realization-dependent distribution

PJ (q) =
∑

a,b

ωaωbδ(qab − q), (9.24)

where J represents the model disorder, and ωa denotes the ath state’s statistical
weight described as above. We remark that this distribution is not self-averaging,
i.e., its profile depends on the specific realization of the model. It is thus unlike the
free energy (being of the self-averaging property), as the system size increase, the
fluctuation of the free energy value will be minimized, such that the free energy for
a single instance roughly matches the typical value obtained by replica theory.

Taking another limit k → ∞, one obtains the fRSB solution, where qi transforms
to a continuous function q(x), ranged as q ∈ [0, qmax]. In the fRSB phase, pure states
are organized according to an ultrametric structure. Note that the Edwards–Anderson
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order parameter qEA = maxx q(x). The inverse function x(q) is just the cumulative
distribution

x(q) =
∫ q

0
dq ′P(q ′), (9.25)

which gives the probability of observing an overlap less than or equal to q. Therefore,
we have 0 ≤ x ≤ 1. Note that P(q) = PJ (q) = dx(q)

dq . In this way, the hierarchical
clustering of replicas can be interpreted in a physical picture of pure states. RSB
effects were investigated in the machine learning models of restricted Boltzmann
machines [32]. Ultrametric structures in the state space were also revealed. The
ultrametric property of overlaps among three states implies that two smallest overlaps
are equal [1].

We finally remark that in the replica theory, the 1RSB free energy is always larger
than the RS one, with increasing levels of RSB, the lower bound to the true free
energy improves [33, 34]. A fRSB solution of the SK model, proposed by Giorgio
Parisi, was proved to be rigorous in mathematics [35].
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Chapter 10
Statistical Mechanics of Restricted
Boltzmann Machine

Energy-based model is an archetypal type of generative model, which can learn any
distribution of data and generate new samples that follow the same distribution as
the original one. In this chapter, two kinds of energy-based models are introduced—
Boltzmann machine (BM) and restricted Boltzmann machine (RBM). The learning
method of maximizing log-likelihoods is introduced and statistical mechanics analy-
sis of restricted Boltzmann machines is performed. The free energy of RBMs is cal-
culated based on the Bethe approximation. Then thermodynamic quantities related to
learning, e.g., magnetizations as well as hidden-visible correlations are also derived,
providing an alternative efficient way to train RBMs with continuous weights. In this
chapter, we also introduce a powerful physics-inspired algorithm for training RBMs
with discrete weights, which was previously thought to be out of reach until a very
recent work (Huang in Phys. Rev. E 102:030301(R), 2020 [5]). Training RBMs plays
an important role at the early stage of deep learning (Bengio et al. in Advances in
Neural Information Processing Systems, pp. 153–160, 2007 [9]).

10.1 Boltzmann Machine

Boltzmann machine (BM) is an energy-based model, as shown in Fig. 10.1. It is an
unsupervised learning network with the following energy:

E(σ ) = −
∑

i

hiσi −
∑

i< j

wi jσiσ j , (10.1)

where σi = ±1 is the state of node i , hi is the bias of node i , and wi j is the connec-
tion weight between node i and node j . Configurations of σ obey the Boltzmann
distribution

p(σ ) = 1

Z
e−βE(σ ), (10.2)
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where Z = ∑
σ e

−βE(σ ) is the partition function. To learn a given data set by a BM
is known as the inverse Ising problem (see Chap. 3).

The Hopfield model can be considered as a special type of BM with hi = 0,∀i ,
and the coupling is constructed in the Hebbian rule. Generally speaking, the Hebbian
rule is not enough to learn any distribution of data. Therefore, to learn the distribution
of a given data set with M configurations, {σ 1, σ 2 . . . , σ M}, the weights of a BM
network are updated by maximizing the log-likelihood of the data

L(θ |{σ }) = 〈log(pθ (σ ))〉data
= −〈E(σ , θ)〉data − log Z(θ)

=
N∑

i=1

hi 〈σi 〉data +
∑

i< j

wi j 〈σiσ j 〉data − log Z(θ),

(10.3)

where 〈. . .〉data means the average carried out over the data, θ denotes the parameters
{W , h}, pθ (σ ) is the distribution of σ with parameters θ , and β is set to be 1 for
convenience, as β can be absorbed in both weights and biases. The gradient of
L(θ |{σ }) can be easily computed as follows:

∂L

∂hi
= 〈σi 〉data − 〈σi 〉model;

∂L

∂wi j
= 〈σiσ j 〉data − 〈σiσ j 〉model,

(10.4)

where 〈. . .〉model denotes the thermal average under the model measure. Network
parameters can then be updated by gradient ascent

�hi = η
∂L

∂hi
= η(〈σi 〉data − 〈σi 〉model);

�wi j = η
∂L

∂wi j
= η(〈σiσ j 〉data − 〈σiσ j 〉model),

(10.5)

where η is the learning rate. The first terms of both equations in Eq. (10.5) are
easy to compute by averaging over the data. But the model average terms are
intractable to compute, as the computation of the partition function requires O(2N )

time complexity. In practice, Monte Carlo method can give an approximate value
of the model average terms. An alternative simple way is the mean field the-
ory introduced in Chap. 3, which can be applied to calculate 〈σi 〉model, and then
the two-point correlation can be obtained by using the linear-response theory:
∂〈σi 〉model

∂h j
= 〈σiσ j 〉model − 〈σi 〉model〈σ j 〉model.
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Hid den  no de
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(a) (b)

Co nnec�on  weig ht

Fig. 10.1 a Illustration of BM without hidden nodes. b Illustration of BM with hidden nodes

In the standard BM, hidden nodes can also be introduced by providing a latent
encoding of the visible nodes (their number equals to the dimension of the data
samples), as shown in Fig. 10.1b. However, learning the parameters involved in the
hidden nodes is typically computationally demanding, as a Monte Carlo sampling of
states of hidden nodes is required. This computational barriermotivates an alternative
architecture, namely restricted Boltzmann machine to appear, which greatly reduces
the computational cost by removing the connections among visible nodes (and hidden
nodes) [1, 2].

10.2 Restricted Boltzmann Machine

The architecture of RBM is shown in Fig. 10.2. The hidden nodes play a role of an
encoder of sensory inputs. The RBMhas one hidden layer and one visible layer. Con-
nections only exist between layers yet not within each layer. For the RBM network
with N visible nodes and M hidden nodes, the energy function that the learning tries
to minimize is given by:

E(σ , s) = −
∑

i,a

σiwiasa −
∑

i

φiσi −
∑

a

hasa, (10.6)

where σi is the state of visible node i with bias φi , sa is the state of hidden node a
with bias ha and wia is the connection between them. The network state obeys the
Boltzmann distribution

p(σ , s) = 1

Z
e−βE(σ ,s), (10.7)

where Z = ∑
σ ,s e

−βE(σ ,s). Here, we set β = 1, in that the temperature effect could
be absorbed into the inferred couplings and biases. Nodes in the same layer are
conditionally independent due to the absence of the lateral connections, and the
conditional probability is specified by
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Recog ni�on
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Fig. 10.2 Schematic illustration of a RBM. The RBM has one hidden layer and one visible layer.
Connections are only allowed between layers. The recognition process is defined as sampling hidden
states given visible states. The reconstruction process is defined as sampling visible states given
hidden states

p (σi |s) =
∑

{σ j : j �=i} p(σ , s)
∑

σ p(σ , s)

= eσi (φi+∑
a wiasa)

eσi (φi+∑
a wiasa) + e−σi (φi+∑

a wiasa)

= 1

1 + e−2σi (φi+∑
a wiasa)

;

p (sa|σ ) =
∑

{sb :b �=a} p(σ , s)
∑

s p(σ , s)

= esa(ha+
∑

i wiaσi )

esa(ha+
∑

i wiaσi ) + e−sa(ha+∑
i wiaσi )

= 1

1 + e−2sa(ha+∑
i wiaσi )

.

(10.8)

Given states of visible nodes, the states of hidden nodes can be sampled easily, which
is called the recognition process; and the converse process is called the reconstruction.

Similar to BM, the weights of RBM can be learned by maximizing the data log-
likelihood. Given a data set, {σ 1, σ 2, . . . , σ M}, the log-likelihood is formulated as

L (θ |{σ }) = 〈log (pθ (σ ))〉data
= −〈E (σ , θ)〉data − log Z ({θ} ),

(10.9)

where θ denotes the parameters {W ,φ, h} for convenience, and pθ (σ ) is the dis-
tribution of σ with the parameters θ . The gradient of the parameters can be easily
obtained as

∂L({wia ,φi ,ha})
∂wia

= 〈σi sa〉data − 〈σi sa〉model;
∂L({wia ,φi ,ha})

∂φi
= 〈σi 〉data − 〈σi 〉model;

∂L({wia ,φi ,ha})
∂ha

= 〈sa〉data − 〈sa〉model.

(10.10)
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Nevertheless, the model average terms still require O(2N+M) time complexity to
compute. An efficient method is the well-known contrastive-divergence (CD) algo-
rithm that performs an alternating Gibbs sampling [via Eq. (10.8)] that starts from
the data samples [3]. For saving computation time, CD is usually truncated to a few
Gibbs sampling steps, e.g., one step.

In next sections, we shall show that both the model average terms and the free
energy of the system can be obtained analytically by performing the Bethe approxi-
mation, which allows us to understand the statistical mechanics of RBM [4]. For the
sake of simplicity, we consider a random RBMwith the property that all of wia obey
an i.i.d Gaussian distribution with zero mean and variance g

N , and biases for each
layer also obey an i.i.d. Gaussian distribution with zero mean and variance v.

10.3 Free Energy Calculation

Using the conditional independence, we can derive the exact form of the marginal
probability of visible nodes

p(σ ) =
∑

s

p(σ , s)

= 1

Z

∑

s

e
∑

a(
∑

i βσi wia+βha)sa+∑
i βσiφi

= 1

Z
e
∑

i βσiφi
∑

s

∏

a

e(
∑

i βσi wia+βha)sa

= 1

Z

∏

i

eβσiφi
∏

a

∑

sa

e(
∑

i βσi wia+βha)sa

= 1

Z

∏

i

eβσiφi
∏

a

[2 cosh(βwaσ + βha)],

(10.11)

where wa denotes the weight vectors connecting to the hidden node a. A direct
calculation of the partition function Z requires a time complexity of O(2N ), which
becomes impossible as N increases. Here, the Bethe approximation can be applied
as a first-level approximation of the free energy. A factor graph can represent the
current system after the marginalization [Eq. (10.11)]. As displayed in Fig. 10.3, the
i th circle denotes the variable node σi , and the ath square denotes a Boltzmann factor
2 cosh(βwaσ + βha), which corresponds to fa(xa) introduced in Chap. 3. β is set
to be 1 as explained above.

We then introduce a cavity probability Pi→a(σi ), which denotes the probability
of the state of the variable node i in the absence of a factor node a, together with
auxiliary quantityμb→i , summing the contribution of factor node bwhen the variable
node i is frozen to the state σi . According to the belief propagation formula, we have
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Fig. 10.3 Factor graph representation of a RBM. Circles denote variable nodes and squares denote
factor nodes

the following recursive equations:

Pi→a (σi ) = 1

Zi→a
eφiσi

∏

b∈∂i\a
μb→i (σi ) ; (10.12a)

μb→i (σi ) =
∑

{σ j | j∈∂b\i}
2 cosh (wbσ + hb)

∏

j∈∂b\i
Pj→b

(
σ j

)
, (10.12b)

where Zi→a = eφi
∏

b∈∂i\a μb→i (+1) + e−φi
∏

b∈∂i\a μb→i (−1) is a normalization
constant, ∂i\a represents the neighbors of variable node i except factor node a, ∂b\i
represents the neighbors of the factor node b except the visible node i . Unfortunately,
the sum in the second equation still needs O(2N−1) time complexity, and resolving
this difficulty requires further approximations.

Note that μb→i estimates the mean of the Boltzmann factor 2 cosh (wbσ + hb)
over the configuration {σ j | j ∈ ∂b\i}. Under the Bethe approximation, σ j around
the function node (b here) is approximately independent, provided that the cavity
probability Pj→a(σ j ) is defined. As Ub→i ≡ ∑

j∈∂b\i w jbσ j is the sum of (N − 1)
variables, and the variables {σ j } are assumed to be nearly independent under the
Bethe approximation, the central limit theorem (CLT) thus suggests thatUb→i obeys
a Gaussian distribution given a large value of N . The mean and variance of Ub→i

are, respectively, given by

Gb→i = 〈Ub→i 〉{σ j | j∈∂b\i} =
∑

j∈∂b\i
w jbm j→b;

�2
b→i = 〈U2

b→i 〉{σ j | j∈∂b\i} − 〈Ub→i 〉2{σ j | j∈∂b\i}
	

∑

j∈∂b\i
w2

jb

(
1 − m2

j→b

)
,

(10.13)

where m j→b ≡ ∑
σ j

σ j Pj→b
(
σ j

)
is the cavity magnetization. According to the

weakly correlated state assumption (the same spirit as the RS ansätz), a diagonal
approximation is further applied to simplify the variance, i.e., only the sum of diag-
onal elements of the correlation matrix is calculated. Then μb→i (σi ) can be approx-
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imately calculated as follows:

μb→i (σi ) = 2
∫

Dt cosh(Gb→i +
√

�2
b→i t + hb + wibσi )

= 2e
�2
b→i
2 cosh(Gb→i + hb + wibσi ),

(10.14)

where Dt ≡ e−t2/2/
√
2πdt . Inserting this result into the cavity probability Pi→a (σi ),

we obtain the cavity magnetization

mi→a =
∑

σ j

σ j Pj→b
(
σ j

)

=
∑

σi
σi eφiσi

∏
b∈∂i\a μb→i (σi )∑

σi
eφiσi

∏
b∈∂i\a μb→i (σi )

= tanh

⎛

⎝φi +
∑

b∈∂i\a
ub→i

⎞

⎠ ;

ub→i = 1

2
ln

μb→i (+1)

μb→i (−1)
= 1

2
ln

cosh (hb + Gb→i + wib)

cosh (hb + Gb→i − wib)
,

(10.15)

where ub→i is the cavity bias (see Chap. 2). mi→a represents the massage passing
from variable node i to factor node a, and ub→i denotes the massage passing from
factor node b to variable node i . Iterating Eq. (10.15) can reach the fixed point. Then,
the Bethe free energy can be calculated as follows:

F =
∑

i

Fi − (N − 1)
∑

a

Fa;

Fi = − ln Zi = − ln(eφi
∏

b∈∂i

μb→i (+1) + e−φi
∏

b∈∂i

μb→i (−1));

Fa = − ln Za = − ln(2e
�2
a
2 cosh(Ga + ha)),

(10.16)

where Fi and Fa are local free energies of variable node i and factor node a, respec-

tively,�a = ∑
j∈∂a w

2
ja

(
1 − m2

j→a

)
, andGa = ∑

j∈∂a w jam j→a . The computation

of Fa is similar to that ofμa→i . Here, we show an experiment result of the free energy
computation via the Bethe approximation (Fig. 10.4).

10.4 Thermodynamic Quantities Related to Learning

To learn a RBM, computation of model averages in Eq. (10.10) is required, and the
Bethe approximation can then be applied.After getting the fixed points of Eq. (10.15),
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Fig. 10.4 Free energy density ( f = F/N ) of randomRBMs. The error bar is the standard deviation
over ten trials. a f versusα = M/N with N = 1000, g = 1, and v = 0.05.bThe absolute difference
between exact free energy (calculated by enumeration) and Bethe approximation of different α with
N = 20, g = 1, and v = 0.05. c Comparison of exact free energy and Bethe approximation for α = 0.6
in (b). The diagonal line denotes fBA = fexact .d f versus gwith N = 1000, v = 0.05 andα = 0.5.
e f versus v with N = 1000, g = 1 and α = 0.5

the magnetization of a visible node i , i.e.,mi = 〈σi 〉model, can be obtained as follows:

mi = tanh

(
φi +

∑

b∈∂i

ub→i

)
. (10.17)

Then, the magnetization of a hidden node, i.e., m̂a = 〈sa〉model, can be calculated as
follows:
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m̂a = 〈sa〉model = 〈tanh
(∑

i

σiwia + ha
)
〉σ

=
∫

Dx tanh

(√
�̃2

ax + G̃a

)
,

(10.18)

where G̃a = ∑
i∈∂a wiami + ha , and �̃2

a 	 ∑
j∈∂a w

2
ja

(
1 − m2

j

)
. Note that the sum

in the mean and variance here involves in full magnetizations instead of cavity ones,
which is different from those in Eq. (10.16).

To update the connection weights, correlations between hidden and visible nodes
should be calculated

Cai = 〈saσi 〉model =
〈
tanh

(∑

i

σiwia + ha
)
σi

〉

σ

, (10.19)

where the average over s can be performed exactly due to the conditional indepen-
dence. To calculate the intractable correlation matrix C, we can first calculate the
matrix-product CW

[CW]ab =
〈
tanh

(∑

i

σiwia + ha
)∑

j

σ jw jb

〉
. (10.20)

We can then define Ua ≡ ∑
i wiaσi , and Ua that obeys a Gaussian distribution

due to the CLT. The mean is given by
∑

i wiami . The covariance matrix of U =
(U1,U2, . . .Ua, . . .) is defined as �, whose element �ab is given by

�ab = 〈UaUb〉 − 〈Ua〉 〈Ub〉

=
〈
∑

i

wiaσi

∑

j

w jbσ j

〉
−

〈
∑

i

wiaσi

〉 〈
∑

j

w jbσ j

〉

=
∑

i

wia

∑

j

w jb
〈
σiσ j

〉 −
∑

i

wia

∑

j

w jb 〈σi 〉
〈
σ j

〉

=
∑

i

wia

∑

j

w jbĈi j ,

(10.21)

where Ĉ is the covariance matrix of σ = (σ1, σ2, . . . , σN ) and the entry Ĉi j =
〈σiσ j 〉 − 〈σi 〉〈σ j 〉. Hence the matrix � can be expressed as

� = WTĈW. (10.22)

In particular, the diagonal element of � is given by
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�aa = 〈U2
a〉 − 〈Ua〉2 	

∑

i∈∂a

w2
ia

(
1 − m2

i

)
, (10.23)

which is the same as �̃a .
Toproceed,we re-parametrizeUa = √

�aa − �abx + √
�abz + 〈Ua〉, andUb =√

�bb − �ab y + √
�abz + 〈Ub〉, which guarantees the covariance structure. In this

parameterization, x, y, z are independent random variables obeying the standard
Gaussian distribution. Then the matrix-product CW can be calculated as

CWtab = 〈tanh(Ua + ha)Ub〉
= 〈tanh(Ua + ha)(Ub − 〈Ub〉)〉 + 〈tanh(Ua + ha)〉〈Ub〉
=

∫
DxDyDz tanh(

√
�aa − �abx + √

�abz + 〈Ua〉 + ha)

× (
√

�bb − �ab y + √
�abz) + m̂a 〈Ub〉

= √
�ab

∫
DxDz tanh(

√
�aa − �abx + √

�abz + G̃a)z +
〈
∑

i

σi wib

〉
m̂a

= �ab

∫
DxDz(1 − tanh2(

√
�aa − �abx + √

�abz + G̃a)) +
∑

i

miwibm̂a,

(10.24)
where Dx ≡ e−x2/2/

√
2πdx , Dy ≡ e−y2/2/

√
2πdy, Dz ≡ e−z2/2/

√
2πdz, and the

integral identity
∫
Dz tanh(z)z = ∫

Dz tanh′(z) has been applied. Note that√
�aa − �abx + √

�abz obeys a Gaussian distribution N(0,�aa). The equation
can be re-parameterized in a simpler form

[CW]ab = �ab

∫
Dt (1 − tanh2(

√
�aat + G̃a)) +

∑

i

miwibm̂a, (10.25)

where Dt ≡ e−t2/2/
√
2πdt . We can then rewrite the above equation to a matrix

form for convenience. Here, we define a diagonal matrix A with diagonal elements
Aaa = ∫

Dx(1 − tanh2(
√

�aax + G̃a)), m = (m1,m2, . . . ,mN ) that is a matrix of
dimension 1 × N , and m̂ = (m̂1, m̂2, . . . , m̂M) that is a matrix of dimension 1 × M .
The matrix form of Eq. (10.25) is given by

CW = AWTĈW + m̂TmW. (10.26)

From the above equation, we can immediately obtain

C = AWTĈ + m̂Tm. (10.27)

Each element of C can thus be read off

Cai = Aaa

∑

j

w jaĈ j i + m̂ami . (10.28)
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Considering the week correlation assumption, we apply the diagonal approxima-
tion that

∑
j w jaĈi j 	 wiaĈii = wia(1 − m2

i ). In sum, the model terms can now be
obtained as follows:

mi = tanh

(
φi +

∑

b

ub→i

)
,

m̂a =
∫

Dx tanh

(√
�̃2

ax + G̃a

)
,

Cai = Aaawia(1 − m2
i ) + m̂ami ,

Aaa =
∫

Dx(1 − tanh2(
√

�̃2
ax + G̃a)),

(10.29)

where G̃a = ∑
i∈∂a wiami + ha , and �̃2

a 	 ∑
j∈∂a w

2
ja

(
1 − m2

j

)
.

To evaluate the equilibrium properties of a random RBM model, BA requires
O(nMN ) time complexity to compute the thermal average, where n is the number of
iteration steps before convergence and usually less then 100 (not around the transition
point), while the CD-k algorithm requires O(kT MN ) [4], where T is the number of
data samples, and k is the length of the Gibbs sampling chain.

10.5 Stability Analysis

Bethe approximation requires that variance of weights and hidden-node density of
the network, α = M/N , should be small enough to ensure the visible nodes around
cavity function nodes are statistically independent. With increasing weight-strength
and hidden-node density, i.e., g and α become larger, the Bethe approximation will
be not self-consistent. It is thus necessary to perform the stability analysis to draw
out the boundary within which the approximation works.

Considering a weak perturbation in the message from node i to node a as δmi→a ,
we can write the actual passing message as mi→a + δmi→a . Following the informa-
tion flow in Fig. 10.5, we can write the recursive equation for the perturbation as
follows [4]:

δmi→a =
∑

b∈∂i\a; j∈∂b\i

∂mi→a

∂m j→b
δm j→b . (10.30)

To remove the sign dependence of the perturbation, we define the magnitude as
the squared perturbation as
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→ +
→

Fig. 10.5 Propagation of message-perturbations through the factor graph of a RBM

δ2mi→a
=

⎛

⎝
∑

b∈∂i\a; j∈∂b\i

∂mi→a

∂m j→b
δm j→b

⎞

⎠
2

	
∑

b∈∂i\a

∑

j∈∂b\i
(
∂mi→a

∂m j→b
)2(δm j→b)

2,

(10.31)

where we ignore the correlation for different δm j→b . Here, we use Vi→a = δ2mi→a
to

denote the strength. Using Eqs. (10.15), (10.31) can be simplified as

Vi→a =
(
1 − m2

i→a

)2

4

∑

b∈∂i\a
Pb→i × [tanh (�b→i ) − tanh (�b→i − 2wbi )]

2 ,

(10.32)
where �b→i ≡ hb + Gb→i + wib, and Pb→i = ∑

j∈∂b\i w
2
jbV j→b. The total vari-

ance is defined by S(t) = ∑
(i,a) Vi→a(t), where t denotes the iteration step of

Eq. (10.32)). To monitor the stability, we define λ = S(t c + 1)/S(t c), where t c

denotes the time step when the iteration converges or reaches a prescribed maxi-
mal iteration number. If λ > 1, the total variance will increase, thereby causing the
instability of themessage passing equation.Whenwe perform theBAapproximation,
we should thus choose the suitable values of g and α to ensure λ ≤ 1. As Fig. 10.6
shows, the Bethe approximation becomes instable around g = 2.1 with N = 1000,
α = 0.5 and v = 0.05.
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Fig. 10.6 Stability analysis of random RBMs. The error bar is the standard deviation over 20
random realizations of the model. a Stability parameter λ versus g with N = 1000, v = 0.05 and
α = 0.5. λ increases with g. When g = 2.1, λ is near to the critical point (λ = 1). Some instances
are unstable, and the others are stable as (c) shows. b λ versus α with N = 1000, v = 0.05 and
g = 1. λ increases with α. c Two instances of instability (dashed line) and stability (solid line) with
g = 2.1, N = 1000, α = 0.5 and v = 0.05

10.6 Variational Mean-Field Theory for Training Binary
RBMs

In a restricted Boltzmann machine with continuous weights, maximizing the log-
likelihood through computing gradient ascent can be applied in training process.
However, in the binary RBM, the method fails in that the differentiation with respect
to the binary weights is ill-defined. Here, we introduce a variational principle that
maximizes the lower bound to the data log-likelihood, which results in a new algo-
rithm combining message passing with gradient ascents [5].
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10.6.1 RBMs with Binary Weights

Here, we consider a RBM with N visible nodes and P hidden nodes. The provided
dataset consists of M configurations, {σ 1, σ 2, . . . , σ M}. Each configuration consists
of a set of binary spin σ = {σi = ±1}Ni=1. The synaptic weights are denoted as ξ ,
where ξ

μ

i = ±1 denoting the synapse between visible node i and hidden nodeμ. The
energy of such a RBM is thus given by E(σ , h) = ∑

i,μ σiξ
μ

i hμ, where hμ = ±1 is
the state of hidden nodeμ. The Boltzmann distribution of visible nodes is then given
by

P(σ ) = 1

Z(ξ)

∏

μ

cosh
(
βXμ

)
, (10.33)

where we denote a short-hand notation Xμ ≡ 1√
N

ξμ · σ , ξμ is the vector of weights
connecting to the μth hidden node, which is also called the receptive field of that
hidden node, and the partition function reads Z(ξ) = ∑

σ

∏
μ cosh

(
βXμ

)
. The scal-

ing factor 1√
N
is added to Xμ to ensure that it is of the order O(1). β is the inverse

temperature tuning the noise level of the input data [6].
In this model, we consider a weakly correlated data set which can be generated

by sampling the planted model with a long Monte Carlo interval. This is also called
the i.i.d data sample assumption widely used in deep learning community. Thus, the
probability of a weakly correlated data set {σ a}Ma=1 is modeled by

P
({

σ a
}M
a=1 |ξ

)
=

M∏

a=1

P
(
σ a|ξ) =

M∏

a=1

1

Z(ξ)

∏

μ

cosh
(
βXa

μ

)
, (10.34)

where Xa
μ ≡ 1√

N
ξμ · σ a . According to the Bayes’ rule, the posterior probability of

synaptic weights given the raw data is

P
(
ξ | {σ a}M

a=1

)
= P

({σ a}Ma=1 |ξ) P(ξ)

P
({σ a}Ma=1

)

=
∏

a P (σ a|ξ) P(ξ)∑
ξ

∏
a P (σ a|ξ) P(ξ)

= 1

�
exp

(
−M ln Z(ξ) +

∑

a,μ

ln cosh
(
βXa

μ

)
)

,

(10.35)

where the partition function of the posterior probability is given by

� =
∑

ξ

exp

(
−M ln Z(ξ) +

∑

a,μ

ln cosh
(
βXa

μ

)
)

, (10.36)
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and P(ξ) is assumed to be uniformly distributed, or no prior knowledge is assumed.
Here,β is a hyper-parameter during the training process. The nested partition function
Z(ξ) is intractable, let alone the posterior partition function �. Computation of the
nested partition function � with one or two hidden nodes will be introduced in next
chapters. In the case of P ≥ 3, analysis and calculation of � become extremely
challenging. In the following, a training algorithm based on the variational principle
will be introduced and moreover is applicable for any P .

10.6.2 Variational Principle

Instead of analyzing the posterior, a variational principle tries to find an approxi-
mate distribution close to the exact learning posterior [7]. We define a variational
distribution as qλ(ξ) and the Kullback–Leibler(KL) divergence between qλ(ξ) and
P
(
ξ | {σ a}Ma=1

)
is used to measure how accurate the variational distribution is

KL (qλ(ξ)‖P(ξ |D)) = Eq ln

(
qλ(ξ)

P(ξ |D)

)
= Eq ln qλ(ξ) − Eq ln P(ξ |D)

= Eq ln qλ(ξ) − Eq ln P(ξ) − Eq ln P(D|ξ) + ln P(D)

= KL (qλ(ξ)‖P(ξ)) − Eq ln P(D|ξ) + ln P(D)

= −LB (qλ) + ln P(D),

(10.37)
where D denotes {σ a}Ma=1 for a short-hand notation, Eq denotes the average over
distribution q, and P(ξ |D) = P(D|ξ)P(ξ)

P(D)
. As the KL divergence is nonnegative, the

lower bound to the data log-likelihood P(D) is given as follows:

LB (qλ) = Eq ln P(D|ξ) − KL (qλ(ξ)‖P(ξ)) . (10.38)

The learning process minimizing KL (qλ(ξ)‖P(ξ |D)) thus amounts to maximizing
LB (qλ). To maximize the lower bound, the first term of expected log-likelihood
should be increased, requiring qλ(ξ) to explain the data. The second term is a regu-
larization term pushing qλ(ξ) to approach the prior.

To maximize the LB, we first parameterize qλ(ξ) and P(ξ). We assume that the
synapses are independent in the prior

P(ξ) =
∏

i,μ

[
1 + miμ

2
δξ

μ

i ,+1 + 1 − miμ

2
δξ

μ

i ,−1

]
=

∏

i,μ

1 + ξ
μ

i miμ

2
, (10.39)

where miμ corresponds to the mean of ξ
μ

i , and δx,y denotes the Kronecker delta
function. Similarly, the variational distribution is assumed to have the same form as
prior yet with different parameters λ,
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qλ(ξ) =
∏

i,μ

[
1 + λiμ

2
δξ

μ

i ,+1 + 1 − λiμ

2
δξ

μ

i ,−1

]
=

∏

i,μ

1 + ξ
μ

i λiμ

2
. (10.40)

Under these two assumed expressions, the KL divergence between P(ξ) and qλ can
be calculated analytically. By substituting the explicit form of P(D|ξ) into the LB,
we obtain

LB (qλ) = −KL (qλ(ξ)‖P(ξ)) + Eq

[
∑

a,μ

ln cosh
(
βXa

μ

) − M ln Z(ξ)

]
. (10.41)

Notice that Xa
μ ≡ 1√

N
ξμ · σ a . According to the central limit theorem (CLT), Xa

μ and
Xμ obey a Gaussian distribution with the following mean and variance:

Gμ = 〈Xμ〉q = 1√
N

∑
i∈∂μ λiμσi ,

�2
μ = 〈(Xμ)2〉q − (〈Xμ〉q)2 = 1

N

∑
i∈∂μ

(
1 − λ2

iμ

)
,

Ga
μ = 〈Xa

μ〉q = 1√
N

∑
i∈∂μ λiμσ a

i ,

�2
μ = 〈(Xa

μ)2〉q − (〈Xa
μ〉q)2 = 1

N

∑
i∈∂μ

(
1 − λ2

iμ

)
.

(10.42)

Then the lower bound can be parameterized as

LB (qλ) = −KL (qλ(ξ)‖P(ξ)) +
∑

a,μ

∫
Dz ln cosh

(
βGa

μ + β�μzμ

)

− M
∫

Dz ln
∑

σ

∏

μ

cosh
(
βGμ + β�μzμ

)
,

(10.43)

where Dz = ∏
a,μ

1√
2π
e− (zμ)2

2 dzμ. To train a binary RBM, gradients of the lower
bound w.r.t the variational parameters must be computed. Next, we shall show the
calculation of the lower bound and its gradients.

10.6.2.1 Calculation of the Lower Bound

To compute the integral in Eq. (10.43), the Monte Carlo method can be applied.
Therefore,

LB (qλ) = −KL (qλ(ξ)‖P(ξ)) + 1

B1

∑

a,μ,s

ln cosh
(
βGa

μ + β�μz
s
μ

)

− M

B2

∑

s

ln
∑

σ

∏

μ

cosh
(
βGμ + β�μz

s
μ

)
,

(10.44)



10.6 Variational Mean-Field Theory for Training Binary RBMs 127

Fig. 10.7 Calculation of the expected log-partition-function. The expected log-partition function
over qλ(ξ

μ
i ) is equivalent to the average of log-partition function over a dual RBM ensemble, whose

synapses are specified by 1√
N

λ, and hidden biases are specified by �μzsμ

where zsμ is the sth standard Gaussian random number for the Monte Carlo integral,
B1 and B2 is are the number of Monte Carlo samplers. In Eq. (10.44), the first two
terms can be computed easily. The KL divergence can be directly computed under
the parameterized form of qλ(ξ) and P(ξ)

−KL (qλ(ξ)‖P(ξ)) =
∑

ξ

qλ(ξ) ln

⎛

⎝
∏

i,μ

1 + ξ
μ
i λiμ

1 + ξ
μ
i miμ

⎞

⎠ =
∑

ξ

qλ(ξ)
∑

i,μ

ln

(
1 + ξ

μ
i λiμ

1 + ξ
μ
i miμ

)

=
∑

i,μ

∑

ξ
μ
i =±1

qλ(ξ
μ
i ) ln

(
1 + ξ

μ
i λiμ

1 + ξiμmiμ

)

=
∑

x=±1

∑

i,μ

[
S
(
1 + λiμx

2
,
1 + miμx

2

)
− S

(
1 + λiμx

2
,
1 + λiμx

2

)]
,

(10.45)
where qλ(ξ

μ

i ) = 1+ξ
μ

i λiμ

2 is the variational distribution, and the entropy function
S(z, y) ≡ z ln y.

The second term of the integral can be computed directly. However, the third term
of Eq. (10.44) is intractable. But it has the same form as the partition function of a
real-valued RBM with continuous weights, whose statistical mechanics properties
have been already analyzed in previous sections of this chapter. Then it is necessary
to consider a dual RBM ensemble, whose synapses are λ scaled by

√
N , and the bias

of the μth hidden neuron is specified by �μzsμ (see Fig. 10.7).
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For the dual RBM, the Bethe approximation can be applied to calculate ln Z . As
analyzed in the previous sections, the cavity magnetization mi→ν and cavity bias
uμ→i are

mi→ν = tanh

⎛

⎝
∑

μ∈∂i\ν
uμ→i

⎞

⎠ ,

uμ→i = tanh−1
(
tanh

(
βχμ→i + βHμ

)
tanh

(
βλiμ/

√
N
))

,

(10.46)

whereχμ→i ≡ 1√
N

∑
j∈∂μ\i λ jμm j→μ denotes themessage sent froma factor nodeμ,

Hμ = �μzsμ represents the quenched-random hidden bias. The cavity magnetization
mi→ν represents the message from i th visible node to νth hidden node, and the cavity
bias uμ→i denotes the message from μth hidden node to i th visible node. After the
BP equation converges, the Bethe log-partition function can be calculated as follows:

ln Z =
∑

i

Fi − (N − 1)
∑

μ

Fμ, (10.47a)

Fi =
∑

μ∈∂i

[
β2�2

μ→i/2 + ln cosh
(
βχμ→i + βHμ + βλiμ/

√
N
)]

+ ln

⎛

⎝1 +
∏

μ∈∂i

e−2uμ→i

⎞

⎠ ,

(10.47b)

Fμ = β2�2
μ/2 + ln cosh

(
βχμ + βHμ

)
, (10.47c)

where�2
μ→i ≡ 1

N

∑
j∈∂μ\i λ

2
jμ

(
1 − m2

j→μ

)
,�2

μ ≡ 1
N

∑
j∈∂μ λ2

jμ

(
1 − m2

j→μ

)
, and

χμ ≡ 1√
N

∑
i∈∂μ λiμmi→μ. Together with Eqs. (10.44), (10.45), (10.46), (10.47), the

lower bound can be computed to measure the impacts of the approximations on the
training.

10.6.2.2 Calculation of Gradients

We first calculate the gradients of the first term in the LB [Eq. (10.45)]:

− ∂

∂λiμ
KL (qλ(ξ)‖P(ξ)) =

∑

x=±1

x

2

(
ln

1 + xmiμ

1 + xλiμ
− 1

)
. (10.48)

If the variational distribution completely matches the prior, this termwill vanish. The
gradients of the second term of Eq. (10.43) is given by
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∂

∂λiμ

∑

a,μ

∫
Dz ln cosh

(
βGa

μ + β�μzμ
)

=
∑

a,μ

∫
Dz

(
βσ a

i√
N

tanh(βGa
μ + β�μzμ) − βλiμzμ

N�μ
tanh(βGa

μ + β�μzμ)

)

=
∑

a,μ

∫
Dz

(
βσ a

i√
N

tanh(βGa
μ + β�μzμ) − β2λiμ

N
(1 − tanh2(βGa

μ + β�μzμ))

)

= β

B1
√
N

∑

a,s
σ a
i tanh

(
βGa

μ + β�μz
s
μ

)
− β2λiμ

N B1

∑

a,s

[
1 − tanh2

(
βGa

μ + β�μz
s
μ

)]
.

(10.49)
where

∫
Dz f (z)z = ∫

Dz f ′(z) is applied.
Lastly, the gradient of the expected log-partition function is given by

∂

∂λiμ

∫
Dz ln

∑

σ

∏

μ

cosh
(
βGμ + β�μzμ

)

= β√
N B2

∑

s

〈
σi tanh

(
βGμ + β�μz

s
μ

)〉

− βλiμ

N B2

∑

s

[
zsμ
�μ

〈
tanh

(
βGμ + β�μz

s
μ

)〉]

= β√
N B2

∑

s

[
Ciμ − λiμzsμ√

N�μ

m̂μ

]
.

(10.50)

where 〈. . .〉 denotes the thermal average on the dual RBM. Ciμ and m̂μ denote the
correlation of visible and hidden nodes, and the magnetization of hidden nodes of
the dual model, respectively. We now quote the results as derived in this chapter for
estimating the equilibrium properties of the dual RBM, as shown below

mi = tanh

⎛

⎝
∑

μ∈∂i

uμ→i

⎞

⎠ ,

m̂μ =
∫

Dz tanh
(
βχ̃μ + βHμ + β�̃μz

)
,

Ciμ = m̂μmi + βλiμ√
N

(
1 − m2

i

)
Aμ,

Aμ = 1 −
∫

Dz tanh2
(
βχ̃μ + βHμ + β�̃μz

)
,

(10.51)

where Dz ≡ e−z2/2/
√
2πdz, χ̃μ ≡ 1√

N

∑
i∈∂μ λiμmi , and �̃2

μ ≡ 1
N

∑
i∈∂μ λ2

iμ(
1 − m2

i

)
.
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To sum up, the final gradients of the lower bound w.r.t the variational parameters
are given by

�iμ =
∑

x=±1

x

2

(
ln

1 + xmiμ

1 + xλiμ
− 1

)
+ β

B1
√
N

∑

a,s
σ a
i tanh

(
βGa

μ + β�μz
s
μ

)

− β2λiμ

N B1

∑

a,s

[
1 − tanh2

(
βGa

μ + β�μz
s
μ

)]
− Mβ√

N B2

∑

s

[
Ciμ − λiμz

s
μ√

N�μ

m̂μ

]
.

(10.52)
One can then train the network with the following learning rule:

λt+1
iμ = λt

iμ + η�iμ. (10.53)

ξ can be decoded as ξ = sign(λ), where sign() is the sign function. This decoding
is also called the MPM (maximizing the marginal posterior) estimator in statistical
inference [8].

10.6.3 Experiments

Wefirst carry out simulations of plantedmodels, where P hidden nodes are assumed.
Aground-truth synapses, ξ ∗ is designed, and then a data set can be generated byGibbs
sampling. A long-time-interval sampling of two consecutive visible configurations
is required to ensure the weak correlation of data samples in the synthetic dataset.

Fig. 10.8 Training process of two-bit planted RBMs. The number of visible nodes N = 100, and
the data density α = M

N = 5. The x-axis denotes the training epoch. a The absolute overlap between

decoded receptive field and ground-truth receptive field. Qμ = 1
N

∑
i ξ

μ
i ξ

μ,∗
i . q = 1

N

∑
i ξ

1,∗
i ξ

2,∗
i

is the correlation of the ground-truth synapses. The algorithm works even when the ground-truth
synapses are not independent. b KL divergence between qλ(ξ) and P(ξ), and the approximate
lower bound based on the cavity approximation. The variational distribution is pushed away from
the assumed uniform (apparently incorrect) prior. The LB increases with training epochs, indicating
the variational distribution is approaching the true posterior. The density means the corresponding
physics value per model parameter
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Fig. 10.9 Training process of three-bit planted RBMs. The number of visible nodes N = 100, and
the data density α = 5. a The absolute overlap between decoded receptive field and ground-truth
receptive field. b KL divergence between qλ(ξ) and P(ξ), and the approximate lower bound

Fig. 10.10 Average absolute overlap with different α. N = 100. The error bar is the standard
deviation over 10 trials terminated at the 100th epoch. The synapses with a correlation level q = 0.3
are relatively easier to learn with fewer examples, despite a finite-size rounding of the threshold

The overlap between ξ and ξ ∗, Qμ = 1
N

∑
i ξ

μ

i ξ
μ,∗
i is considered as the measure

of success in training (i.e., whether the ground truth can be recovered). Due to the
reverse-symmetry of the model probability, we consider the absolute value of the
overlap.

Due to the permutation symmetry-broken phenomenon, P! = P(P − 1)(P −
2) · · · 1 situations should be considered. Figure 10.8 shows the results of a train-
ing process of two-bit RBMs (P = 2). The algorithm works even when the ground
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Fig. 10.11 Training RBMs with binary synapses on MNIST. N = 784, P = 100 and M = 2000.
a KL divergence between qλ(ξ) and P(ξ). b The approximate lower bound

truth has correlations between two receptive fields. The approximate lower bound is
increasing, implying that the variational distribution gets closer to the true posterior
distribution during training. Training results on three-bit RBMs (P = 3) are also
shown in Fig. 10.9. The learning effect of two-bit RBMs with different α is summa-
rized in Fig. 10.10. Notice that the correlation reduces the necessary amount of data
for learning as will be analytically derived in Chap. 12. Moreover, the method can
be applied to structured data like MNIST, using RBMs with many hidden neurons,
displayed in Fig. 10.11.
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Chapter 11
Simplest Model of Unsupervised
Learning with Binary Synapses

Learning features hidden in unlabeled data is called unsupervised learning. Unsuper-
vised feature learning has been thought of as a fundamental learning process found in
brains of humans and non-human animals. In standard machine learning algorithms,
a large number of samples are needed to uncover hidden features. However, biolog-
ical brains only require a few samples to learn the features. It is thus important to
understand how the number of samples affects the learning process. In this chapter,
we propose a simplest unsupervised learning model to provide statistical physics
insights about inner workings of neural networks (Huang and Toyoizumi in Phys.
Rev. E 94:062310, 2016 [1]; Huang in J. Stat.Mech.: Theory Exper. 2017(5):053302,
2017 [2]).

11.1 Model Setting

Our simplest model of unsupervised feature learning is built upon the restricted
Boltzmann Machine (RBM), which has been analyzed in the previous chapter as a
statistical mechanics model where random couplings and fields are considered. As
mentioned in the previous chapter (see alsoFig. 11.1), aRBMconsists of two layers of
neurons, including a visible layer receiving the input data and a hidden layer building
an internal representation of the input.Neurons of theRBMare fully connected across
layers but with no lateral connections within each layer. The symmetric synapses
between visible and hidden neurons are considered as features that the network tries
to learn from the training examples.

It is impossible to analytically study the commonly-used gradient-descent method
in feature learning process, like the CD algorithm, due to nested complexity. In this
chapter, we simplify the problem and study feature extraction within a Bayesian
learning framework.

