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Key concept: An ensemble (outer loop: desired property 
→	solution structure) of forward solutions (inner loop: 

given structure →	property)



Genetic Algorithm

Gene = bit string = (10011110)
• Population in the solution space: Multiple chains, diversity

• Selection: Elitist strategy = survival of the fittest

• Crossover

Good Bad GoodBad
Father Mother

Good BadGood Bad

1D Ising model ↑ − ↓ − ↓ − ↑ − ↑ − ↑ − ↑ − ↓



Pareto-Frontal Uncertainty Quantification 
• Train reactive force-field parameters by dynamically fitting reactive 

molecular dynamics (RMD) trajectories to quantum molecular dynamics 
(QMD) trajectories on-the-fly

• Pareto optimal front in multiobjective genetic algorithm (MOGA) provides 
an ensemble of force fields to enable uncertainty quantification (UQ)  

A. Mishra et al., npj Comput. Mater. 4, 42 (’18) 

• Pareto-optimal solutions during genetic 
training (RMD errors for three quantities-of-
interest)

• Converged Pareto-optimal front

RMD error bar

QMD



Replica Exchange MC

Multiple Markov chains at different temperatures
J. Chem. Phys. 118, 6664 (’03)



Parallel History Matching
• Provide USC’s parallel computing environment to 

demonstrate parallel execution of CVX’s history match & 
associated forecast (HMAF) framework.

• History matching of a real field case (offshore Africa, North 
Sea & Gulf of Mexico) with 10,000-20,000 forward 
simulation runs on CACS high performance computing 
resources. 

K. Nomura et al., J. Supercomputing 41, 109 (’07)

http://cisoft.usc.edu



Opportunity: Overnight HMAF on a Grid

GridRPC

MPI

GridRPC



Particle Swarm Optimization
An ensemble of interacting particles in the solution space 
explores the optimal solution: Each particle’s movement is 
guided toward the best known positions in the search space, 
which are updated as better positions are found by other 
particles.

J. Kennedy & R. Eberhart, IEEE Int’l Conf. Neural Networks (’95)
CALYPSO (particle-swarm structural prediction): http://www.calypso.cn



Particle Swarm for Inverse Rendering

K. Nagano et al., J. Vis. 20, 195 (’17)



Large Search-Space Exploration

Explore the set of 1060

molecules (< 500 Da) by a 
maximally diverse ensemble



Simulated PCR?

• Pressure to temperature cycling
• Primer?



Active Learning of Optimal Materials

L. Bassman et al., npj Comput. Mater. 4, 74 (’18) 

p-type doped heterostructures
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• Bayesian optimization balances exploitation & exploration to find a 
structure with the desired property with a minimal number of quantum-
mechanical calculations

• Predicted three-layered transition-metal chalcogenide (TMDC) heterostacks
with the largest thermoelectric figure-of-merit   

Electrical power from waste heat

?



Quantum-Classical Boltzmann Machine

J. Liu et al., Comput. Mater. Sci. 173, 109429 (’20) 

• Offload a hard machine-learning task to a 1,098-qubit quantum annealer, 
D-Wave 2X

hidden layer

visible
layer

Boltzmann
machine

D-Wave’s Chimera qubit network


