Least Square Fit of a Line

Problem: Given a set of N pairs of numbers, $\left\{\left(x_{i}, y_{i}\right) \mid i=1, \ldots, N\right\}$, what is the best linear fit, $y=a x+b$, in the sense that it minimizes the square error,
$S=\sum_{i=1}^{N}(\underbrace{a x_{i}+b}_{\text {prediction }}-\underbrace{y_{i}}_{\text {measured }})^{2} ?$

Answer: S is a quadratic function of both a and b, and it becomes $+\infty$ for $a \rightarrow \pm \infty$ or $b \rightarrow \pm \infty$. There is a unique combination of a and b, at which S takes the minimum value and its derivatives with respect to a and b are zero, i.e.,

$$
\left\{\begin{array}{c}
\frac{\partial S}{\partial a}=2 \sum_{i=1}^{N}\left(a x_{i}+b-y_{i}\right) x_{i}=0 \\
\frac{\partial S}{\partial b}=2 \sum_{i=1}^{N}\left(a x_{i}+b-y_{i}\right)=0
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
\left(\sum_{i=1}^{N} x_{i}^{2}\right) a+\left(\sum_{i=1}^{N} x_{i}\right) b=\sum_{i=1}^{N} x_{i} y_{i} \\
\left(\sum_{i=1}^{N} x_{i}\right) a+N b=\sum_{i=1}^{N} y_{i}
\end{array}\right.
$$

which, in the matrix notation, becomes

$$
\left[\begin{array}{cc}
\sum_{i=1}^{N} x_{i}^{2} & \sum_{i=1}^{N} x_{i} \\
\sum_{i=1}^{N} x_{i} & N
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{N} x_{i} y_{i} \\
\sum_{i=1}^{N} y_{i}
\end{array}\right]
$$

The solution is

$$
\begin{gathered}
{\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{cc}
\sum_{i=1}^{N} x_{i}^{2} & \sum_{i=1}^{N} x_{i} \\
\sum_{i=1}^{N} x_{i} & N
\end{array}\right]^{-1}\left[\begin{array}{c}
\sum_{i=1}^{N} x_{i} y_{i} \\
\sum_{i=1}^{N} y_{i}
\end{array}\right]=\frac{1}{\sum_{i=1}^{N} x_{i}^{2} N-\left(\sum_{i=1}^{N} x_{i}\right)^{2}}\left[\begin{array}{cc}
N & -\sum_{i=1}^{N} x_{i} \\
-\sum_{i=1}^{N} x_{i} & \sum_{i=1}^{N} x_{i}^{2}
\end{array}\right]\left[\begin{array}{c}
\sum_{i=1}^{N} x_{i} y_{i} \\
\sum_{i=1}^{N} y_{i}
\end{array}\right]} \\
=\frac{1}{\sum_{i=1}^{N} x_{i}^{2} N-\left(\sum_{i=1}^{N} x_{i}\right)^{2}}\left[\begin{array}{c}
N \sum_{i=1}^{N} x_{i} y_{i}-\sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} y_{i} \\
-\sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} x_{i} y_{i}+\sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} y_{i}
\end{array}\right]
\end{gathered}
$$

or

$$
\left\{\begin{array}{c}
a=\frac{N \sum_{i=1}^{N} x_{i} y_{i}-\sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} y_{i}}{\sum_{i=1}^{N} x_{i}^{2} N-\left(\sum_{i=1}^{N} x_{i}\right)^{2}} \\
b=\frac{-\sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} x_{i} y_{i}-\sum_{i=1}^{N} x_{i}^{2} \sum_{i=1}^{N} y_{i}}{\sum_{i=1}^{N} x_{i}^{2} N-\left(\sum_{i=1}^{N} x_{i}\right)^{2}}
\end{array}\right.
$$