We first define a teacher–student setting for an analytic study. Finite samples are
generated by a simple RBM (Fig. 11.2), where only one hidden node is consid-
ered. σ and h are defined as the visible configuration and the state of hidden node,
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Fig. 11.1 Schematic illustration of a general restricted Boltzmann Machine. (σ1, σ2, . . . , σN ) is a
sequence of input data, (h1, h2, . . . , hP ) are the hidden representations and (ξ11, . . . , ξPN ) encodes
learned features

Fig. 11.2 Schematic illustration of a simple RBM with only one hidden node. (σ1, σ2, . . . , σN ) is
a sequence of input data, h is the state of the hidden node, and (ξ1, . . . , ξN ) encodes true features.
The directions of reconstruction and recognition are illustrated by two arrows

respectively. Both the components of σ and h take binary values (±1). Meanwhile,
we assume that the components of true feature vector ξ generating the data sam-
ples takes only two values, i.e., +1 or −1, with equal probabilities. For simplicity,
we consider the case of neurons without any external biases (fields). Under these
conditions, independent samples are generated according to the joint distribution

P(σ , h) ∝ e−β E(σ ,h)√
N , where E(σ , h) = −∑

i hξiσi . A rescaled factor by the model
size

√
N is considered for a statistical physics analysis. β denotes an inverse tem-

perature.
Given the true feature vector ξ , the distribution of σ can be obtained by the

marginalization of the hidden node’s state h on the joint distribution P(σ , h) as
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P(σ |ξ) =
cosh (

β√
N

ξTσ )
∑

σ cosh (
β√
N

ξTσ )
, (11.1)

where •T denotes the transpose operation, and the normalization can be obtained
exactly as

∑

σ

cosh

(
β√
N

ξTσ

)

=
∑

σ

exp
(

β√
N

ξTσ
)

+ exp
(
− β√

N
ξTσ

)

2

= 1

2

[
∏

i

∑

σi

exp

(
β√
N

ξiσi

)

+
∏

i

∑

σi

exp

(

− β√
N

ξiσi

)]

=
[

2 cosh
β√
N

]N

.

(11.2)
Independent samples of the model can be generated by Gibbs sampling through the
above conditional probability [Eq. (11.1)].

The feature vector ξ can also be learned through Bayesian learning framework,
givenM independent samples {σ a}Ma=1.Hence, the posterior distribution of the feature
vector can be obtained by the Bayesian rule as

P(ξ |{σ a}) = P(ξ , {σ a})
P({σ a})

= P ({σ a}|ξ) × P (ξ)
∑

ξ P ({σ a}|ξ) × P (ξ)

= 1

Z

∏

a

cosh

(
β√
N

ξTσ a

)

,

(11.3)

where Z is the partition function of this learning model, and a goes from a = 1 to M .
For simplicity, we consider the prior probability for the feature vector as a uniform
one. The inverse temperature β tunes the noise level of the provided data. From
Eq. (11.3), a large β implies that the feature in the data is strong and can be revealed
by a few samples, while a small β requires a large number of samples. In the process
of inferring the feature vector, each sample serves as a constraint, which makes the
model non-trivial. The parameter α is defined as the data density as α = M

N . In the
following sections, we omit the conditional dependence of P(ξ |{σ a}) on {σ a}; and
the dependence is clear.

11.2 Derivation of sMP and AMP Equations

In the framework of the Bayesian learning, the main purpose is to maximize the
posterior distribution P(ξ |{σ a}), in order to to get the correct inference on the true
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feature vector ξ in a probabilistic way, with the form as ξ̂i = argmaxξi Pi (ξi ). In order
tomeasure the efficiency of the inference quantitatively,wedefine an overlap between
the inferred feature vector and the true feature vector as q = 〈 1

N

∑
i ξ

true
i 〈ξi 〉〉. The

inner average is a thermal average, while the outer average is taken over many
different true feature vectors (also called quenched-disorder average). If q = 0, the
examples for learning do not give any useful information about the true feature
vectors. On the other hand, q = 1 implies that the feature vectors hidden in the
examples are perfectly inferred. Because of the interactions among an extensive
number of data samples, how to calculate Pi (ξi ) is highly non-trivial. In this section,
we shall achieve this goal by the message passing or cavity approximation.

First, we make a weak correlation assumption (also named Bethe approximation)
in the factor graph. By defining a cavity probability distribution Pi→a(ξi ) denoting
the probability distribution of ξi in the absence of the sample constraint a, we can
arrive at the following belief propagation equations:

Pi→a(ξi ) = 1

Zi→a

∏

b∈∂i\a
μb→i (ξi ), (11.4a)

μb→i (ξi ) =
∑

{ξ j | j∈∂b\i}
cosh

( β√
N

ξTσ b
) ∏

j∈∂b\i
Pj→b(ξi ), (11.4b)

where ∂i\a denotes the constraints connecting to i except the constraint a. The
auxiliary variable μb→i (ξi ) indicates the contribution from the constraint b to the
node i , and can be understood in physics as an average of the Boltzmann factor
over the joint distribution of {ξ j | j ∈ ∂b\i}. In the large N limit, we can apply the
central limit theorem, and calculate the auxiliary variable μb→i (ξi ) with a Gaussian
integral. More precisely, we define Gb→i = 1√

N

∑
j∈∂b\i σ

b
j m j→b as the average of

1√
N

∑
j∈∂b\i ξ jσ

b
j . Under this assumption, we can obtain the simplified message

passing equation (sMP) as

mi→a = tanh
( ∑

b∈∂i\a
ub→i

)
, (11.5a)

ub→i = tanh−1
(
tanh (βGb→i ) tanh

(
βσ b

i√
N

))
, (11.5b)

where mi→a = ∑
ξi

ξi Pi→a(ξi ) denotes the cavity magnetization interpreted as the
message passing from feature i to data constraint a, and ub→i can be interpreted as the
massage passing fromdata constraint a to feature i . If theBethe approximation is self-
consistent, the sMPwould converge to a stationary point {mi→a, ua→i } after a certain
number of iterations. By calculating the marginal probability as Pi (ξi ) = 1+mi ξi

2 ,
where mi = tanh (

∑
b∈∂i ub→i ), we may finally extract useful information about the

true feature vector from the given data. The sMPequation [Eq. (11.5)] therefore offers
a practical way to compute themarginal probability distribution Pi (ξi ). Nevertheless,
this method is still computationally expensive with the time complexity and memory
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of the orderO(MN ), whichmotivates the derivation of approximatemessage passing
(AMP) equations [3, 4] in the remaining part of this section.

In the large-N limit, a Taylor expansion of Eq. (11.5b) w.r.t βσ b
i /

√
N can be

carried out. We use the fact that tanh x ≈ x and tanh−1(x) ≈ x when x is close to
zero, and obtain

ub→i ≈ βσ b
i /

√
N tanh (βGb→i ) . (11.6)

In addition, mi→a can be rewritten as

mi→a = tanh
(
tanh−1 (mi ) − ua→i

)
, (11.7)

Notice again that tanh(x + ε) ≈ tanh x + tanh′(x)ε = tanh x + (1 − tanh2 x)ε,
where ε is a small number. Applying this expansion together with Eq. (11.6) to
Eq. (11.7), we can obtain

mi→a 	 mi − (
1 − m2

i

) βσ a
i√
N

tanh βGa→i . (11.8)

In addition, Gb = 1√
N

∑
j∈∂b σ b

j m j→b can be rewritten as

Gb→i = Gb − 1√
N

σ b
i mi→b. (11.9)

Our goal is now to eliminate all the subscripts—a → i and i → a, thereby reducing
the total computation cost through saving the computer memory. In other words, we
need to find a set of equations involving only the site indexes, i.e., Ga and mi . By
definition

Ga = 1√
N

∑

i∈∂a

σ a
i mi→a . (11.10)

Applying Eq. (11.8) to Eq. (11.10), we can get

Ga = 1√
N

∑

i∈∂a

(σ a
i mi ) − 1

N

∑

i∈∂a

β(1 − m2
i ) tanh (βGb→i ), (11.11)

where we have used that (σ a
i )2 = 1.

Because Ga→i 	 Ga , Eq. (11.11) can be simplified as follows:

Ga = 1√
N

∑

i∈∂a

σ a
i mi − β(1 − Q) tanh βGa, (11.12)

where Q ≡ 1
N

∑
i m

2
i . We then define the local field Hi = ∑

b∈∂i
σ b
i√
N
tanh βGb→i

where Gb→i is given in Eq. (11.9). Then we do a Taylor expansion w.r.t σ b
i√
N
mi→b

and approximate mi→b by mi . Finally, a closed-form of Hi and mi is obtained as
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Hi 	
∑

b∈∂i

σ b
i√
N

tanh βGb − βmi

N

∑

b∈∂i

(
1 − tanh2 βGb

)
, (11.13)

mi = tanh (βHi ) 	 tanh

(
∑

b∈∂i

βσ b
i√
N

tanh βGb − β2mi

N

∑

b∈∂i

(
1 − tanh2 βGb

)
)

.

(11.14)
To sumup, theAMP equation for the unsupervised learning is given by an iterative

form

Ga = 1√
N

∑

i∈∂a

σ a
i mi − β(1 − Q) tanh βGa, (11.15a)

mi = tanh

(
∑

b∈∂i

βσ b
i√
N

tanh βGb − β2mi

N

∑

b∈∂i

(
1 − tanh2 βGb

)
)

. (11.15b)

The correct iteration order to implement the AMP equation follows the order of
the above theoretical derivation, as summarized by

Gt−1
a = 1√

N

∑

i∈∂a

σ a
i m

t−1
i − β

(
1 − Qt−1

)
tanh βGt−2

a , (11.16a)

mt
i 	 tanh

(
∑

b∈∂i

βσ b
i√
N

tanh βGt−1
b − β2mt−1

i

N

∑

b∈∂i

(
1 − tanh2 βGt−1

b

)
)

,

(11.16b)

where t denotes the update temporal order. Another remarkable feature of the AMP
equation is that the essential physics is closely related to the TAP equation in mean-
field models, with the extra advantage of requiring a much lower memory demand
compared with sMP. The AMP equation is also helpful for a theoretical analysis of
the typical properties of the model [3].

11.3 Replica Computation

The basic idea of replica computation is to compute the disorder average of an integer
power of Z , insteadof the disorder averageof ln Z . Therefore, the free energy function
can be obtained as

− β f = lim
N→∞

〈ln Z〉
N

= lim
n→0,N→∞

ln〈Zn〉
nN

, (11.17)

where N represents the number of neurons in the visible layer.
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11.3.1 Explicit form of 〈Zn〉

Z is the partition function of the learning posterior P(ξ | {σ a}), which can be written
as

Z =
∑

ξ

∏

a

cosh

(
β√
N

ξTσ a

)

. (11.18)

Zn is actually the product of the partition functions of different replicated systems

Zn =
∑

{ξ γ }

∏

a,γ

cosh

(
β√
N

(ξ γ )Tσ a

)

. (11.19)

Let us define 〈·〉 as the disorder average about the true feature vector ξ true, or simply
ξ ∗, as well as the generated data samples given the true feature vector. Therefore, we
can obtain

〈
Zn

〉 = 1

2N
∑

{σ a},ξ∗
P({σ a} | ξ ∗)

∑

{ξ γ }

∏

a,γ

cosh

(
β√
N

(ξ γ )Tσ a

)

, (11.20)

where the joint distribution P({σ a}, ξ ∗) is used for the disorder average. Because we
have M independent samples {σ a}Ma=1,

P({σ a} | ξ ∗) =
∏

a

P(σ a | ξ ∗) =
∏

a

cosh( β√
N

(ξ ∗)Tσ a)
∑

σ cosh(
β√
N

(ξ ∗)Tσ a)

=
∏

a

cosh( β√
N

(ξ ∗)Tσ a)

(2 cosh β√
N

)N

	 1

2NM

∏

a

e− β2

2 cosh

(

β
(ξ ∗)Tσ a

√
N

)

,

(11.21)

where we have used ln cosh(x) 	 x2

2 when x is a small quantity. Substituting
Eq. (11.21) to Eq. (11.20), we can obtain the form of 〈Zn〉 as follows:

〈Zn〉 = 1

2N
1

2NM

∑

{σ a},ξ∗

∏

a

e− β2

2 cosh

(
β√
N

(ξ ∗)Tσ a

)∑

{ξ γ }

∏

a,γ

cosh

(
β√
N

(ξ γ )Tσ a

)

.

(11.22)



140 11 Simplest Model of Unsupervised Learning with Binary Synapses

11.3.2 Estimation of 〈Zn〉 Under Replica Symmetry Ansätz

To proceed, we first define ua = (ξ∗)Tσ a√
N

, and vaγ = (ξ γ )Tσ a√
N

. Both ua and vaγ are

random variables subject to the covariance structure: 〈u〉 = 0, 〈u2〉 = 1, 〈vγ 〉 = 0,
〈(vγ )2〉 = 1, 〈uvγ 〉 = qγ , 〈vγ vγ ′ 〉 = rγ γ ′

, where we have dropped off the index a
because of the independence of data samples, and we also define the overlap between
the true feature vector and the estimated one as qγ = 1

N

∑
i ξ

γ

i ξ ∗
i , and the overlap

between two estimated feature vectors as rγ γ ′ = 1
N

∑
i ξ

γ

i ξ
γ ′
i . After introducing the

definition of qγ and rγ γ ′
by delta functions, we can obtain

〈Zn〉 = 1

2N
1

2NM

∑

{σ a},ξ∗,{ξ γ }

∫
dqγ dq̂γ

2π
e−i

∑
γ q̂γ (qγ − 1

N

∑
i ξ

γ

i ξ∗
i )

×
∫

drγ γ ′
dr̂γ γ ′

2π
e−i

∑
γ<γ

′ r̂γ γ ′
(rγ γ ′− 1

N

∑
i ξ

γ

i ξ
γ ′
i )

×
∏

a

e− β2

2 cosh

(
β√
N

(ξ ∗)Tσ a

)∏

a,γ

cosh

(
β√
N

(ξ γ )Tσ a

)

.

(11.23)

Under the replica symmetry assumption (similar to that used in the analysis of Hop-
field model), qγ = q and rγ γ ′ = r , we have

− i
∑

γ

q̂γ qγ = −inqq̂, (11.24)

− i
∑

γ<γ ′
r̂γ γ ′

rγ γ ′ = −i
n(n − 1)

2
rr̂ . (11.25)

For the sake of a concise physics representation, we define the entropy term GS

and energy term GE . We first derive the entropy term.
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(GS)
N =

∑

ξ∗,{ξ γ }
eq̂

∑
γ

∑
i ξ

γ

i ξ∗
i +∑

γ<γ ′
∑

i r̂ξ
γ

i ξ
γ ′
i

=
∑

ξ∗,{ξ γ }
eq̂

∑
γ

∑
i ξ

γ

i ξ∗
i +∑

i
r̂
2 (

∑
γ,γ ′ ξ

γ

i ξ
γ ′
i −n)

=
∑

ξ∗,{ξ γ }
eq̂

∑
γ

∑
i ξ

γ

i ξ∗
i +∑

i [ r̂2 (
∑

γ ξ
γ

i )2− r̂
2 n]

=
∑

ξ∗,{ξ γ }

∏

i

eq̂
∑

γ ξ
γ

i ξ∗
i + r̂

2 (
∑

γ ξ
γ

i )2− r̂
2 n

=
∏

i

∑

ξ∗,{ξγ }
eq̂

∑
γ ξγ ξ∗− r̂

2 n
∫

Dze
√
r̂
∑

γ ξγ z

=
∏

i

∫

Dze− r̂
2 n

∑

ξ∗,{ξγ }

∏

γ

eq̂ξγ ξ∗+√
r̂ξγ z

=
∏

i

∫

Dze− r̂
2 n

∑

ξ∗

∏

γ

2 cosh(q̂ξ ∗ +
√
r̂ z)

=
∏

i

∫

Dze− r̂
2 n

∑

ξ∗
(2 cosh(q̂ξ ∗ +

√
r̂ z))n

=
[∫

Dze− r̂
2 n2(2 cosh(q̂ +

√
r̂ z))n

]N

=2N
[∫

Dze− r̂
2 n(2 cosh(q̂ +

√
r̂ z))n

]N

,

(11.26)

where Dz ≡ −ez
2/2 dz√
2π

, and the prefactor 2N cancels with the 1
2N term in Eq. (11.23).

Note that in Eq. (11.26), we remove the dependence on the site index i after the order
exchange of the summation and product. We also apply the Hubbard–Stratonovich
transformation to derive the fifth equality. We finally arrive at

GS =
∫

Dze− r̂
2 n(2 cosh(q̂ +

√
r̂ z))n. (11.27)

To compute the energy term GM
E , we should first parametrize u and v with

mutually-independent standard Gaussian random variables (t, xγ , y) as follows:

u = t, (11.28)

vγ = qt + √
1 − r xγ +

√
r − q2y. (11.29)

It is easy to check that the above parameterization gives the same covariance structure
required in our problem (see the first paragraph in the this subsection). GM

E is thus
given by
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GM
E =

〈∏

a
e−

β2
2 cosh(βu)

∏

a,γ

cosh(βvγ )

〉

=
∏

a

[

e−
β2
2

∫

Dt
∫

Dy
∫

Dxγ cosh(βt)
∏

γ

cosh(βqt + β
√
1 − r xγ + β

√

r − q2y)

]

.

(11.30)

According to the identity
∫
Dz cosh(az + c) = e

a2

2 cosh c, we have

GM
E =

[

e− β2

2

∫

Dt
∫

Dy cosh(βt)(e
β2

2 (1−r) cosh(βqt + β
√
r − q2y))n

]M

,

(11.31)

where Dt ≡ −et
2/2 dt√
2π

, and Dy ≡ −ey
2/2 dy√
2π

. We obtain the energy term GE as

GE = e− β2

2

∫

Dt
∫

Dy cosh(βt)(e
β2

2 (1−r) cosh(βqt + β
√
r − q2y))n. (11.32)

Taken together, we can estimate the disorder-averaged integer power 〈Zn〉 as

〈Zn〉 =
∫

dqdq̂

2π i/N

∫
drdr̂

2π i/N
× exp

[

−Nnqq̂ − Nrr̂
n(n − 1)

2
− Nn

r̂

2

+ N ln
∫

Dz(2 cosh(q̂ +
√
r̂ z))n

]

× exp

[

αN ln
{
eβ2(1−r)n/2

× e− β2

2

∫

Dt
∫

Dy cosh(βt)(cosh(βqt + β
√
r − q2y))n

}]

.

(11.33)

where α = M/N , and i is absorbed into q̂ . Using the saddle-point method (in the
large-N limit), the disorder average 〈Zn〉 can be approximated by the argument in
the exponential function, or so-called action in physics.

11.3.3 Derivation of Free Energy and Saddle-Point
Equations

Under the saddle-point approximation in the large N limit, the free energy function
is given below

− β fRS = lim
n→0,N→∞

ln〈Zn〉
nN

= lim
n→0

[

−qq̂ − rr̂
n − 1

2
+ lnGS

n
+ α

lnGE

n

]

,

(11.34)
where
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GS =
∫

Dze− r̂
2 n(2 cosh(q̂ +

√
r̂ z))n, (11.35)

GE = e− β2

2

∫

Dt
∫

Dy cosh(βt)(e
β2

2 (1−r) cosh(βqt + β
√
r − q2y))n . (11.36)

To proceed, we have to perform two limits: limn→∞ lnGS
n and limn→∞ lnGE

n . First

lim
n→0

lnGS

n
= lim

n→0

− r̂
2n + ln

∫
Dz(2 cosh(q̂ + √

r̂ z))n

n

= − r̂

2
+

∫

Dz ln(2 cosh(q̂ +
√
r̂ z)),

(11.37)

and second,

lim
n→0

lnGE

n
= lim

n→0

β2 1−r
2 n + ln

[

e− β2

2
∫
Dt

∫
Dy cosh(βt)(cosh(βqt + β

√
r − q2y))n

]

n

= β2 1 − r

2
+

∫
Dt

∫
Dy cosh(βt) ln (cosh β(qt + √

r − q2y))
∫
Dt

∫
Dy cosh(βt)

= β2 1 − r

2
+ e− β2

2

∫

Dt
∫

Dy cosh(βt) ln (cosh β(qt +
√

r − q2y)).

(11.38)
Finally, we obtain the following free energy function:

−β fRS = − qq̂ + r̂(r − 1)

2
+ αβ2

2
(1 − r) +

∫

Dz ln(2 cosh(q̂ +
√
r̂ z))

+ αe− β2

2

∫

Dt
∫

Dy cosh(βt) ln (cosh β(qt +
√
r − q2y)).

(11.39)
In Eq. (11.33), we use the saddle-point value to approximate the integral in the

large-N limit. Therefore, the order parameters {q, q̂, r, r̂} must be the values making
the free energy a lowest value. The saddle-point equations for the order parameters
{q, q̂, r, r̂} can be derived from the stationary condition— ∂(−β fRS)

∂q̂ = 0, ∂(−β fRS)
∂ r̂ = 0,

∂(−β fRS)
∂q = 0, and ∂(−β fRS)

∂r = 0, as are precisely given by
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∂(−β fRS)

∂q̂
= −q +

∫

Dz tanh(q̂ +
√
r̂ z), (11.40a)

∂(−β fRS)

∂ r̂
= r − 1

2
+

∫

Dz tanh(q̂ +
√
r̂ z)

z

2
√
r̂

= r − 1

2
+ 1

2
√
r̂

[∫

Dz(1 − tanh2(q̂ +
√
r̂ z))

√
r̂

]

= r

2
+ 1

2

∫

Dz(− tanh2(q̂ +
√
r̂ z)),

(11.40b)

∂(−β fRS)

∂q
= −q̂ + αe−

β2

2

∫

Dt
∫

Dy cosh(βt) tanh(βqt + β

√

r − q2y)

×
[

βt + β
y

2
√
r − q2

× (−2q)

]

= −q̂ + αe−
β2

2

∫

Dt
∫

Dy

{[

β2 sinh(βt) tanh(βqt + β

√

r − q2y)

+ cosh(βt)β(1 − tanh2(βqt + β

√

r − q2))βq

]

+ cosh(βt)

[

β
−2q

2
√
r − q2

(1 − tanh2(βqt + β

√

r − q2y))β
√

r − q2
]}

= −q̂ + αβ2e−
β2

2

∫

Dt
∫

Dy sinh(βt) tanh(βqt + β

√

r − q2y),

(11.40c)

∂(−β fRS)

∂r
= r̂

2
− αβ2

2
+ αe−

β2

2

∫

Dt
∫

Dy cosh(βt) tanh(βqt + β

√

r − q2y)

× βy
1

2
√
r − q2

= r̂

2
− αβ2

2
+ αe−

β2

2

∫

Dt
∫

Dy cosh(βt)(1 − tanh2(βqt + β

√

r − q2y))

× β
1

2
√
r − q2

× β

√

r − q2

= r̂

2
− αβ2

2
+ 1

2
αe−

β2

2 × e
β2

2 β2 − 1

2
αβ2e−

β2

2

×
∫

Dt
∫

Dy cosh(βt) tanh2(βqt + β

√

r − q2y)

= r̂

2
− 1

2
αβ2e−

β2

2

∫

Dt
∫

Dy cosh(βt) tanh2(βqt + β

√

r − q2y).

(11.40d)

Finally, the saddle-point equations are expressed as
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q =
∫

Dz tanh(q̂ +
√
r̂ z), (11.41a)

r =
∫

Dz tanh2(q̂ +
√
r̂ z), (11.41b)

q̂ = αβ2e− β2

2

∫

Dt
∫

Dy sinh(βt) tanh(βqt + β
√
r − q2y), (11.41c)

r̂ = αβ2e− β2

2

∫

Dt
∫

Dy cosh(βt) tanh2(βqt + β
√
r − q2y). (11.41d)

11.4 Phase Transitions

For a statistical mechanics analysis of the system in the thermodynamic limit, we
first define the cavity field

Hi→a = 1√
N

∑

b∈∂i\a
σ b
i tanh βGb→i , (11.42)

where Gb→i has the form as

Gb→i = 1√
N

∑

j∈∂b\i
σ b
j m j→b. (11.43)

Under the replica symmetric assumption, Hi→a follows a Gaussian distribution with
mean zero and variance α Q̂ in the large-N limit, which can be described as follows:

〈Hi→a〉 = 0, (11.44a)

〈(Hi→a)
2〉 = M

N
〈tanh2βGb→i 〉 = α Q̂, (11.44b)

where Q̂ ≡ 〈tanh2βGb→i 〉, and M
N denotes the data density. Note that the average

refers to the disorder average. The Gaussian assumption can be checked with a
comparison with numerical simulations. As for Gb→i , we can also obtain a similar
structure as follows:

〈Gb→i 〉 = 0, (11.45a)

〈(Gb→i )
2〉 = 1

N

∑

j

m2
j→b = Q. (11.45b)

Q and Q̂ can thus be written in a compact form
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Q̂ =
∫

Dztanh2β
√
Qz, (11.46a)

Q =
∫

Dztanh2(β
√

α Q̂z), (11.46b)

where Dz = dze−z2/2√
2π

. It is easy to check that Q = 0 is a solution of Eq. (11.46). Q = 0
implies that m j→b = 0, the information flow characterized by passing messages
contains no information anyway; the whole system is thus in a disordered/symmetric
state. Next, we use a linear stability analysis method to measure on which condition
the stability of this trivial solution is not guaranteed.

When α is small, only one solution of Q = 0 exists for the above mean-field
equations. However, at some critical point αc, there appears continuously a non-
trivial solution of Q 
= 0, which signals the fixed point of sMP or AMP starts to
contain information about the underlying true feature vector. We then assume Q is
of the order of ε, a very small quantity. Notice that tanh x ≈ x when the argument x
approaches zero, and thus Q̂ ≈ β2ε. Therefore,we can expand the following equation
around Q̂ = 0.

Q =
∫

Dztanh2(β
√

α Q̂z) =
∫

Dzβ2α Q̂z2 = β2αβ2ε

∫

Dzz2. (11.47)

Using
∫
Dzz2 = 1, we arrive at a very simple form of Q.

Q = β4αε. (11.48)

Putting back the iteration step t , we then have

εt+1 = αβ4εt . (11.49)

This result shows that when αβ4 < 1, the Q = 0 solution is stable. The transition
point is thus set to αc = β−4. As shown in Fig. 11.3, a critical-slowing-down phe-
nomenon is observed, suggesting a continuous phase transition atαc , where the trivial
solution Q = 0 loses its stability.

Note that the statistical analysis of the sMP equation does not give the correct
value of Q after the transition, probably due to the invalid Gaussian field assumption
in the case of biased messages immediately after the transition. Hence, a deeper
analysis from replica computation is needed.

According to the Nishimori condition, q = r , implying that the true feature vec-
tor follows the same posterior distribution in the optimal Bayesian inference (the
algorithm can have access to the true temperature). This can also be verified through
the numerical solution of the saddle-point equations [Eq. (11.41)].
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Fig. 11.3 An illustration of critical point αc. The simulation is made based on three different
temperatures: β = 1.2, β = 1 and β = 0.9. The fixed point of Q and convergence time of sMP are
also shown. The dashed lines show convergence time measured by iteration steps

Assuming q and r are both small values close to zero, we obtain

q̂ = αβ2e− β2

2

∫

Dt
∫

Dy sinh(βt)βqt = αβ4q, (11.50a)

r̂ = αβ2e− β2

2

∫

Dt
∫

Dy cosh(βt)[βqt + β
√
r − q2y]2

= αβ2e− β2

2

∫

Dt
∫

Dy cosh(βt)[(βqt)2 + (β
√
r − q2y)2]

= αβ4(q2β2 + r),

(11.50b)

q = q̂ = αβ4q, (11.50c)

r = q̂2 + r̂ = (αβ4q)2 + αβ4q2β2 + αβ4r 	 αβ4r. (11.50d)

Note that Eqs. (11.50c) and (11.50d) imply the same critical point αc = 1
β4 for both

q and r , above which q = 0 is not a stable solution any more. This transition is
continuous, and is called spontaneous symmetry breaking transition as well, since
our model has original symmetry with respect to changing the sign of feature com-
ponents (e.g., ξ → −ξ ). In addition, this theoretical prediction coincides well with
the numerical results of sMP iterations on single instances of learning (Fig. 11.4).
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Fig. 11.4 Order parameters versus α. The theoretical predictions of replica computation are indi-
cated by lines, while the numerical simulations of q on single instances are indicated by symbols
(solid circles denote the case of β = 1.0, and solid diamonds denote the case of β = 0.8)

11.5 Measuring the Temperature of Dataset

We already know that the critical number of data samples to trigger unsupervised
learning is clearly determined by the inverse temperature β, a measure of noise level
in the raw inputs. Is it possible to infer the true temperatures used to generate the data
itself? If we can learn the temperature parameter, we can know the typical properties
of phase transitions intrinsic in the system. Here, we will apply the Bayesian rule to
infer the true temperature parameters, which is further consistent with the fact that
the data itself reflect how noisy a data sample is.

The posterior probability of β given the data {σ a}Ma=1 is given by [2]

P(β|{σ a}) =
∑

ξ

P(β, ξ |{σ a}) =
∑

ξ P({σ a}|ξ , β)P0(ξ , β)
∫
dβ

∑
ξ P({σ a}|ξ , β)P0(ξ , β)

, (11.51)

where we have used the uniform prior probability P0 for the hyper-parameters. We
then apply the property of the generative model

P({σ a}|β, ξ) =
∏

a

P(σ a|β, ξ) =
∏

a

cosh( β√
N

ξTσ a)

∑
σ cosh

(
β√
N

ξTσ a
) , (11.52)
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We can then rewrite the posterior probability as follows:

P(β|{σ a}) = 1

Z({σ a})
∑

ξ

1

Z̃ M

∏

a

cosh

(
β√
N

ξTσ a

)

, (11.53)

where Z̃ =
[
2 cosh

(
β√
N

)]N
, and Z({σ a}) = ∫

dβ
∑

ξ P({σ a}|ξ , β). We can then

write an explicit form of the posterior as follows:

P(β|{σ a}) = 1

Z({σ a})
∑

ξ

e
−MN ln

(
2 cosh β√

N

) ∏

a

cosh

(
β√
N

ξTσ a

)

, (11.54)

where in the large-N limit, we approximate the factor e−MN ln(2 cosh β√
N

) by e−M β2

2 .
With this approximation, we can get the final form

P(β|{σ a}) ∝ 1

Z({σ a})e
−M β2

2

∑

ξ

∏

a

cosh

(
β√
N

ξTσ a

)

∝ e−M β2

2 Z(β, {σ a}),
(11.55)

where Z({σ a}) does not depend on β, and Z(β, {σ a}) is the very partition function
of our original unsupervised learning model.

If we want to get the true temperature parameters of this system, we can try
to maximize the probability of β given the data {σ a}Ma=1, which is denoted by
β = argmaxβ P(β|{σ a}). Applying the method of Maximum Likelihood Estimation
(MLE), we obtain the self-consistent equation that β must satisfy

∂P(β|{σ a})
∂β

= 0, (11.56a)

∂Z(β, {σ a})
∂β

= ZMβ, (11.56b)

1

N

∂ ln Z(β, {σ a})
∂β

= M

N
β = αβ. (11.56c)

In statistic physics, Eq. (11.56c) is defined as the negative energy density (−ε).
Therefore, β = − ε

α
, which is considered as the Nishimori condition, i.e., in the

optimal Bayesian setting, the internal energy of the disorder model is analytic, like
the case in the p-spin model. When N is not very large, the equation determining
β is given by β = √

N tanh−1(− ε

α
√
N

). Under the Bethe approximation, the energy

per neuron ε can be computed by Nε = −∑
i 
εi + (N − 1)

∑
a 
εa , where 
εi

and 
εa are given, respectively, by
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εi =
∑

a∈∂i Ha→i (+1) + (∏
a∈∂i Ga→i

)∑
a∈∂i Ha→i (−1)

β + β
∏

a∈∂i Ga→i
, (11.57a)


εa = β�2
a + Ga tanh(βGa), (11.57b)

where �2
a = 1

N

∑
i∈∂a (1 − m2

i→a), and

Ha→i (ξi ) = β2�2
a→i + (βGa→i + βσ a

i ξi/
√
N ) tanh (βGa→i + βσ a

i ξi/
√
N ),

(11.58)
and Ga→i = e−2ua→i . These quantities can be easily derived from the cavity approx-
imation of the free energy function of the model.

We apply the expectation-maximization (EM) procedure [5], to implement the
update of the hyper-parameter β—β(t) = − ε(t)

α
, where t denotes the iteration step.

In this algorithm, the message updates are called E-step, and the temperature update
is called M-step. First, we start from some initial value of β0. One can iteratively
update the value of β until convergence within some precision. After one updating
of the temperature, the messages in the sMP equation are also updated. To avoid
numerical instability, the damping technique is recommended, i.e., β(t) = ηβ(t) +
(1 − η)β(t − 1), where t denotes the iteration step and η ∈ [0, 1] is a damping factor.
Results of this algorithm are shown in Fig. 11.5.

Fig. 11.5 The inference performance of the hyper-parameter β. Deviation of inferred β from the
true value decreases with the data size. In simulations, we consider 20 instances of size N = 100,
and use η = 0.02 and initial value of β0 = 0.8. Two representative trajectories of β(t) are shown
in the inset
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Chapter 12
Inherent-Symmetry Breaking in
Unsupervised Learning

In this chapter, we introduced a toy model of unsupervised learning, which exhibits
inherent reverse-spin symmetry and permutation symmetry of any two hidden neu-
rons. These symmetries can be broken by the increasing amount of data, reflecting the
nature of unsupervised learning in its simplest setting (Hou et al. in J. Phys. A: Math.
Theor. 52(41):414001, 2019 [1]; Hou and Huang in Phys. Rev. Lett. 124:248302,
2020 [2]).

12.1 Model Setting

We use the two-bit binary RBM (Fig. 12.1), which has two hidden neurons to learn
embedded features in input data samples. This is a simple model to learn the internal
representation from the raw unlabeled data, which we call unsupervised learning.
Each data sample is specified by a binary configuration σ = {σi = ±1}Ni=1, where
N is the input dimensionality. A collection of M samples is denoted as {σ a}Ma=1.
Synaptic values connecting visible and hidden neurons are characterized by ξ , where
each component takes a binary value (±1) as well. Because of two hidden neurons,
ξ = (ξ 1, ξ 2)where the superscript indicates the hidden neuron’s index, are also called
receptive fields (RFs) of the first and second hidden neurons, respectively. The joint
distribution of hidden unit and input data in this RBMmodel, given the two receptive
fields, is thus described by the Boltzmann distribution as

P(σ , h1, h2|ξ 1, ξ 2) = 1

Z(ξ 1, ξ 2)
e

β√
N

(ξ 1·σh1+ξ 2·σh2), (12.1)

where hi is the i th hidden neural activity, X = 1√
N

ξ 1 · σ and Y = 1√
N

ξ 2 · σ . Here-

after, ab denotes the inner product of two vectors a and b. The scaling factor 1√
N

ensures that the argument of the hyperbolic cosine function is of the order of unity.
β represents the inverse-temperature, and Z(ξ) is the partition function depending
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Fig. 12.1 A schematic illustration of the two-bit RBM model. N = 4 in this example (say, i, j, k
and l). (Left panel) The original model with only two hidden neurons (say, x and y). (Right panel)
The corresponding factor graph where the data node is represented by a square, and the paired-
synapses (feature vector) is indicated by a circle. In this example, M = 3 (say, a, b and c). The
circle is an augmented version of single synapse considered in the one-bit RBM [3]. The plot is
taken from Ref. [1]

on the feature ξ . σ can be arbitrary one of the M samples. The marginal distribution
of input data σ will be obtained when the two hidden neurons’ activities (±1) have
been marginalized out

P(σ ) =
∑

h1,h2

P(σ , h1, h2|ξ 1, ξ 2) = 1

Z(ξ 1, ξ 2)
cosh βX cosh βY , (12.2)

where the dependence of P(σ ) on the hidden feature ξ is omitted.
When the embedded feature is randomly generated, the inverse-temperature β

tunes the noise level of generated data samples from the feature ξ . Clearly, the data
distribution is invariant with respect to (w.r.t) the exchange of the hidden neurons,
which is called the permutation symmetry (PS), i.e., the distribution P(σ |ξ 1, ξ 2) =
P(σ |ξ 2, ξ 1). The required number of hidden neurons to produce this symmetry is at
least two. Therefore, this setting defines a minimal model to study the permutation
symmetry in unsupervised learning.

In this model, the embedded feature follows the distribution P(ξ) =
P(ξ 1)P(ξ 2|ξ 1) in which P(ξ 1) =∏N

i=1

[
1
2δ(ξ

1
i − 1) + 1

2δ(ξ
1
i + 1)

]
and

P(ξ 2|ξ 1) =
N∏

i=1

[
pdδ(ξ

2
i = −ξ 1

i ) + (1 − pd)δ(ξ
2
i = ξ 1

i )
]
, (12.3)

where pd specifies the fraction of components taking different values in the two
feature maps associated with the two hidden neurons.

First, we consider the case of no prior knowledge about ξ . Given the M data
samples, one gets the posterior probability of the embedded feature according to the
Bayes’ rule
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P(ξ |{σ a}Ma=1) =
∏

a P(σ a|ξ)∑
ξ

∏
a P(σ a|ξ)

= 1

�

∏

a

1

Z(ξ 1, ξ 2)
cosh

(
β√
N

ξ 1 · σ a

)
cosh

(
β√
N

ξ 2 · σ a

)
,

(12.4)

where � is the partition function of the minimal model. In addition, we use the
same temperature as that used to generate data. Because we do not use the true
prior

∏
i Pi (ξ

1
i , ξ 2

i |pd), the current setting does not require the value of pd, and is,
therefore, not the Bayes optimal setting which corresponds to Nishimori condition
in physics.

One challenging issue to compute the posterior probability is the nested partition
function Z(ξ 1, ξ 2). Fortunately, this partition function can be further simplified in
the large-N limit. More precisely

Z(ξ 1, ξ 2) =
∑

σ

cosh

(
β√
N

ξ 1 · σ

)
cosh

(
β√
N

ξ 2 · σ

)

= 1

2

∑

σ

[
cosh

(
β√
N

ξ 1 · σ + β√
N

ξ 2 · σ

)
+ cosh

(
β√
N

ξ 1 · σ − β√
N

ξ 2 · σ

)]

= 1

2

[
∏

i

2 cosh

(
β√
N

(ξ 1
i + ξ 2

i )

)
+
∏

i

2 cosh

(
β√
N

(ξ 1
i − ξ 2

i )

)]

= 1

2

[
∏

i

eln 2+
β2

2N (ξ 1
i +ξ 2

i )2 +
∏

i

eln 2+
β2

2N (ξ 1
i −ξ 2

i )2

]

= 1

2

[
∏

i

eln 2+
β2

N + β2

N ξ 1
i ξ 2

i +
∏

i

eln 2+
β2

N − β2

N ξ 1
i ξ 2

i

]

= 1

2

[
eN ln 2+β2+ β2

N

∑
i ξ 1

i ξ 2
i + eN ln 2+β2− β2

N

∑
i ξ 1

i ξ 2
i

]

� 2Neβ2
cosh(β2Q),

(12.5)
where we have used ln cosh(x) � x2

2 for small x to arrive at the final equality, and
defined Q ≡ 1

N

∑
i ξ

1
i ξ 2

i , which is the very overlap between the two feature maps.
Finally,wemove all the irrelevant constants into the partition function�, the posterior
probability can thus be rewritten into the following form:

P(ξ |{σ a}Ma=1) = 1

�

∏

a

1

cosh(β2Q)
cosh

(
β√
N

ξ 1 · σ a

)
cosh

(
β√
N

ξ 2 · σ a

)
,

(12.6)
which constructs the Boltzmann distribution of the minimal model.We are interested
in the case of M = αN , where α specifies the data (constraint) density.
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12.1.1 Cavity Approximation

Our goal is to compute the maximum of the posterior marginals (MPM) estimator
(ξ̂ 1

i , ξ̂ 2
i ) = argmaxξ 1

i ,ξ 2
i
Pi (ξ 1

i , ξ 2
i ). Hence, the task is to compute marginal probabili-

ties, i.e., Pi (ξ 1
i , ξ 2

i ), which is, in general, intractable due to the interaction among data
constraints (the product over a in Eq. (12.6)). However, we can represent the prob-
lem in a graphical model, where data constraints and paired-synapses are treated,
respectively, as factor (data) nodes and variable nodes. Then, the computation of
the marginal probability can be achieved by running a message passing iteration
among factor and variable nodes. We further assume that the paired-synapses on the
graphical model are weakly correlated, which is called the Bethe approximation in
physics.

We first define a cavity probability Pi→a(ξ
1
i , ξ 2

i ) with the data node a removed.
Under the weak correlation assumption, Pi→a(ξ

1
i , ξ 2

i ) obeys a self-consistent equa-
tion

Pi→a(ξ
1
i , ξ 2

i ) = 1

Zi→a

∏

b∈∂i\a
μb→i (ξ

1
i , ξ 2

i ), (12.7a)

μb→i (ξ
1
i , ξ 2

i ) =
∑

ξ\ξ 1
i ,ξ 2

i

1

cosh
(
β2Qc + β2

N ξ 1
i ξ 2

i

) cosh

(
βXb + β√

N
ξ 1
i σ b

i

)

× cosh

(
βYb + β√

N
ξ 2
i σ b

i

) ∏

j∈∂b\i
Pj→b(ξ

1
j , ξ

2
j ),

(12.7b)

where Zi→a is a normalization constant, ∂i\a denotes neighbors of the feature node
i except the data node a, ∂b\i denotes neighbors of the data node b except the
feature node i and the auxiliary quantity μb→i (ξ

1
i , ξ 2

i ) denotes the contribution from
data node b to feature node i given the value of (ξ 1

i , ξ 2
i ). Products in Eq. (12.7)

are due to the weak correlation assumption. In addition, Xb ≡ 1√
N

∑
j �=i ξ

1
j σ

b
j , Yb ≡

1√
N

∑
j �=i ξ

2
j σ

b
j , and the cavity version of Q is defined as Qc ≡ 1

N

∑
j �=i ξ

1
j ξ

2
j .

However, the above self-consistent equation is still intractable due to the sum-
mation in μb→i . Nevertheless, Xb and Yb are approximately correlated Gaussian
random variables due to the central limit theorem. As a result, the intractable sum-
mation can be replaced by an integral which is easy to work out in this model. Hence,
we just need to compute the followingmeans, variances and covariances among these
random variables

G1
b→i = 1√

N

∑

j �=i

σ b
j m

1
j→b, (12.8a)

G2
b→i = 1√

N

∑

j �=i

σ b
j m

2
j→b, (12.8b)
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	1
b→i = 1

N

∑

j �=i

(
1 − (m1

j→b)
2
)
, (12.8c)

	2
b→i = 1

N

∑

j �=i

(
1 − (m2

j→b)
2) , (12.8d)


b→i = 1

N

∑

j �=i

(
q j→b − m1

j→bm
2
j→b

)
, (12.8e)

where G and 	 denote the mean and variance of the Gaussian random variables,
respectively, and the last quantity denotes the covariance between Xb and Yb. As a
result, we can express the first and second statistics of Xb and Yb as follows:

〈Xb〉 = G1
b→i , 〈Yb〉 = G2

b→i ,

〈X2
b〉 − 〈Xb〉2 = 	1

b→i , 〈Y 2
b 〉 − 〈Yb〉2 = 	2

b→i ,

〈XbYb〉 − 〈Xb〉〈Yb〉 = 
b→i .

(12.9)

By the reparametrization trick, we express Xb and Yb by two standard Gaussian
variables x, y as

Xb = G1
b→i +

√
	1
b→i x,

Yb = G2
b→i +

√
	2
b→i (ψx +

√
1 − ψ2y),

ψ = 
b→i√
	1
b→i	

2
b→i

.

(12.10)

To compute Eq. (12.7b) under the joint Gaussian distribution P(Xb,Yb), we use
the following analytic integral:

I =
∫∫

DxDy cosh (Ax + D) cosh (Bx + Cy + E)

= 1

2
e

C2

2

[
e

1
2 (A+B)2 cosh (D + E) + e

1
2 (A−B)2 cosh (D − E)

]
.

