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Key concept: An ensemble (outer loop: desired property
— solution structure) of forward solutions (inner loop:

C% given structure — property)




Genetic Algorithm

1D Isingmodel T—1-1-T-T-T-T7T-1

Gene = bit string = (10011110)
e Population in the solution space: Multiple chains, diversity

e Selection: Elitist strategy = survival of the fittest

One Strand of DNA Is
Like a Photographic
Negative to the Other

e Crossover

An adenine (A) on one
strand is always paired
with a thymine (T) on the
other strand, and a
guanine (G) is always

Father Mother
Good Bad Bad Good

paired with a cytosine (C).
If the sequence of
nucleotides on one strand
is known, the sequence of
the other strand will be
automatically known as
well.

Good Good Bad Bad



Pareto-Frontal Uncertainty Quantification

e Train reactive force-field parameters by dynamically fitting reactive
molecular dynamics (RMD) trajectories to quantum molecular dynamics

(QMD) trajectories on-the-fly

e Pareto optimal front in multiobjective genetic algorithm (MOGA) provides
an ensemble of force fields to enable uncertainty quantification (UQ)

Evolution of Pareto Front
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¢ Pareto-optimal solutions during genetic
training (RMD errors for three quantities-of-
interest)

® Converged Pareto-optimal front
A. Mishra et al., npj Comput.
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Replica Exchange MC

JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 14 8 APRIL 2003

Replica-exchange multicanonical and multicanonical replica-exchange
Monte Carlo simulations of peptides. I. Formulation and benchmark test
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Department of Physics, Faculty of Science and Technology, Keio University, Yokohama,
Kanagawa 223-8522, Japan

Yuji Sugita® and Yuko Okamoto®
Department of Theoretical Studies, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
and Depariment of Functional Molecular Science, The Graduate University for Advanced Studies, Okazaki,
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J. Chem. Phys. 118, 6664 ('03)

Multiple Markov chains at different temperatures

Replica-exchange Monte Carlo
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Parallel History Matching

e Provide USC’s parallel computing environment to

demonstrate parallel execution of CVX’s history match &

associated forecast (HMAF) framework.

e History matching of a real field case (offshore Africa
Sea & Gulf of Mexico) with 10,000-20,000 forward

, North

simulation runs on CACS high performance computing

resources.

http://cisoft.usc.edu

run00001.dbg

run00001.grid

run00001.grpsum

run00001.init

run00001.maps

run00001.nnc

run00001.prnt

run00001.sim

run00001.unrst

run00001.weldbg

run00001.welevnt

run00001.xyp
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Opportunity: Overnight HMAF on a Grid

@ Cum Water Prod (BBL * 1e6)
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Particle Swarm Optimization

An ensemble of interacting particles in the solution space
explores the optimal solution: Each particle’s movement is
guided toward the best known positions in the search space,
which are updated as better positions are found by other
particles.

speed factor speed factor
due to the best local due to the best global
final speed

>weighted influences

speed factor
due to inertia

particle position

J. Kennedy & R. Eberhart, IEEE Int’| Conf. Neural Networks ('95)
CALYPSO (particle-swarm structural prediction):



Particle Swarm for Inverse Rendering

K. Nagano et al., J. Vis. 20, 195 (17)



Large Search-Space Exploration

Stochastic Voyages into Uncharted Chemical Space Produce a
Representative Library of All Possible Drug-Like Compounds

Aaron M. Virshup,*‘§ Julia Contreras-Garcia,+'§'# Peter Wipf,*“§ Weitao Yang,*‘m

and David N. Beratan* "

Explore the set of 109 i

molecules (<500 Da) by a

maximally diverse ensemble

J. Am. Chem. Soc. 2013, 135, 7296—-7303

Initial library

Breed new
compounds

Atom addition/removal/
modification

Bond addition/removal/
modification

Crossover

Remove compounds
outside target space
Substructure filters
Complexity limits

Drug likeness

Target properties

Select maximally
diverse subset

Calculate chemical
descriptors

Maximin algorithm /
cell-based partitioning



Simulated PCR?
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Discovering chemistry with an ab initio nanoreactor

Lee-Ping Wang'2, Alexey Titov'2i, Robert McGibbon?, Fang Liu'2, Vijay S. Pande? , -» ’ ‘ ’3

and Todd J. Martinez'>3* ’ " ."

Molecular size
g\ (No. of atoms)

Sassnnnnnnntn RNNONNNRRRRURBRBRUBINE
26C,H, + C,H, + C4H, + 2H, + 2CH, + CH, + CH, + CgH, +
C4H, + CgHg + CyiHyp CgHg + C7H; + CygHyg + CagHys

Polymerase chain reaction - PCR
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e Pressure to temperature cycling
o Primer? 0 Annealing at ~68°C

© Elongation at ca. 72°C

o Denaturation at 94-96°C



Active Learning of Optimal Materials

* Bayesian optimization balances exploitation & exploration to find a
structure with the desired property with a minimal number of quantum-

mechanical calculations

* Predicted three-layered transition-metal chalcogenide (TMDC) heterostacks
with the largest thermoelectric figure-of-merit

WTe,-MoTe,-WTe,
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Thermoelectric figure of merit

’ p-type doped heterostructures
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L. Bassman et al., npj Comput. Mater. 4, 74 ('18)



Quantum-Classical Boltzmann Machine

e Offload a hard machine-learning task to a 1,098-qubit quantum annealer,
D-Wave 2X

Boltzmann
machine

visible
layer

———/ D-Wave’s Chimera qubit network
hidden layer

J. Liu et al., Comput. Mater. Sci. 173, 109429 (°20)



