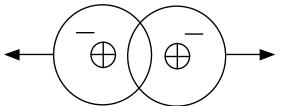
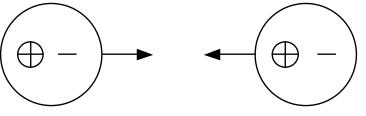

Recap: Lennard-Jones Potential


$$V(\vec{r}^{N}) = \sum_{i < j} u(r_{ij}) = \sum_{i=0}^{N-2} \sum_{j=i+1}^{N-1} u(|\vec{r}_{ij}|)$$

where $\vec{r}_{ij} = \vec{r}_i - \vec{r}_j$ and

$$u(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

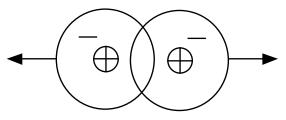


Short-range repulsion by Pauli exclusion between electrons

Long-range attraction by polarization

Johanes D. van der Waals Nobel Physics Prize (1910)

Wolfgang Pauli Nobel Physics Prize (1945)


John E. Lennard-Jones PPS 43, 461 (1931)

Q: Where Are the 12-6 Powers from?

Q: Where Are the 12-6 Powers from?

$$u(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

Short-range repulsion by Pauli exclusion between electrons

To these, London's dispersive (attractive) forces are added: these are instantaneous dipole-induced dipole interactions between non-polar molecules. They act at relatively short distances, distinctly longer, however, than the repulsive forces.

There is no theoretical equation describing the repulsive forces. That is why one must use empirical potentials. The potential derived by the English physicist John Lennard-Jones is the one most widely used.

https://aiichironakano.github.io/phys516/Battimelli-ComputerMeetsPhysics-Springer20.pdf, p. 58

cf. Buckingham potential

$$u(r) = A\exp(-Br) - \frac{C}{r^6}$$