(12.11)

The cavity distribution Pj→b(ξ
1
j , ξ

2
j ) can be parameterized as Pj→b(ξ

1
j , ξ

2
j ) =

1+m1
j→bξ

1
j +m2

j→bξ
2
j +q j→bξ

1
j ξ

2
j

4 . The cavity magnetization is thus defined as m1,2
j→b =

∑
ξ 1
j ,ξ

2
j
ξ
1,2
j Pj→b(ξ

1
j , ξ

2
j ), and the cavity correlation is defined as q j→b =

∑
ξ 1
j ,ξ

2
j
ξ 1
j ξ

2
j Pj→b(ξ

1
j , ξ

2
j ). Finally, using the above parameters of the correlatedGaus-

sian distribution, we rewrite μb→i (ξ
1
i , ξ 2

i ) as

μb→i (ξ
1
i , ξ2i ) = 1

cosh
(
β2Qb→i + β2

N ξ1i ξ2i

)
∫∫

DxDy cosh

(
β

√
	1
b→i x + βG1

b→i + β√
N

ξ1i σ b
i

)

× cosh

(
β

√
	2
b→i (ψx +

√
1 − ψ2 y) + βG2

b→i + β√
N

ξ2i σ b
i

)
,

(12.12)
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where Dx ≡ e−x2/2dx√
2π

, ψ = 
b→i√
	1
b→i	

2
b→i

, and Qb→i = 1
N

∑
j �=i q j→b (coming from

Qc) replaced by its cavity mean. The above integral representation of μb→i (ξ
1
i , ξ 2

i )

can be analytically worked out. Then, ub→i
def= lnμb→i can be expressed as follows:

ub→i (ξ
1
i , ξ2i ) = β2	2

b→i (1 − ψ2)

2
− ln

(
2 cosh

(
β2Qb→i + β2ξ1i ξ2i

N

))
+ β2

2

(√
	1
b→i

+
√

	2
b→iψ

)2

+ ln cosh

(
βG1

b→i + βG2
b→i + β√

N
σ b
i (ξ1i + ξ2i )

)

+ ln

⎡

⎣1 + e
−2β2

√
	1
b→i	

2
b→iψ

cosh
(
βG1

b→i − βG2
b→i + β√

N
σ b
i (ξ1i − ξ2i )

)

cosh
(
βG1

b→i + βG2
b→i + β√

N
σ b
i (ξ1i + ξ2i )

)

⎤

⎦ ,

(12.13)
where the integral identity in Eq. (12.11) has been used.
To close the iteration equation, we need to compute the cavity magnetization and

correlation as follows:

m1
j→a =

∏
b∈∂i\ μ++

b→i +∏b∈∂i\a μ+−
b→i −∏b∈∂i\a μ−+

b→i −∏b∈∂i\a μ−−
b→i∏

b∈∂i\a μ++
b→i +∏b∈∂i\a μ+−

b→i +∏b∈∂i\a μ−+
b→i +∏b∈∂i\a μ−−

b→i

,

(12.14a)

m2
j→a =

∏
b∈∂i\a μ++

b→i +∏b∈∂i\a μ−+
b→i −∏b∈∂i\a μ+−

b→i −∏b∈∂i\a μ−−
b→i∏

b∈∂i\a μ++
b→i +∏b∈∂i\a μ+−

b→i +∏b∈∂i\a μ−+
b→i +∏b∈∂i\a μ−−

b→i

,

(12.14b)

q j→a =
∏

b∈∂i\a μ++
b→i +∏b∈∂i\a μ−−

b→i −∏b∈∂i\a μ−+
b→i −∏b∈∂i\a μ+−

b→i∏
b∈∂i\a μ++

b→i +∏b∈∂i\a μ+−
b→i +∏b∈∂i\a μ−+

b→i +∏b∈∂i\a μ−−
b→i

,

(12.14c)

where μ
±,±
b→i ≡ μb→i (ξ

1
i = ±1, ξ 2

i = ±1). We define ub→i (ξ
1
i , ξ 2

i ) ≡
lnμb→i (ξ

1
i , ξ 2

i ) before for the purpose to recast m1
j→b, m

2
j→b, and q j→b in a

compact form

m1
i→a =

∑
ξ 1=±1,ξ 2=±1 ξ 1e

∑
b∈∂i\a ub→i (ξ

1,ξ 2)

∑
ξ 1=±1,ξ 2=±1 e

∑
b∈∂i\a ub→i (ξ 1,ξ 2)

, (12.15a)

m2
i→a =

∑
ξ 1=±1,ξ 2=±1 ξ 2e

∑
b∈∂i\a ub→i (ξ

1,ξ 2)

∑
ξ 1=±1,ξ 2=±1 e

∑
b∈∂i\a ub→i (ξ 1,ξ 2)

, (12.15b)

qi→a =
∑

ξ 1=±1,ξ 2=±1 ξ 1ξ 2e
∑

b∈∂i\a ub→i (ξ
1,ξ 2)

∑
ξ 1=±1,ξ 2=±1 e

∑
b∈∂i\a ub→i (ξ 1,ξ 2)

. (12.15c)
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m1,2
i→a can be interpreted as the message passing from feature node i to data node

a (qi→a is also similarly interpreted), while ub→i can be interpreted as the message
passing from data node b to feature node i .

Suppose the weak correlation assumption is self-consistent, starting from ran-
domly initialized messages, the learning equations will converge to a fixed point
corresponding to a thermodynamically dominant minimum of the Bethe free energy
function, which is given by −β fBethe = 1

N

∑
i 
 fi − N−1

N

∑
a 
 fa , where 
 fi =

ln Zi and 
 fa = ln Za . According to the cavity approximation, the free energy con-
tributions of variable node and data node are derived, respectively, by

Zi =
∑

ξ1i ,ξ2i

∏

b∈∂i\a
μb→i (ξ

1
i , ξ2i ),

Za =
∑

ξ1,ξ2

1

cosh β2Qa
cosh

⎛

⎝ β√
N

∑

j

ξ1j σ
a
j

⎞

⎠ cosh

⎛

⎝ β√
N

∑

j

ξ2j σ
a
j

⎞

⎠
∏

j∈∂a

Pj→a(ξ
1
j , ξ

2
j ),

(12.16)
where Qa = 1

N

∑
j∈∂a q j→a . We then denote Xa = 1√

N

∑
j ξ

1
j σ

a
j and Ya =

1√
N

∑
j ξ

2
j σ

a
j . A full (non-cavity) version of relevant quantities to parameterize the

above weighted-sums can be defined as

G1
a = 1√

N

∑

j

σ a
j m

1
j→a,

G2
a = 1√

N

∑

j

σ a
j m

1
j→a,

	1
a = 1

N

∑

j

(1 − (m1
j→a)

2),

	2
a = 1

N

∑

j

(1 − (m2
j→a)

2),


a = 1

N

∑

j

(q j→a − m1
j→am

2
j→a).

(12.17)

Thus, Xa and Ya can be parameterized by standard Gaussian variables x and y as

Xa = G1
a +

√
	1
ax,

Ya = G2
a +

√
	2
a(ψx +

√
1 − ψ2y),

ψ = 
a√
	1
a	

2
a

.

(12.18)

Hence, Za can be worked out, leading to
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 fa = β2	2
a(1 − ψ̃2)

2
− ln

(
2 cosh(β2Qa)

)+ β2

2

(√
	1
a +

√
	2
aψ̃

)2

+ ln cosh
(
βG1

a + βG2
a

)+ ln

[
1 + e−2β2
a

cosh
(
βG1

a − βG2
a

)

cosh
(
βG1

a + βG2
a

)
]

,

(12.19)

where ψ̃ = 
a√
	1
a	

2
a

. We can also get the marginal probability Pi (ξ 1
i , ξ 2

i ), which is

defined as Pi (ξ 1
i , ξ 2

i ) = 1+m1
i ξ

1
i +m2

i ξ
2
i +qi ξ 1

i ξ 2
i

4 , wherem1
i andm

2
i are the magnetizations

of ξ 1
i , and ξ 2

i , respectively. The marginal posterior probability is given by

Pi (ξ
1
i , ξ 2

i ) = 1

Zi

∏

b∈∂i

μb→i (ξ
1
i , ξ 2

i ), (12.20)

and m1
j , m

2
j , and q j are given, respectively, by

m1
j =

∑
ξ 1=±1,ξ 2=±1 ξ 1e

∑
b∈∂ j ub→ j (ξ

1,ξ 2)

∑
ξ 1=±1,ξ 2=±1 e

∑
b∈∂ j ub→ j (ξ 1,ξ 2)

, (12.21a)

m2
j =

∑
ξ 1=±1,ξ 2=±1 ξ 2e

∑
b∈∂ j ub→ j (ξ

1,ξ 2)

∑
ξ 1=±1,ξ 2=±1 e

∑
b∈∂ j ub→ j (ξ 1,ξ 2)

, (12.21b)

q j =
∑

ξ 1=±1,ξ 2=±1 ξ 1ξ 2e
∑

b∈∂ j ub→ j (ξ
1,ξ 2)

∑
ξ 1=±1,ξ 2=±1 e

∑
b∈∂ j ub→ j (ξ 1,ξ 2)

. (12.21c)

If we consider the prior information P0(ξ
1, ξ 2), the posteriori probability

P(ξ 1, ξ 2|{σ a}Ma=1) is given by

P(ξ 1, ξ 2|{σ }Ma=1) =
∏

a P(σ a|ξ 1, ξ 2)
∏N

i=1 P0(ξ
1
i , ξ 2

i )
∑

ξ 1,ξ 2
∏

a P(σ a|ξ 1, ξ 2)
∏N

i=1 P0(ξ
1
i , ξ 2

i )

= 1

�

∏

a

1

cosh (β2Q)
cosh

(
β√
N

ξ 1σ a

)
cosh

(
β√
N

ξ 2σ a

) N∏

i=1

P0(ξ
1
i , ξ 2

i ).

(12.22)
We have assumed that the prior is factorized over i . The self-consistent equations
for the cavity distribution Pi→a(ξ

1
i , ξ 2

i ) and the auxiliary quantity μb→i (ξ
1
i , ξ 2

i ) read
as follows:

Pi→a(ξ
1
i , ξ 2

i ) = 1

Zi→a
P0(ξ

1
i , ξ 2

i )
∏

b∈∂i\a
μb→i (ξ

1
i , ξ 2

i ), (12.23a)

μb→i (ξ
1
i , ξ 2

i ) =
∑

ξ 1,ξ 2\ξ 1
i ,ξ 2

i

1

cosh
(
β2Qc + β2

N ξ 1
i ξ 2

i

) cosh

(
βXb + β√

N
ξ 1
i σ b

i

)

× cosh

(
βYb + β√

N
ξ 2
i σ b

i

) ∏

j∈∂b\i
Pj→b(ξ

1
j , ξ

2
j ).

(12.23b)
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The cavitymagnetizationm1
i→a ,m

2
i→a and correlation qi→a are computed as follows:

m1
i→a =

∑
ξ 1
i ,ξ 2

i
ξ 1
i e
∑

b∈∂i\a ub→i (ξ
1
i ,ξ 2

i ) × P0(ξ 1
i , ξ 2

i )
∑

ξ 1
i ,ξ 2

i
e
∑

b∈∂i\a ub→i (ξ
1
i ,ξ 2

i ) × P0(ξ 1
i , ξ 2

i )
,

m2
i→a =

∑
ξ 1
i ,ξ 2

i
ξ 2
i e
∑

b∈∂i\a ub→i (ξ
1
i ,ξ 2

i ) × P0(ξ 1
i , ξ 2

i )
∑

ξ 1
i ,ξ 2

i
e
∑

b∈∂i\a ub→i (ξ
1
i ,ξ 2

i ) × P0(ξ 1
i , ξ 2

i )
,

qi→a =
∑

ξ 1
i ,ξ 2

i
ξ 1
i ξ 2

i e
∑

b∈∂i\a ub→i (ξ
1
i ,ξ 2

i ) × P0(ξ 1
i , ξ 2

i )
∑

ξ 1
i ,ξ 2

i
e
∑

b∈∂i\a ub→i (ξ
1
i ,ξ 2

i ) × P0(ξ 1
i , ξ 2

i )
.

(12.24)

The free energy shifts can be obtained in the form of
 fi and
 fa given, respectively,
by


 fi = ln
∑

ξ 1
i ,ξ 2

i

P0(ξ
1
i , ξ 2

i )
∏

b∈∂i

μb→i (ξ
1
i , ξ 2

i ), (12.25a)


 fa = β2	2
a(1 − ψ̃2)

2
− ln

(
2 cosh(β2Qa)

)+ β2

2

(√
	1
a +

√
	2
aψ̃

)2

+ ln cosh
(
βG1

a + βG2
a

)+ ln

[
1 + e−2β2
a

cosh
(
βG1

a − βG2
a

)

cosh
(
βG1

a + βG2
a

)
]

.

(12.25b)

The above belief propagation equations for either prior-free or prior cases provide
us the practical algorithms for the unsupervised learning problem at hand. An easy
implementation is carried out on a teacher–student setting. Note that, teacher here
does not provide labels of data, unlike the supervised learning. Instead, the teacher
setting means that the raw data is generated from a teacher (or ground truth) archi-
tecture with specified feature vectors (ξ 1, ξ 2). Then the student uses the above belief
propagation to infer which feature vectors underlie the data, given that only the
temperature is known or both the temperature and the correlation prior are known.

12.1.2 Replica Computation

As we show in the previous section, the partition function of the two-bit RBMmodel
is defined as

� =
∑

{ξ 1,ξ 2}

M∏

a=1

cosh (
β√
N

ξ 1σ a) cosh (
β√
N

ξ 2σ a)

2Neβ2 cosh (β2q)
. (12.26)

In order to have an analytical argument about the typical performance and the critical
point where the spontaneous symmetry breaking (SSB) phase transition appears, we
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have to calculate the free energy in the thermodynamic limit by the replica method.
Instead of calculating the disorder average of ln�, the replica method calculates the
disorder average of the nth moment of �, i.e., 〈�n〉, where n is the replica number,
which means copying n replicas of the original system. The disorder average 〈•〉 is
taken over all possible sampling data and the random realization of the true feature
vectors. Using the replica trick, i.e., ln x = limn→0

∂
∂n x

n , the free energy density can
be obtained as

β f = lim
n→0

lim
N→∞

〈�n〉
nN

. (12.27)

Given the two true feature vectors, the data distribution generated by these feature
vectors are

P({σ a}) =
M∏

a=1

cosh (
β√
N

ξ 1,trueσ a) cosh (
β√
N

ξ 2,trueσ a)

Z(ξ 1,true, ξ 2,true)
, (12.28)

where the nested partition function

Z(ξ 1,true, ξ 2,true) =
∑

σ

cosh
( β√

N
ξ 1,trueσ

)
cosh

( β√
N

ξ 1,trueσ
)

= 2Neβ2
cosh (β2q),

(12.29)

whereq is defined as the overlapbetween the true feature vectors:q = 1
N ξ 1,trueξ 2,true.

Next, we show how to compute 〈�n〉, which is defined as

〈�n〉 =
∑

{ξ true,σ a}

N∏

i=1

[P(ξ
1,true
i , ξ

2,true
i )]

M∏

a=1

cosh (
β√
N

ξ 1,trueσ a) cosh (
β√
N

ξ 2,trueσ a)

2Neβ2 cosh (β2q)

×
∑

{ξ 1,γ ,ξ 2,γ }

∏

a,γ

cosh (
β√
N

ξ 1,γ σ a) cosh (
β√
N

ξ 2,γ σ a)

cosh (β2Rγ )
,

(12.30)
where γ indicates the replica index, ξ true = {ξ 1,true, ξ 2,true}, and Rγ = 1

N ξ 1,γ ξ 2,γ .
To further calculate 〈�n〉, we have to introduce the order parameters as follows:

T γ

1 = 1

N
ξ 1,trueξ 1,γ , T γ

2 = 1

N
ξ 2,trueξ 2,γ , (12.31a)

τ
γ

1 = 1

N
ξ 1,trueξ 2,γ , τ

γ

2 = 1

N
ξ 2,trueξ 1,γ , (12.31b)

qγ,γ ′
1 = 1

N
ξ 1,γ ξ 1,γ ′

, qγ,γ ′
2 = 1

N
ξ 2,γ ξ 2,γ ′

, (12.31c)

Rγ = 1

N
ξ 1,γ ξ 2,γ , rγ,γ ′ = 1

N
ξ 1,γ ξ 2,γ ′

. (12.31d)
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Note that these order parameters construct a complete set to describe the problem
at hand, although the necessary number of order parameters may be reduced due
to symmetry. These order parameters capture the emergent behavior of our model.
T1 and T2 characterize the overlap between prediction and ground truth. q1 and q2
characterize the self-overlap (Edwards–Anderson order parameter in physics). τ1
and τ2 characterize the permutation-type overlap. R and r characterize the students’
guess on the correlation level of the planted receptive fields.

By using these order parameters, the disorder average 〈�n〉 can be expressed as

〈�n〉 =
∑

{σ a ,ξ true}

N∏

i=1

P(ξ
1,true
i , ξ

2,true
i )

∑

{ξ1,γ ,ξ2,γ }

∫ n∏

γ=1

dRγ δ(ξ1,γ ξ2,γ − N Rγ )

×
∫ n∏

γ=1

dT γ
1 δ(ξ1,trueξ1,γ − NT γ

1 )

∫ n∏

γ=1

dT γ
2 δ(ξ2,trueξ2,γ − NT γ

2 )

×
∫ n∏

γ=1

dτ
γ
1 δ(ξ1,trueξ2,γ − Nτ

γ
1 )

∫ n∏

γ=1

dτ
γ
2 δ(ξ2,trueξ1,γ − Nτ

γ
2 )

×
∫ ∏

γ<γ ′
dqγ,γ ′

1 δ(ξ1,γ ξ1,γ
′ − Nqγ,γ ′

1 )

∫ ∏

γ<γ ′
dqγ,γ ′

2 δ(ξ2,γ ξ2,γ
′ − Nqγ,γ ′

2 )

×
∫ ∏

γ<γ ′
drγ,γ ′

δ(ξ1,γ ξ2,γ
′ − Nrγ,γ ′

)

×
M∏

a=1

{
cosh (βX0

a) cosh (βY 0
a )

2N eβ2 cosh (β2q)

n∏

γ=1

cosh (βXγ
a ) cosh (βY γ

a )

cosh (β2Rγ )

}

=
∑

{σ a ,ξ true}

N∏

i=1

P(ξ
1,true
i , ξ

2,true
i )

∑

{ξ1,γ ,ξ2,γ }

∫ n∏

γ=1

(
dRγ d R̂γ

2π

)∫ n∏

γ=1

(
dT γ

1 dT̂1
γ

2π

)

×
∫ n∏

γ=1

(
dT γ

2 dT̂2
γ

2π

)∫ n∏

γ=1

(
dτ

γ
1 d τ̂

γ
1

2π

)∫ n∏

γ=1

(
dτ

γ
2 d τ̂

γ
2

2π

)

×
∫ ∏

γ<γ ′

(
dqγ,γ ′

1 dq̂γ,γ ′
1

2π

)∫ ∏

γ<γ ′

(
dqγ,γ ′

2 dq̂γ,γ ′
2 drγ,γ ′

dr̂γ,γ ′

4π2

)

× exp

( n∑

γ=1

iR̂γ (ξ1,γ ξ2,γ −N Rγ )+
n∑

γ=1

iT̂1
γ
(ξ1,γ ξ1,true−NT γ

1 )+
n∑

γ=1

iT̂2
γ
(ξ2,γ ξ2,true−NT γ

2 )

)

× exp

( n∑

γ=1

iτ̂1
γ
(ξ1,trueξ2,γ −Nτ

γ
1 )+

n∑

γ=1

iτ̂2
γ
(ξ2,trueξ1,γ −Nτ

γ
2 )+

∑

γ<γ ′
iq̂1

γ,γ ′
(ξ1,γ ξ1,γ

′ − Nqγ,γ ′
1 )

)

× exp

( ∑

γ<γ ′
iq̂2

γ,γ ′
(ξ2,γ ξ2,γ

′ − Nqγ,γ ′
2 ) +

∑

γ<γ ′
ir̂γ,γ ′

(ξ1,γ ξ2,γ
′ − Nrγ,γ ′

)

)

×
M∏

a=1

{
cosh (βX0

a) cosh (βY 0
a )

2N eβ2 cosh (β2q)

n∏

γ=1

cosh (βXγ
a ) cosh (βY γ

a )

cosh (β2Rγ )

}
,

(12.32)
where we have defined X0

a = 1√
N

∑N
i=1 ξ

1,true
i σ a

i , Y
0
a = 1√

N

∑N
i=1 ξ

2,true
i σ a

i , and

Xγ
a = 1√

N

∑N
i=1 ξ

1,γ
i σ a

i , Y
γ
a = 1√

N

∑N
i=1 ξ

2,γ
i σ a

i . To get the second equality, we have

used the integral representation of the delta function δ(x) = ∫ dx̂
2π e

ix̂ x .Hence,wehave
to introduce the conjugate order parameters
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(T̂1
γ
, T̂2

γ
, τ̂1

γ
, τ̂2

γ
, q̂1

γ,γ ′
, q̂2

γ,γ ′
, R̂γ , r̂γ,γ ′

) (12.33)

corresponding to the non-conjugated (physical) order parameters

(T γ

1 , T γ

2 , τ
γ

1 , τ
γ

2 , qγ,γ
′

1 , qγ,γ
′

2 , Rγ , rγ,γ ′
). (12.34)

To further compute an explicit form of the free energy, we assume a simple ansatz,
i.e., all order parameters do not depend on their specific replica indexes, which is
called the replica-symmetry assumption. To be more precise, we assume

Rγ = R, iR̂γ = R̂, (12.35a)

T γ

1 = T1, iT̂1
γ = T̂1, (12.35b)

T γ

2 = T2, iT̂2
γ = T̂2, (12.35c)

τ
γ

1 = τ1, iτ̂ γ

1 = τ̂1, (12.35d)

τ
γ

2 = τ2, iτ̂ γ

2 = τ̂2, (12.35e)

for any γ . We also assume that

qγ,γ ′
1 = q1, iq̂1

γ,γ ′ = q̂1, (12.36a)

qγ,γ ′
2 = q2, iq̂2

γ,γ ′ = q̂2, (12.36b)

rγ,γ ′ = r, ir̂γ,γ ′ = r̂ , (12.36c)

for any γ and γ ′. Then we can express 〈�n〉 as

〈�n〉 =
∫

dOdÔeNA(O,Ô,α,β,n). (12.37)

In the thermodynamics limit, 〈�n〉 can be approximated as eNA(O∗,Ô∗,α,β,n)

(namely the saddle-point method), where O∗ and Ô∗ represent all non-conjugated
order parameters and conjugated order parameters evaluated at the maximal value
of the action, respectively. The expression for the action A(O, Ô, α, β, n) (we omit
∗ hereafter) can be written by

A = −nR R̂ − nT1T̂1 − nT2T̂2 − nτ1τ̂1 − nτ2τ̂2 − n(n − 1)

2
q1q̂1

− n(n − 1)

2
q2q̂2 − n(n − 1)

2
rr̂ + GS + αGE ,

(12.38)

where GS is the entropy term, and GE is the energy term.
To derive the entropy term GS , we use the following identities:
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∑

γ<γ
′
ξ1,γ ξ1,γ

′ = 1

2

⎛

⎝
∑

γ

ξ1,γ

⎞

⎠
2

− 1

2

∑

γ

(ξ1,γ )2, (12.39a)

∑

γ<γ
′
ξ2,γ ξ2,γ

′ = 1

2

⎛

⎝
∑

γ

ξ2,γ

⎞

⎠
2

− 1

2

∑

γ

(ξ2,γ )2, (12.39b)

∑

γ<γ
′
ξ1,γ ξ2,γ

′ = 1

2

∑

γ,γ ′
ξ1,γ ξ2,γ

′ − 1

2

∑

γ

ξ1,γ ξ2,γ

= 1

4

⎛

⎝
∑

γ

ξ1,γ +
∑

γ ′
ξ2,γ

′
⎞

⎠
2

− 1

4

⎛

⎝
∑

γ

ξ1,γ

⎞

⎠
2

− 1

4

⎛

⎝
∑

γ ′
ξ2,γ

′
⎞

⎠
2

− 1

2

∑

γ

ξ1,γ ξ2,γ .

(12.39c)

The above non-linear terms can be reduced to linear terms in the exponential func-
tions of Eq. (12.37) by the Hubbard–Stratonovich transformation

∫
Dtebt = e

1
2 b

2
.

Then, we obtain GS as

GS = ln

⎡

⎣
∑

{ξ1,γ ,ξ2,γ }
exp

⎛

⎝R̂
n∑

γ=1

ξ1,γ ξ2,γ + T̂1

n∑

γ=1

ξ1,γ ξ1,true + T̂2

n∑

γ=1

ξ2,γ ξ2,true

+τ̂1

n∑

γ=1

ξ1,trueξ2,γ

⎞

⎠× exp

⎛

⎝τ̂2

n∑

γ=1

ξ1,γ ξ2,true + q̂1
∑

γ<γ ′
ξ1,γ ξ1,γ

′

+q̂2
∑

γ<γ ′
ξ2,γ ξ2,γ

′ + r̂
∑

γ<γ ′
ξ1,γ ξ2,γ

′
⎞

⎠

⎤

⎦

ξ1,true ,ξ2,true

= ln

⎡

⎢⎣
∑

{ξ1,γ ,ξ2,γ }
exp

⎛

⎜⎝
q̂1 − r̂

2

2

⎛

⎝
∑

γ

ξ1,γ

⎞

⎠
2

+ q̂2 − r̂
2

2

⎛

⎝
∑

γ

ξ2,γ

⎞

⎠
2

+ T̂1
∑

γ

ξ1,γ ξ1,true

⎞

⎟⎠

× exp

⎛

⎜⎝
r̂

4

⎛

⎝
∑

γ

ξ1,γ +
∑

γ ′
ξ2,γ

′
⎞

⎠
2

+ T̂2
∑

γ

ξ2,γ ξ2,true + (R̂ − r̂

2
)
∑

γ

ξ1,γ ξ2,γ

⎞

⎟⎠

× exp

⎛

⎝τ̂1
∑

γ

ξ1,trueξ2,γ + τ̂2
∑

γ

ξ2,trueξ1,γ − n

2
q̂1 − n

2
q̂2

⎞

⎠

⎤

⎦

ξ1,true ,ξ2,true

= ln

⎡

⎣
∑

{ξ1,γ ,ξ2,γ }

∫
Dz exp

⎛

⎝
∑

γ

√
q̂1 − r̂

2
ξ1,γ z1 +

∑

γ

√
q̂2 − r̂

2
ξ2,γ z2

+
√
r̂

2
z3

⎛

⎝
∑

γ

ξ1,γ +
∑

γ ′
ξ2,γ

′
⎞

⎠

⎞

⎠

× exp

⎛

⎝T̂1
∑

γ

ξ1,trueξ1,γ + T̂2
∑

γ

ξ2,γ ξ2,true + τ̂1
∑

γ

ξ1,trueξ2,γ

⎞

⎠

× exp

⎛

⎝τ̂2
∑

γ

ξ2,trueξ1,γ + (R̂ − r̂

2
)
∑

γ

ξ1,γ ξ2,γ − n

2
q̂1 − n

2
q̂2

⎞

⎠

⎤

⎦

ξ1,true ,ξ2,true

.

(12.40)
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Finally, we can express the entropy term GS in a compact form as

GS = ln

⎡

⎣
∫

Dz

⎛

⎝
∑

ξ 1,ξ 2

eb1ξ
1+b2ξ 2+b3ξ 1ξ 2

⎞

⎠
n⎤

⎦

ξ 1,true,ξ 2,true

− n

2
q̂1 − n

2
q̂2, (12.41)

where we have defined Dz = Dz1Dz2Dz3, and the auxiliary variables b1, b2, and
b3 as

b1 =
√
q̂1 − r̂

2
z1 +

√
r̂

2
z3 + T̂1ξ

1,true + τ̂2ξ
2,true, (12.42a)

b2 =
√
q̂2 − r̂

2
z2 +

√
r̂

2
z3 + T̂2ξ

2,true + τ̂1ξ
1,true, (12.42b)

b3 = R̂ − r̂

2
. (12.42c)

We remark that in the expression of GS , the inner summation over ξ 1, ξ 2 can be
thought as a two-spin interaction partition function, which is defined as Zeff =∑

ξ 1,ξ 2 eb1ξ
1+b2ξ 2+b3ξ 1ξ 2 = 2eb3 cosh (b1 + b2) + 2e−b3 cosh (b1 − b2). [•]ξ 1,true,ξ 2,true

means an average w.r.t P(ξ 1,true, ξ 2,true). This simplification is due to the intro-
duction of replicas, i.e., the original spin interaction decouples, being transformed
into the overlap matrix.

Next, we turn to compute the energy term GE . The expression of GE is given by

GE = ln

〈
cosh (βX0) cosh (βY 0)

cosh (β2q)

n∏

γ=1

cosh (βXγ ) cosh (βY γ )

cosh (β2Rγ )

〉
, (12.43)

where 〈•〉 defines the disorder average. X0, Y 0, Xγ , Y γ are correlated Gaussian
random variables, which are the same as before but the data index a has been dropped
off. They have zero mean and unit variance. Their covariances are determined by the
aforementioned order parameters as follows:

〈X0Y 0〉 = q, 〈X0Xγ 〉 = T1, 〈X0Y γ 〉 = τ1, (12.44a)

〈Xγ Xγ
′ 〉 = q1, 〈Y γY γ

′ 〉 = q2, 〈XγY γ 〉 = R, (12.44b)

〈Y 0Y γ 〉 = T2, 〈Y 0Xγ 〉 = τ2, 〈XγY γ
′ 〉 = r. (12.44c)

The random variables X0,Y 0, Xγ ,Y γ can thus be parameterized by six standard
Gaussian variables of zero mean and unit variance (t0, x0, u, u′, yγ , ωγ ) as follows:

X0 = t0, (12.45a)

Y 0 = qt0 +
√
1 − q2x0, (12.45b)
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Xγ = T1t0 + τ2 − T1q√
1 − q2

x0 + Bu +√1 − q1ωγ , (12.45c)

Y γ = τ1t0 + T2 − τ1q√
1 − q2

x0 + r − A

B
u + R − r√

1 − q1
ωγ + Ku′

+
√

1 − q2 − (R − r)2

1 − q1
yγ ,

(12.45d)

where A = T1τ1 + (τ2−T1q)(T2−τ1q)

1−q2 , B =
√
q1 − (T1)2 − (τ2−T1q)2

1−q2 , and K =
√
q2 − (τ1)2 − (T2−τ1q)2

1−q2 − ( r−A
B )2. One can easily verify that the above param-

eterization satisfies their covariance structures. Therefore, the GE term can be
calculated by a standard Gaussian integration given by

GE = ln

[∫
Dt0Dx0DuDu′ cosh (βt0) cosh β(qt0 +√1 − q2x0)

cosh (β2q)

×
(∫

DωDy
1

cosh (β2R)
cosh β

(
T1t0 + τ2 − T1q√

1 − q2
x0 + Bu +√1 − q1ω

)

× cosh β

(
τ1t0 + T2 − τ1q√

1 − q2
x0 + r − A

B
u + + R − r√

1 − q1
ω + Ku′ + Cy

))n]
,

(12.46)

where C ≡
√
1 − q2 − (R−r)2

1−q1
.

To proceed, we first define the auxiliary quantities as

�+ = (T1 + τ1)t0 + (T2 + τ2) − q(T1 + τ1)√
1 − q2

x0 +
(
B + r − A

B

)
u + Ku′,

(12.47a)

�− = (T1 − τ1)t0 + (τ2 − T2) − q(T1 − τ1)√
1 − q2

x0 +
(
B − r − A

B

)
u − Ku′.

(12.47b)

Then we compute the integral inside the power n, which is defined by I whose result
is given by
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I ≡
∫

DωDy

[
cosh β

(
τ1t0 + T2 − τ1q√

1 − q2
x0 + r − A

B
u + R − r√

1 − q1
ω

+ Ku′ +
√

1 − q2 − (R − r)2

1 − q1
y

)
× cosh β(T1t0 + τ2 − T1q√

1 − q2
x0 + Bu +√1 − q1ω)

]

= 1

4

∫
DωDy

[
e
β{�++(

√
1−q1+ R−r√

1−q1
)ω+

√
1−q2− (R−r)2

1−q1
y} + e

−β{�++(
√
1−q1+ R−r√

1−q1
)ω+

√
1−q2− (R−r)2

1−q1
y}

+ e
β{�−+(

√
1−q1− R−r√

1−q1
)ω−

√
1−q2− (R−r)2

1−q1
y} + e

−β{�−+(
√
1−q1− R−r√

1−q1
)ω−

√
1−q2− (R−r)2

1−q1
y}]

= 1

2
eβ2(1− q1+q2

2 )

[
eβ2(R−r) cosh (β�+) + e−β2(R−r) cosh (β�−)

]
.

(12.48)
For simplicity, we also define the following auxiliary quantities ZE ,G−

c ,G+
s ,G−

s :

ZE = eβ2(R−r) cosh (β�+) + e−β2(R−r) cosh (β�−),

G−
c = eβ2(R−r) cosh (β�+) − e−β2(R−r) cosh (β�−)

eβ2(R−r) cosh (β�+) + e−β2(R−r) cosh (β�−)
,

G+
s = eβ2(R−r) sinh (β�+) + e−β2(R−r) sinh (β�−)

eβ2(R−r) cosh (β�+) + e−β2(R−r) cosh (β�−)
,

G−
s = eβ2(R−r) sinh (β�+) − e−β2(R−r) sinh (β�−)

eβ2(R−r) cosh (β�+) + e−β2(R−r) cosh (β�−)
.

(12.49)

Following the replica trick, we can get

lim
n→0

GE

n
=
∫
Dt0Dx0DuDu′ cosh βt0 cosh β(qt0+

√
1−q2x0)

cosh β2q ln
[

I
cosh β2R

]

∫
Dt0Dx0DuDu′ cosh (βt0) cosh β(qt0+

√
1−q2x0)

cosh (β2q)

, (12.50)

where the integral in the denominator can be exactly computed with the result [see
also Eq. (12.11)] given by

∫
Dt0Dx0DuDu′ cosh (βt0) cosh β(qt0 +

√
1 − q2x0)

= 1

2

(
e

β2

2 (1−q)2+ β2

2 (1−q2) + e
β2

2 (1+q)2+ β2

2 (1−q2)
)

= eβ2
cosh β2q.

(12.51)

Finally, by collecting all the above relevant terms, we have the following estima-
tion of 〈�n〉 given by:
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〈�n〉 =
∫

dOdÔ exp

(
−NnRR̂ − NnT1 T̂1 − NnT2 T̂2 − Nnτ2 τ̂2 − N

2
n(n − 1)q1q̂1

)

× exp

(
− N

2
n(n − 1)q2q̂2− N

2
n(n − 1)rr̂− nN

2
q̂1− nN

2
q̂2+N ln

[∫
DzZn

eff

]

ξ1,true ,ξ2,true

+αN ln

{∫
Dt

cosh (βt0) cosh β(qt0 +√1 − q2x0)

cosh (β2q)

[
I

cosh(β2R)

]n})
,

(12.52)

where in shorthand Dt = Dt0Dx0DuDu′. By computing limn→0
ln 〈�n〉

n and using
Eq. (12.50), we get the expression Fβ = −β fRS as

Fβ = −RR̂ − T1T̂1 − T2T̂2 − τ1τ̂1 − τ2τ̂2 + q̂1
2

(q1 − 1) + q̂2
2

(q2 − 1)

+ rr̂

2
+
∫

Dz [ln Zeff ]ξ 1,true,ξ 2,true − α ln
(
2 cosh(β2R)

)+ αβ2

(
1 − q1 + q2

2

)

+ αe−β2

cosh (β2q)

∫
Dt cosh βt0 cosh β(qt0 +

√
1 − q2x0) ln ZE .

(12.53)

Note that we have used limn→0
ln[
∫
DzZn

eff ]ξ1,true ,ξ2,true

n = ∫ Dz [ln Zeff ]ξ 1,true,ξ 2,true to
arrive at the final expression.

By the saddle-point analysis, these non-conjugated order parameters O should
obey the following stationary conditions:

∂Fβ

∂R
= 0,

∂Fβ

∂r
= 0,

∂Fβ

∂q1
= 0,

∂Fβ

∂q2
= 0, (12.54a)

∂Fβ

∂T1
= 0,

∂Fβ

∂T2
= 0,

∂Fβ

∂τ1
= 0,

∂Fβ

∂τ2
= 0. (12.54b)

Similarly, for conjugated order parameters Ô, the following stationary conditions
should be satisfied:

∂Fβ

∂ R̂
= 0,

∂Fβ

∂ r̂
= 0,

∂Fβ

∂ q̂1
= 0,

∂Fβ

∂q̂2
= 0, (12.55a)

∂Fβ

∂ T̂1
= 0,

∂Fβ

∂ T̂2
= 0,

∂Fβ

∂τ̂1
= 0,

∂Fβ

∂τ̂2
= 0. (12.55b)

We first evaluate the self-consistent equations those non-conjugated order param-
eters obey. For R, we have the following equation:

∂Fβ

∂ R̂
= −R +

[∫
Dz

∂ ln Zeff

∂ R̂

]

ξ 1,true,ξ 2,true

= 0. (12.56)

Thus the saddle-point equation of R is given by
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R = [〈ξ 1ξ 2〉]z,ξ 1,true,ξ 2,true , (12.57)

where the thermal average 〈•〉 is computed under the partition function Zeff (a two-
spin interaction partition function), and the outer average indicates the disorder aver-
age over Gaussian random variables z and the distribution P(ξ 1,true, ξ 2,true).

Similarly, for the order parameter T1, we have the following equation:

∂Fβ

∂ T̂1
= −T1 +

∫
Dz
[

1

Zeff

∂Zeff

∂ T̂1

]

ξ 1,true,ξ 2,true

= 0. (12.58)

Noting that ∂Zeff

∂ T̂1
=∑ξ 1,ξ 2 ξ 1,trueξ 1eb1ξ

1+b2ξ 2+b3ξ 1ξ 2
, we get the final expression of T1

as
T1 = [〈ξ 1〉ξ 1,true]z,ξ 1,true,ξ 2,true . (12.59)

The expressions of T2, τ1 and τ2 can be derived in the same way as follows:

T2 = [〈ξ 2〉ξ 2,true]z,ξ 1,true,ξ 2,true , (12.60)

and
τ1 = [〈ξ 2〉ξ 1,true]z,ξ 1,true,ξ 2,true , (12.61)

and
τ2 = [〈ξ 1〉ξ 2,true]z,ξ 1,true,ξ 2,true . (12.62)

Next, we turn to the saddle-point equation of q1, i.e.,

∂Fβ

∂q̂1
= 1

2
(q1 − 1) +

∫
Dz
[

1

Zeff

∂Zeff

∂q̂1

]

ξ 1,true,ξ 2,true

= 0. (12.63)

Noticing that ∂Zeff
∂q̂1

= 1
2 (q̂1 − r̂

2 )
− 1

2
∑

ξ 1,ξ 2 ξ 1z1eb1ξ
1+b2ξ 2+b3ξ 1ξ 2

, we get the expression
of q1 as

q1 − 1 +
(
q̂1 − r̂

2

)− 1
2

[〈ξ 1〉z1]z,ξ 1,true,ξ 2,true = 0. (12.64)

To proceed, we use the following identity:

∫
Dz f (z)z =

∫
Dz f ′(z), (12.65)

where f (z) is any differentiable function of z. Thus, we have the following equality:
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[〈ξ 1〉z1]z =
[

∂

∂z1

(∑
ξ 1,ξ 2 ξ 1eb1ξ

1+b2ξ 2+b3ξ 1ξ 2

Zeff

)]

z

=
√
q̂1 − r̂

2
[1 − 〈ξ 1〉2]z.

(12.66)
Finally, the expression of q1 is given by

q1 = [〈ξ 1〉2]z,ξ 1,true,ξ 2,true . (12.67)

Similarly, q2 should obey the following equation, which is given by:

q2 = [〈ξ 2〉2]z,ξ 1,true,ξ 2,true . (12.68)

Following the same line of computation, we get the following stationary condition
for r̂ as:

r

2
+
∫

Dz
[ ∂

∂ r̂
ln Zeff

]
ξ 1,true,ξ 2,true = 0. (12.69)

Note that

∂

∂ r̂
ln Zeff = −1

4

(
q̂1 − r̂

2

)− 1
2

〈ξ 1〉z1 + 1

4

(
r̂

2

)− 1
2

〈ξ 1〉z3

− 1

4

(
q̂2 − r̂

2

)− 1
2

〈ξ 2〉z2 + 1

4

(
r̂

2

)− 1
2

〈ξ 2〉z3 − 1

2
〈ξ 1ξ 2〉.

(12.70)

By applying Eq. (12.65), we can obtain the following three identities:

[〈ξ 2〉z2]z =
√
q̂2 − r̂

2

(
1 − [〈ξ 2〉2]z

)
,

[〈ξ 1〉z3]z =
√
r̂

2

(
1 − [〈ξ 1〉2]z + [〈ξ 1ξ 2〉]z − [〈ξ 1〉〈ξ 2〉]z

)
,

[〈ξ 2〉z3]z =
√
r̂

2

(
1 − [〈ξ 2〉2]z + [〈ξ 1ξ 2〉]z − [〈ξ 1〉〈ξ 2〉]z

)
.

(12.71)

Using the above three identities together with Eq. (12.66), we get the expression
of the saddle-point equation for r as follows:

r = [〈ξ 1〉〈ξ 2〉]z,ξ 1,true,ξ 2,true . (12.72)

Given the result that Zeff = 2eb3 cosh (b1 + b2) + 2e−b3 cosh (b1 − b2), the ther-
mal average like 〈ξ 1〉, 〈ξ 2〉, and 〈ξ 1ξ 2〉 can be easily calculated as follows:
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〈ξ1ξ2〉Zeff = ∂

∂b3
ln Zeff

= eb3 cosh (b1 + b2) − e−b3 cosh (b1 − b2)

eb3 cosh (b1 + b2) + e−b3 cosh (b1 − b2)

= eb3 (cosh b1 cosh b2 + sinh b1 sinh b2) − e−b3 (cosh b1 cosh b2 − sinh b1 sinh b2)

eb3 (cosh b1 cosh b2 + sinh b1 sinh b2) + e−b3 (cosh b1 cosh b2 − sinh b1 sin b2)
,

= sinh b3 cosh b1 cosh b2 + cosh b3 sinh b1 sinh b2
cosh b3 cosh b1 cosh b2 + sinh b3 sinh b1 sinh b2

= tanh b3 + tanh b1 tanh b2
1 + tanh b1 tanh b2 tanh b3

,

(12.73)
and

〈ξ1〉Zeff = ∂

∂b1
ln Zeff

= eb3 sinh (b1 + b2) + e−b3 sinh (b1 − b2)

eb3 cosh (b1 + b2) + e−b3 cosh (b1 − b2)

= eb3 (sinh b1 cosh b2 + cosh b1 sinh b2) + e−b3 (sinh b1 cosh b2 − cosh b1 sinh b2)

eb3 (cosh b1 cosh b2 + sinh b1 sinh b2) + e−b3 (cosh b1 cosh b2 − sinh b1 sinh b2)

= cosh b3 sinh b1 cosh b2 + sinh b3 cosh b1 sinh b2
cosh b3 cosh b1 cosh b2 + sinh b3 sinh b1 sinh b2

= tanh b1 + tanh b2 tanh b3
1 + tanh b1 tanh b2 tanh b3

,

(12.74)
and finally

〈ξ2〉Zeff = ∂

∂b2
ln Zeff

= eb3 sinh (b1 + b2) − e−b3 sinh (b1 − b2)

eb3 cosh (b1 + b2) + e−b3 cosh (b1 − b2)

= eb3 (sinh b1 cosh b2 + cosh b1 sinh b2) − e−b3 (sinh b1 cosh b2 − cosh b1 sinh b2)

eb3 (cosh b1 cosh b2 + sinh b1 sinh b2) + e−b3 (cosh b1 cosh b2 − sinh b1 sinh b2)

= cosh b2 sinh b1 sinh b3 + sinh b2 cosh b1 cosh b3
cosh b3 cosh b1 cosh b2 + sinh b3 sinh b1 sinh b2

= tanh b2 + tanh b1 tanh b3
1 + tanh b1 tanh b2 tanh b3

.

(12.75)

In case of r̂ < 0, we can re-parameterize b1 and b2 as

b1 =
√
q̂1z1 + T̂1ξ

1,true + τ̂2ξ
2,true, (12.76a)

b2 =
√
q̂2
(
ψz1 +

√
1 − ψ2z2

)+ T̂2ξ
2,true + τ̂1ξ

1,true, (12.76b)

ψ = r̂

2
√
q̂1q̂2

. (12.76c)
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We remark that this re-parameterization does not change the final results of multidi-
mensional Gaussian integrations in the saddle-point equations.

To sum up, the saddle-point equations for non-conjugated order parameters are
given by

T1 = [ξ 1,true〈ξ 1〉]z,ξ 1,true,ξ 2,true , (12.77a)

T2 = [ξ 2,true〈ξ 2〉]z,ξ 1,true,ξ 2,true , (12.77b)

q1 = [〈ξ 1〉2]z,ξ 1,true,ξ 2,true , (12.77c)

q2 = [〈ξ 2〉2]z,ξ 1,true,ξ 2,true , (12.77d)

τ1 = [ξ 1,true〈ξ 2〉]z,ξ 1,true,ξ 2,true , (12.77e)

τ2 = [ξ 2,true〈ξ 1〉]z,ξ 1,true,ξ 2,true , (12.77f)

R = [〈ξ 1ξ 2〉]z,ξ 1,true,ξ 2,true , (12.77g)

r = [〈ξ 1〉〈ξ 2〉]z,ξ 1,true,ξ 2,true . (12.77h)

Next, we derive the saddle-point equations for those conjugated order parameters.
For R̂, we obtain the saddle-point equation as

∂Fβ

∂R
= −R̂ − αβ2 tanh (β2R) + αe−β2

cosh (β2q)

∫
Dt cosh βt0 cosh β(qt0 +

√
1 − q2x0)

∂

∂R
ln ZE = 0,

(12.78)

where ∂
∂R ln ZE = β2 eβ2(R−r) cosh (β�+)−e−β2(R−r) cosh (β�−)

eβ2(R−r) cosh (β�+)+e−β2(R−r) cosh (β�−)
= β2G−

c . Therefore, the

saddle-point equation of R̂ is given by

R̂ = αβ2e−β2

cosh (β2q)

∫
Dt[cosh βt0 cosh β(qt0 +

√
1 − q2x0)G

−
c − αβ2 tanh (β2R).

(12.79)
For convenience, we define the measure 〈•〉 as

e−β2

cosh (β2q)

∫
Dt cosh βt0 cosh β(qt0 +√1 − q2x0)•. As a result,

R̂ = αβ2〈G−
c 〉 − αβ2 tanh (β2R). (12.80)

For T̂1, we have the following condition:

∂Fβ

∂T1
= −T̂1 + αe−β2

cosh (β2q)

∫
Dt cosh βt0 cosh β(qt0 +

√
1 − q2x0)

∂

∂T1
ln ZE = 0.

(12.81)
To proceed, we first get the derivation of �+ and �− w.r.t T1 as follows:

∂�+
∂T1

= t0 − q√
1 − q2

x0 + ∂

∂T1

(
B + r − A

B

)
u + ∂K

∂T1
u′, (12.82a)
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∂�−
∂T1

= t0 − q√
1 − q2

x0 + ∂

∂T1

(
B − r − A

B

)
u − ∂K

∂T1
u′. (12.82b)

Then, the derivation of ln ZE w.r.t T1 can be simplified into the form as

∂ ln ZE

∂T1
= β

[
G+

s t0 − q√
1 − q2

G+
s x0 + ∂B

∂T1
G+

s u + ∂

∂T1

(
r − A

B

)
G−

s u + ∂K

∂T1
G−

s u
′
]

.

(12.83)

To further simplify the result, we need to evaluate the following integral formulas.
The first one is derived by applying Eq. (12.65) as

∫
Dt cosh βt0 cosh β(qt0 +

√
1 − q2x0)G

+
s t0

=
∫

Dt
∂

∂t0

(
cosh βt0 cosh β(qt0 +

√
1 − q2x0)G

+
s

)

= β

∫
Dt
[
sinh βt0 cosh β(qt0 +

√
1 − q2x0) + q cosh βt0 sinh β(qt0 +

√
1 − q2x0)

]
G+

s

+ β

∫
Dt cosh βt0 cosh β(qt0 +

√
1 − q2x0)

[
T1 + τ1G

−
c − T1(G

+
s )2 − τ1G

+
s G

−
s

]
.

(12.84)
The second one is derived as
∫

Dt cosh βt0 cosh β(qt0 +
√
1 − q2x0)G

+
s x0

=
∫

Dt
∂

∂x0

(
cosh βt0 cosh β(qt0 +

√
1 − q2x0)G

+
s

)

= β
√
1 − q2

∫
Dt cosh βt0 sinh β(qt0 +

√
1 − q2x0)G

+
s

+ β√
1 − q2

∫
Dt cosh βt0 cosh β(qt0 +

√
1 − q2x0)

×
[
(τ2 − qT1) + (T2 − qτ1)G

−
c − (τ2 − qT1)(G

+
s )2 − (T2 − qτ1)G

+
s G

−
s

]
.

(12.85)
The third one is derived as
∫

Dt cosh βt0 cosh β(qt0 +
√
1 − q2x0)G

+
s u

=
∫

Dt
∂

∂u

(
cosh βt0 cosh β(qt0 +

√
1 − q2x0)G

+
s

)

= β

∫
Dt cosh βt0 cosh β(qt0 +

√
1 − q2x0)

[
B + r − A

B
G−

c − B(G+
s )2 − r − A

B
G+

s G
−
s

]
.

(12.86)
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The fourth one is derived as
∫

Dt cosh βt0 cosh β(qt0 +
√
1 − q2x0)G

−
s u

=
∫

Dt
∂

∂u

(
cosh βt0 cosh β(qt0 +

√
1 − q2x0)G

−
s

)

= β

∫
Dt cosh βt0 cosh β(qt0 +

√
1 − q2x0)

[
BG−

c + r − A

B
− r − A

B
(G−

s )2 − BG+
s G

−
s

]
.

(12.87)
The last one is given by

∫
Dt cosh βt0 cosh β(qt0 +

√
1 − q2x0)G

−
s u

′

=
∫

Dt
∂

∂u ′

(
cosh βt0 cosh β(qt0 +

√
1 − q2x0)G

−
s

)

= βK
∫

Dt cosh βt0 cosh β(qt0 +
√
1 − q2x0)

[
1 − (G−

s )2
]
.

(12.88)

Through a bit lengthy algebraic manipulations, we get

T̂1 = αβ2e−β2

cosh (β2q)

∫
Dt sinh βt0 cosh β(qt0 +

√
1 − q2x0)G

+
s . (12.89)

We thus define another measure 〈〈•〉〉 = e−β2

cosh (β2q)

∫
Dt sinh βt0 cosh β(qt0 +√1 − q2x0)•,

and it then follows that
T̂1 = αβ2〈〈G+

s 〉〉. (12.90)

Similarly, we can obtain the saddle-point equation of τ̂1 as

τ̂1 = αβ2〈〈G−
s 〉〉. (12.91)

Next, we turn to the saddle-point equations for T̂2 and τ̂2.Wefirst get the derivation
of �+ and �− w.r.t T2 as

∂�+
∂T2

= x0√
1 − q2

− 1

B

∂A

∂T2
u + ∂K

∂T2
u′, (12.92a)

∂�−
∂T2

= − x0√
1 − q2

+ 1

B

∂A

∂T2
u − ∂K

∂T2
u′. (12.92b)

Based on the above equations, we get the derivative of ln ZE w.r.t T2 given by

∂ ln ZE

∂T2
= β

[
x0√

1 − q2
G−

s − 1

B

∂A

∂T2
G−

s u + ∂K

∂T2
G−

s u
′
]

. (12.93)
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Then we have

T̂2 = αβe−β2

cosh (β2q)

∫
Dt cosh βt0 cosh β(qt0 +

√
1 − q2x0)

×
[

x0√
1 − q2

G−
s − 1

B

∂A

∂T2
G−

s u + ∂K

∂T2
G−

s u
′
]
. (12.94)

For a further simplification, we need to derive the following integral identity:

∫
Dt cosh βt0 cosh β(qt0 +

√
1 − q2x0)G

−
s x0

=
∫

Dt
∂

∂x0

(
cosh βt0 cosh β(qt0 +

√
1 − q2x0)G

−
s

)

= β
√
1 − q2

∫
Dt cosh βt0 sinh β(qt0 +

√
1 − q2x0)G

−
s

+ β√
1 − q2

∫
Dt cosh βt0 cosh β(qt0 +

√
1 − q2x0)

×
[
(τ2 − qT1)G

−
c − (τ2 − qT1)G

+
s G

−
s − (T2 − qτ1)(G

−
s )2 + (T2 − qτ1)

]
.

(12.95)
Using Eq. (12.95) together with Eqs. (12.87) and (12.88), we finally arrive at the

saddle-point equation of T̂2

T̂2 = αβ2e−β2

cosh (β2q)

∫
Dt cosh βt0 sinh β(qt0 +

√
1 − q2x0)G

−
s . (12.96)

We thus define the thirdmeasure 〈〈〈•〉〉〉 = e−β2

cosh (β2q)

∫
Dt cosh βt0 sinh β(qt0 +√1 − q2x0)•.

We then write the saddle-point equation in a compact form as

T̂2 = αβ2〈〈〈G−
s 〉〉〉. (12.97)

Similarly, we obtain the saddle-point equation for τ̂2 as

τ̂2 = αβ2〈〈〈G+
s 〉〉〉. (12.98)

Then we turn to the saddle-point equations of q̂1 and q̂2. From
∂Fβ

∂q1
= 0, we get

1

2
q̂1 − αβ2

2
+ αβe−β2

cosh (β2q)

∫
Dt cosh βt0 cosh β(qt0 +

√
1 − q2x0)

∂ ln ZE

∂q1
= 0.

(12.99)
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The derivation of ln ZE w.r.t q1 is given by

∂ ln ZE

∂q1
= ∂B

∂q1
G+

s u + ∂

∂q1

(
r − A

B

)
G−

s u + ∂K

∂q1
G−

s u
′. (12.100)

Most terms in the above equation cancel each other, leading to

q̂1 = αβ2e−β2

cosh (β2q)

∫
Dt cosh (βt0) cosh β(qt0 +

√
1 − q2x0)(G

+
s )2

= αβ2〈(G+
s )2〉.

(12.101)

Similarly, we can derive the saddle-point equation for q̂2 as

q̂2 = αβ2e−β2

cosh (β2q)

∫
Dt cosh (βt0) cosh β(qt0 +

√
1 − q2x0)(G

−
s )2

= αβ2〈(G−
s )2〉.

(12.102)

Lastly, we derive the saddle-point equation for r̂ as

r̂

2
+ αe−β2

cosh β2q

∫
Dt cosh βt0 cosh β(qt0 +

√
1 − q2x0)

∂ ln ZE

∂r
= 0. (12.103)

Noting that ∂ ln ZE
∂r = −β2G−

c + β
(
1
B G

−
s u + ∂K

∂r G
−
s u

′), we get the saddle-point
equation of r̂ as

r̂ = 2αβ2〈G+
s G

−
s 〉. (12.104)

To sum up, the saddle-point equations of our minimal model are listed as follows:

T̂1 = αβ2〈〈G+
s 〉〉, (12.105a)

T̂2 = αβ2〈〈〈G−
s 〉〉〉, (12.105b)

τ̂1 = αβ2〈〈G−
s 〉〉, (12.105c)

τ̂2 = αβ2〈〈〈G+
s 〉〉〉, (12.105d)

q̂1 = αβ2〈(G+
s )2〉, (12.105e)

q̂2 = αβ2〈(G−
s )2〉, (12.105f)

r̂ = 2αβ2〈G+
s G

−
s 〉, (12.105g)

R̂ = αβ2〈G−
c 〉 − αβ2 tanh (β2R). (12.105h)

In the case of q = 0 (correlation-free scenario), the saddle-point equation of the
correlation-prior-free minimal model has the solution: q1 = q2 = T1 = T2 and other
order parameters vanish. Thus, we can simplify �+ and �− as follows:
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�+ = T1t0 + T2x0 +
√
q1 − (T1)2u +

√
q2 − (T2)2u

′, (12.106a)

�− = T1t0 − T2x0 +
√
q1 − (T1)2u −

√
q2 − (T2)2u

′. (12.106b)

We then define χ1 = T1t0 +√q1 − (T1)2u, and χ2 = T2x0 +√q2 − (T2)2u′. The
saddle-point equation of T̂1 is given by

T̂1 = αβ2e−β2
∫

Dt sinh βt0 cosh βx0

[
sinh β�+ + sinh β�−
cosh β�+ + cosh β�−

]

= αβ2e−β2
∫

Dt sinh βt0 cosh βx0

[
sinh βχ1 cosh βχ2

cosh βχ1 cosh βχ2

]

= αβ2e− β2

2

∫
Dt0Du sinh βt0 tanh β(T1t0 +

√
q1 − (T1)2u),

(12.107)

where we have used the identity
∫
Dx0 cosh(βx0) = eβ2/2. In an analogous way, one

can prove that T̂1 = T̂2. As for q̂1, we will have

q̂1 = αβ2e−β2
∫

Dt cosh βt0 cosh βx0

[
sinh β�+ + sinh β�−
cosh βλ+ + cosh β�−

]2

= αβ2e−β2
∫

Dt cosh βt0 cosh βx0

[
sinh βχ1 cosh βχ2

cosh βχ1 cosh βχ2

]2

= αβ2e− β2

2

∫
Dt0Du cosh βt0 tanh

2 β(T1t0 +
√
q1 − (T1)2u).

(12.108)

Similarly, one can prove that q̂1 = q̂2.
It is also straightforward to prove that τ̂1 = 0, τ̂2 = 0 and R̂ = 0, r̂ = 0, then we

can compute b1, b2 and b3 as

b1 = T̂1ξ
1,true +

√
q̂1z1, (12.109a)

b2 = T̂2ξ
2,true +

√
q̂2z2, (12.109b)

b3 = 0. (12.109c)

Therefore,
∫
Dz[ln Zeff ]ξ 1,true,ξ 2,true can be simplified as 2

∫
Dz ln 2 cosh(T̂1 +√

q̂1z). In addition, T1 becomes

T1 =
[ ∫

Dz1Dz2Dz3ξ
1,true tanh (T̂1ξ

1,true + √
q1z1)

]

ξ 1,true,ξ 2,true

=
∫

Dz1
1

2

[
tanh (T̂1 +

√
q̂1z1) − tanh (−T̂1 + √

q1z1)

]

=
∫

Dz1
1

2

[
tanh(T̂1 +

√
q̂1z1) − tanh (−T̂1 − √

q1z1)

]

=
∫

Dz1 tanh (T̂1 + √
q1z1).

(12.110)
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One can easily prove that T1 = T2. Similarly, for the order parameter q2, we can also
get

q2 =
[ ∫

Dz2 tanh
2 (T̂2ξ

1,true +
√
q̂2z1)

]

ξ 1,true,ξ 2,true

= 1

2

∫
Dz2

[
tanh2 (T̂2 +

√
q̂2z2) + tanh2 (−T̂2 +

√
q̂2z2)

]

=
∫

Dz2 tanh
2 (T̂2 +

√
q̂2z2).

(12.111)

On can similarly show that q1 = q2, and moreover R = r = τ1 = τ2 = 0. To sum
up, we recover the saddle-point equations of one-bit RBM.

Next, we show the q = 0 version of the free energy function. It is easy to show
that ZE = cosh β(χ1 + χ2) + cosh β(χ1 − χ2) = 2 cosh βχ1 cosh βχ2. Therefore,
we have the following integral

αe−β2
∫

Dt cosh βt0 cosh βx0 ln ZE = αe−β2
∫

Dt cosh βt0 cosh βx0 ln(2 cosh βχ1 cosh βχ2)

= α ln 2 + 2αe− β2

2

∫
DuDt0 cosh βt0 ln cosh β(T1t0 +

√
q1 − (T1)2u).

(12.112)
Collecting all the relevant terms, one shows that the free energy of our minimal
model with q = 0 is merely two times as large as that of one-bit RBM (see Chap.11),
which can also be intuitively understood by the argument that the partition function
factorizes as � = �2

one−bit−RBM. Therefore, we draw the conclusion that the critical
data size for spontaneous symmetry breaking does not change even if an additional
hidden node is added. This conclusion is expected to hold in the case of more hidden
nodes following the principle of the partition function’s factorization.

Next, we turn to the two-bit RBM model with the prior knowledge about the
embedded correlation level. For the replica analysis, we need to evaluate the disorder
average of an integer power of the partition function 〈�n〉, where 〈•〉 is the disorder
average over the true features distribution P0(ξ

1,true, ξ 2,true) and the corresponding
data distribution P({σ a}Ma=1|ξ 1,true, ξ 2,true) as:

〈�n〉 =
∑

{ξ true,σ a}

N∏

i=1

[P0(ξ1,truei , ξ
2,true
i )]

M∏

a=1

cosh

(
β√
N

ξ1,trueσ a
)
cosh

(
β√
N

ξ2,trueσ a
)

2N eβ2 cosh (β2q)

×
∑

{ξ1,γ ξ2,γ }

∏

a,γ

cosh

(
β√
N

ξ1,γ σ a
)
cosh

(
β√
N

ξ2,γ σ a
)

cosh (β2Rγ )

∏

i,γ

P0(ξ
1,γ
i , ξ

2,γ
i ).

(12.113)

Under the RS assumption, 〈�n〉 can be expressed as 〈�n〉 = ∫ dOÔeNA(O,Ô,n,β,β),
where A = G0 + GS + αGE . The term G0 reads
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G0 = −nR R̂ − nT1T̂1 − nT2T̂2 − nτ1τ̂1 − nτ2τ̂2 + n(n − 1)

2
q̂1q1 + n(n − 1)

2
q̂2q2 + n

2
r̂r.

(12.114)

The entropic term GS reads

GS = ln

⎡

⎣
∑

{ξ 1,γ ,ξ 2,γ }
exp

⎛

⎝R̂
n∑

γ=1

ξ 1,γ ξ 2,γ + T̂1

n∑

γ=1

ξ 1,γ ξ 1,true + T̂2

n∑

γ=1

ξ 2,γ ξ 2,true

+τ̂1

n∑

γ=1

ξ 1,trueξ 2,γ

⎞

⎠× exp

⎛

⎝τ̂2

n∑

γ=1

ξ 1,γ ξ 2,true +
∑

γ<γ ′

(
q̂1ξ

1,γ ξ 1,γ ′

+q̂2ξ
2,γ ξ 2,γ ′ + r̂ξ 1,γ ξ 2,γ ′)+

n∑

γ=1

ln P0(ξ
1,γ , ξ 2,γ )

⎞

⎠

⎤

⎦

ξ 1,true,ξ 2,true

.

(12.115)
In an analogous way to the prior-free (not Bayes optimal) case, we can express the
entropy term GS in a compact form as

GS = ln

⎡

⎣
∫

Dz

⎛

⎝
∑

ξ 1,ξ 2

eb1ξ
1+b2ξ 2+b3ξ 1ξ 2+ln P0(ξ 1,ξ 2)

⎞

⎠
n⎤

⎦

ξ 1,true,ξ 2,true

− n

2
q̂1 − n

2
q̂2,

(12.116)
where we have defined Dz = Dz1Dz2Dz3, random variables z1, z2, z3 are standard
Gaussian variables, [•] is the disorder average under the true features distribution
P0(ξ 1,true, ξ 2,true), and the auxiliary variables b1, b2, and b3 are given, respectively,
by

b1 =
√
q̂1 − r̂

2
z1 +

√
r̂

2
z3 + T̂1ξ

1,true + τ̂2ξ
2,true, (12.117a)

b2 =
√
q̂2 − r̂

2
z2 +

√
r̂

2
z3 + T̂2ξ

2,true + τ̂1ξ
1,true, (12.117b)

b3 = R̂ − r̂

2
. (12.117c)

In particular, we obtain an effective partition function Zeff as

Zeff =
∑

ξ 1,ξ 2

eb1ξ
1+b2ξ 2+b3ξ 1ξ 2+ln P0(ξ 1,ξ 2)

= 1 + q

2
eb3 cosh (b1 + b2) + 1 − q

2
e−b3 cosh (b1 − b2).

(12.118)

The saddle-point equations for non-conjugated order parameters are given by:



12.1 Model Setting 181

T1 = [ξ 1,true〈ξ 1〉]z,ξ 1,true,ξ 2,true , (12.119a)

T2 = [ξ 2,true〈ξ 2〉]z,ξ 1,true,ξ 2,true , (12.119b)

q1 = [〈ξ 1〉2]z,ξ 1,true,ξ 2,true , (12.119c)

q2 = [〈ξ 2〉2]z,ξ 1,true,ξ 2,true , (12.119d)

τ1 = [ξ 1,true〈ξ 2〉]z,ξ 1,true,ξ 2,true , (12.119e)

τ2 = [ξ 2,true〈ξ 1〉]z,ξ 1,true,ξ 2,true , (12.119f)

R = [〈ξ 1ξ 2〉]z,ξ 1,true,ξ 2,true , (12.119g)

r = [〈ξ 1〉〈ξ 2〉]z,ξ 1,true,ξ 2,true . (12.119h)

where 〈•〉 is the average under the distribution P(ξ 1, ξ 2) =
1
Zeff

eb1ξ
1+b2ξ 2+b3ξ 1ξ 2+ln P0(ξ 1,ξ 2). For 〈ξ 1〉Zeff , we can get

〈ξ1〉Zeff = ∂

∂b1
ln Zeff

= (1 + q)eb3 sinh (b1 + b2) + (1 − q)e−b3 sinh (b1 − b2)

(1 + q)eb3 cosh (b1 + b2) + (1 − q)e−b3 cosh (b1 − b2)

= (cosh b3 sinh b1 cosh b2 + sinh b3 cosh b1 sinh b2) + q(cosh b2 sinh b1 sinh b3 + sinh b2 cosh b1 cosh b3)

cosh b1 cosh b2 cosh b3 + sinh b1 sinh b2 sinh b3 + q(cosh b1 cosh b2 sinh b3 + sinh b1 sinh b2 cosh b3)

= tanh b1 + tanh b2 tanh b3 + q tanh b2 + q tanh b1 tanh b3
1 + tanh b1 tanh b2 tanh b3 + q tanh b3 + q tanh b1 tanh b2

.

(12.120)
Similarly, for 〈ξ 2〉Zeff and 〈ξ 2〉Zeff , we have

〈ξ 2〉Zeff = ∂

∂b2
ln Zeff

= tanh b2 + tanh b1 tanh b3 + q tanh b1 + q tanh b2 tanh b3
1 + tanh b1 tanh b2 tanh b3 + q tanh b3 + q tanh b1 tanh b2

,

(12.121)

and

〈ξ 1ξ 2〉Zeff = ∂

∂b3
ln Zeff

= tanh b3 + tanh b1 tanh b2 + q tanh b1 tanh b2 tanh b3 + q

1 + tanh b1 tanh b2 tanh b3 + q tanh b3 + q tanh b1 tanh b2
.

(12.122)

The saddle-point equations for conjugated order parameters are same with the
prior-free case

T̂1 = αβ2〈〈G+
s 〉〉, (12.123a)

T̂2 = αβ2〈〈〈G−
s 〉〉〉, (12.123b)

q̂1 = αβ2〈(G+
s )2〉, (12.123c)

q̂2 = αβ2〈(G−
s )2〉, (12.123d)
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τ̂1 = αβ2〈〈G−
s 〉〉, (12.123e)

τ̂2 = αβ2〈〈〈G+
s 〉〉〉, (12.123f)

R̂ = αβ2〈G−
c 〉 − αβ2 tanh(β2R), (12.123g)

r̂ = 2αβ2〈G+
s G

−
s 〉. (12.123h)

12.1.3 Stability Analysis

It is reasonable that near a continuous transition point, all order parameters are very
small (a trivial state) such that we can expand them to leading order. We first analyze
the prior-free unsupervised learning. According to Eq. (12.77), when the critical
point is approached from below, 〈ξ 1〉 � tanh b1 � b1. Analogously, 〈ξ 2〉 � b2, and
〈ξ 1ξ 2〉 � b3. We thus have the following results in this limit:

T1 = [ξ 1,true〈ξ 1〉]z,ξ 1,true,ξ 2,true = T̂1 + q τ̂2, (12.124)

τ2 = [ξ 2,true〈ξ 1〉]z,ξ 1,true,ξ 2,true = τ̂2 + qT̂1. (12.125)

Similarly, in the limit of vanishing order parameters, we have the following
approximation:

G+
s = eβ2(R−r) sinh (β�+) + e−β2(R−r) sinh (β�−)

eβ2(R−r) cosh (β�+) + e−β2(R−r) cosh (β�−)

= β

2
(�+ + �−).

(12.126)

Substituting this approximation into the saddle-point equations of T̂1 and τ̂2, we get
the approximate results of T̂1 and τ̂2 as

T̂1 = αβ2〈〈G+
s 〉〉 � αβ2e−β2

cosh (β2q)

∫
Dt sinh βt0 cosh β(qt0 +

√
1 − q2x0)

β

2
[�+ + �−]

= αβ4[T1 + tanh(β2q)τ2],

τ̂2 = αβ2〈〈〈G+
s 〉〉〉 � αβ2e−β2

cosh (β2q)

∫
Dt cosh βt0 sinh β(qt0 +

√
1 − q2x0)

β

2
[�+ + �−]

= αβ4[τ2 + tanh(β2q)T1].
(12.127)

We recast the equations for all these four order parameters in a matrix form as

(
T1
τ2

)
=
(
1 q
q 1

)(
T̂1
τ̂2

)
, (12.128)
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(
T̂1
τ̂2

)
= αβ4

(
1 tanh (β2q)

tanh (β2q) 1

)(
T1
τ2

)
. (12.129)

From the Eqs. (12.128) and (12.129), T1 and τ2 can be worked out as

(
T1
τ2

)
= αβ4

(
1 + q tanh (β2q) q + tanh (β2q)

q + tanh (β2q) 1 + q tanh (β2q)

)(
T1
τ2

)
= M

(
T1
τ2

)
,

(12.130)
where the matrixM is the so-called stability matrix, whose largest eigenvalue deter-
mines the critical value of the learning data size αc. In detail, the stability matrix has
two eigenvalues:

λ+ = αβ4
(
1 + q tanh (β2q) + |q + tanh(β2q)|) , (12.131)

λ− = αβ4
(
1 + q tanh (β2q) − |q + tanh(β2q)|) . (12.132)

The αc can be read off from λ+ = 1, i.e.

αc = β−4

1 + q tanh (β2q) + |q + tanh(β2q)| . (12.133)

Aphysics understandingofwhy the smaller eigenvalue could not be used to determine
the threshold αc can be carried out, in the sense that the result is in contradiction with
the expectation that learning should be easier given noise-free data.

Next, we analyze two interesting limits of the critical threshold equation
[Eq. (12.133)]. As the first limit, |q| → 1, αc → 1

4β
−4 provided that β is relatively

large such that tanh β2 � 1. The second limit is that |q| → 0, i.e., q takes a small
value but not zero, suggesting a weak correlation among feature maps. Based on the
order of magnitude of q, we have the following analytic result given a relatively large
β:

lim
β→∞ αcβ

4 =

⎧
⎪⎨

⎪⎩

1 if |q| 
 β−2,
1

1+| tanh q0| if q = q0β−2 or |q| ∼ β−2,
1

2(1+|q|) if |q| � β−2.

(12.134)

Note that ∞ means any large value of β making tanh β � 1, rather than a definite
value of infinity. Equation (12.134) shows that once the two feature maps are weakly
correlated, the minimal learning data size for a transition can be further (or even
significantly) reduced compared to the correlation-free case, especially in the case
that q is not very small but still larger than the order of magnitude set by β−2. We
show this result in Fig. 12.2.

We thus deduce a significant hypothesis for the triggeringof concept formation that
a bit large (compared with β−2) yet still small value of the correlation level is highly
favored for unsupervised learning from a dataset of smaller size (compared with the
correlation-free case). Regularization techniques such as locally enforcing feature
orthogonality [4] has been introduced to deep learning. Weakly-correlated recep-
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Fig. 12.2 The critical value of data size (Eq. (12.133)) as a function of the correlation level q. The
weak-feature-correlation limit at different orders of magnitude compared with β−2 is considered.
β = 5 for this example. The dashed line shows the third case of Eq. (12.134). This plot is adapted
from Ref. [1]

tive fields are also favored from the perspective of neural computation, because the
redundancy among synaptic weights is reduced and thus different feature detectors
inside the network can encode efficiently stimuli features rather than capturing only
noise in the data. A similar decorrelation in hidden activities was recently theoreti-
cally analyzed in feedforward neural networks [5]. We anticipate in specific machine
learning tasks, and even in neuroscience experiments the relationship among the
minimal data size for learning, the correlation level of synapses (or receptive fields)
and the noise level in stimuli can be jointly established. Therefore, from the Bayesian
learning perspective, the non-orthogonal-feature case yields a much lower thresh-
old for the phase transition toward the concept formation, in comparison with the
correlation-free case [3, 6, 7].

In the optimal Bayes inference case, when α approaches the SSB threshold from
below, all order parameters get close to zero, except for R which is always equal
to q due to the prior information. It is straightforward to show that R̂ is also zero
below the SSB threshold. Therefore, b1, b2 and b3 are all small quantities. Then we
can expand our order parameters to leading order. Note that 〈ξ 1〉 � b1 + qb2, and
〈ξ 2〉 � b2 + qb1. It then follows that
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T1 = [ξ 1,true〈ξ 1〉] � T̂1 + q τ̂2 + q τ̂1 + q2T̂2, (12.135a)

T2 = [ξ 2,true〈ξ 2〉] � T̂2 + q τ̂2 + q τ̂1 + q2T̂1, (12.135b)

τ1 = [ξ 1,true〈ξ 2〉] � τ̂1 + qT̂1 + qT̂2 + q2τ̂2, (12.135c)

τ2 = [ξ 2,true〈ξ 1〉] � τ̂2 + qT̂1 + qT̂2 + q2τ̂1. (12.135d)

Because R = q, by defining W (q) = eβ2q

2 cosh(β2q)
, one arrives at the approximation

G±
s � βW (q)(�+ ∓ �−) ± β�−. To proceed, it is worth noticing that

〈〈�+〉〉 = β[T1 + τ1 + τ2 tanh (β2q) + T2 tanh (β2q)], (12.136a)

〈〈�−〉〉 = β[T1 − τ1 + τ2 tanh (β2q) − T2 tanh (β2q)], (12.136b)

〈〈〈�+〉〉〉 = β[T2 + τ2 + τ1 tanh (β2q) + T1 tanh (β2q)], (12.136c)

〈〈〈�−〉〉〉 = β[τ2 − T2 + T1 tanh (β2q) − τ1 tanh (β2q)]. (12.136d)

Based on the above approximations, it is easy to derive the following approximate
values of the relevant conjugated quantities

T̂1 � αβ4[T1 + ϒτ1 + τ2 tanh (β2q) + ϒT2 tanh (β2q)], (12.137a)

T̂2 � αβ4[T2 + ϒτ2 + τ1 tanh (β2q) + ϒT1 tanh (β2q)], (12.137b)

τ̂1 � αβ4[τ1 + ϒT1 + T2 tanh (β2q) + ϒτ2 tanh (β2q)], (12.137c)

τ̂2 � αβ4[τ2 + ϒT2 + T1 tanh (β2q) + ϒτ1 tanh (β2q)], (12.137d)

where ϒ ≡ 2W (q) − 1.
The above approximations of (T1, T2, τ1, τ2) and (T̂1, T̂2, τ̂1, τ̂2) can be easily

recasted into a compact matrix form as follows:

⎛

⎜⎜⎝

T1
T2
τ1
τ2

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 q2 q q
q2 1 q q
q q 1 q2

q q q2 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

T̂1
T̂2
τ̂1
τ̂2

⎞

⎟⎟⎠ , (12.138)

and

⎛

⎜⎜⎝

T̂1
T̂2
τ̂1
τ̂2

⎞

⎟⎟⎠ = αβ4

⎛

⎜⎜⎝

1 ϒ tanh (β2q) ϒ tanh (β2q)

ϒ tanh (β2q) 1 tanh (β2q) ϒ

ϒ tanh (β2q) 1 ϒ tanh (β2q)

tanh (β2q) ϒ ϒ tanh (β2q) 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

T1
T2
τ1
τ2

⎞

⎟⎟⎠ .

(12.139)
A linear stability analysis implies that the stability matrixM can be organized in this

case as a block matrix of the form M =
(
A B
B A

)
, where the matrices A and B are

derived from Eqs. (12.138) and (12.139), and given, respectively, by
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A = αβ4

(
(1 + q tanh (β2q))(1 + qϒ) (tanh (β2q) + q)(q + ϒ)

(tanh (β2q) + q)(ϒ + q) (1 + q tanh (β2q))(1 + qϒ)

)
,

(12.140a)

B = αβ4

(
(ϒ + q)(1 + q tanh (β2q)) (ϒq + 1)(q + tanh (β2q))

(ϒq + 1)(q + tanh (β2q)) (ϒ + q)(1 + q tanh (β2q))

)
. (12.140b)

According to the determinant identity for a block matrix, |M − λI | = |A + B −
λI | |A − B − λI |, the eigenvalues of the stability matrix can be determined by the
following two equations:

∣∣∣∣
αβ4(1 + q)(1 + q tanh (β2q))(1 + ϒ) − λ αβ4(1 + q)(ϒ + 1)(q + tanh(β2q))

αβ4(1 + q)(ϒ + 1)(q + tanh (β2q)) αβ4(1 + q)(1 + q tanh (β2q))(1 + ϒ) − λ

∣∣∣∣ = 0,

(12.141)
and
∣∣∣∣
αβ4(1 − q)(1 + q tanh (β2q))(1 − ϒ) − λ αβ4(1 − q)(ϒ − 1)(q + tanh (β2q))

αβ4(1 − q)(ϒ − 1)(q + tanh (β2q)) αβ4(1 − q)(1 + q tanh (β2q))(1 − ϒ) − λ

∣∣∣∣ = 0.

(12.142)
Using themathematical identitymax(1 − q, 1 + q) = 1 + |q|, andmax(1 − ϒ, 1 +
ϒ) = 1 + |ϒ |, we conclude that the maximal value of all eigenvalues is given
by λmax = αβ4(1 + |q|)(1 + |ϒ |)(1 + q tanh (β2q) + |q + tanh (β2q)|). The criti-
cal data density for the SSB phase is thus given by

αc = β−4

(1 + |q|)(1 + |ϒ |)(1 + q tanh (β2q) + |q + tanh (β2q)|) . (12.143)

This SSB critical data density is comparedwith that of the prior-free case in Fig. 12.3.
We see that the prior knowledge about q significantly reshapes the critical data
density surface for the SSB phase, which provides deep insights about roles of prior
information.

12.2 Phase Diagram

In this section, we provide a detailed explanation of phase transitions caused by
increasing data size for the model with prior. The difference from the prior-free
scenario is also highlighted. Interestingly, when α is small, trivial (null values) order
parameters except R are a stable solution of Eq. (12.119), thereby suggesting a
random guess (RG) phase. As expected, R captures the prior information, thus being
equal to q irrespective of α. In this phase, 〈ξ 1〉 = 〈ξ 2〉 = 0, the weight thus takes
±1 with equal probabilities, implying that the data does not provide any useful
information to bias the weight’s direction during learning. The underlying physics
is that the posterior [Eq. (12.22)] is invariant under the reverse operation ξ → −ξ ,
and this symmetry is unbroken in the RG phase.
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Fig. 12.3 Comparison of SSB critical data densities in models with/without prior knowledge. This
plot is adapted from Ref. [2]

Surprisingly, as more data is supplied, the RG phase would lose its stability at a
critical data density. By a linear stability analysis as shown above, this threshold can
be analytically obtained as

αc = �(β, q)

(1 + |q|)(1 + | tanh(β2q)|) , (12.144)

where �(β, q) = β−4

1+q tanh(β2q)+|q+tanh(β2q)| denotes the learning threshold for the
prior-free scenario [1]. In the correlation-free case (q = 0, more than one hidden
nodes allowed), the known threshold αc = β−4 is recovered [3, 6]. Compared to
the prior-free scenario, the prior knowledge contributes to a further reduction of the
threshold (∼60% of the prior-free one for q = 0.3 and β = 1). Most interestingly,
in the weak correlation limit, where q ∼ β−2 with a proportional constant q0 in the
presence of less noisy data (large β), αcβ

4 = 1
(1+| tanh q0|)2 , which demonstrates that

the learning threshold can be decreased to only 32% of the correlation-free case for
q0 = 1. This demonstrates the same benefit of theweak correlation between synapses
as shown in the prior-free scenario.

When α > αc, the RG phase is replaced by the symmetry-broken phase, where
〈ξ 1〉 = 〈ξ 2〉 �= 0. Note that the inherent-reverse-symmetry is spontaneously broken.
We thus call the second phase a spontaneous symmetry breaking (SSB) phase. The
SSB implies a non-zero solution of q1 = q2 = T1 = T2 = τ1 = τ2 = r . As a reason-
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Fig. 12.4 A schematic illustration of various kinds of inherent symmetry breaking in unsupervised
learning. As the data density α increases, a first continuous transition related to the reverse sym-
metry breaking occurs, where the student machine starts to infer the common parts of ground-truth
receptive fields. This type of transition is named spontaneous symmetry breaking (SSB), as encoun-
tered in a standard Ising model. As α further increases, the student starts to infer the distinct part
of the ground truth. This is called the first type of permutation symmetry breaking (PSB), i.e., the
student starts to realized that its two receptive fields are not the same. We name this transition as
PSBs , where the subscript means student. As the data density further increases, the student starts
to be capable of distinguishing the intrinsic order of two hidden nodes in the teacher’s (or ground
truth) architecture. We call this transition as PSBt , where the subscript means teacher. Only after
this transition, the free energy has two equally important valleys (for an arbitrary number P of
hidden neurons, there are reasonably P! valleys). These two valleys corresponds to two possible
orders of (A, B) or (B, A) for the ground truth, which is also the inherent permutation symmetry
in the model to generate the data of the identical Gibbs-Boltzmann distribution

able interpretation, the student infers only the common part of the two planted RFs
in this new phase (see Fig. 12.4, see also a numerical simulation proof in the previ-
ous work [1]). Thus the PS still holds for the student’s hidden neurons. Moreover,
ξ 1,true and ξ 2,true have the PS property as well, providing a physics explanation of the
solution we obtained. The SSB phase is thus permutation symmetric and stable until
a turnover of the order parameter r is reached [Fig. 12.5a].

At the turnover, the PS is also spontaneously broken, thereby leading to a per-
mutation symmetry breaking (PSB) phase. The third phase is characterized by two
fixed points: (i) q1 = q2 = T1 = T2, and τ1 = τ2 = r ; (ii) q1 = q2 = τ1 = τ2, and
T1 = T2 = r . We remark that these two fixed points share the same free energy, rep-
resenting two possible choices of ground truth— (ξ 1,true, ξ 2,true) or (ξ 2,true, ξ 1,true),
resembling the well-known free energy picture of ferromagnetic Ising model. In fact,
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Fig. 12.5 Phase diagram of
unsupervised learning with
priors. a Order parameters
versus data densities with
(β, q)=(1.0, 0.3). Lines are
replica results compared
with symbols obtained from
the message passing (MP)
procedure (instances of
N = 200). Results of the
prior-free unsupervised
learning are also plotted for
comparison. The arrows
indicate the role of priors in
shifting the phase transition
points. b Critical data
densities for SSB and PSB
are obtained from replica
analysis and plotted for
increasing values of β. These
plots are adapted from
Ref. [2]

the PSB phase has two subtypes: the first one is a PSBs phase where the permutation
symmetry between ξ 1 and ξ 2 is broken on the student’s side, i.e., 〈ξ 1〉 can point
conversely to 〈ξ 2〉 but with the same magnitude, thereby q1 = q2 �= r , and the sec-
ond one is a PSBt phase where the PSB occurs on the teacher’s side, i.e., ξ 1,true and
ξ 2,true cannot be freely permuted, thereby T1,2 �= τ2,1 (see Fig. 12.4). Interestingly,
the self-overlap deviates from r at the turnover, thereby merging PSBs phase and
PSBt phase into a single PSB phase, rather than separating these two subtypes as in
the prior-free scenario (Fig. 12.5a). With the help of prior knowledge, the student is
able to distinguish two planted RFs (PSBt, recognizing the exact order) at the same
time when starting to infer different components of the student’s RFs (PSBs). This
process is also pictorially shown in Fig. 12.4. Furthermore, the prior does not change
the PSBt transition point of the prior-free case, in that knowing q does not help to
accelerate the recognition of two choices of ground truth. The only effect is that the
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knowledge of q does elevate the overlap values before the turnover, resulting in a
larger value of r in the post-turnover regime compared to the prior-free case. After
the turnover, the overlap equal to min(T1, τ1) or min(T2, τ2) has the same value with
r , since (ξ 1,true, ξ 2,true) follows the same posterior as (ξ 1, ξ 2), as can be deduced from
the Nishimori condition of the Bayes optimal learning. As expected, r finally tends
to q at a finite but large value of α [Fig. 12.5a], suggesting that the unsupervised
learning is completed.

We conclude that with/without the prior knowledge, the data stream drives the
SSBandPSBphase transitions of continuous type [1, 2]. Thresholds of the transitions
for the prior case are summarized in Fig. 12.5b. This conclusion can be verified by
numerical simulations on single instances of themodel by applying the corresponding
message-passing-based learning algorithm (Fig. 12.5a, technical details have been
given in the previous sections). We finally remark that in a general RBM with more
than two hidden neurons, themessage passing does not apply, or evenwe cannot have
a closed-form for the equation. However, a variational mean-field theory, working at
the model ensemble level, can be used to treat arbitrary many hidden neurons, as we
already introduce in detail in Chap. 10.

12.3 Hyper-Parameters Inference

In this section, we show how to infer the hyper-parameters of our unsupervised
learning model. We first write the posterior probability of the hyper-parameters β
and q as [2]

P(β, q|D) =
∑

ξ1,ξ2

P(β, q, ξ1, ξ2|D) =
∑

ξ1,ξ2

P(D|β, q, ξ1, ξ2)P0(ξ
1, ξ2|q)

∫ ∫
dβdq

∑
ξ1,ξ2 P(D|β, q, ξ1, ξ2)P0(ξ

1, ξ2|q)
,

(12.145)
where D indicates the dataset, we have used the Bayes’ rule, and we assume that
P0(ξ

1, ξ 2, β, q) = P0(ξ
1, ξ 2|q)P̃0(β, q)where P̃0(β, q) is a constant or equivalently

we have no prior knowledge about the true values of the hyper-parameters. Therefore,
we have

P(β, q|D) ∝
∑

ξ 1,ξ 2

M∏

a=1

P(σ a|β, q, ξ 1, ξ 2)

N∏

i=1

P0(ξ
1
i , ξ 2

i |q). (12.146)

Note that the data distribution can be expressed as

P(σ a|β, q, ξ 1, ξ 2) =
cosh

(
β√
N

ξ 1 · σ a

)
cosh

(
β√
N

ξ 2 · σ a

)

2Neβ2 cosh (β2Q)
. (12.147)
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The posterior probability of the hyper-parameters can be finally simplified as
P(β, q|D) ∝ e−β2M�, where � is exactly the partition function of the posterior
P(ξ 1, ξ 2|D). This partition function can be written explicitly as follows:

�(β, q) =
∑

ξ 1,ξ 2

M∏

a=1

cosh

(
β√
N

ξ 1 · σ a

)
cosh

(
β√
N

ξ 2 · σ a

)

cosh (β2Q)

N∏

i=1

P0(ξ
1
i , ξ 2

i |q).

(12.148)
Searching for consistent hyper-parameters (β, q) compatible with the supplied

dataset is equivalent tomaximizing the posterior P(β, q|D). Following this principle,
we first derive the temperature equation as

∂ ln P(β, q|D)

∂β
= −2Mβ + ∂

∂β
ln�(β, q). (12.149)

Note that in statistical physics, the energy function is given by Nε = − ∂ ln�
∂β

, where
ε(β, q) denotes the energy density (per degree of freedom). We thus conclude that
β should obey the following temperature equation

β = −ε(β, q)

2α
. (12.150)

Note that when the true prior is taken into account, the energy density of the model
is analytic with the result ε = −2αβ independent of q. This is exactly what the
Nishmori model shows (see Chap. 6). Note that rare model of spin glass can have
analytic energy in general.

Given the dataset and an initial guess of β, the aforementioned message passing
scheme with prior knowledge can be used to estimate the energy density of the
system as Nε = −∑i 
εi + (N − 1)

∑
a 
εa based on the Bethe approximation.

The energy contribution of one synapse-pair reads


εi =
∑

ξ 1
i ,ξ 2

i

∑
b∈∂i

∂ub→i (ξ
1
i ,ξ 2

i )

∂β
e
∑

b∈∂i ub→i (ξ
1
i ,ξ 2

i )+ln P0(ξ 1
i ,ξ 2

i )

∑
ξ 1
i ,ξ 2

i
e
∑

b∈∂i ub→i (ξ
1
i ,ξ 2

i )+ln P0(ξ 1
i ,ξ 2

i )
, (12.151)

where ∂ub→i (ξ
1
i ,ξ 2

i )

∂β
reads as follows,

β
∂ub→i (ξ

1
i , ξ 2

i )

∂β
= β2[	1

b→i + 	1
b→i + 2
b→i ] − 2β2

(
Qb→i + ξ 1

i ξ 2
i

N

)

× tanh

(
β2Qb→i + β2

N
ξ 1
i ξ 2

i

)
+ Yb→i tanh Yb→i

+ 
b→i

1 + 
b→i

(−4β2
b→i + Xb→i tanh Xb→i − Yb→i tanh Yb→i
)
,

(12.152)
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where Xb→i ≡ βG1
b→i − βG2

b→i + β√
N

σ b
i (ξ 1

i − ξ 2
i ), Yb→i ≡ βG1

b→i + βG2
b→i +

β√
N

σ b
i (ξ 1

i + ξ 2
i ), and
b→i ≡ e−2β2
b→i cosh Xb→i

cosh Yb→i
. The energy contribution of one data

sample is given by

β
εa = β2(	1
a + 	2

a + 2
a) − 2β2Qa tanh (β2Qa) + Ya tanh Ya

+ 
a

1 + 
a

(−4β2
a + Xa tanh Xa − Ya tanh Ya
)
,

(12.153)

where Xa ≡ βG1
a − βG2

a , Ya ≡ βG1
a + βG2

a , and 
a = e−2β2
a cosh Xa
cosh Ya

.

Next, we derive the correlation equation. Note that P0(ξ 1
i , ξ 2

i ) = eJ0ξ1i ξ2i

4 cosh J0
, where

J0 = tanh−1 q. This prior contributes an extra coupling term in the effective Hamil-
tonian in the replica computation. We then have

∂P(β, q|D)

∂q
= e−Mβ2 ∂�

∂q
= 0, (12.154)

which requires that ∂�
∂q = 0. It then follows that

∂�

∂q
= �

∑

ξ 1,ξ 2

P(ξ 1, ξ 2|D)
∑

i

(ξ 1
i ξ 2

i − tanh J0)
∂ J0
∂q

= �

(
∑

i

〈ξ 1
i ξ 2

i 〉P(ξ 1,ξ 2|D) − N tanh J0

)
∂ J0
∂q

= 0.

(12.155)

To satisfy Eq. (12.155), the following correlation equation must be solved:

q = 1

N

∑

i

qi , (12.156)

where qi can be computed in a single instance by iterating the message passing
scheme. More precisely

qi =
∑

ξ 1
i ,ξ 2

i
ξ 1
i ξ 2

i e
∑

b∈∂i ub→i (ξ
1
i ,ξ 2

i )P0(ξ 1
i , ξ 2

i )
∑

ξ 1
i ,ξ 2

i
e
∑

b∈∂i ub→i (ξ
1
i ,ξ 2

i )P0(ξ 1
i , ξ 2

i )
. (12.157)

In addition, the negative log-likelihood of the hyper-parameter posterior per neu-
ron can also be estimated as L

N = C − ln�
N + αβ2, where C is an irrelevant constant,

and the second term can be approximated by β fBethe. This measure is helpful to char-
acterize the quality of the inference performance, as was analyzed in our work [2].
Given only the data samples, the inference of hyper-parameters (β,q) underlying
the data can be achieved by iteratively imposing the Nishimori constraint to reach
a consistent value of (β, q) to explain the data. In statistics, this iterative scheme
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is called the expectation-maximization algorithm [8], where the message update to
compute (ε, {qi }) is called an expectation-step, while the hyper-parameter update is
called a maximization-step. The hyper-parameter space, especially when the amount
of data samples is not sufficient, is not guaranteed to be convex, instead being highly
non-convex in general. A high relative inference error with a large fluctuation in a
data-deficient regime would be observed.

References

1. T. Hou, K.Y.M. Wong, H. Huang, J. Phys. A: Math. Theor. 52(41), 414001 (2019)
2. T. Hou, H. Huang, Phys. Rev. Lett. 124, 248302 (2020)
3. H. Huang, T. Toyoizumi, Phys. Rev. E 94, 062310 (2016)
4. P. Rodriguez, J. Gonzalez, G. Cucurull, J.M. Gonfaus, X. Roca, in ICLR 2017 (2016).

arXiv:1611.01967
5. H. Huang, Phys. Rev. E 98, 062313 (2018)
6. H. Huang, J. Stat. Mech.: Theory Exper. 2017(5), 053302 (2017)
7. A. Barra, G. Genovese, P. Sollich, D. Tantari, Phys. Rev. E 96, 042156 (2017)
8. A.P. Dempster, N.M. Laird, D.B. Rubin, J. R. Stat. Soc. Ser. B 39, 1 (1977)

http://arxiv.org/abs/1611.01967


Chapter 13
Mean-Field Theory of Ising Perceptron

Learning problem asks one to find a group of synapses to store P patterns in a
network with N neurons. For a feedforward structure, it can also be seen as a classi-
fication problem of P patterns with specified labels. For this purpose, we can design
a simplest architecture with only one output unit but with binary synapses connecting
input nodes to the output. Although this binary Perceptron is not a practical setting
for complex learning (e.g., non-linear-separable datasets), the toy model received a
substantial research interest especially in statistical physics community. In particular,
many important theoretical insights are gained from studies of this model. In this
chapter, we bring some important progresses in recent years about the theoretical
studies of the Ising/binary Perceptron (Braunstein and Zecchina in Phys. Rev. Lett.
96:030201, 2006 [1]; Huang and Kabashima in Phys. Rev. E 90:052813, 2014 [2];
Baldassi et al. in Phys. Rev. Lett. 115(12): 128101, 2015 [3]).

13.1 Ising Perceptron model

Perceptron models [4] were first studied by physicists in 1980s. Continuous weights
were first analyzed as a statistical mechanics problem. From an information storage
perspective, the capacity, denoted as the maximal ratio (αc) between the number of
random patterns classified correctly by themachine and the number of input neurons,
was claimed to beαc = 2 [5]; later, this settingwas generalized to the perceptronwith
binary (±1) synapses (also called Ising-type), and the capacity decreases below one
(the upper-bound from an information-theoretical perspective) [6–8]. The spherical
perceptron with continuous weights has the continuous space of solutions below
the capacity, and thus training is easy. However, the binary perceptron has isolated
equilibrium solutions [2], and the training in the worst cases belongs to the NP-
complete class [9, 10].
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The Ising perceptron is a simple and abstract model of a biological neuronal
network (e.g., cerebellar Purkinje cells). The output of the Ising perceptron is the
sign of an weighted summation of its input (see Fig. 13.1), given by

yμ = sgn

(∑
i

ξ
μ

i Ji

)
, (13.1)

where ξ
μ

i is the i th component of theμth pattern, Ji is the i th synapse and sgn(·) is the
sign function. Note that the patterns are randomly selected with equal probabilities
for their entries, i.e., P(ξ

μ

i = ±1) = 1/2. The corresponding label is also random
and independent of the input signals. In the case of labels generated from a teacher
perceptron, the learning problem turns out to be a generalization problem [11]. We
will not analyze this case, because methods introduced in this chapter can be easily
adapted to the generalization case, in which there emerges interesting first-order
transitions for learning [12, 13]. If the output yμ is equal to a prescribed label σμ,
we say the perceptron successfully classifies ξμ. The energy cost of the network is
then given by

E(J) =
P∑

μ=1

�

(
− σμ

√
N

∑
i

Jiξ
μ

i

)
. (13.2)

E ranges from 0 to P , taking 0 for a complete storage, and P for a complete failure of
learning. Thus our goal is to find an optimal J to minimize E . The learning problem
is thus formulated as an optimization problem in the space of neural interactions. The
joint distribution of J can be formulated in the following Boltzmann–Gibbs form

P(J) = 1

Z
exp(−βE(J)), (13.3)

where β is an inverse-temperature characterizing the learning noise. In the zero-
temperature limit, the distribution can be written as

P(J) = 1

Z

∏
μ

�

(
σμ

√
N

∑
i

Jiξ
μ

i

)
, (13.4)

where� is theHeaviside step function. ln Z thus counts the number of solutions (valid
J) to the learning problem (a definition of an entropy S). In other words, Eq. (13.4)
indicates a uniform sampling of the solution space composed of all valid J.

One can expect that the number of solutions will decrease with the increase of
the number of patterns P , because it is more and more difficult to satisfy more
and more constraints of patterns. We are interested in large values of P and N , but
keeping a finite pattern density α ≡ P/N . How S changes with α is of theoretical
interests, which determines the maximal density (capacity) of the network that can
be compared with numerical experiments.
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Fig. 13.1 Left: A binary perceptron with three synapses. Right: the factor graph of the binary
perceptron. Circles (called variable nodes) represent synapses, and squares (called function nodes)
represent patterns to be learned

13.2 Message-Passing-Based Learning

To calculate S, one has to compute the partition function Z , but direct calculation is
unrealistic when N is large. Message passing algorithm, which is an application of
Bethe approximation in statistical physics, can provide a reasonable approximation
about the partition function with a much less computation, as we already see in
Chap. 2. Under this approximation, the joint distribution is factorized as the product
of pattern μ (except for a site-dependent factor for normalization). Therefore, the
message passing equation (see the factor graph in Fig. 13.1) is given by [1]

Pi→a(Ji ) = 1

Zi→a

∏
b∈∂i\a

P̂b→i (Ji ),

P̂b→i (Ji ) =
∑

{J j | j∈∂b\i}
�

⎛
⎝ σ b

√
N

∑
j

J jξ
b
j

⎞
⎠×

∏
j∈∂b\i

Pj→b(Jj ),

(13.5)

where Zi→a = ∏
b �=a P̂b→i (+1) +∏

b �=a P̂b→i (−1).
The second equation of Eq. (13.5) needs to sum up all 2N−1 configurations, which

is practically impossible. Notice that this summation is exactly the average of the
factor term under the cavity distributions, then P̂b→i can be written as

P̂b→i (Ji ) =
∑
J\i

f (J\i )P(J\i ). (13.6)

Since J\i take discrete values, we cannot directly replace the summation by an inte-
gral. If we could find an auxiliary variable w(J\i )which is a function of J\i and takes
continual values in the large N limit, the average can be replaced by
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P̂b→i (Ji ) ≈
∫

dwP(w)g(w), (13.7)

where g(w(J\i )) ≡ f (J\i ). Naturally, we define wb→i ≡ 1√
N

∑
j∈∂b\i J jξ

b
j . Without

loss of generality, we set σ b ≡ 1 for any input patterns in the remaining part of this
chapter, since our learning setting is invariant under the transformation ξ b

i → σ bξ b
i .

Then the exact form of Eq. (13.7) is given by

P̂b→i (Ji ) ≈
∫

dwb→i P(wb→i )�

(
wb→i + 1√

N
Jiξ

b
i

)
. (13.8)

Due to the central limit theorem (CLT), wb→i ∼ N(ŵb→i , σ̂b→i ), where

ŵb→i = 〈wb→i 〉 = 1√
N

∑
j �=i

m j→bξ
b
j , (13.9a)

σ̂b→i = 〈w2
b→i 〉 − 〈wb→i 〉2 = 1

N

∑
j �=i

(1 − m2
j→b). (13.9b)

It then follows that P(wb→i ) = 1√
2πσ̂b→i

exp
[

−(wb→i−ŵb→i )
2

2σ̂b→i

]
. Notice that the step

function equals zero when its argument is less than zero. Then we obtain

P̂b→i (Ji ) =
∫ ∞

− 1√
N
Ji ξ b

i

P(wb→i )dwb→i = H

(
−

1√
N
Jiξ b

i + ŵb→i√
σ̂b→i

)
. (13.10)

The function H(x) = ∫∞
x

e− x2
2 dz√
2π

, which is related to the error function H(x) =
1−erf(x/

√
2)

2 .
For a further simplification, we apply the definition of cavitymagnetizationmi→a ,

mi→a = Pi→a(+1) − Pi→a(−1)

=
∏

b �=a P̂b→i (+1) −∏
b �=a P̂b→i (−1)∏

b �=a P̂b→i (+1) +∏
b �=a P̂b→i (−1)

= exp(
∑

b �=a ln P̂b→i (+1)) − exp(
∑

b �=a ln P̂b→i (−1))

exp(
∑

b �=a ln P̂b→i (+1)) + exp(
∑

b �=a ln P̂b→i (−1))

= tanh

⎛
⎝∑

b �=a

1

2
ln

P̂b→i (+1)

P̂b→i (−1)

⎞
⎠ .

(13.11)

Finally, the message passing equations are summarized as follows:
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mi→a = tanh

⎛
⎝∑

b �=a

ub→i

⎞
⎠ , (13.12a)

ub→i = 1

2

[
ln H

(
−

1√
N

ξ b
i + ŵb→i√
σ̂b→i

)
− ln H

(
−

− 1√
N

ξ b
i + ŵb→i√
σ̂b→i

)]
, (13.12b)

where ŵb→i = 1√
N

∑
j �=i m j→bξ

b
j and σ̂b→i = 1√

N

∑
j �=i (1 − m2

j→b).
Meanwhile, the Bethe free energy can be calculated as (see also explanations in

Chap. 2)

βF =
∑
i

βFi − (N − 1)
∑
a

βFa, (13.13)

βFi = − ln Zi = − ln

[∏
b

P̂b→i (+1) +
∏
b

P̂b→i (−1)

]
, (13.14)

βFa = − ln Za = − ln H

(
−ŵb√

σ̂b

)
, (13.15)

where ŵb = 1√
N

∑
j m j→bξ

b
j , and σ̂b = 1√

N

∑
j (1 − m2

j→b). The entropy is exactly
the value of −βF when the energy is zero. Hence, we have

s = S

N
= −βF

N
. (13.16)

Figure 13.2 shows how the entropy changes with the pattern density. Two points
can help us to examine whether the entropy is correct: (i) When α is zero, each
synapse can take arbitrary values, suggesting that the total configuration is 2N , and
thus the entropy should be ln 2; (ii) The shape of entropy as a function of α must
be concave. A monotonic decrease of the entropy profile is confirmed. The capacity
above which the entropy becomes negative is estimated to be about 0.833, which
will be exactly computed by the replica theory in the next section.

13.3 Replica Analysis

Since MP only gives the approximation of the capacity when specific patterns are
given, it is hard to find the precise capacity (the N -independent one), due to the
fluctuation caused by selections of ξ . Instead, we turn to the replica method to
calculate the precise free energy averaged over all possible realizations of random
patterns. The replica trick is given by
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Fig. 13.2 Entropy versus pattern density. Results are estimated by the message passing algorithm
(MP) running on single instances of N = 1000. 20 random realizations of the model are considered

〈ln Z〉 = lim
n→0

ln〈Zn〉
n

, (13.17)

where 〈· · ·〉 indicates the quenched-disorder average over different random patterns.
Here, the disorder average of a logarithm can be transformed into computing the aver-
age of an integer power of the replicated partition function 〈Zn〉. Replica refers to the
process we copy the original system for n times. Correlations among synapses, which
precludes an analytic study, will be transformed into correlations among replicas,
which is amenable for further assumptions. In other words, synapses are decoupled,
and instead an overlap among replicas of the original system has to be introduced.

Therefore, 〈Zn〉 is given by

〈Zn〉 =
〈∑

{Ja}

n∏
a=1

P∏
μ=1

�

(
1√
N
Jaξμ

)〉
=
∑
{Ja}

〈
n∏

a=1

p∏
μ=1

�

(
1√
N
Jaξμ

)〉
.

(13.18)
To proceed, we first define the weighted sum as

uaμ = 1√
N
Jaξμ. (13.19)

The covariance structure for the sum is given by
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〈uaμ〉 = 0, (13.20)

〈uaμubν〉 = δμνq
ab, (13.21)

where δμν is a Kronecker delta function, and qab = 1
N

∑
i J

a
i J

b
i being the desired

overlap (order parameter) due to the replica operation. Then, we introduce q by the
delta function

〈Zn〉 =
∑
{Ja}

∫ ∏
a<b

dqabδ

(∑
i

J ai J
b
i − Nqab

)〈
P∏

μ=1

n∏
a=1

�(uaμ)

〉
{uaμ}

. (13.22)

Using the Fourier representation, δ(x − a) = ∫
dq̂/2π exp

[
i(x − a)q̂

]
, we recast

Eq. (13.22) into the following form

〈Zn〉 =
∑
{Ja}

∫ (∏
a<b

dqabdq̂ab

2π

)
exp

(
N (−i

∑
a<b

qabq̂ab) + i
∑
a<b

q̂ab J a J b

)

×
〈

n∏
a

P∏
μ=1

�(uaμ)

〉
{uaμ}

,

(13.23)
where Ja J b is a vector inner product.

13.3.1 Replica Symmetry

To get physics results, we have to make an assumption about the form of the overlap
matrix. Here, we use the RS ansätz, i.e., the overlap entries do not depend on specific
replica index, or permutation symmetry holds for the matrix. Specifically,

qab = δab + (1 − δab)q. (13.24)

Under this first-level approximation, we can first simplify terms involving q:

∑
a<b

qabq̂ab = n(n − 1)

2
qq̂, (13.25a)

∑
a<b

q̂ab J a J b = q̂

2

(∑
a,b

J a J b −
∑
a

J a J a
)

= q̂

2

(∑
a,b,i

J ai J
b
i − nN

)
= q̂

2

(∑
i

(∑
a

J ai
)2 − nN

)
.

(13.25b)
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By making the variable transformation, q̂ → iq̂, we have

〈Zn〉 =
∫ ∏

a<b

dqabdq̂ab

2π i
exp

(
− Nn(n − 1)

2
qq̂

)
A︷ ︸︸ ︷∑

{Ja}
exp

⎛
⎝ q̂

2

(∑
i

(∑
a

Jai

)2 − nN

)⎞⎠
︸ ︷︷ ︸

Entropy term

×
〈 n∏
a=1

P∏
μ=1

�(uaμ)

〉
{uaμ}︸ ︷︷ ︸

Energy term

.

(13.26)

By applying the Gaussian integral identity:
∫
Dzebz = e

b2

2 , we compute the part A
as follows:

A ≡
∑
{Ja}

exp

(
q̂

2

(∑
i

(∑
a

J ai

)2

− nN

))

= exp(−nNq̂/2)
∑
{Ja}

∏
i

exp

(
q̂

2

(∑
a

J ai

)2
)

= exp(−nNq̂/2)
∏
i

∑
{Jai }

exp

(
q̂

2

(∑
a

J ai

)2
)

= exp(−nNq̂/2)
∏
i

∑
{Jai }

∫
Dz exp

(√
q̂
∑
a

J ai z

)

= exp(−nNq̂/2)
∏
i

∫
Dz

∑
{Jai }

∏
a

exp(
√
q̂ J ai z)

= exp(−nNq̂/2)
∏
i

∫
Dz

∏
a

∑
Jai

exp(
√
q̂ J ai z)

= exp(−nNq̂/2)
∏
i

∫
Dz

∏
a

2 cosh(
√
q̂z)

= exp(−nNq̂/2)
∏
i

∫
Dz(2 cosh(

√
q̂z))n

=
{
exp(−nq̂/2)

∫
Dz(2 cosh(

√
q̂z))n

}N

.

(13.27)

Then, we start to compute the energy term. Notice that {uaμ} are independent for
different patterns. It then follows that
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Energy term ≡
〈

n∏
a=1

P∏
μ=1

�(uaμ)

〉
{uaμ}

=
P∏

μ=1

〈
n∏

a=1

�(uaμ)

〉
{uaμ}

=
⎡
⎣〈 n∏

a=1

�(ua)

〉
{ua}

⎤
⎦

P

.

(13.28)

Under the RS ansätz, the mean and covariance of ua is given by 〈ua〉 = 0; 〈uaub〉 =
δab + (1 − δab)qab. According to the CLT, u obeys a multivariate Gaussian dis-
tribution subject to their covariance structure constraints. Let ua = Axa + Bz,
where xa and z are mutually independent standard Gaussian random variables.
The variance is then given by 〈uaub〉 = A2〈xaxb〉 + B2〈z2〉 = δab + (1 − δab)qab.
To satisfy the covariance constraint, we have B2 + A2 = 1, B2 = q, resulting in
ua = √

1 − qxa + √
qz. Then, the energy term can be written in the form of a prob-

ability distribution integral

Energy term =
[∫

Dz
n∏

a=1

∫
Dxa�(

√
1 − qxa + √

qz)

]P

=
{[∫

DzH

(
−
√

q

1 − q
z

)]n}P

.

(13.29)

Taken together, we have the final result of 〈Zn〉

〈Zn〉 =
∫

dqdq̂

2π i
exp

[
−N

n(n − 1)

2
q̂q − Nn

2
q̂ + N ln

(∫
Dz[2 cosh(

√
q̂z)]n

)]

× exp

[
Nα ln

∫
Dz

(
H(−

√
q

1 − q
z)

)n
]

,

(13.30)
where α = P

N . We define F(q, q̂, n) = − n(n−1)
2 q̂q − n

2 q̂ + ln(
∫
Dz[2 cosh

(
√
q̂z)]n) + α ln

∫
Dz[H(−

√
q

1−q z)]n . Then,we get the free energy of the perceptron
under the replica symmetry ansätz as follows:

− β fRS = lim
n→0

ln〈Zn〉
Nn

= lim
n→0

ln
∫ dqdq̂

2π i e
NF

Nn
. (13.31)

To get around a high-dimensional integral, we apply the Laplace approximation
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−β fRS = lim
n→0;N→∞

ln〈Zn〉
Nn

� lim
n→0

Fmax

n

= 1

2
q̂q − 1

2
q̂ + lim

n→0

ln
(∫

Dz[2 cosh(√q̂z)]n
)

n
+ lim

n→0

α ln
∫
Dz[H(−

√
q

1−q z)]n
n

.

(13.32)
Using L′Hospital’s rule for computing limits, we have

− β fRS = 1

2
q̂q − 1

2
q̂ +

∫
Dz ln[2 cosh(

√
q̂z)] + α

∫
Dz ln[H(−

√
q

1 − q
z)].

(13.33)
Using

∫
DzF(z)z = ∫

DzF ′(z), tanh′(x) = 1 − tanh2(x), and H ′′(y) = −yH ′(y),
we then derive the saddle-point equations as follows:

∂(−β fRS)

∂q̂
= 1

2
(q − 1) +

∫
Dz

z

2
√
q̂
tanh(

√
q̂z)

= 1

2
q − 1

2

∫
Dz tanh2(

√
q̂z)

= 0,

∂(−β fRS)

∂q
= 1

2
q̂ − α

2
√
q(1 − q)3

∫
Dz

zH ′(−
√

q
1−q z)

H(−
√

q
1−q z)

= 1

2
q̂ − α

2
√
q(1 − q)3

∫
Dz

⎛
⎝H ′(−

√
q

1−q z)

H(−
√

q
1−q z)

⎞
⎠

′

= 1

2
q̂ − α

2(1 − q)

∫
Dz

⎛
⎝H ′(−

√
q

1−q z)

H(−
√

q
1−q z)

⎞
⎠

2

= 0,

(13.34)

which leads to the final saddle-point equations of the Perceptron model,

q =
∫

Dz tanh2(
√
q̂z),

q̂ = α

1 − q

∫
Dz

⎛
⎝H ′(−

√
q

1−q z)

H(−
√

q
1−q z)

⎞
⎠

2

.

(13.35)

As shown in Fig. 13.3, the saddle-point equation solution is not physical anymore
once α > αc � 0.833 [8], because a negative entropy is impossible for a system of
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Fig. 13.3 Entropy versus pattern density. Results are computed by replica symmetry theory, com-
paredwith the results obtained on single instances of the learning problem by runningMP (indicated
by the symbol). 20 random instances of network size N = 1000 are considered

discrete state-variables. One can further check the AT stability condition,1 showing
that αAT � 1.015 [6, 14]. Therefore, the RS solution is still stable in the negative-
entropy regime. To gain deeper insights, we have to consider the replica symmetry
breaking effect in the next subsection.

13.3.2 Replica Symmetry Breaking

We consider the one-step replica symmetry breaking (1RSB) ansätz, i.e., the form
of the overlap matrix Q is assumed to have the following shape

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 q1 q0 q0 q0 q0
q1 1 q0 q0 q0 q0
q0 q0 1 q1 q0 q0
q0 q0 q1 1 q0 q0
q0 q0 q0 q0 1 q1
q0 q0 q0 q0 q1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

1 It is interesting to show that the microscopic instability condition around the fixed point of the
MP algorithm is identical to the instability for breaking the RS in equilibrium, which is left as an
exercise for interested readers.
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wherewe assume n = 6, m = 2 for an example, and thematrix is divided into n/m ×
n/m small blocks in general, andm is the width of each small block. Diagonal blocks
have elements q0 and off-diagonal ones have elements q1. All diagonal elements take
1 by definition. The physical meaning of q1 is the average overlap between replicas
in the same state, and q0 is the average overlap of two replicas from different states.
Consequently, we have q0 < q1. Under the 1RSB ansätz, we have

〈Zn〉 =
∫ ∏

a<b

dqabdq̂ab

2π

A︷ ︸︸ ︷
exp

(
N (−

∑
a<b

qabq̂ab)

) B︷ ︸︸ ︷∑
{Ja}

exp

(∑
a<b

q̂ab J a J b
)

︸ ︷︷ ︸
Entropy term

×
〈

n∏
a

P∏
μ=1

�(uaμ)

〉
{uaμ}︸ ︷︷ ︸

Energy term

.

(13.36)

The part A is then computed as

∑
a<b

qabq̂ab = n

m

m(m − 1)

2
q1q̂1 + n(n − m)

2
q0q̂0. (13.37)

The summation over a < b inside the part B is then calculated as

∑
a<b

q̂ab J a J b =
∑
i

∑
a<b

q̂ab J ai J
b
i

=
∑
i

∑
a<b

q̂0 J
a
i J

b
i +

∑
i

∑
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(q̂ab − q̂0)J
a
i J

b
i

=
∑
i

∑
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q̂0 J
a
i J

b
i +

∑
i

n/m∑
c

∑
a,b∈c:a<b

(q̂1 − q̂0)J
a
i J

b
i

= q̂0
2

∑
i

⎛
⎝
(

n∑
a=1

Jai

)2

− n

⎞
⎠+ q̂1 − q̂0

2

∑
i

⎛
⎝n/m∑

c

(∑
a∈c

J ai

)2

− n

⎞
⎠ .

(13.38)

Then, the part B can be explicitly calculated out as follows:
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∑
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q̂ab J a J b
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(13.39)

Next, we are going to compute the energy term

〈
n∏

a=1

P∏
μ=1

�(uaμ)

〉
{uaμ}

=
P∏

μ=1

〈
n∏

a=1

�(uaμ)

〉
{uaμ}

=
P∏

μ=1

〈
n∏

a=1

�(ua)

〉
{ua}

.

(13.40)
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The mean and variance of ua are specified by

〈ua〉 = 0,

〈uaub〉 =

⎧⎪⎨
⎪⎩
1, a = b;
q1, |b − a| < m and a �= b;
q0, otherwise.

(13.41)

To obey this hierarchical statistical structure, we suppose ua = AX + BY + CZ ,
X,Y, Z are independent standard Gaussian random variables. We then have to solve
the following constraint equations

⎧⎪⎨
⎪⎩
A2 + B2 + C2 = 1, ∀a = b;
B2 + C2 = q1, |b − a| < m and a �= b;
C2 = q0.

(13.42)

Therefore, X gets a superscripta, andY gets a superscript c, where c is the index of the
small block that a belongs to. More precisely, ua = √

1 − q1Xa + √
q1 − q0Y c +√

q0Z . Thus, the energy term can be written in the form of probability distribution
integrals as follows:
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q0Z√
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{∫
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[
H

(
−

√
q1 − q0Y + √

q0Z√
1 − q1

)]m}n/m
}P
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(13.43)
By applying the Laplace approximation, we finally arrive at
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ln〈Zn〉
N

= − n(m − 1)

2
q1q̂1 − n(n − m)

2
q0q̂0 − nq̂1

2

+ ln
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(13.44)
Taking the limit: n → 0, we get the 1RSB free energy

−β f1RSB = lim
n→0

ln〈Zn〉
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2
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2
q0q̂0 − q̂1

2

+ 1
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DZ ln
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q1 − q0Y + √

q0Z√
1 − q1

)]m}
,

(13.45)
wherem ∈ [0, 1] due to n → 0. In fact,m is called the Parisi parameter for the 1RSB
analysis [15]. Saddle-point equations are derived by requiring that

∂[−β f ]
∂q0

= ∂[−β f ]
∂ q̂0

= ∂[−β f ]
∂q1

= ∂[−β f ]
∂q̂1

= ∂[−β f ]
∂m

= 0, (13.46)

where f indicates the 1RSB approximate value of the true free energy.
The transition fromRS toRSB takes place at the zero-entropy line: SRS(α, T ) = 0,

where we introduce the temperature parameter [see Eq. (13.3)]. This is also called
the frozen-RSB solution, widely existing in a broad class of constraint satisfaction
problems [16]. The transition is of the first-order type, in the sense that q1 = 1
becomes a RSB solution at the transition point [8], which also suggests that q̂1 → ∞.
This solution implies further that

F1RSB(q0, q̂0, 1,∞, β,m) = 1

m
FRS(q0,m

2q̂0, βm), (13.47)

where F ≡ −β f , m = βc/β and βc are determined by the zero entropy condition.
Moreover, the stationary requirement of the 1RSB free energy w.r.t m reduces to the
zero-entropy condition. The free energy is equal to the RS one at βc, independent
of the temperature when T < Tc, like that in the random energy model. Then, the
distribution of the order parameter q is specified by [8]

P(q) = mδ(q − q0) + (1 − m)δ(q − 1), (13.48)

where m is now interpreted as the probability (see also Chap. 9).
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13.4 Further Theory Development

To find a solution for the Ising perceptron is typically very hard [10, 17, 18]; whereas,
a reinforced message passing algorithm was proposed [1], and is able to solve the
binary perceptron problem up to a pattern density α ∼ 0.7. These two facts seem to
conflict with each other. This puzzle was first explained by Huang and Kabashima,
who adapted the Franz–Parisi framework, originally proposed to study spherical
spin glass models [19], to the neural network learning problems. In this work, they
demonstrated the origin of the computation hardness of the Ising perceptron problem,
by a theory-grounded picture about the weight space, i.e., isolated solutions emerge
in the entire finite α regime, and the typical distance separating any two solutions
grows rapidly with α [2].

The basic idea is to first choose an equilibrium configuration J at a temperature
T ′, then constrain its overlap with another equilibrium configuration w at a different
temperature T , which results in a constrained free energy [19]

F(T, T ′, x) =
〈

1

Z(T ′)

∑
J

e−β ′E(J) ln
∑
w

e−βE(w)+xJ·w
〉

, (13.49)

after taking the quenched-disorder average (over the pattern distribution ξ , denoted
by the angular bracket) and the average over the distribution of J, which is
e−β ′E(J)/Z(T ′). Z(T ′) is the partition function for the original Boltzmann measure,
and β (orβ ′) denotes the inverse temperature.

A ground-state focus leads to the following replica representation of the frame-
work

F(x) = lim
n→0
m→0

∂

∂m

〈 ∑
{Ja ,wγ }

∏
μ

[∏
a,γ

�(uμ
a )�(vμ

γ )

]
ex

∑
γ,i J

1
i w

γ

i

〉
, (13.50)

where uμ
a ≡ ∑

i J
a
i ξ

μ

i /
√
N and vμ

γ ≡ ∑
i w

γ

i ξ
μ

i /
√
N . Detailed replica calculation is

given in the original paper [2]. The Franz–Parisi potentialV(p) is obtained through
a Legendre transform of f (x) = limN→∞ F(x)/N , i.e., V(p) = f (x) − xp and
d f (x)
dx = p. V(p) has the meaning of the entropy characterizing the growth rate of

the number of solutions (eNV(p)) lying apart at a normalized distance (1 − p)/2
(Hamming distance divided by N ) from the fixed equilibrium solution.

At the point p → 1 (ε ≡ 1 − p → 0), we have dV(p)
dp = αCpε

−1/2 + (ln ε)/2 +
C [2] where C is a finite constant and Cp is a positive constant. The first term domi-
nates the divergent behavior in the limit ε → 0. This means that, for any finite α > 0,
the entropy curve has a negative infinite slope ( dVdd = −2dV

dp ) at p = 1, supporting the
existence of the convex part in the entropy curve, thereby confirming the point-like
clusters in the Ising perceptron problem.

On the other hand, the isolated solution is not accessible by the reinforcedmessage
passing algorithm. This heuristic strategy, working by progressively enhancing or
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weakening the local field (hi = ∑
b ub→i ) each synapse feels by an increasing prob-

ability as a function of iteration steps, may search for sub-dominant dense regions
of the weight space. This hypothesis was proposed as a large-deviation analysis [3,
20]

F (d, y) = − 1

Ny
ln

(∑
w̃

Iξ (w̃)N(w̃, d)y

)
, (13.51)

where I constrains w̃ to be a solution, N(w̃, d) = ∑
w Iξ (w)δ(w· w̃, N (1 − 2d)).

Then, the local entropy SL(d, y) = 1
N 〈lnN(w̃, d)〉ξ ,w̃ can be obtained by the above

generating function asSL = ∂y(yF (d, y)). In this newmeasure, individual solutions
are favored provided that they are surrounded by a large number of other solutions.
These solutions are not necessary to be equilibrium (e.g., isolated ones). The sub-
dominant dense region is then characterized by a nonzero SL(d, y) > 0 around
d = 0. In fact, the previous work considering the solution-pair entropy landscape
falls into the case of y = 1 [21], while the frozen picture falls into the case of
y → 0 [2].

This large-deviation analysis inspires new entropy-driven algorithms [20, 22],
suggesting that heuristic learning algorithms are biased towards a flat region in the
high-dimensionalweight landscape. In particular, these flat regions have better gener-
alization performances compared to those narrow regions. However, how to measure
the flatness of the weight space is still under heated debate [23, 24].

Although this chapter is restricted to the single-layer Perceptron model, the same
statistical mechanics techniques can be applied to multi-layer models with specific
topology of the architectures. Interested readers can go through several papers related
to multi-layered toy models [25–27]. In the next chapter, we shall explore the statis-
tical mechanics analysis of an arbitrary topology of multi-layered networks.
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Chapter 14
Mean-Field Model of Multi-layered
Perceptron

Deep learning has already become a powerful tool in the areas such as image clas-
sification and speech recognition [1, 2]. Deep learning with many layers has been
proved to be a universal approximator [3]. However, compared with its achievement,
the mechanism of deep networks is still challenging to understand. Redundancy is
one of the characteristics of deep neural networks, which means that the deep net-
work is robust under the removal perturbation of connections between layers [4]. In
other words, the generalization ability of deep network does not significantly change
until a large number of connections (a threshold) between layers are removed. In
this chapter, we introduce a random active path (RAP) model on a multilayer per-
ceptron network to study the redundancy property [5]. In the RAP model, the paths
are randomly activated, and the weights along the paths are constrained by the cor-
responding inputs, and therefore a p-weight glass model is naturally introduced. By
applyingmean-fieldmethods, we analyze the statistical properties of themodel under
the removal perturbation of connections between layers to different extents. A crit-
ical value of the perturbation is revealed, separating a paramagnetic phase from the
spin glass phase, where the paramagnetic phase shows a poor generalization ability,
which is a non-robust regime of the deep networks. The RAP model still relies on
assumptions amenable for a theoretical analysis, which should inspire future refine-
ment. In this chapter, we also introduce mean-field training algorithms for multilayer
perceptrons with discrete weights, and moreover, the ensemble backpropagation to
understand the credit assignment problem in deep neural networks.

14.1 Random Active Path Model

Redundancy is known to be one of the characteristics of deep neural networks. From
the perspective of statistical physics, we try to study how the statistical property of a
deep neural network changes with respect to the removal perturbation of synapses.
To address this question qualitatively, we propose a random active path model on a
multilayer perceptron network with binary synapses.
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Fig. 14.1 The structure of
the multilayer perceptron
network, considered in the
RAP model, where a single
output with an identity
transfer function is
considered
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We consider a four-layered perceptron network (Fig. 14.1). Each layer has nl(l =
0, 1, 2, 3) units. The input is an n0-dimensional vector v with binary(±1) element
vi , and the weight matrix W l with binary(±1) element wl

i j specifies connections
between layer l and layer l − 1. The non-linear function f (·) is chosen to be ReLU
function, which is defined as f (ui ) = max(0, ui ). Finally, we can obtain the form
of the output y as

y = fL−1(W L−1 fL−2(W L−2 · · · f1(W 1v))). (14.1)

Note that L = 4 here. To propose the random active path model, we should define
the active path first. An active path refers to the path from one input unit to the output
unit and finally contributes to the output value. Thus, an active path must meet two
demands: First, all units along the path are activated (the activation values of the units
are positive) because of theReLUactivation function; Second, each connection on the
path is present, while each synapse is deleted with a dilution probability. Therefore,
the form of the output can be re-expressed as

y =
�∑

a=1

va
L−1∏

k=1

W k
a, (14.2)

where � denotes the total number of the active path, va denotes the input node in
the ath path and Wk

a denotes the entry of W k that is present in the ath path.
In addition to the dilution, whether a path is active depends also on the data-

driven layered representations for a multilayer perceptron network performing real-
world tasks. However, for simplicity, we assume that the activation of each path is
independent of the input in our model, where the units of each layer are activated
independently with a layer-dependent unit activation probability ξl , which can be
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empirically estimated from a practical training. The Hamiltonian of the model can
thus be written as

H(W) = −
n3∑

a=1

Aav
a

∏

i∈∂a

Wi , (14.3)

where n denotes the number of the units at each layer except the last one. Aa is
a binary value indicating activation (Aa = 1) or silence (Aa = 0). The probability
of a path activation is P(Aa = 1) = ∏

l ξl(1 − pl), where ξl is the unit activation
probability and pl is the dilution probability.

In statistical physics, an equilibrium system always has a relatively low energy
(Hamiltonian in our RAP model), while in the deep learning, a practical network
always has a relative low training loss. Thus, to build an intuitive relationship between
the Hamiltonian and the loss function used in training, we assume that the true labels
are Yt = ±�(� > 0), where� is the maximal output of the network. Moreover, we
assume that the true output Yt is a random variable such that P(Yt = ±�) = 1

2 , and
the input va is also a random variable such that P(va = ±1) = 1

2 . Hence, sgn(Yt ) can
be absorbed into the input (sgn(Yt )va → va), and the model is statistically invariant.
Then, the Hamiltonian and the loss function can be written, respectively, as

H = −sgn(Yt )y, (14.4a)

C = |Yt − y|. (14.4b)

For simplicity,we choose the absolute error loss. It is easy toverify thatminimizing
the loss function between the target and the actual output y is equivalent to finding
the minimal value of Hamiltonian in the RAP model.

14.1.1 Results from Cavity Method

Given the form of the Hamiltonian, we apply cavity method in mean-field the-
ory to approximately acquire the statistical properties of the RAP model. First,
we consider that the weight configuration W follows a Boltzmann distribution
P(W) = e−βH(W)/Z , where β is the inverse temperature, and Z is the partition
function. Under the cavity approximation, we could derive a set of self-consistent
equations which are called message passing equations:

mi→a = tanh

⎛

⎝
∑

b∈∂i\a
ub→i

⎞

⎠ ,

ub→i = tanh−1

⎛

⎝tanhβvb
∏

j∈∂b\i
m j→b

⎞

⎠ .

(14.5)
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Note that, the form of Eq. (14.5) is similar to the standard message passing equa-
tions in Chap. 2 except for two crucial differences. First, weights along the paths
are constrained by the corresponding inputs, where va = +1 denotes a ferromag-
netic interaction, and va = −1 denotes an anti-ferromagnetic interaction. Thus, a
factor graph (Fig. 14.2) can be naturally constructed, where two types of nodes can
be connected to the deep network function. Second, weights configuration W is a
subset of total weights {W l} unless all the paths are activated. By recursively solving
these equations, the iteration will converge to a fixed point {mi→a, ub→i }, which
corresponds to a local or global minimum of the Bethe free energy (see Chap. 3).
Therefore, we can acquire the statistical properties of RAP model, including mag-
netization and entropy.

To characterize the potential phase transitions in the model, we further define
an order parameter Q = 1

Nw

∑
i mi

2, where Nw is the total number of weights in
the model. Q measures the responses of the network to the input data, and thus
a high Q refers to a biased inference of weights (indicating an effective learning
process). As shown in Fig. 14.3, when the dilution probability of the second layer
p1 increases (more units are deleted), Q decreases slowly at first and sharply drops
at a threshold p1, which is a critical value separating a paramagnetic regime with
poor generalization performance from spin glass regime with good generalization
performance. Entropy here represents the number of candidate weight configura-
tions, which increases as the dilution probability p1 increases, indicating that the
deep network becomes less constrained, like in a paramagnetic phase. Entropy also
displays a slight jump at the same critical value of p1, which is a characteristic of
the first-order phase transition. Overall, by applying the mean-field cavity method,
we can reveal that increasing the magnitude of the removal perturbation (dilution
probability) will trigger a first-order transition to an undesired paramagnetic regime,
which has poor generalization performances as expected.

14.1.2 An Infinite Depth Analysis

Since modern deep networks can have thousands of layers, we then ask whether
an infinite depth limit exists in our current model, and whether the joint energy
level distribution becomes factorized, and a frozen phase can be identified when the
temperature is lowered down [6]. Applying similar methods to those in Chap. 7, we
derive the form of the joint energy-level distribution of our model in the infinite depth
limit. First, the Hamiltonian can be re-expressed as

H(W) = −
np∑

a=1

Ãa

∏

i∈∂a

Wi , (14.6)

where p = L − 1, Ãa = Aav
a , and its probability distribution is re-defined as

follows:
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Fig. 14.2 Schematic illustration of a factor graph of the RAP model. Left panel: a four layers
perceptron, where two paths are activated. Right panel: a factor graph of the four-layered perceptron,
where variable nodes (circle nodes) are weights to be estimated, constraint nodes (square nodes) are
the active paths, and the lines between the variable nodes and the constraint nodes can be interpreted
as connection strengths which are specified by the input in our current RAP model

Fig. 14.3 Q and entropy
versus p1. p1 denotes the
dilution probability applied
to weights between the first
and second layers. In
numerical stimulations, we
set ξ1 = 0.5, ξ2 = 0.1 and
p2 = 0, p3 = 0. By
increasing p1, Q will sharply
drop at p1 = 0.9, which is a
first-order transition,
characterized by the entropy
gap (dashed line) as well.
This plot is a schematic one
of that published in the
recent work [5]
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P( Ãa = 0) = 1 −
∏

l

ξl(1 − pl),

P( Ãa = +1) = 1

2

∏

l

ξl(1 − pl),

P( Ãa = −1) = 1

2

∏

l

ξl(1 − pl).

(14.7)
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Then, we denote P0 = P( Ãa = 0) for simplicity. The joint distribution of N =
2Nw energy levels can be written as

P(E1, E2, . . . , EN ) = 〈δ(E1 − H(W1)) × δ(E2 − H(W2)) × · · · × δ(EN − H(WN ))〉 Ãa

=
N∏

α=1

∫
d Êα

2π
eiÊαEα

〈
e−iÊαH(Wα)

〉

Ãa
.

(14.8)

We define A = ∏N
α=1

〈
eiÊαH(Wα)

〉

Ãa

, then we have:

A =
np∏

a=1

〈 N∏

α=1

eiÊα Ãa
∏

i∈∂a W
α
i

〉

Ãa

=
np∏

a=1

[
P0 +

〈 N∏

α=1

eiÊα Ãa
∏

i∈∂a W
α
i

〉

Ãa=±1

]
.

(14.9)

According to the identity: eaσ = cosh(a)[1 + σ tanh(a)] (valid only for σ = ±1),
we derive that

A =
np∏

a=1

[
P0 +

〈 N∏

α=1

cosh(iÊα)[1 + Ãa

∏

i∈∂a

W α
i tanh(iÊα)]

〉

Ãa=±1

]
. (14.10)

Now, we perform the gauge transformation: Ãa → Ãa
∏

i∈∂a W
γ

i , leading to

A =
np∏

a=1

[
P0 + 1 − P0

2

N∏

α=1

cosh(iÊα)
[ N∏

α=1

(1 + tanh(iÊα)
∏

i∈∂a

W γ

i W
α
i )

+
N∏

α=1

(1 − tanh(iÊα)
∏

i∈∂a

W γ

i W
α
i )

]]
.

(14.11)

Then, we replace W γ

i W
α
i by its mean 〈W γ

i W
α
i 〉 neglecting the thermal fluctua-

tion, and we have immediately
∏

i∈∂a W
γ

i W
α
i � q p, where q is clearly the overlap

function between two configurations. We have further
∏N

α=1(1 + tanh(iÊα)q p) ≈
1 + q p

∑N
α=1 tanh(iÊα). Note that q p is a negligible term in a large-p limit. We

finally complete the calculation of the A part.
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A =
n p∏

a=1

[
P0 + 1 − P0

2

N∏

α=1

cosh(iÊα)
[
1 + q p

N∑

α=1

tanh(iÊα) + 1 − q p
N∑

α=1

tanh(iÊα)
]]

=
n p∏

a=1

[
P0 + (1 − P0)

N∏

α=1

cosh(iÊα)

]
,

=
n p∏

a=1

[
1 −

∏

l

ξl (1 − pl ) +
∏

l

ξl (1 − pl )
N∏

α=1

cosh(iÊα)

]
,

= e

∑n p
a=1 ln

[
1−∏

l ξl (1−pl )+∏
l ξl (1−pl )

∏N
α=1 cosh(iÊα)

]

,

≈ e
−n p

[
∏

l ξl (1−pl )(1−∏N
α=1 cosh(iÊα))

]

.

(14.12)

To sum up, we can obtain the form of the joint distribution of the energy levels:

P(E1, E2, . . . , EN ) =
∫ N∏

α=1

d Êα

2π
e
∑N

α=1 iÊαEαen
p[∏l ξl (1−pl )(

∏N
α=1 cosh(iÊα)−1)].

(14.13)
Let us finally discuss the small conjugated energy limit.

∏N
α=1 cosh(iÊα) =

∏N
α=1(1 + (iÊα)2

2 ) ≈ 1 + ∑N
α=1

(iÊα)2

2 where Êα is a negligible term by the limit.
Thus, we have the following result:

P(E1, E2, . . . , EN ) =
∫ N∏

α=1

d Êα

2π
e
∑N

α=1 iÊαEα−np ∏
l ξl (1−pl )

∑N
α=1

(Êα)2

2 ,

=
N∏

α=1

1√
2πnp

∏
l ξl(1 − pl)

e− E2α
2n p

∏
l ξl (1−pl ) .

(14.14)

In the small conjugated energy limit, the energy levels become independent
random variables. More precisely, single energy level follows a Gaussian distri-
bution with a fluctuation of the order of [np

∏
l ξl(1 − pl)] 1

2 around zero, where
np

∏
l ξl(1 − pl) is exactly the number of active paths in the model. However, it

is not correct to conclude that the energy levels for the RAP model are generally
independent random variables, as we use the small conjugated energy limit, whose
physics remains elusive. It is also not excluded that energy levels maybe organized
into non-trivial structures in the infinite depth limit. Therefore, more systematic
studies are required, including confirmation of the first-order transition in a practical
training as well.
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14.2 Mean-Field Training Algorithms

The mean-field method to train a deep supervised network with binary synapses was
first introduced in the previous work [7]. In our current setting, each weight wl

i j is
sampled from a Bernoulli distribution P(wl

i j ) parametrized by an external field θ l
i j

as follows:
P(wl

i j ) = σ(θ l
i j )δwl

i j ,1
+ [1 − σ(θ l

i j )]δwl
i j ,−1, (14.15)

with mean μl
i j = 2σ(θ l

i j ) − 1 and variance (σ l
i j )

2 = −4σ 2(θ l
i j ) + 4σ(θ l

i j ). σ(x) is a
sigmoid function. According to the central limit theorem, the feedforward transfor-
mation can be re-parametrized as

zlj = ml
j + vlj · εlj , (14.16a)

alj = 1√
Nl−1

ReLU(zlj ), (14.16b)

where Nl−1 is the number of neurons at the previous layer, ε j is a standard Gaussian

random variable, ml
j = ∑

i μ
l
i j a

l−1
i , and vlj =

√∑
i (σ

l
i j )

2(al−1
i )2. We use the ReLU

function [max(0, x)] here.
During the error backpropagation phase, we need to compute the gradient of the

loss function L (e.g., cross-entropy for classification problems) with respect to the
external field θ , which proceeds as follows:

∂L
∂θ l

i j

= ∂L
∂zlj

∂zlj
∂θ l

i j

= ∂L
∂zlj

(
∂ml

j

∂θ l
i j

+ εlj
∂vlj

∂θ l
i j

)
. (14.17)

We then define �l
j ≡ ∂L

∂zlj
. On the top layer, �l

j = yLj − ŷLj , where y
L
j = e

zLj

∑
i e

zLi
is the

softmax output, and ŷLj is the (one-hot) label of the input. On the lower layers, given

�l+1
k , we can iteratively compute �l

j :

∂L
∂zlj

=
∑

k

∂L
∂zl+1

k

∂zl+1
k

∂zlj

=
∑

k

�l+1
k f ′(zlj )

(
μl+1

jk + εl+1
k

(σ l+1
jk )2alj
vl+1
k

)
.

(14.18)

Finally, we compute
∂ml

j

∂θ li j
and

∂vlj

∂θ li j
, respectively. It then proceeds as follows:
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∂ml
j

∂θ l
i j

= ∂ml
j

∂μl
i j

∂μl
i j

∂θ l
i j

= 2al−1
i σ ′(θ l

i j ), (14.19a)

∂vlj

∂θ l
i j

= ∂vlj

∂(σ l
i j )

2

∂(σ l
i j )

2

∂θ l
i j

= −2
(al−1

i )2μl
i jσ

′(θ l
i j )

vlj
. (14.19b)

Note that ε is sampled and quenched for both forward and backward computa-
tions in a single mini-batch gradient descent. After the learning is terminated, an
effective network with binary weights can be constructed by sampling the Bernoulli
distribution parametrized by external fields.

14.3 Spike and Slab Model

Deep learning has achieved impressive performance in a variety of scientific and
industrial fields. Nevertheless, little has been known about the mechanism of the
black box of deep neural networks, e.g., how much credit should be assigned to each
network-parameter after learning. For a specific task, the backpropagation method
has long been applied to train a feedforward neural network [8]. In the process of
learning, the neural network is capable of coordinating a large number of parameters
and makes an accurate decision at the output layer. The traditional backpropagation
method provides only point estimates of the network parameters, which could not
capture the decision uncertainty caused by noisy sensory inputs. In contrast, from
the ensemble perspective of candidate networks accomplishing a task, our recent
work [9] proposed a spike and slab (SaS) model to learn the credit assignment,
bridging the gap between microscopic interactions of components and macroscopic
behavior, thereby identifying key parameters capturing informative and nuisance
factors in the sensory inputs connected to the output behavior of the network.

14.3.1 Ensemble Perspective

In this section, we derive the ensemble backpropagation algorithm for feedforward
neural networks with L layers (L − 2 hidden layers in addition to the input and
output layers). We remark that it is straightforward to adapt the following method
to other network architectures, such as CNNs. The depth of the network L can be
designed arbitrarily large. For each layer l, the width of the corresponding layer is
denoted as Nl . Therefore, N1 and NL are determined by the number of pixels in an
input image and the number of output classes, respectively, for a classification task.
The weight matrix of our model can be written as w, whose element wl

i j denotes
the connection from neuron i at the upstream layer l to neuron j at the downstream
layer l + 1. The activation of the neuron j at the layer l + 1 is a non-linear func-
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tion of the pre-activation zl+1
j = 1√

Nl

∑
i w

l
i j h

l
i , where the scaling factor

1√
Nl

ensures
that the weighted sum is independent of the upstream layer width. The rectified
linear unit (ReLU) function is applied to create the non-linearity, which preserves
the positive pre-activation values while setting the negative values to zero. The out-
put is transferred to the probabilities over all classes by using the softmax function

hL
j = e

zLj

∑
i e

zLi
, which can be used by the network to make a decision. For simplicity, a

categorization task is considered here, and we denote ĥ̂ĥh as the corresponding target
label which is in the one-hot form. Meanwhile, we use cross-entropy as the loss
function C = −∑

i ĥ
L
i ln h

L
i , which requires the gradient descent method to mini-

mize the cross-entropy. For the categorization task, the training data with the size
T is applied to train the network by adjusting all the connections to minimize the
objective function until a satisfied accuracy is reached. To test the generalization
ability of the network, the unseen data with the size V is used.

The standard way to train a deep network is the well-known backpropagation
algorithm. However, it can only lead to one point estimate of the connection weights
after a single running of the algorithm. Here, we assume that there may exist a
random ensemble of neural networks that fulfill the computational task given the
width and depth of the deep network. This ensemble may occupy a tiny portion of
the entire model space. In that case, we propose a theoretical model whose weight
is characterized by a spike and slab (SaS) distribution as follows (Fig 14.4):

P(wl
i j ) = π l

i jδ(w
l
i j ) + (1 − π l

i j )N(wl
i j |ml

i j , �
l
i j ), (14.20)

where the spike probability δ(wl
i j ) has a mass at zero, and the slab is characterized by

a Gaussian distribution with mean ml
i j and variance �l

i j over a continuous support.
These two parts also have their physics interpretations, respectively. The spike is
associated with the concept of network compression, while the slab is related to the
uncertainty of decision making [9].

14.3.2 Training Equations

In this section, we apply the mean-field method to train the SaS model and learn the
parameters θθθ l

i j ≡ (π l
i j ,m

l
i j , �

l
i j ) for all the layers. To begin with, we derive the first

and second moments of the weight wl
i j as follows:

μl
i j ≡ E[wl

i j ] = ml
i j (1 − π l

i j ), (14.21a)

�l
i j ≡ E[(wl

i j )
2] = (1 − π l

i j )[�l
i j + (ml

i j )
2]. (14.21b)

As mentioned before, the pre-activation can be written as zl+1
j = 1√

Nl

∑
i w

l
i j h

l
i .

Given a large width of the layer, the central limit theorem indicates that the pre-
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Fig. 14.4 The schematic illustration of themodel learning credit assignment.Adeep neural network
of four layers including two hidden layers is used to recognize a handwritten digit, say zero, with
the softmax output indicating the probability of the categorization. Each connection is specified
by a spike and slab distribution, where the spike indicates the probability of the absence of this
connection, and the slab is modeled by a Gaussian distribution of weight values as pictorially
shown only on strong connections with different means and variances. Other weak connections
indicate nearly unit spike probabilities, although they also carry a slab distribution (not shown in
the illustration for simplicity). The figure is adapted from the work [9]

activation follows a Gaussian distribution with mean Gl
i and variance (�l

i )
2 as fol-

lows:

Gl
i = 1√

Nl−1

∑

k

μl−1
ki hl−1

k , (14.22a)

(�l
i )
2 = 1

Nl−1

∑

k

(�l−1
ki − (μl−1

ki )2)(hl−1
k )2. (14.22b)

According to this statistics, the pre-activation can be re-parametrized by

zli = Gl
i + εli�

l
i , (14.23a)

hli = f (zli ), (14.23b)

where the transfer function f (z) used here is RELU for l < L , and softmax function
for l = L . εli is a standard Gaussian variable randomly generated for each component
in every layer. Meanwhile, εεεl is quenched for every single mini-batch, and the same
value is used in both feedforward and backward computations. To train the model,
we apply the gradient descent method to minimize the objective function, which can
be written as follows:

�θθθ l
ki = −ηK l+1

i

∂zl+1
i

∂θθθ l
ki

, (14.24)
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where K l+1
i ≡ ∂C

∂zl+1
i
, and η indicates the learning rate. The gradients are evaluated

over mini-batches which are obtained by dividing the training data into subsets (so-
called mini-batches). To calculate the gradients in Eq. (14.24), we first derive the
derivative for each hyper-parameter based on Eq. (14.23) as follows:

∂zl+1
i

ml
ki

= (1 − π l
ki )h

l
k√

Nl
+ μl

kiπ
l
ki (h

l
k)

2εl+1
i

Nl�
l+1
i

, (14.25a)

∂zl+1
i

∂π l
ki

= −ml
ki h

l
k√

Nl
− ((2π l

ki − 1)(ml
ki )

2 + �l
ki )(h

l
k)

2εl+1
i

2Nl�
l+1
i

, (14.25b)

∂zl+1
i

∂�l
ki

= (1 − π l
ki )(h

l
k)

2εl+1
i

2Nl�
l+1
i

. (14.25c)

The above derivatives characterize how sensitive the pre-activation is under the
change of the hyper-parameters θθθ l

i j ≡ (π l
i j ,m

l
i j , �

l
i j ). Then, we have to calculate

the derivative K l+1
i . For l = L , K L

i can be directly estimated as K L
i = hL

i − ĥL
i .

For other layers, K l
i can be estimated by using the chain rule, which results in the

equations below

K l
i = δli f

′(zli ), (14.26a)

δli =
∑

k

K l+1
k

∂zl+1
k

∂hli
, (14.26b)

where f ′(z) denotes the derivative of the transfer function, and δli ≡ ∂C
∂hli

. Eq. (14.26b)
shows clearly how the gradient signal flows from the output layer down to any

intermediate one. To proceed, we have to compute ∂zl+1
k

∂hli
, which shows how sensitive

the pre-activation at the deeper layer is under the change of the input neural activity
to that layer. This part is derived as follows:

∂zl+1
k

∂hli
= μl

ik√
Nl

+ (�l
ik − (μl

ik)
2)hliε

l+1
k

Nl�
l+1
k

. (14.27)

Based on the above mean-field method, the hyper-parameters of the model can
be updated, and the SaS model naturally captures the fluctuation of the hypothesis
space, which significantly differs from the standard backprop [8, 10]. Particularly,
if we enforce πππ = 0 and ��� = 0, mmm becomes identical to a single weight configura-
tion. The training method immediately recovers the standard backprop. Hence, the
training protocol mentioned above can be thought of as a generalized backpropaga-
tion (gBP) at the weight distribution level. The model can separate the deterministic
part (π = 0, 1) from the uncertainty part (π ∈ (0, 1), and � �= 0, m �= 0). Note that
the uncertainty part may capture nuisance factors in sensory inputs. These factors
are not informative to the computation task. The gBP can reveal that a U-shaped
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π -distribution, and an L-shaped �-distribution, a peak model entropy (derived from
the SaS distribution, and assuming that the joint distribution factorizes) in the central
part of the network, matching an encoding-recoding-decoding paradigm. We refer
interested readers for more details to the original work [9]. In particular, the VIP
weights (π = 0, � = 0) play a vital role in determining the final decision-making
behavior, which can be quantified by the SaS model.
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Chapter 15
Mean-Field Theory of Dimension
Reduction

The sensory cortex in the brain has long been proposed to learn hidden features
of sensory inputs in a way called unsupervised learning, which requires no labels
or rewards from the data, just by gradually creating better representations of the
sensory inputs along a hierarchy of information flow to extract the intrinsic features
hidden in the data. Both in the fields of artificial intelligence and neuroscience, the
sensory inputs are physically high-dimension data. To extract the latent features
in the input data, the process of creating more abstract representations along the
hierarchy (e.g., the ventral visual stream of primates) is realized through a non-linear
dimensionality reduction of high-dimensional data. Nevertheless, these results have
been empirically revealed, which makes computation along hierarchy in deep neural
networks extremely nontransparent. In this chapter, we introduce a framework based
onmean-field theory to analyze the dimension reduction of data representation across
layers (Huang in Phys. Rev. E 98:062313, 2018 [1]; Zhou and Huang in Phys. Rev.
E 103:012315, 2021 [2]).

15.1 Mean-Field Model

Amultilayer feedforward neural network with non-linear transformations of sensory
inputs is considered here for the purpose of simplicity (Fig. 15.1). The number of
hidden layers is denoted as the depth of this network; the network can be arbitrarily
deep. The number of units at each layer is defined as the width of the corresponding
layer; we assume that the width of each layer has equal value (N ) for simplicity.
The input data vector can be represented by v, and the non-linear transformed rep-
resentations of the pre-activation ãi =∑ j w

l
i j h

l−1
j are denoted as (h1, h2, h3, …,

hd ). More specifically, hli = φ(ãi + bli ), and we choose the non-linear function as
φ(x) = tanh(x) without loss of generality. Weights connecting the (l − 1)th to the
lth layers are specified by amatrixwl . Biases of neurons at layer l are defined as bl . To
facilitate further analytic studies, we make the random weight assumption. Weight
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V h1                 h2                         h3

N                        N                        N                       N
W1                     W2                     W3 

Fig. 15.1 Schematic illustration of a deep neural network. Here, we introduce the feedforward
network with three hidden layers with the input v, and the internal representation output of each
layer is denoted as (h1, h2, h3). There are N units in each layer

here follows a normal distribution N(0, g
N ), and the bias follows another normal

distribution with different variance N(0, σb). g characterizes the weight strength,
while σb characterizes the bias strength.

To generate the input data, a high-dimensional point inN-dimensional input space,
we consider a point-cloudwith amaximal correlation strengthρ.We assume that each
point follows the multivariate Gaussian distribution N(0,�), where the covariance
entry is defined as 〈viv j 〉 = ri j√

N
for all i �= j (ri j is a random variable uniformly

distributed from −ρ to ρ), and 〈v2
i 〉 = 1. In the following derivations, we define

the deviation of pre-activation ãi from its mean over the input ensemble as ali =∑
j w

l
i j (h

l−1
j − 〈hl−1

j 〉). It is evident that ali has zero mean, which shows a great
convenience in the following analysis.

The covariance of al can also be derived by its definition as �l
i j = 〈ali alj 〉. We

can get the exact form based on the mean-subtracted activation from the following
procedure:
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�l
i j = 〈ali alj 〉

=
〈
∑

k

wl
ik(h

l−1
k − 〈hl−1

k 〉) ×
∑

m

wl
jm(hl−1

m − 〈hl−1
m 〉)

〉

=
∑

km

wl
ikw

l
jm〈(hl−1

k − 〈hl−1
k 〉)(hl−1

m − 〈hl−1
m 〉)〉

=
∑

km

wl
ikw

l
jm(〈hl−1

k hl−1
m 〉 − 〈hl−1

k 〉〈hl−1
m 〉)

=
∑

km

wl
ikw

l
jmC

l−1
km

= [wlCl−1(wl)T]i j .

(15.1)

From the formof�l
i j , we know that the covariance of al is related to the covariance

matrix of neural activity at the (l − 1)th layer. We further define the data average
of neural activity at the lth layer 〈hl〉 as ml . The elements of al can thus be written
as ali =∑ j w

l
i j (h

l−1
j − ml−1

j ). When N is large, each neuron at an intermediate
layer receives a large number of inputs, which indicates the applicability of the
central limit theorem. As a result, the pre-activation (ali +∑ j w

l
i jm

l−1
j + bli ) follows

a normal distribution with the mean of (
∑

j w
l
i j (m

l−1
j ) + bli ) and variance of (�l

i i ),
which results in the following approximate from of ml

i .

ml
i = 〈hli 〉 =

∫

Dtφ(

√
�l

i i t + [wlml−1]i + bli ), (15.2)

where Dt = dt√
2π
e− t2

2 .

Following the same spirit, we obtain the analytic form of Cl
i j by the central limit

theorem. First, we unfold Cl
i j by its definition:

Cl
i j = 〈hli hlj 〉 − 〈hli 〉〈hlj 〉

= 〈hli hlj 〉 − ml
im

l
j ,

(15.3)

where the part 〈hli hlj 〉 = 〈φ(ali +∑ j w
l
i jm

l−1
j + bli )φ(alj +∑k w

l
jkm

l−1
k + blj )〉 has

to be parametrized by two standard Gaussian variables x and y because of the covari-
ance 〈ali alj 〉. Based on the statistical structure of ali and alj , these two activations can
be first parametrized as

ali =
√

�l
i i x, (15.4a)

alj =
√

�l
j j (�x +

√
1 − �2y), (15.4b)
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where � = �l
i j√

�l
i i�

l
j j

. In this way, we finally obtain Cl
i j as follows:

Cl
i j =

∫

DxDyφ(

√
�l

i i x + bli + [wlml−1]i )φ(

√
�l

j j (�x +
√
1 − �2y) + blj

+ [wlml−1] j ) − ml
im

l
j . (15.5)

However, the form of Cl
i j is still very complicated for a theoretical analysis

to gain underlying mechanisms of dimensionality reduction. According to equi-
librium statistical physics in the thermodynamic limit, Cl

i j is of the order O( 1√
N

)

for i �= j , and therefore 〈(�l
i j )

2〉 =∑k,m 〈(wl
ik)

2〉〈(wl
jm)2〉(Cl−1

km )2 = N 2 g
N

g
N

1
N ∼

O( 1
N ). Hence, �l

i j is also of the order O( 1√
N

). Meanwhile, we can also analyze the

magnitude of �l
i i . 〈�l

i i 〉 =∑k 〈(wl
ik)

2〉Cl−1
kk = g

N

∑
k C

l−1
kk ∼ O(g). In this sense,

�l
i j is a very small variable in a large-width limit. Hence, we can carry out a Taylor

expansion of Cl
i j around �l

i j = 0:

Cl
i j �

∫

DxDyφ(

√
�l

i i x + zli )φ
′(
√

�l
j j x + zlj )

x�i j
√

�l
i i

, (15.6)

where zli, j=bli, j + [wlml−1]i, j . Based on the identity
∫
Dz tanh(z)z= ∫ Dz tanh′(z),

we can simplify Eq. (15.6) as follows:

Cl
i j �

∫

DxDyφ′(
√

�l
i i x + zli )φ

′(
√

�l
j j y + zlj )�

l
i j . (15.7)

Nevertheless, the form of Cl
i j still contains an integral part, which makes it incon-

venient in the further theoretical analysis. Considering the magnitudes of �l
i i and

�l
j j , if we make another assumption that the parameter g is also small, the parameter

�l
i i and �l

j j can also be seen as small physics quantities, which suggests another
Taylor expansion of Cl

i j around �l
i i = 0 and �l

j j = 0. Hence, we obtain

Cl
i j ≈

∫

DxDy[φ′(zli ) + φ′′(zli )
√

�l
i i x][φ′(zlj ) + φ′′(zlj )

√
�l

j j y]�l
i j

= φ′(zli )φ
′(zlj )�

l
i j

= Kl
i j�

l
i j ,

(15.8)

where Kl
i j = φ′(zli )φ′(zlj ), and we only retain the first-order Taylor expansion ofC

l
i j .

Equation (15.7) holds in the large-width limit, while Eq. (15.8) requires additionally
the assumption of the small-coupling strength in deep networks.
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15.2 Linear Dimensionality and Correlation Strength

In this section, we define two important physics quantities: linear dimensionality of
the presentation (Dl) and covariance strength �l .

To characterize the collective property of the entire hidden representation, we

define the linear dimensionality of the representation at layer l as Dl = (
∑N

i=1 λi )
2

∑N
i=1 λ2

i

,

where {λi } is the eigenspectrumof the covariancematrixCl . According to theCauchy
inequality formula

(
1

N

N∑

i=1

λi

)2

≤ 1

N

N∑

i=1

λ2
i , (15.9)

from which, we derive that a normalized dimensionality D̃l = Dl/N is generally
upper-bounded by one. If the eigenvalues ofCl are all equal, which implies that each
component of the representation is generated independently with the same variance,
then Dl = N . However, if there exist non-trivial correlations in the representation,
the linear dimensionality Dl will be smaller than N , which will be theoretically and
numerically revealed in our model.

Based on our mean-field framework, we first study the dimension reduction pro-
cess. The theoretical results are computed based on the large-N limit, as shown in
Eq. (15.7). The simulation results are computed by a direct propagation of the inputs
in our feedforward network. Both the theoretical and simulation results (Fig. 15.2)
show that the representation dimensionality progressively decreases along the hier-
archy, and these two results agree with each other perfectly, which validates our
mean-field derivations.

To get deeper insights about the hidden representation, we have to analyze the
overall strength of covariance at layer l, i.e., �l . Because of the symmetry prop-
erty of the covariance matrix Cl , we define the overall covariance strength as
�l = 2

N (N−1)

∑
i< j (C

l
i j )

2. In fact, these two key parameters of our model, �l and

Dl , are closely related. According to the definition, we have

D̃l = 1

N

(
∑N

i=1 λi )
2

∑N
i=1 λ2

i

= (TrCl)2

NTr(Cl)2

= ( 1
N

∑
i C

l
ii )

2

2
N

∑
i< j (C

l
i j )

2 + 1
N

∑
i (C

l
ii )

2
,

(15.10)

where Tr(Cl) denotes the trace of the matrix Cl . As the overall covariance strength
�l = 1

N (N−1)

∑
i< j (C

l
i j )

2, we can build the relationship between the normalized

dimension D̃l and the covariance strength as follows:
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Fig. 15.2 The numerical simulation of�l and D̃l in comparison with theoretical predictions. Input
data are generated with ρ√

N
= 0.05. The left panel shows the feedforward simulation based on 105

samples, and the right panel shows the theoretical results based on the large-N limit assumption.
The inset shows how the overall strength of covariance changes with depth and connection strength
g when σb = 0.1, N = 100. Ten network realizations are considered for numerical simulations

�l = 1

N − 1

[
( 1
N

∑
i C

l
ii )

2

D̃l
− 1

N

∑

i

(Cl
ii )

2

]

. (15.11)

In physics, strong-enough connection strength maintains the weakly correlated
neural activities at further stages of the hierarchy, which facilitates the signal prop-
agation through layers of deep networks by minimal (or maximally compressed)
representations (Fig. 15.2).

We also explore how the parameter σb affects the overall covariance strength
and the dimensionality of representations (Fig. 15.3). σb strongly affects the overall
covariance strength �l across layers, i.e., a higher σb induces a lower �l , yet yield-
ing little impact on the dimensionality. It is intuitive that strong bias would freeze
the neural firing pattern, thereby reducing correlations among neural activities. The
competition with the coupling effect leads to the observed dimensionality.

15.2.1 Iteration Equations for Correlation Strength

Next, we try to understand the mechanisms of dimension reduction and neural decor-
relation.Wefirst discuss the iterative formof the strength�l . Aswe already know, the
elements of the correlation matrix Cl can be approximated as Cl

i j ≈ Kl
i j�

l
i j , where

Kl
i j = φ′(zli )φ′(zlj ) in the large N and small-g limits. According to this assumption,

�l can be obtained as

�l = 2

N (N − 1)

∑

i< j

(Cl
i j )

2

= 2

N (N − 1)

∑

i< j

(Kl
i j )

2(�l
i j )

2,

(15.12)
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Fig. 15.3 The numerical simulation of �l and D̃l (in the large-N limit assumption). Data are
generated with ρ√

N
= 0.05. The inset shows how the overall strength of covariance �l changes

with depth and σb, when g = 0.8 and N = 100. Ten network realizations are considered for each
network width and σb

where (�l
i j )

2 =∑km (wl
ik)

2(Cl−1
km )2(wl

jm)2 � g2

N 2

∑
km (Cl−1

km )2 because of the statis-
tical structure of wl . Hence, Eq. (15.12) can be rewritten as

�l � 2

N (N − 1)
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i< j

(Kl
i j )

2(�l
i j )

2

� 2

N (N − 1)
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i< j

(Kl
i j )
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2

N 2
(2
∑

k<m

(Cl−1
km )2 +

∑

k

Cl−1
kk )

= 2

N (N − 1)
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i< j

(Kl
i j )

2 g
2

N 2
(N (N − 1)�l−1 +

∑

k

Cl−1
kk )

= g2�l−1(Kl
i j )

2 + g2(Kl
i j )

2

N 2

∑

k

(Cl
kk)

2,

(15.13)

where (Kl
i j )

2 = 2
N (N−1)

∑
i< j (K

l
i j )

2. Based on the fact that in the thermodynamic
limit, the correlation between different weights is negligible and that the covariance
of the mean pre-activations of different units is negligible as well, (Kl

i j )
2 can be
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approximated by (Kl
i j )

2 � [φ′(zli )]2
2 ≡ (κ l)2. Hence, Eq. (15.13) can be simplified

as

�l � g2(κ l)2�l−1 + g2(κ l)2

N 2

∑

i

(Cl−1
i i )2. (15.14)

According to ourmodel setting, N�1 = g2(κ1)2(N�0 + 1), there exists a critical
point where the strength �1 = �0. We can then arrive at the critical point as N�∗ =
g2(κ1)2

1−g2(κ1)2
. The quantity κ l can be derived as follows:

κ l =[φ′(bli + [wlml−1]i )]2

=
∫

DuDt[φ′(
√

σbu +
√
gQl−1t)]2, (15.15)

where Ql = 1
N

∑
i (m

l
i )
2, and ml

i = 〈hli 〉 = ∫ Dtφ(

√
�l

i i t + [wlml−1]i + bli ). Note
that the quenched-disorder average has been performed over the network parameter
statistics. In addition, we can recursively update Ql as follows:

Ql =
∫

DuDtφ2[√σbu +
√
gQl−1t]. (15.16)

Note that the initial Q0 = 0 by the construction of the random model. Given the
above theoretical analysis, we can calculate κ l iteratively, i.e., in a layer-by-layer
manner. κ1 = ∫ Du[φ′(√σbu)]2, and the critical point �∗ of the first layer is shown
in Fig. 15.4.

As shown in Fig. 15.4, we have determined the critical point �∗ (so-called oper-
ating point [1]) of the first layer. In fact, this critical point �∗ defines the condition
where the overall strength �1 = �0. It also means that if �0 < �∗, there will be
a boost of �1, and decrease otherwise, as shown in (Fig. 15.4). Furthermore, the
correlation strength �l at every layer always has a layer-dependent operating point,
which determines the correlation level of neural activations, i.e., either growing or
decreasing.

15.2.2 Mechanism of Dimension Reduction

As we mentioned before, the normalized dimension D̃l has already been proven to
be reduced across layers in (Fig. 15.2). Next, we will see why dimension reduction
is possible in our toy model. The normalized dimension D̃l+1 is defined as
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Fig. 15.4 Illustration of the operating point controlling the magnitude of neural correlation level.
The correlation strength �0,1 (including also the critical one) has been scaled by the network width
N . κ here indicates its value at the first layer (see details in the main text)

D̃l+1 = 1

N

(
∑N

i=1 λi )
2

∑N
i=1 λ2

i

= (TrCl+1)2

NTr(Cl+1)2

= ( 1
N

∑
i C

l+1
i i )2

2
N

∑
i< j (C

l+1
i j )2 + 1

N

∑
i (C

l+1
i i )2

.

(15.17)

To compare D̃l+1 and D̃l , we have to substitute the physics quantities of layer
(l + 1) in D̃l+1 by their counterparts of layer l. By definition, 2

N

∑
i< j (C

l+1
i j )2 =

(N − 1)�l+1. Note that �l+1 = g2(κ l+1)2�l + g2(κ l+1)2

N 2

∑
i (C

l
ii )

2. We can then get

the form of 2
N

∑
i< j (C

l+1
i j )2 as (N − 1)(g2(κ l+1)2�l + g2(κ l+1)2

N 2

∑
i (C

l
ii )

2). More-

over, Cl+1
i i = Kl+1

i i �l+1
i i , where the part �l+1

i i = 〈al+1
i al+1

i 〉 can be approximated by
�l+1

i i ≈ g
N

∑
k C

l
kk , and we can thus obtain the simplified Cl+1

i i as

Cl+1
i i = Kl+1

i i �l+1
i i ≈ gK l+1

i i kl1, (15.18)

where kl1
def= 1

N

∑
i C

l
ii . For further simplicity,wedefine Kl+1

i i = 1
N

∑
i K

l+1
i i , (Kl+1

i i )2

= 1
N

∑
i (K

l+1
i i )2, and kl2

def= 1
N

∑
i (C

l
ii )

2. Due to the i.i.d assumption of network
parameter distribution in our model, D̃l+1 can be rewritten as
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D̃l+1 = ( 1
N
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∑
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2
,

(15.19)

where we have used the fact that (Kl+1
i j )2 = Kl+1

i i

2
, thanks to the i.i.d setting.

To compare D̃l+1 with D̃l , we write down the definition of D̃l as follows:

D̃l = ( 1
N

∑
i C

l
ii )

2

2
N

∑
i< j (C

l
i j )

2 + 1
N

∑
i (C

l
ii )

2

= (kl1)
2

(N − 1)�l + kl2
.

(15.20)

Comparing Eqs. (15.20) and (15.19), we can easily draw the conclusion that

because the additive term (Kl+1
i i )2

Kl+1
i i

2 (kl1)
2 is always positive, the dimension reduction as

D̃l+1 < D̃l is guaranteed mathematically. Hence, Eqs. (15.20) and (15.19) explain
the dimensionality reduction across layers.

To get an explicit form of the additive term, we have to use the large-N limit
assumption. Note that

κ l =
∫

DtDu[φ′(
√

σbu +
√
gQl−1t)]2 = Kl

ii , (15.21a)

Ql−1 =
∫

DuDtφ2[√σbu +
√
gQl−2t], (15.21b)

(Kl
ii )

2 =
∫

DtDu[φ′(
√

σbu +
√
gQl−1t)]4. (15.21c)

According to the definition of kl1, we can get k
l
1 = 1

N

∑
i C

l
ii = 〈hli hli 〉 − 〈hli 〉〈hli 〉

= 〈hli hli 〉 − Ql , where Ql = 1
N

∑
i (m

l
i )
2. An iterative form is thus given by
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kl1 =
∫

Dxφ

[√
�l

i i x + bli + [wlml−1]i
]2

− Ql, (15.22)

whose quenched average can be performed explicitly as follows:

kl1 =
∫

Du
∫

Dt
∫

Dxφ2[
√

gkl−1
1 x +

√
gQl−1t + √

σbu] − Ql,

=
∫

Du
∫

Dyφ2[
√

gkl−1
1 + gQl−1y + √

σbu] − Ql .

(15.23)

Taken together, we arrive at the final form of the additive term (Kl+1
i i )2

Kl+1
i i

2 (kl1)
2:

(Kl+1
i i )2

Kl+1
i i

2 (kl1)
2 =

∫
DtDu[φ′(√σbu +√gQlt)]4

[∫ DtDu[φ′(√σbu +√gQlt)]2]2

×
[∫

Du
∫

Dyφ2[
√

gkl−1
1 + gQl−1y + √

σbu] − Ql

]2
.

(15.24)

Finally, according to both theory and finite-size system simulation, we find that
the additive positive term tends to be a very small value as the number of layers
increases (Fig. 15.5), which is consistent with the observation in a finite-N system.
This indicates that, because of the property of the addictive term, the estimated
dimensionality becomes nearly a constant in the deep layers.

To conclude, the mean-field theory reproduces the key features of dimension-
ality reduction and neural decorrelation process, which is also compatible with the
redundancy reduction hypothesis [3] put forward in neuroscience.Whether themech-
anisms revealed by the simple i.i.d setting are robust against taking more network
details (e.g., learning effect) deserves future studies.

15.3 Dimension Reduction with Correlated Synapses

In the previous part, by a mean-field theory, the dimensionality of layered repre-
sentations in neural networks whose synaptic weights are independently and identi-
cally distributed was calculated. However, in real cortical circuits, synaptic weights
among neurons, even in the same layer, may not be ideally independent with each
other [4]. Therefore, to understand the mechanism underlying how the weakly cor-
related synapses affect the neural representations is important. In this part, we will
calculate the dimensionality of layered representations under the weakly correlated
case by a mean-field theory [2].
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Fig. 15.5 The behavior of the addictive term as a function of the network depth. The theory is based
on the large-N limit assumption, whereas the simulation part is carried out in a finite-N system
(N = 100)

15.3.1 Model Setting

We consider a deep random neural network with d hidden layers and N neurons at
each layer. The weight matrices are defined as wl (l is a layer index) whose i th row
corresponds to incoming connections to the neuron i at the higher layer (so-called
the receptive field (RF) of the neuron i). Throughout this part, we just consider
binary weights (±1). The analysis of continual weights is straightforward [2]. The
biases of neurons at the lth layer are denoted by bl . The pre-activations are zli ≡
g[wlhl−1]i/N + bli and the activations are hli = φ(zli ). In this part, we use the non-
linear transfer function φ(x) = tanh(x).

The specific covariance structure we consider here is Fig. 15.6.

wl
i jw

l
ks = δ jsq + δikδ js (1 − q) . (15.25)

The weights have a zero mean. The biases follow a Gaussian distribution N(0, σb).
Here, we do not enforce any scaling constraint a priori to the correlation level q, and
it will be determined in a self-consistent way.

We consider random inputs which are independently sampled from a multivariate
Gaussian distribution with zero mean and the covariance matrix � = 1

N ξξT, where
ξ is an N × P matrix whose components follow a normal distribution of zero mean



15.3 Dimension Reduction with Correlated Synapses 239

q

Fig. 15.6 Schematic illustration of a deep neural networkwith correlated synapses. The deep neural
network carries out a layer-wise transformation of a sensory input. During the transformation, a cas-
cade of internal representations ({hl }) are generated by the correlated synapses, with the covariance
structure specified by the matrix above the layer. g characterizes the variance of synaptic weights,
while the diagonal block characterizes the inter-receptive-field correlation among corresponding
synapses (different line colors), and q specifies the synaptic correlation strength. We do not know
a priori the exact scaling form of q, which is self-consistently determined by our theory. The figure
is adapted from the paper [2]

and variance σ 2 (σ = 0.5 here). The ratio α = P/N controls the spectral density of
the covariance matrix (see Chap. 17).

15.3.2 Mean-Field Calculation

15.3.2.1 Mean-Field Iteration of Activity Moments

In this section, we derive the mean-field iteration of activity moments.We first derive
the mean-field equation for the mean activity ml

i as follows:
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ml
i = 〈hli 〉
=
〈

φ

(
g√
N

[
wlhl−1

]
i + bli

)〉

=
〈

φ

(

ali + g√
N

[
wlml−1

]
i + bli

)〉

,

(15.26)

where the average 〈·〉 is defined over the activity statistics throughout this section, and
we define the mean-subtracted weighted-sum (or pre-activation) ali = g√

N

∑
j w

l
i j(

hl−1
j −

〈
hl−1
j

〉)
, then its expectation is zero, and variance is given by�l

i j =
〈
ali a

l
j

〉
=

g2

N

[
wlCl−1

(
wl
)T
]

i j
, where C denotes the covariance matrix of the neural activity.

Because ali is the sum of N nearly independent random terms, as N → ∞, we apply
the central limit theorem, and obtain

ml
i =

∫

Dtφ

⎛

⎝
√

�l
i i t + g√

N

∑

j

wl
i jm

l−1
j + bli

⎞

⎠ , (15.27)

where Dt = e−t2/2dt/
√
2π . Then, we consider the covariance of activities. Note that

the Gaussian random variable ali has a variance �l
i i . The activity covariance is then

given by

Cl
i j = 〈hli hlj

〉− 〈hli
〉 〈
hlj
〉

=
〈

φ

(

ali + g√
N

[
wlml−1]

i
+ bli

)

φ

(

alj + g√
N

[
wlml−1]

j
+ blj

)〉

− ml
im

l
j

=
∫

DxDyφ

(√
�l

i i x + bli + g√
N

[
wlml−1

]
i

)

φ
(√

�l
j j (ψx + y

√
1 − ψ2)

+blj + g√
N

[
wlml−1

]
j

)

− ml
im

l
j ,

(15.28)

where Dx = e−x2/2dx/
√
2π , and ψ = �l

i j/
√

�l
i i�

l
j j . ali and alj have been

parametrized by two independent standard Gaussian random variables, say x and
y, respectively. The pre-activation correlation has been captured by the correlation
coefficient ψ (|ψ| ≤ 1).

With the activity moments, we can then evaluate the dimensionality of the lth
layer by

Dl =
(∑

i λi
)2

∑
i λ

2
i

=
(
TrCl

)2

Tr(Cl)2
=
(∑

i C
l
ii

)2

∑
i, j (C

l
i j )

2
, (15.29)

where {λi } is the eigenspectrum of the covariance matrix Cl . Then we can define
the normalized dimensionality as D̃l = (TrCl )2

N Tr(Cl )2
, which is then independent of the
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network width N . To derive the recursion of dimensionality for each layer, we
define additionallyK l

1 = 1
N

∑
i C

l
ii ,K l

2 = 1
N

∑
i (C

l
ii )

2, and�l = 2
N 2

∑
i< j (C

l
i j )

2 for
a large value of N . The normalized dimensionality of the lth layer is thus expressed
as

D̃l = (K l
1)

2

N�l + K l
2

, (15.30)

which is useful for the following theoretical analysis.

15.3.2.2 Expansion of Two-Point Correlations

In the mean-field limit, we can assume Cl
i j ∼ O(1/

√
N ) for i �= j [1]. We first

analyze the off-diagonal part of the covariance matrix. First, we notice that �2
i j =

g4

N 2

∑
k,l w

2
ikw

2
jlC

2
kl = N 2 g4

N 2
1
N ∼ O

(
g4

N

)
, whichmeans that�i j ∼ O(

g2√
N

). The over-

line here denotes the disorder average over the network parameters. In other words,
when N is sufficiently large, �i j is very small. Then, we execute a Taylor expansion
with respect to a small �i j whose layer index is added below

φ
(√

�l
j j (ψx + y

√
1 − ψ2) + z0j

)
= φ

(√
�l

j j y + z0j
)

+ φ′
(√

�l
j j y + z0j

) x�l
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√
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i i

+ O
((

�l
i j

)2)
,

(15.31)
where we define z0j = blj + g√

N

[
wlml−1

]
j . By noting that ml

i = ∫ Dtφ
(√
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i i t + z0i

)

, we obtain
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√
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∫
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(15.32)

Therefore, we can writeCl
i j � 〈φ′

(√
�l

i i x + z0i

)

〉x 〈φ′
(√

�l
j j y + z0j

)
〉y�l

i j , where

the linear coefficient is an average over standard normal variables, and is called
hereafter Kl

i j for the following analysis.

We next remark that �i i � g2

N

∑
k w

2
ikCkk = g2K1 ∼ O(g2). In the small-g limit,

we can carry out an expansion in
√

�i i whose layer index is added below, and get
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Cl
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(15.33)
We then analyze the diagonal part of the covariance matrix,
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(15.34)
We expand the above formula in the small �l

i i , i.e., φ
(
ali + z0i

) = φ
(
z0i
)+ φ′

(
z0i
)√

�l
i i x , and obtain
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(15.35)
Therefore, we can write Cl

ii � Kl
ii�

l
i i , where Kl

ii is the shorthand for the linear
coefficient. To improve the prediction accuracy, one needs to include high-order
terms into this approximation. We observe that if we use Eq. (15.32) by setting
i = j , the theoretical prediction can match the numerical simulation results even in
a relatively large value of g. This may be due to the fact that the contribution of �l

i i
is taken into account when computing Kl

ii .

15.3.2.3 Iteration of the Correlation Strength � l

First, we calculate K l
1, and in the large N and small g limits, we obtain
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1 =
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⎠

2

g2K l−1
1 ,

(15.36)

where · means an average over the distribution of network parameters, and �l
i i is

approximated by
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1 . (15.37)

Note that the argument of φ′(·) is a sum of a large number of nearly independent

random variables. It is then easy to write that g√
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According to the central limit theorem, we obtain
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where we have defined Ql−1 def= 1
N

∑N
i=1

(
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i

)2
. The recursion of Ql becomes
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(15.39)

where we have used �l
i i = g2K l−1

1 .
Finally, we obtain the recursion for K l

1,

K l
1 = g2Kl

iiK l−1
1 . (15.40)

Note that K l
1 can also be calculated recursively without the small-g assumption as

follows:
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(15.41)

Next, the recursion of K l
2 can be calculated by definition as follows:
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K l
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where we have assumed that Kl
ii in the large-N limit does not depend on the specific

site index, and thus
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(15.43)
Note that K l

2 can be evaluated recursively without the small-g assumption as

K l
2 = 〈[〈φ2( f )〉z − 〈φ( f )〉2z

]2〉u,t , (15.44)

where z, u and t are all standard normal variables, and f
def=
√
g2K l−1

1 z + √
σbu +

√
g2Ql−1t .
We finally derive the recursion of �l . First, for the binary weights, to compute
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i j , where the layer index can be added later, we have
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(15.45)
where the cross-term vanishes in statistics to derive the second equality, due to the
vanishing intra-RF correlation for one hidden neuron. The third equality is derived
by considering the inter-RF correlation in our current setting. Finally, we arrive at

N�l+1 = 2

N

∑

i< j

(Kl+1
i j )2

g4

N 2

[
(1 + q2)N 2�l + (1 − q2)NK l

2 + q2N 2
(K l

1

)2]

= (Kl+1
i j )2g4

[
(1 + q2)N�l + q2N (K l

1)
2 + (1 − q2)K l

2

]

� (Kl+1
i j )2g4

[
N�l + K l

2 + r2(K l
1)

2
]

.

(15.46)
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A unique scaling for q must then be q = r√
N
, resulting in q2N = r2 where r ∼ O(1),

and thus Eq. (15.46) is self-consistent in physics as well. Besides, (Kl+1
i j )2 is used to

replace (Kl+1
i j )2 in the mean-field approximation and can be computed recursively

as follows:

(Kl+1
i j )2 =

〈〈

φ′
(√

g2K l
1x +

√
g2Qlz1 + √

σbu1

) 〉2

x

×
〈

φ′
(√

g2K l
1y +

√
g2Ql

(
ρz1 +

√
1 − ρ2z2

)
+ √

σbu2

) 〉2

y

〉

z1,z2,u1,u2
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(15.47)
where x, y, z1, z2, u1, u2 are all standard Gaussian random variables, capturing both
thermal and disorder average (inner and outer ones, respectively). The correlation
coefficient is given by

ρ
def= (z0i − bi )(z0j − b j )
√

(z0i − bi )2 · (z0j − b j )2
= q. (15.48)

We finally remark that the synaptic correlation is able to boost the neural cor-
relation level when transmitting signal via hidden representations. From the linear
relationship between�l+1 and�l [seeEq. (15.46)], one derives for the binaryweights
that the operating point is given by

�l
∗ = ϒK l

2

1 − ϒ
+ ϒr2(K l

1)
2

1 − ϒ
, (15.49)

where �l∗ has been multiplied by N , and ϒ
def= g4(Kl+1

i j )2. Equation (15.49) implies
that the operating point is increased by the synaptic correlations (the last term in
the equation). The intercept of the linear relationship is also increased by a positive
amountϒr2(K l

1)
2. Note that the slope of the linear relationship under the orthogonal-

weight and correlated-weight cases are the same. These phenomenons are shown in
Fig. 15.7.

15.3.2.4 Iteration of the Dimensionality Across Layers

According to the definition,with the help ofEqs. (15.40) and (15.42) and the recursion
equation for �l , we obtain
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Fig. 15.7 The schematic illustration showing how synaptic correlations elevate the neural corre-
lation level (multiplied by N ) and the operating point in hidden representations of deep neural
networks. The boost is indicated by the double arrow for an example in which the input �l is below
the operating point (indicated by star-symbols) where �l+1 = �l . The figure is adapted from the
paper [2]

D̃l =
(K l

1

)2

N�l + K l
2

= (K l−1
1 )2

γ1(N�l−1 + K l−1
2 ) + (γ1r2 + γ2

) (K l−1
1

)2 ,

(15.50)

where γ1 = K 2
i j/Kii

2
, γ2 = K 2

i i/Kii
2
and r = qN

1
2 . When the superscripts of layer

index for Ki j and Kii are clear, the superscripts are omitted. Here, we manage to
use the activity statistics at previous layers to estimate the dimensionality of the
current layer, rather than the original formula [Eq. (15.30)]. Thus, the mechanism
for dimensionality change can be revealed. The output dimensionality is tuned by
a multiplicative factor γ1 and an additive term [the last term in the denominator of
Eq. (15.50)].

Note that to evaluate γ1 and γ2, we need to compute the following quantities,
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(15.51)
where ρ = q. Ql , K l

1 and K l
2 can also be computed recursively by following the

iterative equations mentioned before.

15.3.2.5 Closed-Form Mean-Field Iterations for Estimating the
Dimensionality

The equations of the mean-field iteration are given by
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jk ′ , (15.52)
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and

Cl
i j =

∫

DxDyφ

(√
�l

i i x + bli + g√
N

∑

k

wl
ikm

l−1
k

)

·

φ

(
√

�l
j j (ψx + y

√
1 − ψ2) + blj + g√

N

∑

k ′
wl

jk ′ml−1
k ′

)

− ml
im

l
j .

(15.54)

15.3.3 Numerical Results Compared with Theory

15.3.3.1 The Generation of Weights and Synthetic Data

We consider a five-layer fully connected neural networkwith one input layer and four
hidden layers. The number of neurons in each layer is specified by N . The param-
eters of the network are generated by following the procedure below, and after the
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initialization, all parameters remain unchanged during the simulation of dimension
estimation, and then the result is averaged over many independent realizations of the
same statistics of network parameters.

The binary weight (wi j = ±1) follows a statistics of zeromean and the covariance
specified by

wl
i jw

l
ks = δ jsq + δikδ js (1 − q) = qδ js (1 − δik) + δikδ js . (15.55)

Diagonalization of the full covariance matrix of binary weights is challenging. How-
ever, no correlation occurs within each RF. Then, we can generate the network
weights for each diagonal block in Fig. 15.8 independently by a dichotomized Gaus-
sian (DG) process [5]. In the DG process, the binary weights can be generated by
wl
i j = sign(xli j ), where

sign(x) =
{
1 x ≥ 0

−1 x < 0
, (15.56)

where xli j is sampled from a multivariate Gaussian distribution of zero mean (due to

wl
i j = 0) and the following covariance, as also shown in a schematic illustration in

Fig. 15.8,

xli j x
l
ks = δ js� + δikδ js (1 − �) = �δ js (1 − δik) + δikδ js . (15.57)

The relation between q and � can be established by matching the covariance of the
DG process with our prescribed correlation level q, i.e.,

q =
∫∫

DxDy sign(x) sign
(
�x +

√
1 − �2y

)
= 2

π
arcsin�. (15.58)

Then, we have

� = sin
πq

2
. (15.59)

A sample of themultivariateGaussian distributionwith the N × N covariancematrix
� (diagonal blocks in Fig. 15.8) can be obtained by first carrying out a Cholesky
decomposition of the covariance, i.e.,� = LLT,whereL is a lower-triangularmatrix.
A sample is then obtained as z = Lε, where ε ∼ N(0, I). I denotes an identitymatrix.
The parameter bli follows N(0, σb) independently.

15.3.3.2 Results

In this section, we make comparisons between theoretical predictions and numer-
ical results. The experimental details are shown in the caption of the figures. We
highlight that the theoretical predictions derived in this section provide a principled



15.3 Dimension Reduction with Correlated Synapses 249

Fig. 15.8 The schematic
illustration of the covariance
matrix of xl is used to
generate correlated binary
weights. The figure is
adapted from the paper [2]

understanding of heuristic tricks of weight and neural decorrelation widely used in
machine learning community [6–8].

We find that the weak correlation among synapses is able to reduce further the
hidden-representation dimensionality across layers compared to the case of orthog-
onal weights [Fig. 15.9a]. Moreover, the synaptic correlation r can also boost the
correlation strength � [Fig. 15.9b]. The boost is larger at earlier layers of deep
networks. We can draw a conclusion that the weak synaptic correlation accelerates
the dimension reduction, while reducing the decay speed of the neural correlation
strength.

In Fig. 15.9c, we show that the change of g and σb has no (or negligible) effect on
the dimension reduction. In contrast, theweight strength elevates the correlation level,
playing the similar role to the synaptic correlation [Fig. 15.9b]. Besides, increasing
the firing bias would further decorrelate the hidden representation.

The output dimensionality is tuned by a multiplicative factor γ1 and an additive
term [the last term in the denominator of Eq. (15.50)] [Fig. 15.9d]. We observe
that the multiplicative factor γ1 grows until arriving at the unity; this factor always
equals the unity at q = 0. The additive term is always positive and decreases with
the network depth, thereby contributing an additional reduction of dimensionality.
Those two terms overall make the dimension reduction weaker at deeper layers.
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Fig. 15.9 Typical behavior of dimension reduction in networks of binaryweights. Simulationswere
carried out on networks of finite size N = 200, and averaged over ten instances with negligible
error bars. a Layer-wise dimension reduction with different correlation level r . g = 0.9, α = 2,
and σb = 0.1. The covariance is obtained by Eqs. (15.53) and (15.54). The cross symbol indicates
the simulation result obtained by layer-wise propagating 105 samples. b Layer-wise decorrelation
with r . Other parameters are the same as in (a). The neural correlation strength has been scaled by
N . c Dimension reduction and decorrelation with different values of g and σb. r = 0.5. g = 0.9
when σb varies, and σb = 0.1 when g varies. d Large-N limit behavior for g = 0.4. The left inset
shows the behavior of γ1 and the additive term. The right inset shows a comparison of the estimated
dimensions between theory and simulation (N = 200). In both insets, r = 0.5, σb = 0.1 and α = 2.
The figure is adapted from the paper [2]
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Chapter 16
Chaos Theory of Random Recurrent
Neural Networks

In the context of computational neuroscience, analyzing themodel of recurrent neural
networks (RNNs) is a promising frontier to reveal dynamical computation princi-
ples underlying cognitive functions, e.g., working memory, decision-making and
learning (Wulfram Gerstner et al. in Neuronal Dynamics: From Single Neurons to
Networks and Models of Cognition. Cambridge University Press, Cambridge, 2014
[1]). This is usually achieved by simulating a spiking neural network whose dynam-
ics is described by the evolution of neuronal membrane potentials. The idea is that a
neuron in a spiking neural network is not captured by a single activation value (e.g.,
0 or 1, thereby unlike the standard Hopfield network). Only when the membrane
potential reaches a threshold value, a spike is emitted; after that, a silent period of
short duration is maintained. An abstraction of this spiking dynamics is the firing
rate model, whose dynamics properties can be analyzed by statistical mechanics
tools. In this chapter, we will introduce the dynamical mean-field theory to draw a
complete picture about how fixed-point dynamics shifts to chaotic states, and how
experimentally observed irregular asynchronous cortical activity can be explained
by a mean-field argument.

16.1 Spiking and Rate Models

The information in the neural networks is represented by the neural firing activities,
including spiking activities as well, and thus the spatio-temporal evolution of these
activity patterns is a manifestation of neural information processing. We first briefly
describe the spikingmodel.When a neuron is activated, it produces a discrete spiking
signal that is transmitted to other neighboring neurons, increasing or decreasing
neighbors’ membrane potential via inhibitory or excitatory connections (depending
on the cell type of the spiking neuron). In contrast to traditional artificial neural
networks, the spiking models process spatio-temporal information, in terms of the
following leaky-integrated firing (LIF) equation [2]:
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dVi (t)

dt
= −Vi (t) − Vrest

τm
+

∑

j,n

Ji jδ
(
t − t jn − �i j

) + Jext
∑

n

δ(t − t̃in), (16.1)

where Vi (t) can be seen as the membrane potential of the i th neuron at the moment
t , usually at the order of millivolt in a biological neural network. Here, Ji j is the
synaptic efficacy which couples the output of the (presynaptic) j th neuron to the
target (post-synaptic) i th neuron, and Jii = 0. The coupling unit here is millivolt
per second. The positive and negative properties of Ji j depend on the cell type of
neurons, namely excitatory or inhibitory neurons. In a neural circuit, excitatory neu-
rons produce positive outward synapses, while inhibitory neurons produce negative
outward synapses. τm (e.g., 20 ms) stands for the membrane time constant, deter-
mining the time scale that the membrane potential decays from Vi (t) to the resting
voltage Vrest. In other words, it specifies the time scale of the membrane potential
dynamics. �i j is the signal-transmission delay from j th neuron to i th neuron. t jn
is the nth spiking time of the j th neuron. Hence,

∑
j,n Ji jδ(t − t jn − �i j ) is the

sum of contributions from neighboring spiking neurons of the i th neuron. The last
part Jext

∑
n δ(t − t̃in) characterizes the external contribution (e.g., a stimulus) to

the internal recurrent dynamics. If Jext = 0, the dynamics is called the spontaneous
dynamics, or the autonomous dynamics.

In a more biological reality, the recurrent synaptic input Is(t) = ∑
j,n Ji jδ(t −

t jn) (the delay neglected here) can be also described by an instantaneous jump and
exponential decay process [3]:

τs
d Is
dt

= −Is(t) +
∑

j,n

Ji jδ(t − t jn), (16.2)

where τs captures the synaptic relaxation time scale. Therefore, Eq. (16.1) assumes
the delta-function post-synaptic currents, i.e., the synaptic time constant can be
neglected compared to the neuronal time constant.

Figure 16.1 shows a schematic illustration of the membrane potential of represen-
tative neurons. The membrane potential evolves from an initial value; the membrane
potential fluctuates until it reaches the threshold value, which sends out immediately
a spike. After the spike, the membrane potential decays rapidly to the resting voltage,
and then stays there in a total of a fewmilliseconds (defined as the refractory period).
During the period (τref , e.g., 2 ms), all the input signals are ignored. A waking animal
cortex always shows asynchronous irregular activities with low firing frequency. The
dynamical system theory can be applied to analyze the spiking model to get insights
about the collective properties of the network. We recommend interested readers the
seminal paper [2] and many recent works citing this seminal paper. We would not
explore statistical analysis of the LIF model here, which is explored in-depth in the
book [1].

We would rather study a simpler system, called the firing rate model. Whether
a spiking dynamics is related to a rate model at the macroscopic level is still under
heated debated [4]. For simplicity, we use a firing rate to describe the dynamics
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of the neurons in a population, instead of spikes. In other words, the firing rate is
interpreted as the firing frequency (or probability) in a specified temporal interval.
Themodel has N neurons, whose states are characterized by their local currents (e.g.,
summed and filtered synaptic current inputs): xi (t), i = 1, . . . , N ; the firing rate can
be expressed as ri = tanh(xi ); other transfer functions can also be applied. Note that a
sigmoid function is physically consistent with the firing probability definition. Here,
we would not put much biological reality, and instead focus on the mathematical
analysis. Each pair of neuron i, j is connected by a synapse of weight Ji j . The rate
description of Eq. (16.1) is simplified as follows:

dxi
dt

= −xi + ηi , (16.3)

where ηi = ∑N
j=1 Ji jφ

(
x j

)
, and we omit the external drive. We choose φ(x) =

tanh(x) as the non-linear transfer function of each neuron. We further assume that
each synapse is independently sampled froma zero-meanGaussian distribution Ji j ∼
N

(
0, g2

N

)
, where g characterizes the coupling (or recurrent feedback) strength of

the rate model. The scaling of 1
N in the variance is to ensure the weighted-sum input

of each neuron is of O(1) in the large-N limit.

16.2 Dynamical Mean-Field Theory

Dynamic mean-field theory is inspired from a generating function formalism of the
rate dynamics (see a review [5]). This theory was first applied to the recurrent neural
network in 1988 [6]. The theory is also called the path integral approach, having
a long history in computing the disorder average of all dynamics trajectories [7].
This approach has been originally designed to study stochastic dynamics in spin
systems [8–11]. The path integral method provides a systematic analysis of the high-
dimensional dynamics in a complex system, allowing for a thorough analysis of the
fluctuations around the saddle point of the action function [11].

16.2.1 Dynamical Mean-Field Equation

Here, we derive intuitively the steady state of the rate dynamics, i.e., the dynamics of
the system can be reduced to the dynamics of a single representative neuron, driven
by a Gaussian noise. In this sense, ηi can be thought of as a time-dependent Gaussian
variable. The driving force of the dynamics fluctuates around the zero mean. The
statistics is given by
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Fig. 16.1 An illustration of spiking dynamics in a recurrent neural network. (Left) Network archi-
tecture. The randomly connected recurrent model is composed of three populations—excitatory
one indicated by E, inhibitory one indicated by I, and the external population X simulating an
uncorrelated Poisson process. (Right) Spike trains of one randomly selected E neuron and one I
neuron from the spiking model following the dynamics equations [Eqs. (16.1) and (16.2)]. The
spiking threshold is set to be −52 mV. Once the membrane potential of one neuron reaches the
threshold, the membrane potential drops to the reset potential −70 mV and remains unchanged
for a duration of τref = 2 ms. Other time scales are τm = 20 ms, and τs = 10 ms for both E and
I neurons. The population size is N = 16000, in which 4000 inhibitory neurons are present. The
connection probability is set to p = 0.1 for a sparse network

〈ηi (t)〉 =
N∑

j=1

[
Ji jφ

(
x j

)]
J ≈ 0, (16.4)

where [. . . ]J denotes the disorder average over the coupling distribution, and 〈. . . 〉
denotes the temporal average of the dynamics. In Eq. (16.4), 〈. . . 〉 is replaced by
[. . . ] because of the assumption in statistical physics that the ensemble average is
equivalent to the temporal average in the long time limit. The time-delayed correlation
is defined by
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〈
ηi (t)η j (t + τ)

〉 =
[

N∑

l=1

Jil

N∑

k=1

Jjkφ (xl(t)) φ (xk(t + τ))

]

= δi j
g2

N

∑

k

[φ(xk(t))φ(xk(t + τ))]

= δi j g
2〈φ(xk(t))φ(xk(t + τ))〉

= δi j g
2C(τ ),

(16.5)

where the autocorrelation function is introduced as follows:

C(τ ) = 〈φ(xk(t))φ(xk(t + τ))〉, (16.6)

whichmeasures the similarity between the state of the system at the time step t and the
state after a temporal separation τ . In the long time limit, the autocorrelation depends
only on the temporal separation τ . In other words, the dynamics is time-translation
invariant.

Applying the Fourier transformation to both sides of Eq. (16.3), we have

(1 + iω)x̂(ω) = η̂(ω), (16.7)

(1 − iω)x̂(−ω) = η̂(−ω), (16.8)

where x̂(ω) is the Fourier transformation of x(t), and x̂(−ω) is the conjugated
quantity of x̂(ω). Multiplying both sides of Eqs. (16.7) and (16.8), we have

(
1 + ω2

)
x̂(−ω)x̂(ω) = η̂(ω)η̂(−ω). (16.9)

Performing an inverse Fourier transform to the right-hand side of Eq. (16.9), we have

1

2π

∫
η̂(ω)η̂(−ω)eiωτdω = 1

2π

∫∫
η(t)e−iωt dt

∫
η

(
t ′
)
eiωt

′ × eiωτdt ′dω

= 1

2π

∫ ∫
η(t)η

(
t ′
)
dtdt ′

∫
eiω(t

′+τ−t)dω

=
∫∫

η(t)η
(
t ′
)
dtdt ′δ

(
t − t ′ − τ

)

= 〈η(t)η(t + τ)〉.
(16.10)

The similar inverse Fourier transformation applies to the left-hand side of Eq. (16.9):
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1

2π

∫ (
1 + ω2

)
x̂(ω)x̂(−ω)eiωτdω

= 1

2π

∫ (
1 − (iω)2

)
x̂(ω)x̂(−ω)eiωτdω

=
(
1 − d2

dτ 2

)
�(τ),

(16.11)

where the local field (or current) autocorrelation �(τ) = 〈xi (t)xi (t + τ)〉.
CollectingEqs. (16.5), (16.10) and (16.11),we arrive at amotion equation describ-

ing the dynamics of �(τ):
� − �̈ = g2C(τ ), (16.12)

where �̈ indicates the second-order derivative of � with respect to time. To solve
Eq. (16.12), we can write C(τ ) as a function of �(τ). Equation (16.6) tells us
that C(τ ) is a function of x(t). �(τ) depends also on x(t). Furthermore, x(t) can
be approximated by a Gaussian distribution according to the CLT; the mean and
covariance are given, respectively, by

〈x(t)〉 = 〈x(t + τ)〉 = 0;
〈x(t)x(t + τ)〉 = �(τ).

(16.13)

We then use the following parametrization of the random local current x(t):

x(t) = αy + βz;
x(t + τ) = αy′ + βz.

(16.14)

To satisfy Eq. (16.13), α = √
�(0) − |�(τ)|, and β = √|�(τ)|. Then C(τ ) can be

written in the following form:

C(τ ) =
∫

DyDy′Dzφ(αy + βz)φ
(
αy′ + βz

) =
∫

Dz

[∫
Dyφ(αy + βz)

]2

.

(16.15)
The form of Eq. (16.12) suggests the existence of a potential energy V , which

satisfies

�̈ = −∂V

∂�
. (16.16)

The underlying physics is that Eq. (16.12) can be thought of as a particle moving in
a potential well. We then have the following form of the potential:

V = −�2

2
+ g2V2; ∂V2

∂�
= C(τ ). (16.17)

The exact form of V2 can be derived as follows:
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V2 =
∫

Dz

[∫
Dy�(αy + βz)

]2

, (16.18)

where d�(x)
dx = φ(x), or �(x) = ∫ x

0 dyφ(y). One can prove that Eq. (16.18) meets
the constraint [Eq. (16.17)]. A detailed proof of Eq. (16.18) is left as an exercise for
interested readers. [Hint: Price’s Theorem]

Finally, we summarize the dynamical mean-field equation of the rate dynamics:

�̈ = −∂V

∂�
,

V (�) = −�2

2
+ g2

∫
Dz

[∫
Dy�(

√
�(0) − |�|y + √|�|z)

]2

,

(16.19)

where we omit the time-dependence of � when writing �.

16.2.2 Regimes of Network Dynamics

As mentioned in the previous section, Eq. (16.19) describes the motion of a particle
in a potential well—V (�)with an initial velocity �̇(0).�(τ) records the coordinate
of the particle at time τ . The shape of V (�) depends on the strength of synapse g
and the initial position �(0). There are two physical constraints for Eq. (16.19):

• � is bounded like �(0) ≥ |�(t)|, and �(0) > 0.
• �(t) is a differentiable even function, i.e., �(t) = �(−t), because of the time-
translation invariance in the long time limit. In addition, �̇(0) = 0 (a maximal
value reached at t = 0), and thus the initial kinetic energy is zero.

Equation (16.19) indicates a mutual transformation between kinetic energy and
potential energy, and thus the total energy of the particle is conserved, which means
that 12 �̇(t)2 + V (�(t)) = V (�(0)) at every time t . Since the kinetic energy is always
positive, we have V (�(t)) ≤ V (�(0)). If we can determine the shape of V (�) at any
given g and initial state �(0), we can fully characterize the trajectory of � over time
by using Eq. (16.19) and the physical constraints. Let us calculate the derivatives of
the potential:

∂V

∂�
= −� + g2

∫
Dz

[∫
Dyφ(

√
�(0) − |�|y + √|�|z)

]2

, (16.20a)

∂2V

∂�2
= −1 + g2

∫
Dz

[∫
Dyφ′(

√
�(0) − |�|y + √|�|z)

]2

. (16.20b)

Note that Eq. (16.20a) is consistent with Eqs. (16.12) and (16.17).
It is easy to get ∂V

∂�

∣∣
�=0

= 0 for an odd transfer function. Because 0 < φ′ ≤ 1 for
the considered transfer function, the integral in Eq. (16.20b) must be smaller than
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Fig. 16.2 Dynamics regimes in recurrent rate neural networks [6]. The solid points on the curve
show possible initial positions. a g < 1. b g > 1 and a small �(0). c g > 1 and a large �(0).
Discussions are presented in the main text
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one, and thus we have ∂2V
∂�2 ≤ g2 − 1. If g < 1, ∂2V

∂�2 will always be negative, and
thus V is strictly concave, suggesting that the maximum appears at � = 0. If g > 1,
∂2V
∂�2 may be positive, but the second derivative also depends on �(0). When �(0)

is quite small, ∂2V
∂�2 |�=0 = −1 + g2

[∫
Dyφ′(

√
�(0)y)

]2
, and thus the second-order

derivative can be positive, suggesting a convex part for the potential. Therefore, the
shape of V (�) can be either a single well or a double well, depending on the sign of
∂2V
∂�2 at � = 0.

The potential-shape determines the characteristics of the network dynamics, clas-
sified into the following types:

• Concave shape, for g < 1.
Because of the concave shape of V , �(t) starting from �(0) will tend to grow,
violating the physics bound. In addition, due to the energy conservation, the other
solution is given by �(t) = �(0) = 0, suggesting that �(t) must always stay at
the initial point. This indicates an all-silent dynamics state, a trivial fixed-point
solution of the dynamical mean-field equation [Fig. 16.2a].

• Convex shape, for g > 1, and small �(0).
The trajectory of�oscillates from�(0) to−�(0), indicating a limit-cycle solution
for the dynamics, as shown in Fig. 16.2b.

• Double well shape, for g > 1, and a relatively large �(0).
The dynamics now depends on the initial value of �. As shown in Fig. 16.2c, we
have the following observations: (i) When�(0) is at the bottom of one well (point
a), the particle will stay there, which is called a static solution of the dynamics.
(ii) � will oscillate around the bottom of the well, provided that �(0) is slightly
away from the bottom of one well (point b). (iii) � will oscillate from �(0) to
−�(0) in Fig. 16.2 (point c). (iv) At the point d, V (�(0)) = V (0), and the initial
energy can exactly bring the particle to � = 0. � thus decays monotonically with
time, i.e., �(τ) decays to zero as τ → ∞. This solution represents a chaotic state
of the network, characterized also by a positive value of the maximal Lyapunov
exponent (see the next section). The decay rate of � can be characterized by the
relaxation time scale τe. Let �(t) ∼ �(0) exp(−t/τe), τe can then be derived as
τe = [−∂2V (0)/∂�2

]−1/2
[see Eq. (16.16)].

To sum up, the steady state of the network dynamics can be captured by different
types of solutions: fixed points, limit cycles and chaos. The stability of these solutions
can be verified by the Hessian of fluctuations around the saddle point of the action
based on the path integral representation of the dynamics [11]. The static solution
below g = 1 is stable, while for g > 1, all the oscillatory solutions are unstable, but
the only stable solution is the chaotic one. Note that for a finite-size network, the
network may display oscillatory patterns of activity, whereas the oscillations will
vanish with increasing network sizes; in other words, the chaos transition with g
becomes sharper as N becomes larger.
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16.3 Lyapunov Exponent and Chaos

Next, we show how the chaotic state emerges, i.e., we study how infinitesimal per-
turbations grow or shrink along the dynamics evolution. This criticality is math-
ematically characterized by a Lyapunov exponent (the maximal one). A positive
exponent implies that nearby trajectories (e.g., starting from nearly the same con-
dition) diverge exponentially fast with time. In other words, chaos depends on the
initialization condition.

We first derive the dynamics of perturbations, i.e., we add an infinitesimal fluctu-
ation δxi (t) to Eq. (16.3), and get

dxi (t)

dt
+ dδxi (t)

dt
= − (xi (t) + δxi (t)) +

∑

j

Ji j
[
φ(x j (t)) + φ′(x j (t))δx j (t)

]
.

(16.21)
Comparing Eq. (16.21) with Eq. (16.3), we obtain the equation that describes how
the perturbation changes with time. That is,

(∂t + 1)δxi (t) =
∑

j

Ji jφ
′(x j (t))δx j (t). (16.22)

By making a time translation to Eq. (16.22), we get

(∂t+τ + 1) δxk(t + τ) =
∑

l

Jklφ
′ (xl(t + τ)) δxl(t + τ). (16.23)

Multiplying Eq. (16.22) with Eq. (16.23), and taking the average over J on both
sides, we have

(∂t + ∂t+τ + ∂t∂t+τ + 1)�g(t, τ ) = g2Cφ′�g(t, τ ), (16.24)

where Cφ′ = 〈φ′(x(t))φ′(x(t + τ))〉,�g(t, τ ) = 〈δx(t)δx(t + τ)〉, where 〈. . . 〉
refers to the temporal average.

Performing the variable transformation: T = t + τ + t; τ = t + τ − t , and
using the chain rule of the partial differential, i.e., ∂t ( f (T, τ )) = ∂τ ( f (T, τ )) ∂τ

∂t +
∂T ( f (T, τ )) ∂T

∂t (the chain rule for the time derivative w.r.t t + τ is similar), we recast
the left-hand side of Eq. (16.24) into the form

[
(1 + ∂T )2 − ∂2

τ

]
�g(T, τ ). Notice that

Cφ′(τ ) = ∂C(τ )

∂�(τ)
= ∂2V2

∂�2(τ )
, we have g2Cφ′(τ ) = ∂2V

∂�2(τ )
+ 1, after using Eq. (16.20b).

Then, Eq. (16.24) can be reduced to

[
(1 + ∂T )2 − ∂2

τ

]
�g(T, τ ) =

(
∂2V

∂�2(τ )
+ 1

)
�g(T, τ ). (16.25)

Next, we are going to study the maximal Lyapunov exponent of the perturbation
dynamics. If |δx(t)| ∼ |δx(0)|eλt , and the maximum exponent λmax of λ is positive,



16.3 Lyapunov Exponent and Chaos 263

thedifferencebetween theoriginal trajectory and the trajectoryunder the infinitesimal
initial deviationwill be amplified, thereby leading to a chaotic state.λmax is then given
by

λmax = lim
t→∞

1

t
log

( ‖δx(t)‖2
‖δx(0)‖2

)

= lim
t→∞

1

2t
log

(
∑

i

(δxi (t))
2

)

= lim
t→∞

1

2t
log

[
N�g(t, τ = 0)

]

= lim
t→∞

1

2t
log

[
�g(t, τ = 0)

]
,

(16.26)

where ‖δx(0)‖2 = 1 is assumed.
We further assume a time-separation ansätz for �g(t, τ ) ≡ etkψ(τ), and thus

λmax = k/2. Substituting �g(T, τ ) = ekT/2ψ(τ) into Eq. (16.25), we have

(
−∂2

τ − ∂2V

∂�2(τ )

)
ψ(τ) = (

1 − (1 + k/2)2
)
ψ(τ). (16.27)

Equation (16.27) is exactly a one-dimensional time-independent Schrödinger equa-
tion. τ is now interpreted as the spatial coordinate. − ∂2V

∂�2(τ )
is the quantum potential

W (τ ), and
(
1 − (1 + k/2)2

)
is the energy E . The eigenvalues (or energies) En deter-

mine the exponential growth rate kn , like �g(2t, 0) = ekntψn(0), where τ = 0 leads
to T = 2t . The rate kn is given by

k±
n = 2(−1 ± √

1 − En). (16.28)

Denoting the ground state energy as E0, we have immediately:

λmax = k+
n

2
= −1 + √

1 − E0. (16.29)

In the case of zero-fixedpoint, a constant quantumpotential is expected.Therefore,
E0 = W (� = 0) = 1 − g2. The critical coupling strength is then set by g = 1, above
which the zero-fixed point (trivial solution) is destabilized, replaced by a chaotic
state. Therefore, once the lowest energy E0 becomes negative, the chaotic state (very
sensitive to small changes of the initial condition) appears. An important property of
the transition to fluctuating activity is the divergent time scale τe of the fluctuations at
a critical coupling g = 1 (τe = [−∂2V (0)/∂�2

]−1/2
). The edge-of-chaos hypothesis

in RNNs’ training suggests that the very slow dynamics around the transition regime
is very useful for processing long-term temporal dependence of input sequences [12–
16]. In addition, a recent theoretical work shows that the proliferation of stationary
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points (topological complexity) is coupled with the appearance of a chaotic attractor
(dynamical complexity) [17].

16.4 Excitation-Inhibition Balance Theory

Neurons in the cortex of behaving animals show temporally irregular spiking pat-
terns. We consider the hypothesis that this irregularity is caused by the balance of
excitatory and inhibitory currents into the cortical cells [18–20]. In a biological brain,
local cortical circuit is composed of thousands of neurons, with each neuron receiv-
ing approximately the order of O(103) inputs from other neurons (from the same
or different cortical layers, some of them may be long-ranged). We introduce a net-
work model with excitatory and inhibitory populations of simple binary units, whose
connectivity profile is random and sparse. Excitatory inputs drive a regular firing,
which must be counteracted by local inhibition to yield a low rate irregular cortical
firing pattern [20, 21]. In this balanced network, a balance between the excitatory
and inhibitory inputs emerges dynamically for a wide range of parameters. When
synaptic weights are scaled likeO(1/

√
N ), where N is the network size, the balanced

state is thus achieved by canceling mean excitatory and inhibitory inputs (Fig. 16.3),
and thus the fluctuations drive the asynchronous activity [22]. This balance is thus
achieved dynamically rather than a fine-tuning of synaptic strength.

We consider a firing rate model of NE excitatory cells and NI inhibitory cells,
where K excitatory, K inhibitory and K external neurons project to each neuron in
the network on average. Although the average number of projections K is large, it
is still much smaller than the subpopulation size, i.e., 1 � K � NE,I . The connec-
tion between the i th post-synaptic neuron belonging to the population k and the j th
presynaptic neuron belonging to the population l is denoted by J i jkl , where k = 1 or
l = 1 represents the excitatory subpopulation, while k = 2 or l = 2 represents the
inhibitory subpopulation. Because of the sparse network, J i jkl = Jkl√

K
with a probabil-

ity K/Nl , where the synaptic constant Jk1 is positive, and Jk2 is negative.
We denote the binary variable σ k

i (t) as the state of the neuron i in the population k.
Therefore, the corresponding total synaptic input uki (t) can be expressed as u

k
i (t) =∑2

l=1

∑Nl
j=1 J

i j
kl σ

l
j (t) + u0k , where u0k is the external input to any neuron in the kth

subpopulation, and is defined as u0k = Ek

√
Km0, where Ek ∼ O(1), andmk ∈ [0, 1]

represents the mean activity of neurons in different subpopulation including the
external one. The new state of the i th neuron at time t is determined by

σ k
i (t) = �(uki (t) − θk), (16.30)

where θk is the firing threshold, and� is a step function. Since the model neurons are
threshold-type units, the absolute scale of uki is irrelevant. We thus set the synaptic
strength as follows:
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Fig. 16.3 An illustration of the balanced state in spiking dynamics of a recurrent neural network
[Eqs. (16.1) and (16.2)]. The balanced state is characterized by the mean (population averaged)
synaptic current of an excitatory contribution IE , an inhibitory contribution II and the total current
Itot . The total current fluctuates around zero, showing the characteristic of the dynamic balance

JEE = JI E = 1; (16.31a)

JE = −JE I > 0; (16.31b)

JI = −JI I > 0. (16.31c)

Next, we consider the population-averaged inputs of the excitatory and inhibitory
cells uk(t) as

uk(t) = [uki (t)] =
2∑

l=1

Nl∑

j=1

[J i jkl ][σ l
j (t)] + u0k = √

K

(
2∑

l=1

Jklml(t) + Ekm0

)
,

(16.32)
where the population average [. . . ] is defined as the quenched average over the con-
nectivity statistics, and is calculated as

√
K Jkl
Nl

, and the population-averagedfiring rates

are defined asml(t) = [σ l
i (t)] = 1

Nl

∑Nl
i=1 σ l

i (t). To do the average in Eq. (16.32), we
have neglected the correlations between the random fluctuation in the neural activity
and the particular realization of the connectivity.

Similarly, we derive the variance αk as
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αk(t) = [(δuki (t))2] =
2∑

l,l ′

Nl∑

j, j ′
[δ(J i jkl σ l

j (t))δ(J
i j ′
kl ′ σ

l ′
j ′(t))] =

2∑

l=1

(Jkl)
2ml(t),

(16.33)
where the symbol δu = u − [u]denoting thefluctuation around themean.Note that to
derive the above variance,weuse the result [(J i jkl σ j

l (t))2] = J 2
klml/Nl , andweneglect

the small term [J i jkl σ j
l (t)]2 = J 2

klm
2
l K/N 2

l because of K � Nl . In a balanced state,
the temporal fluctuations in the inputs are of the same order with the populations-
averaged inputs. By matching the order of magnitude of the population averaged
mean and variance, we derive a necessary condition for a balanced state, i.e., both
the excitatory and the inhibitory inputs cancel each other in the large-K limit, more
precisely being of the order O(1/

√
K ). This leads to the following equations:

Em0 + mI − JEmI = 0; (16.34a)

Im0 + mE − JImI = 0, (16.34b)

where E, I represent the strength of excitatory and inhibitory external inputs, respec-
tively. Then, we obtain a solution:

mE = JI E − JE I

JE − JI
m0; (16.35a)

mI = E − I

JE − JI
m0. (16.35b)

To have a reasonable solution (not pathological state), we require that 0 < ml < 1.
Therefore, the following constraints for the model parameters must be obeyed:

E

I
>

JE
JI

> 1; JE > 1. (16.36)

When E
I < JE

JI
, there exists a solution with ml = 0. This is because, if mE = 0, then

mI = Im0
JI

, and we will have

uE = √
K

(
E − JE

JI
I

)
m0 < 0. (16.37)

On the other hand, when JE < 1 and JI < 1, there appears a solution with mE =
mI = 1 even for m0 = 0. In this case, we have:

uk = √
K (1 − Jk) > 0. (16.38)

mk = 0, 1 can be thought of as the pathological state of the cortical dynamics, in that
all-silent and all-active states are not preferred.
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Under this excitation-inhibition balance theory, the neural firing event is purely
driven by fluctuations, producing asynchronous irregular patterns, as observed in
awake cortex [21]. Recent studies argued that the residual input can be comparable
to the excitatory input. But the excitation and inhibition still cancel, yet not as tight
as the above balance theory. This scenario is called the loosely balanced setting [23].
The response of a loosely balanced network can be non-linear function of input
activity. In contrast, the tightly balanced network responds linearly to its input (see
Eq. (16.35a), and Fig. 16.4). The slope is related to the inverse of the mean-recurrent-
strength matrix.

We finally remark that the dynamical regime of the recurrent population plays an
important role in non-linear computations a neural circuit can implement. Therefore,
to provide amechanistic understanding via theoretical arguments is still promising in
current research of theoretical neuroscience, in particular, bridging the gap between
models and experimental data.

Fig. 16.4 Linear input tracking of excitation-inhibition balanced network. The mean-field theory
predictions are compared with the simulations of a spiking network. Parameters are the same as in
Fig. 16.3. We denote rx as the population(x)-averaged firing rate. The rate is normalized (scaled)
by the maximal value
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16.5 Training Recurrent Neural Networks

16.5.1 Force-Training

The chaotic activity near the edge of chaos can be used for computation tasks, such
as generating oscillating activity, and simulating a decision-making process of a
cognitive task [15]. The computational goal can be achieved by modifying only the
output weight, maintaining the randomly connected pool of neurons. The algorithm
that realizes this type of learning is called FORCE-learning [15]. FORCE is used for
the shorthand of first order reduced and controlled error learning. Here, we briefly
introduce the training details.

First we have a target output fi (t), and the readout is obtained as z(t) = wTr ,
where w is the readout weight, and r is the internal dynamics of the RNN. Readout
weights can be updated by the following local least mean squared rule:

�wi j (t) = −η(t)ei (t)r j (t), (16.39)

where η is the learning rate, and the error ei (t) = zi (t) − fi (t). This rule can be
further revised by taking into account the correlation function of the rate dynamics:

�wi j (t) = −ei (t)[C(t)r(t)] j , (16.40)

where C(t) is a running estimate of the inverse of the correlation matrix of the
network activity plus a regularization term:

C(t) =
(

t∑

t ′=t0

r(t ′)rT (t ′) + αI

)−1

, (16.41)

where t0 is the starting time, and C(0) = I
α
, and an iterative solution is given by

C(t) = C(t − �t) − C(t − �t)r(t)rT(t)C(t − �t)

1 + rT(t)C(t − �t)r(t)
, (16.42)

which follows the Sherman–Morrison formula. This learning rule can be adapted
to learning the recurrent weight as well [24], and to supervised learning in spiking
networks [25, 26].

16.5.2 Backpropagation Through Time

Recurrent neural networks (RNNs) is able to implement tasks involving time-
dependent signals, such as natural language processing and time sequence forecast.
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Recurrent Units

Input Output

Win
Wout

Wrec

Fig. 16.5 Schematic illustration of a recurrent neural network.Win,Wrec andWout are correspond-
ing connection matrices

Moreover, RNNs can also be used to model brain dynamics of any cognition tasks.
In this subsection, we introduce a widely used training method for RNNs, which is
backpropagation through time (BPTT). We first consider a canonical RNN structure.
Then, the derivation of BPTT is carried out in detail based on the chain rule. Finally,
we use RNN to perform a classification task on the MNIST benchmark dataset to
verify the effectiveness of the RNN model trained by the BPTT algorithm.

16.5.2.1 Dynamics Equation

We consider a discrete-time RNN model (Fig. 16.5), where Nrec recurrent units
connected to each other are described by the recurrent activity vector h(t). For
simplicity, we consider at every time step, an input vector x(t) of Nin dimension
enters the network to provide signals to recurrent activities, which are read out to
form a time-dependent output y(t) of Nout dimensions. In practice, the time step for
turning on an input or reading out the decision signal depends on specified settings
of a task. The dynamics equation of the model reads

hi (t + 1) = hi (t) + 1

τ
[−hi (t) + φ (ui (t + 1))] , (16.43a)

ui (t + 1) =
Nrec∑

j=1

W rec
i j h j (t) +

Nin∑

j=1

W in
i j x j (t + 1), (16.43b)

yk(t) =
Nout∑

i=1

W out
ki hi (t), (16.43c)

where φ(·) is a non-linear function, ui (t + 1) is the input current to the unit i at a
time step t + 1, and τ is the time constant characterizing how fast the RNN dynamics
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is. Alternatively, it can be compared to its continuous version—τdhi/dt = −hi +
φ(ui ). There are only three sets of weight matrices in our setting, which are the input
weight Win = {W in

i j }, recurrent weight Wrec = {W rec
i j }, and output weight Wout =

{W out
i j }. These matrices are all time-independent, but need to be adjusted during

learning. Our goal is to train the network to produce a desired output y(t) at each
time step, given a time-dependent input x(t) and an initial activity vector h(0). Then,
the loss function that measures the difference between the target output y∗(t) and the
actual output y(t) can be defined by the mean square error integrated over time:

L = 1

2

T∑

t=1

Nout∑

k=1

[εk(t)]
2 , (16.44a)

εk(t) = yk(t) − y∗
k (t), (16.44b)

where T is the total number of time steps, εk(t) is defined as the error of the output
unit k at a time step t .

16.5.2.2 Derivations of BPTT

Backpropagation through time is a standard training algorithm for RNNs [27]. In
this section, we introduce an easy way to derive BPTT based on the chain rule. More
precisely, we first derive the explicit forms of the derivatives of the loss function L
with respect to the input weightWin, recurrent weightWrec and output weightWout.
As the error back-propagates from the output, we first consider ∂L

∂W out
ab
. According to

the chain rule,

∂L
∂W out

ab

=
T∑

t=t0

Nout∑

k=1

∂L
∂yk(t)

∂yk(t)

∂W out
ab

=
T∑

t=t0

∂L
∂ya(t)

∂ya(t)

∂W out
ab

=
T∑

t=t0

εa(t)hb(t). (16.45)

Then, we derive ∂L
∂W rec

ab
based on the chain rule, and we can easily obtain

∂L
∂W rec

ab

=
∑

t

∂L
∂ha(t)

∂ha(t)

∂W rec
ab

= 1

τ

∑

t

∂L
∂ha(t)

φ′(ua(t))hb(t − 1), (16.46)

where we define za(t) ≡ ∂L
∂ha(t)

as the error of the recurrent unit a at a time step t ,
which backpropagates through the network during training. At the last time step T ,
we have

∂L
∂ha(T )

=
Nout∑

k=1

∂L
∂yk(T )

∂yk(T )

∂ha(T )
=

Nout∑

k=1

εk(T )W out
ka . (16.47)

At the other time steps t = 0, 1, . . . , T − 1, the derivation proceeds as follows:
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∂L
∂ha(t)

=
Nout∑

k=1

∂L
∂yk(t)

∂yk(t)

∂ha(t)
+

Nrec∑

j=1

∂L
∂h j (t + 1)

∂h j (t + 1)

∂ha(t)

=
Nout∑

k=1

εk(t)W
out
ka + 1

τ

Nrec∑

j=1

φ′(u j (t + 1))W rec
ja z j (t + 1) + (1 − 1

τ
)za(t + 1).

(16.48)
Finally, ∂L

∂W in
ab
is derived as

∂L
∂W in

ab

=
∑

t

∂L
∂ha(t)

∂ha(t)

∂W in
ab

=
∑

t

za(t)φ
′(ua(t))xb(t), (16.49)

which is easy to obtain from the Eq. (16.46) by replacing hb(t − 1) by xb(t).
With the derivation of the above three derivatives, we can summarize the BPTT

algorithm in three steps. First, following the dynamics described by Eq. (16.43),
recurrent activity h(t) and output y(t) evolve over time. Thus, the error ε(t) can
be directly computed. Second, the gradient term caused by error, namely z(t) is
integrated backwards in time described by Eqs. (16.47) and (16.48), and we can
finally obtain the gradients for three sets of weights,

∂L
∂W out

ab

=
T∑

t=t0

εa(t)hb(t), (16.50a)

∂L
∂W rec

ab

=
T∑

t=t0

za(t)φ
′(ua(t))hb(t − 1), (16.50b)

∂L
∂W in

ab

=
T∑

t=t0

za(t)φ
′(ua(t))xb(t). (16.50c)

We remark that the learning can be implemented by applying different kinds of
optimizers, such as vanilla SGD or Adam.

In the above BPTT, the gradient flows back from every time step t to every time
step t ′ < t , which may be very deep in the temporal domain, causing gradients to
explode or vanish. However, in practice, a truncated version can be designed, where
gradients do not flow from t to t ′ if the temporal distance |t − t ′| exceeds a truncation
window size [28].

We finally show an example of training a RNN with the BPTT derived above.
MNIST is a benchmark classification dataset, containing handwritten digits patterns
from 0 to 9, which are 28 × 28 grayscale images. We input the training patterns row
by row at each time step, which means that the input dimension Nin for the RNN
is 28, and the total number of time steps for processing one image is also 28. The
output dimension Nout should be equal to the total classes which is 10. 150 recurrent
units are used in this example. For the MNIST classification task, we only consider
the error generated from the last time step, when the whole image has been shown
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Fig. 16.6 Training trajectories of a RNN performing the MNIST classification. The lines are mean
results from the five independent runs, where the shadows indicate standard deviations

to the RNN. During each training epoch, 12800 images randomly selected from the
total training data (60000 images) are divided into 100 mini-batches with their size
equal to 128. The loss function is the cross-entropy, and Adam is used to optimize the
gradient with the learning rate of 0.01. In addition, we apply the gradient clipping in
which each gradient element for the weight matrices is clipped to the absolute value
of one.

The training performance is shown in Fig. 16.6. The training error and test accu-
racy saturate in tens of epochs, which verify the effectiveness of the BPTT algorithm.
Advanced algorithms taking the weight distribution into account are proposed in the
recent work [29], showing advantages of revealing the weight uncertainty and tem-
poral credit assignments underlying the network output behavior, in both engineering
tasks and computational cognition tasks.
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Chapter 17
Statistical Mechanics of Random
Matrices

Random matrix theory plays an important role in neural network research, espe-
cially in characterizing the stability of the collective behavior of the network, which is
related to phase transitions (e.g., in theHopfieldmodel), or dynamicalmodes in recur-
rent neural networks. The asymptotic properties of random matrices whose entries
follow a pre-defined distribution can be connected to the thermodynamic behavior
in statistical physics (Edwards and Jones in J. Phys. A: Math. Gen. 9(10):1595, 1976
[1]; Sommers et al. in Phys. Rev. Lett. 60:1895, 1988 [2]). Therefore, the eigen-
spectrum of a random matrix ensemble can be reduced to calculating the free energy
function of a two-body spin interactionmodel, in which the spin could be continuous.
In this chapter, we will introduce statistical mechanics calculations of the spectral
density for random matrix ensembles, and its connection to neural networks (Rajan
and Abbott in Phys. Rev. Lett. 97(18):188104, 2006 [3]; Rogers et al. in Phys. Rev.
E 78(3):31116, 2008 [4]).

17.1 Spectral Density

Considering an N × N symmetric matrix J, whose entries follow a distribution, e.g.,
a Gaussian with zero mean and variance g/N , we then write the spectral density
intuitively:

ρ(λ) = 1

N

∑

i

δ(λ − λi ), (17.1)

where λi is a specific eigenvalue of the matrix J. To transform the definition to an
analytic form, we first introduce the Sokhotski–Plemelj formula:

lim
ε→0+

1

x ± iε
= P

(
1

x

)
∓ iπδ(x), (17.2)
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where the Cauchy principal value integral is defined as

P
∫ ∞

−∞
ϕ(x)dx

x
≡ lim

δ→0+

{∫ −δ

−∞
ϕ(x)dx

x
+
∫ ∞

δ

ϕ(x)dx

x

}
, (17.3)

where ϕ(x) is a real-valued test function. If we further define a resolvent (λI − J)−1,
then we have the following Green’s function:

GN (λ) = 1

N
Tr(λI − J)−1 = 1

N

N∑

i=1

1

λ − λi
. (17.4)

Note that the resolvent can be disorder-averaged by using the replica method, and
is thus a very useful quantity for the analysis of random matrix. When N → ∞, we
have

EGN (λ) = G∞(λ) =
∫

dx ′ ρ(x ′)
λ − x ′ (17.5)

where Emeans the expectation with respect to the random realization of the matrix.
This is the so-called Stieltjes transform of ρ(x). We assume here that the spectral
density of a random matrix almost surely converges in the large-N limit. By using
Eq. (17.2), one can then prove that

ρ(x) = 1

π
lim

ε→0+
ImG∞(x − iε) = 1

π
E lim

ε→0+
ImGN (x − iε), (17.6)

where we have used the representation of the delta function:

δ(x) = 1

π
lim

ε→0+

ε

x2 + ε2
. (17.7)

To sum up, we have the following analytic form to retrieve the spectral density
ρ(λ):

ρ(λ) = 1

Nπ
E lim

ε→0+
Im

N∑

i=1

1

λ − iε − λi

= 1

Nπ
E lim

ε→0+
Im

N∑

i=1

∂

∂λ
ln(λ − iε − λi )

= 1

Nπ
E lim

ε→0+
Im

∂

∂λ
ln

[
N∏

i=1

(λ − iε − λi )

]

= 1

Nπ
E lim

ε→0+
Im

∂

∂λ
ln [det ((λ − iε)I − J)] ,

(17.8)

where we have used the relation—
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det(λI − J) =
N∏

i=1

(λ − λi ). (17.9)

Because we are interested in a randommatrix ensemble, the spectral density must
be averaged over the statistics of the ensemble. Therefore, we first transform the spec-
tral density in a form of the partition function, thanks to the fact that the determinant
can be transformed back to its integral representation, using either multivariate Fres-
nel integral or Gaussian integral:

1√
det(A)

=
[
e

iπ
4

π
1
2

]N ∫ ∞

−∞

∏

i

dxi exp

⎡

⎣−i
∑

i, j

xiAi j x j

⎤

⎦ , (17.10)

or,
1√

det(A)
= 1

(2π)
N
2

∫
dNx exp

[
−xTAx

2

]
, (17.11)

which holds as long as A is positive definite. As we apply in other chapters, the
disorder average can be carried out by the replica method:

ρ(λ) = − 2

Nπ
E lim

ε→0+ Im
∂

∂λ
lim
n→0

1

n

⎧
⎨

⎩

[
e

iπ
4

π
1
2

]Nn ∫ ∞

−∞

∏

i,α

dxα
i

⎡

⎣exp

⎛

⎝−i
∑

i, j,α

xα
i (λδi j − Ji j )x

α
j

⎞

⎠

⎤

⎦ − 1

⎫
⎬

⎭

:= − 2

Nπ
E lim

ε→0+ Im
∂

∂λ
lim
n→0

1

n

(
Zn − 1

)

= − 2

Nπ
lim

ε→0+ Im
∂

∂λ
lim
n→0

ln(EZn)

n
,

(17.12)
where α indicates the replica index, λ in the partition function should be replaced by
λ − iε [according to Eq. (17.8)], and

Zn :=
[
e

iπ
4

π
1
2

]Nn ∫ ∞

−∞

∏

i,α

dxα
i exp

⎛

⎝−i
∑

i, j,α

xα
i (λδi j − Ji j )x

α
j

⎞

⎠ . (17.13)

Taken together, we obtain a two-body interaction Hamiltonian for estimating
the spectral density of random matrix ensembles, which can be read off from the
definition of the replicated partition function.

17.2 Replica Method and Semi-circle Law

We assume that the random matrix statistics is specified by Ji j ∼ N (0, J 2/N ) and
Ji j = Jji (the so-called Wigner ensemble). In the following derivation, we set λ to
the one with a small imaginary part ε. In other words, λ in the following expressions
should be replaced by λ − iε. According to the previous section, we have
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EZn = E

[
e

iπ
4

π
1
2

]Nn ∫ ∞

−∞

∏

i,α

dxα
i exp

⎛

⎝−iλ
∑

i,α

(xα
i )2 + i

∑

i, j,α

xα
i x

α
j Ji j

⎞

⎠

=
[
e

iπ
4

π
1
2

]Nn ∫ ∞

−∞

∏

i,α

dxα
i exp

⎛

⎝−iλ
∑

i,α

(xα
i )2

⎞

⎠
∏

i< j

E exp

(
2i
∑

α

xα
i x

α
j Ji j

)

=
[
e

iπ
4

π
1
2

]Nn ∫ ∞

−∞

∏

i,α

dxα
i exp

⎡

⎣−iλ
∑

i,α

(xα
i )2

⎤

⎦ exp

⎡

⎣− J 2

N

∑

i 	= j

(
∑

α

xα
i x

α
j

)2
⎤

⎦

=
[
e

iπ
4

π
1
2

]Nn ∫ ∞

−∞

∏

i,α

dxα
i exp

⎡

⎣−iλ
∑

i,α

(xα
i )2

⎤

⎦ exp

⎡

⎣ J 2

N

∑

i

(
∑

α

(xα
i )2

)2
⎤

⎦

× exp

⎡

⎣− J 2

N

∑

i, j

(
∑

α

xα
i x

α
j

)2
⎤

⎦ ,

(17.14)

where we have used the integral identity:Ezeaz = eσ 2a2/2 for z ∼ N (0, σ 2). We have
neglected the diagonal entries of J. Note that

J 2

N

∑

i, j

(
∑

α

xα
i x

α
j

)2

= J 2

N

∑

i, j

∑

α,β

xα
i x

α
j x

β

i x
β

j

= J 2

N

∑

α

(
∑

i

(xα
i )2

)2

+ J 2

N

∑

α 	=β

∑

i, j

xα
i x

α
j x

β

i x
β

j ,

(17.15)

where we need only retain the terms of α = β. In other words, {xα
i } are in the replica

space mutually orthogonal. Moreover, the remaining term J 2

N

∑
i

(∑
α(xα

i )2
)2

is of

the order n2 and thus neglected as well. Consequently, we have

EZn =
⎧
⎨

⎩

[
e

iπ
4

π
1
2

]N ∫ ∞

−∞

∏

i

dxi exp

⎡

⎣−iλ
∑

i

(xi )
2 − J 2

N

(
∑

i

(xi )
2

)2
⎤

⎦

⎫
⎬

⎭

n

.

(17.16)
By applying the Hubbard–Stratonovich transform (let a = 2J 2/N ):

exp

(
−ax2

2

)
=
∫

ds√
2πa

exp

(
− s2

2a
± ixs

)
, (17.17)

we have
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exp

⎡

⎣−J 2

N

(
∑

i

(xi )
2

)2
⎤

⎦ =
(

N

2π

)1/2 1
(
2J 2

)1/2

∫ ∞

−∞
ds exp

(−N

4J 2
s2
)
exp

(
−is

∑

i

(xi )
2

)

=
(

N

2π

)1/2
λ

(
2J 2

)1/2

∫ ∞

−∞
ds exp

(−λ2

4J 2
Ns2

)
exp

(
−iλs

∑

i

(xi )
2

)
,

(17.18)
where we have rescaled the variable s → λs. It then follows that

EZn =
⎧
⎨

⎩

[
e

iπ
4

π
1
2

]N (
N

2π

)1/2
λ

(
2J 2

)1/2

∫ ∞

−∞
ds

∏

i

dxi exp
[−iλ(1 + s)(xi )

2] exp
[
−λ2Ns2

4J 2

]⎫⎬

⎭

n

=
⎧
⎨

⎩

[
e

iπ
4

π
1
2

]N (
N

2π

)1/2
λ

(
2J 2

)1/2

∫ ∞

−∞
ds

[
e−iπ/4

√
π

λ(1 + s)

]N
exp

[
−λ2Ns2

4J 2

]⎫⎬

⎭

n

=
{(

N

2π

)1/2
λ

(
2J 2

)1/2

∫ ∞

−∞
ds [λ(1 + s)]−

N
2 exp

[
−λ2Ns2

4J 2

]}n

=
{(

N

2π

)1/2
λ

(
2J 2

)1/2

∫ ∞

−∞
ds exp

[
− N

2
ln(λ(1 + s))

]
exp

[
−λ2Ns2

4J 2

]}n

=
{(

N

2π

)1/2
λ

(
2J 2

)1/2 exp

[
− N

2
ln λ

] ∫ ∞

−∞
ds exp

[
− N

2
ln(1 + s) − λ2Ns2

4J 2

]}n

:=
{(

N

2π

)1/2
λ

(
2J 2

)1/2 exp

[
− N

2
ln λ

] ∫ ∞

−∞
ds exp [−Ng(s)]

}n

,

(17.19)
where we have defined g(s) as

g(s) = 1

2
ln(1 + s) + λ2s2

4J 2
. (17.20)

Now we use the Laplace method due to the large-N limit, i.e.,

∫ ∞

−∞
ds exp [−Ng(s)] ≈ exp

[−Ng(s�)
]
√

2π

N |g′′(s�)| , (17.21)

where g′(s�) = 0. Thus, the saddle-point solution s� is obtained by solving the fol-
lowing equation:

s2 + s + J 2

λ2
= 0. (17.22)

A solution is given by

s = 1

2

[
−1 ± √



]

= 1

2

[
−1 ±

√
1 − 4J 2

λ2

]
, (17.23)

where 
 := 1 − 4J 2

λ2 . For |λ| < 2J , i.e., 
 < 0, the saddle points occur at
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s±
0 = 1

2

[
−1 ± i

√
4J 2

λ2
− 1

]
, (17.24)

while for |λ| > 2J , we have

s± = 1

2

[
−1 ±

√
1 − 4J 2

λ2

]
. (17.25)

Only the solution s−
0 or s− can make the saddle-point approximation reasonable

(considering the contour integration in the complex plane, see details of proof in
Ref. [1]). Hence,

EZn =
{(

N

2π

)1/2
λ

(
2J 2

)1/2 exp
[
−N

2
ln λ

]
exp

[−Ng(s−
0 )
]
}n

=
(

N

2π

)n/2
λn

(
2J 2

)n/2 exp

[
−nN

2
ln λ

]
exp

[−nNg(s−
0 )
]
.

(17.26)

Finally, we take the limit n → 0, and get

F(λ) ≡ lim
n→0

ln(EZn)

n
= lim

n→0

∂

∂n
ln(EZn)

= lim
n→0

∂

∂n

[
n

2
ln

(
Nλ2

4π J 2

)
− nN

2
ln λ − nNg(s−

0 )

]

= 1

2
ln

(
Nλ2

4π J 2

)
− N

2
ln λ − Ng(s−

0 )

� −N

2
ln λ − Ng(s−

0 ) , as N → ∞.

(17.27)
Note that in the above equation, λ should be replaced by λ − iε. We thus derive the
eigenvalue spectrum when |λ| < 2J :

ρ(λ) = − 2

Nπ
lim

ε→0+
Im

∂

∂λ
F(λ − iε)

= 1

π
lim

ε→0+
Im

∂

∂λ

[
ln(λ − iε) + ln(1 + s−

0 (λ − iε)) + λ2(s−
0 (λ − iε))2

2J 2

]

= 1

2π J 2

√
4J 2 − λ2.

(17.28)
For |λ| > 2J , g(s−) is real, and thus ρ(λ) = 0. A comparison of the theory to the
numerical eigenvalue spectrum is shown in Fig. 17.1. Interested readers can check
if a simple annealed approximation of the free energy leads to the same result.
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Fig. 17.1 The semi-circle law. Comparison between theory and numerical simulations are shown.
The random matrix has a size N = 1000. 100 random realizations of the random matrix are con-
sidered

17.3 Cavity Approach and Marchenko–Pastur Law

In this section, we introduce the cavity approach to estimate the asymptotic spectral
density. Given the partition function defined as in the previous section, we can write
the spectral density:

ρA(λ) = − 2

πN
lim

ε→0+
Im

(
∂

∂z
ln ZA(z)

)

z=λ−iε

, (17.29)

where

ZA(z) =
∫ (

∏

i

dxi√
2π

)
exp

⎡

⎣−1

2

N∑

i, j

xi (zI − A)i j x j

⎤

⎦ . (17.30)

Thus, we derive the corresponding Hamiltonian:

HA(x, z) = 1

2

N∑

i, j

xi (zI − A)i j x j , (17.31)

where we consider Aii = 0 ∀i . Finally, the spectral density can be calculated as
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ρA(λ) = lim
ε→0+

1

πN

∑

i

Im
[〈x2i 〉z

]
z=λ−iε , (17.32)

where 〈· · ·〉 denotes the average w.r.t the Boltzmman distribution under the Hamil-
tonian.

The cavity iteration can be written out explicitly as follows:

Pi→ j (xi ) = e−zx2i /2

Zi→ j

∫
dx∂i\ j exp

⎛

⎝xi
∑

k∈∂i\ j
Aik xk

⎞

⎠
∏

k∈∂i\ j
Pk→i (xk). (17.33)

However, the integral is hard towork out analytically.Wemake aGaussian ansätz [4],
without a rigorous proof. More precisely,

Pi→ j (x) = 1√
2π
i→ j

e
− x2

2
i→ j . (17.34)

Then, the cavity iteration is transformed to


i→ j (z) = 1

z − ∑
k∈∂i\ j A

2
ik
k→i (z)

. (17.35)

The variance for the marginal probability can be derived immediately as


i (z) = 1

z − ∑
k∈∂i A

2
ik
k→i (z)

. (17.36)

According to Eq. (17.32), one has

ρA(λ) = lim
ε→0+

1

πN

∑

i

Im
[〈
i (z)〉z

]
z=λ−iε . (17.37)

The Hamiltonian can be defined on a tree-like pairwise-interaction graph if the
matrixA is sparse, and the cavity approximation is valid. We also assume that Ai j ∼
N (0, J 2/c), where c is the average connectivity of the graph. In the large connectivity
limit (denoted as c → ∞), we can define


 = lim
c→∞

1

c

∑

i


i . (17.38)

Therefore, we have
lim
c→∞

∑

k

A2
ik
k→i = J 2
, (17.39)

where we have used 
k→i � 
k . Hence, we derive that
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 = 1

z − J 2

, (17.40)

which gives the semi-circle law as derived by the replica method.
Now we consider the random matrix is the interaction matrix of the Hopfield

model:

Ai j = 1

N

P∑

μ=1

ξ
μ

i ξ
μ

j , (17.41)

where ξ is an N × P matrix with entries subject to the binomial distribution with
equal probabilities for two peaks. This matrix ensemble is called the Wishart ensem-
ble. The Hamiltonian can be written in the form of

HA(x, z) = z

2

∑

i

x2i − 1

2

∑

μ

[
mμ(x∂μ)

]2
, (17.42)

where the auxiliary quantity m is defined by

mμ(x∂μ) = 1√
N

∑

i∈∂μ

ξ
μ

i xi . (17.43)

The belief propagation equation reads as follows:

Pi→μ(xi ) ∝ e−zx2i /2
∫

dm∂i\μ exp

⎡

⎣1

2

∑

ν∈∂i\μ

(
mν→i + ξν

i xi√
N

)2
⎤

⎦
∏

ν∈∂i\μ
Qν→i (mν→i ),

(17.44a)

Qν→i (mν→i ) ∝
∫

dx∂ν\i δ
(
mν→i − 1√

N

∑

j∈∂ν\i
ξν
j x j

) ∏

j∈∂ν\i
Pj→ν(x j ). (17.44b)

Assuming that the cavity distribution Pi→μ(xi ) ∼ N (0,
i→μ) and Qμ→i (mμ) ∼
N (0, �μ→i ), we can derive the recursive equation for these two variances [4]. The
marginal one is given by


i (z) = 1

z − 1
N

∑
μ(ξ

μ

i )2 1
1−�μ→i

, (17.45)

where (ξ
μ

i )2 = 1. In the large-N limit, we can further define


 = lim
N→∞

1

N

∑

i


i . (17.46)

Equation (17.45) suggests that
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1



− z + α

1

1 − 

= 0, (17.47)

whereα = P/N , andwe have used�μ→i (z) = 1
N

∑
j∈∂μ\i (ξ

μ

j )2
 j→μ(z) � 
. This
equation is exactly the saddle-point equation if we use the replica method to com-
pute the disorder average [5]. Next, we show how to solve this equation to get
the Marcenko–Pastur law [6], an asymptotic spectral density for sample covariance
matrix.

Solving Eq. (17.47) (we change the notation z to λ in the following derivation),
we have


 = −(α − λε − 1) ± √
(α − λε − 1)2 − 4λε

2λε

, (17.48)

where λε = λ − iε. We then have

Im
 = −(α − λε − 1)ε

2(λ2 + ε2)
± Im

(λ + iε)
√

(α − λε − 1)2 − 4λ + 4iε

2(λ2 + ε2)
. (17.49)

We now have to solve the following equation of complex values:

√
c + id = s + it, (17.50)

where c = (α − λε − 1)2 − 4λ. From Eq. (17.49), we have a solution:

t = ± 4ε√
2(

√
c2 + 16ε2 + c)

, (17.51)

and,

s = ±
√√

c2 + 16ε2 + c√
2

. (17.52)

Then, we have

lim
ε→0+ Im
 = lim

ε→0+
−(α − λε − 1)ε

2(λ2 + ε2)
± lim

ε→0+ Im
(λ + iε)

√
(α − λε − 1)2 − 4λ + 4iε

2(λ2 + ε2)

= −(α − λε − 1)

2
πδ(λ) ± lim

ε→0+ Im
(λ + iε)(s + it)

2(λ2 + ε2)

= −(α − 1)

2
πδ(λ) ± lim

ε→0+
λt

2(λ2 + ε2)
± lim

ε→0+
εs

2(λ2 + ε2)
,

(17.53)
where Eq. (17.7) is used to get the delta function.

Finally, if α ≥ 1, the first and third terms in Eq. (17.53) cancel, and the second
term gives rise to

ρ(λ) = 1

π
lim

ε→0+
Im
 =

√|c|
2πλ

Iλ−,λ+(λ). (17.54)
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Fig. 17.2 The eigenvalue distribution of the covariance matrix A. The pattern entry follows a
Gaussian distribution with zero mean and variance σ 2 (see details in the work [7]). Here we set
α = 2, σ = 0.5 and N = 1000. 100 random instances of the matrix ensemble are considered

The indicator function Iλ−,λ+(λ) reports one if λ falls within the interval [λ−, λ+],
and zero otherwise, which guarantees that the value of c is negative. In the case of
α < 1, the first and third terms in Eq. (17.53) give rise to a delta peak. We thus have

ρ(λ) = 1

π
lim

ε→0+
Im
 =

√|c|
2πλ

Iλ−,λ+(λ) + (1 − α)δ(λ), (17.55)

where λ± = (1 ± √
α)2. In sum, we derive the Marcenko–Pastur law:

ρ(λ) = 1

π
lim

ε→0+
Im
 =

√
(λ − λ−)(λ+ − λ)

2πλ
Iλ−,λ+(λ) + (1 − α)δ(λ)I0,1(α).

(17.56)
A comparison between theory and numerical results is shown in Fig. 17.2. We finally
remark that the Marcenko–Pastur law could also be derived using the annealed or
quenched computation of the replica method [5, 7].

17.4 Spectral Densities of Random Asymmetric Matrices

If the matrix A is a non-Hermitian matrix (e.g., asymmetric interaction matrix in
recurrent neural networks), the eigenvalues are complex. Then the spectral density
must be defined as follows:
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ρA(z) = 1

N

N∑

i=1

δ(x − Re(λi ))δ(y − Im(λi )). (17.57)

We first define a complex variable z = x + iy, where x and y are real. z∗ denotes
the complex conjugate of z. The Wirtinger derivatives can be defined as follows:

∂z = 1

2
(∂x − i∂y), (17.58a)

∂z∗ = 1

2
(∂x + i∂y). (17.58b)

The Wirtinger derivative has the following properties: ∂z(z) = ∂z∗(z∗) = 1, and
∂z(z∗) = ∂z∗(z) = 0. We then have the following identity:

∂z∗(1/z) = ∂z(1/z
∗) = πδ(x)δ(y). (17.59)

To interpret the abovemathematical identity, we imagine a two-dimensional classical
electrostatic field (E) generated by a unit charge. The Gauss law implies that

2πr E = 1/ε0, (17.60)

where r denotes the distance from the charge on the plane, and ε0 is a physical
constant. Therefore, the Gauss law reads as well

∇ · r
r2

= 2πδ(r), (17.61)

which leads to the Poisson equation ∇2 ln(|r|) = 2πδ(r). ∇ denotes the gradi-
ent operator. The Laplacian operator ∇2 is defined by ∇2 = ∂2

∂x2 + ∂2

∂y2 (in two-
dimensional space). Therefore, by defining Ex = Re(1/z) and Ey = −Im(1/z),
Eq. (17.61) turns out to be Eq. (17.59).

Then, we have

ρA(z) = 1

π
∂z∗

1

N

∑

i

1

z − λi

= 1

π
∂z∗

1

N
Tr(zIN − A)−1.

(17.62)

Therefore, in the large N limit, the empirical density of different random realizations
of the matrix converges to the average density:

ρ(z) = 1

π
∂z∗

〈
1

N
Tr(zIN − A)−1

〉
, (17.63)
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where the average Green function G(z) = 〈
1
N Tr

[
(zIN − A)−1

]〉
where the average

is done w.r.t the random realizations ofA, and IN denotes an N × N identity matrix.
We further define the average Green function on the complex plane:

G(z) =
〈
1

N
Tr

[
(zIN − A)−1

]〉 =
〈
1

N

∑

λ

1

z − λ

〉
=
∫

d2λ
ρ(λ)

z − λ
, (17.64)

where
∫
d2λ• indicates an integral over the complex plane, we have used Tr[P−1AP]

= TrA for any invertible P, and if A is invertible, λ(A−1) = 1/λ(A), where λ indi-
cates the matrix’s eigenvalues. Note also that adding a diagonal matrix zIN to A just
increases each eigenvalue of A by z. Considering a contour integral around a closed
path C, we can use the residue theorem to prove that

1

2π i

∫

C
dzG(z) =

∫

S
d2λρ(λ), (17.65)

where S indicates the region bounded by the closed path (the eigenvalue is not on
the path). In addition, a complex form of Gauss law implies that

1

2π

∫

S
d2z

[
∂G

∂x
+ i

∂G

∂y

]
=
∫

S
d2λρ(λ), (17.66)

which requires that

∂ReG

∂x
− ∂ImG

∂y
= 2πρ, (17.67a)

∂ImG

∂x
+ ∂ReG

∂y
= 0. (17.67b)

Equation (17.67a) implies that Ex = 2ReG and Ey = −2 ImG [2], relating the dis-
tribution of an electric charge to the electric field, while Eq. (17.67b) corresponds
to ∇ × E = 0, suggesting a scalar potential �, i.e., E = −∇�. Therefore, we have
the Poisson equation for the two-dimensional electrostatics ∇2� = −4πρ, corre-
sponding to the spectral density problem. Altogether, the spectral density for a non-
Hermitian random matrix can be obtained through finding a potential:

�(z, z∗) = − 1

N
〈ln det [(z∗

IN − AT)(zIN − A)
]〉, (17.68)

which can be shown to be consistent with Eq. (17.64) and the electrostatics repre-
sentation, using det(AB) = detA detB and det(AT) = detA. The Green function is
given by
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G(z) = ∂z�(z, z∗), (17.69a)

G∗(z) = ∂z∗�(z, z∗). (17.69b)

Equation (17.67a) also implies that Re
[
∂z∗G

] = 2πρ, which means that if G is
only the function of z in a region, the eigenvalue density must be zero in that region.
Therefore, the non-zero spectral density is related to the non-holomorphic behavior of
Green’s function [8]. This property can be used to determine the boundary separating
holomorphic and non-holomorphic solutions of the spectral problem.

To sum up, we have

ρ(x, y) = −1

4πN
∇2〈ln det [(z∗

IN − AT)(zIN − A)
]〉, (17.70)

where ∇2 = 4∂z∂z∗ . The determinant can be transformed to the Gaussian integral
representation over complex variable. Then, the spectral density problem is reduced
to a disorder system composed of a large number of interacting particles. Thus, the
cavity approach or replica method can be applied to derive the analytic form of the
asymptotic spectral density. In some specific problems, n replicas decouple in the
thermodynamic limit, then an annealed calculation can be performed [2].

�(z) = 1

N
ln

〈∫ ∏

i

d2zi
π

exp
(
−ε

∑

i

|zi |2 −
∑

i, j,k

z∗i (z∗δik − AT
ik)(zδk j − Ak j )z j

)〉
,

(17.71)
where a positive infinitesimal quantity ε is usually introduced to avoid singularities
caused by z=λi . More precisely, �(z)= − 1

N 〈ln det
[
(z∗IN − AT)(zIN − A) + εIN

]
〉.

For example, the derivation of the (Girko’s) circular law for the fully asymmetric
random matrix falls within this class [9]. When the matrix is dense, diagrammatic
expansion techniques (Feynman diagrams) are also useful for deriving the asymptotic
spectrum of non-Hermitian matrices [10, 11]. This method can also derive the eigen-
spectrum of the E-I interaction neural populations, where cell types are distinguished
and thus Dale’s law is respected [3].

To apply the diagrammatic method, we introduce the following Hermitization
process. We first construct a 2N × 2N Hermitian matrix [12, 13]:

H =
(

0 A − zIN
A† − z∗

IN 0

)
. (17.72)

A† denotes the transpose conjugate of a matrix. The Green function reads then

G(ω) = 1

ωIN − H
=
(G11 G12

G21 G22

)
, (17.73)

in a block structure, and ω is a constant. Note that each of four blocks (e.g., G11) is
an N × N matrix. We then have the following matrix identity:
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(
ωIN zIN − A

z∗
IN − A† ωIN

)(G11 G12

G21 G22

)
=
(
IN 0
0 IN

)
. (17.74)

Inspecting the upper left block, we have immediately

ωG11 + (zIN − A)G21 = IN . (17.75)

Then G(z) = (zIN − A)−1 = G21 when ω = 0, and thus the spectral density is
obtained by

ρ(x, y) = 1

π
∂z∗

〈
1

N
Tr G21(ω = 0, z, z∗)

〉
. (17.76)

To compute G(ω), we first write ωIN − H = G−1
0 − J , where

G−1
0 =

(
ωIN zIN
z∗
IN ωIN

)
and J =

(
0 A
A† 0

)
. (17.77)

We assume that J has a zero mean, and thus G0 is just G with A = 0. G can then be
expanded in G0 as follows:

G =
〈

1

G−1
0 − J

〉
=

∞∑

n=0

G0〈(JG0)
n〉. (17.78)

By applying theWick contraction (supposed that the distribution overJ isGaussian),
and noting that only planar diagrams remain, one can re-organize the above expansion
as follows:

G =
∞∑

n=0

G0(�G0)
n = 1

G−1
0 − �

, (17.79)

where the self-energymatrix� is introduced as� = 〈JGJ 〉 (i.e.,Dyson–Schwinger
relation), which is the sum of all contributions coming from all one-particle irre-
ducible diagrams [13]. The key equation G−1 = G−1

0 − �[G] is also called Dyson
equation in physics. The Dyson equation gives the self-consistent way to compute
the spectra density of random non-Hermitian matrices.
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Chapter 18
Perspectives

This book introduces basics of statisticalmechanics and its relationship to current the-
oretical studies of neural networks (including deep neural networks),mainly focusing
on an overview of main tools to deal with non-linearity intrinsic in neural compu-
tation, and detailed illustration of deep insights provided by physics analysis in a
few typical examples (most of them were proposed by the authors’ own works). In
Marr’s viewpoint [1], understanding a neural system can be divided into three lev-
els: computation (which task the brain solves), algorithms (how the brain solves the
task, i.e., information processing level) and implementation (neural circuit level). In
artificial neural networks, researchers build a naive mapping of the first two levels
into a toy model level (especially for theoretical studies). Even the first two levels
are now turned into ideas to solve challenging real-world problems, driven by deep
learning [2, 3]. However, biological details are also being incorporated into standard
models of neural networks [4–6]. Indeed, neuroscience researches about the biologi-
calmechanisms of perception, cognition, memory and action have already provided a
variety of fruitful insights inspiring the empirical/scientific studies of artificial neural
networks, which in turn inspires the neuroscience researchers to design mechanistic
models to understand the brain [7, 8]. Therefore, it is promising to integrate physics,
statistics, computer science, psychology, neuroscience and engineering to provide
theoretical predictions, and reveal inner workings of deep (biological) networks and
even intelligence.

Thegoal of providing aunified framework for neural computation is very challeng-
ing. Due to re-boosted interests in neural networks, there appear a lot of important
yet unsolved scientific questions. We shall list some of them below, and provide
our personal viewpoints towards a statistical mechanics theory of these fundamental
questions.

Representation Learning
From a viewpoint of unsupervised learning aiming at extracting statistical regulari-
ties from raw data, one can ask what a good representation is and how themeaningful
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representation is achieved. We have not yet satisfied answers for these questions. A
promising argument is that entangled manifold at earlier layers of a deep hierarchy is
gradually disentangled into linearly separable features at output layers [9–13]. The
manifold perspective is also promising in system neuroscience studies of associa-
tive learning by separating overlapping patterns of neural activities [14]. A coherent
theory of manifold transformation is still lacking, prohibiting us from an understand-
ing of which key network parameters control the geometry of manifold, and even
affects the learning process, for which there may exist a few factors having their ori-
gin from biological contexts, e.g., normalization, attention, homeostatic control [15,
16]. Another argument from information-theoretic viewpoints demonstrates that the
input information is maximally compressed into a hidden representation whose task-
related information should be maximally retrieved at the output layers, according to
the information bottleneck theory [17]. However, this theory is still under debate [18].

Generalization
Intelligence can be considered to some extent as the ability of generalization, espe-
cially given very few examples for learning. Therefore, generalization is also a hot
topic in current studies of deep learning. Traditional statistical learning theory claims
that over-fitting effects should be strong when the number of examples is much less
than the number of parameters to learn, which thereby could not explain the current
success of deep learning. A promising perspective is to study the causal connection
between the loss landscape and the generalization properties [19–21]. For a single
layered perceptron, a statistical mechanics theory can be systematically derived [22,
23]. In contrast to the classical bias-variance trade-off (U-shaped curve of the test
error versus increasing model complexity) [24], deep learning achieves the state-
of-the-art performance in the over-parameterized regime [20, 25]. However, for a
multi-layered perceptron model, how to provide an analytic argument about the
over-fitting effects versus different parameterization regimes (e.g., under-, over- and
even super-parameterization) becomes a non-trivial task [26]. Furthermore, clarify-
ing which of lazy-learning (or neural tangent kernel limit) and feature-learning (or
mean-field limit) may explain the success of deep supervised learning remains open
and challenging [27, 28].

Adversarial vulnerability
Adversarial examples are defined with those inputs with human-imperceptible modi-
fications yet leading to unexpected errors in a deep learning decision-making system.
This adversarial vulnerability of deep neural networks poses a significant challenge
in the practical applications of both real-world problems and scientific studies. In
physics, systems with a huge number of degrees of freedom is able to be captured by
a low-dimensional macroscopic description. In this sense, a low-dimensional expla-
nation with a few order parameters about the origin of the adversarial vulnerability is
lacking so far. Although some recent efforts were devoted to this direction [29–31],
more exciting results are expected in near future works.

Continual Learning
A biological brain is good at adapting the acquired knowledge from similar tasks
to domains of new tasks, even if only handful examples are available in the new
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domain. In contrast, neural networks are in general poor at the multi-task learning,
although impressive progresses have been achieved in recent years. For example,
during learning, a diagonal Fisher information term is computed to measure impor-
tances of weights (then a rapid change is not allowed) for previous tasks [32]. A later
refinement by allowing synapses accumulating task relevant information over time
was also proposed [33].Moremachine learning techniques to reduce the catastrophic
forgetting effects are summarized in the review [34]. However, we still do not know
the exact mechanisms for mitigating the catastrophic forgetting effects in a princi-
pled way, which calls for theoretical studies of deep learning in terms of adaptation
to domain-shift training, i.e., connection weights trained in a solution to one task
are transformed to benefit learning on a related task. Furthermore, it remains unclear
how the related knowledge contained in a source task can be transferred effectively
to boost the performance in a target task, suppose that both tasks share common
semantics in the latent space.

Causal Learning
Deep learning is criticized as being nothing but a fancy curve-fitting tool, making
a naive association between inputs and outputs. In other words, this tool could not
distinguish correlation from causation. A human-like AI must be good at retrieving
causal relationship among feature components in sensory inputs, thereby carving
relevant information from a sea of irrelevant noise [35, 36]. Therefore, understand-
ing cause and effects in deep learning systems is particularly important for a next-
generation artificial intelligence. The question whether the current deep learning
algorithm is able to do causal reasoning remains elusive. Consequently, designing
theory-accessible toy models becomes a key to address this question, although it
would be very challenging to identify causes for observed effects by simple physics
equations.

Internal Model of the Brain
The brain is argued to learn to build an internal model of the outside world, reflected
by spontaneous neural activities as a reservoir for computing (e.g., sampling) [37].
The agreement between spontaneous activity and stimulus-evoked one increases dur-
ing development especially for natural stimuli [38], while the spontaneous activity
outlines the regime of evoked neural responses [39]. The stimuli were shown to carve
a clustered neural space [40]. Then, an interesting question is what the spontaneous
neural space looks like, and how it dynamically evolves. Furthermore, how sensory
inputs combined with the ongoing cortical activity to determine animal behavior
remains open and challenging. On the other hand, reinforcement learning was used
to build world models of structured environments [41]. In reinforcement learning,
data are used to drive actions which are evaluated based on reward signals the agent
receives from the environment. It is thus interesting which kind of internal mod-
els the agent establishes through learning from interactions with the environments.
Moreover, a recent work shows a connection between the reinforcement learning and
statistical physics [42], which suggesting that a statistical mechanics theory could
potentially be established to understand the internal model, with potential impacts
on studying neural computations in the brain.
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Theory of Consciousness
One of the most controversial question is the origin of consciousness—whether the
consciousness is an emergent behavior of a highly heterogeneous neural circuit with
various carefully designed regions (e.g., a total of 1014 connections for human brain).
The subjectivity of the conscious experience is in contradiction with the objectiv-
ity of a scientific explanation. According to Damasio’s model [43], the ability to
identify one’s self in the world and its relationship with the world is considered a
central characteristic of conscious state. Whether a machine algorithm can achieve
the self-awareness remains elusive. There are other two major cognitive theories
of consciousness: one is the global workspace framework [44], which relates con-
sciousness to the widespread and sustained propagation of cortical neural activities
by demonstrating that consciousness arises from information-processing computa-
tions of specialized modules. The other is the integrated information theory that
provides a quantitative characterization of conscious state by integrated informa-
tion [45]. Both theories follow a top-down approach, which is in stark contrast to the
statistical mechanics approach following a bottom-up manner building the bridge
from microscopic interactions to macroscopic behavior. These hypotheses are still
under intensive criticism despite some cognitive experiments they can explain [46].
From an information-theoretic argument, the conscious state may require a diverse
range of configurations of interactions between brain networks, which can be linked
to the entropy concept in physics [47]. The large entropy leads to optimal segrega-
tion and integration of information. Taken together, whether the consciousness can
be created from an interaction of local dynamics within complex neural substrate is
still unsolved [48]. A statistical mechanics theory, if possible, is always promising in
the sense that one can ask theoretical predictions from just a few physics parameters.

To sum up, in this chapter, we provide some naive thoughts about some fundamen-
tal important questions related to neural networks, for which building a good theory1

is far from being completed. In physics, we have the principle of least action, from
which we can deduce the classical mechanics or electrodynamics laws. We are not
sure whether in physics of neural networks (and even the brain) there exists a general
principle that can be expressed in a concise form of mathematics. Readers interested
in the interplay between physics theory and neural computations are encouraged to
promote advances along these exciting yet risky research lines.
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