Load Balancing

Aiichiro Nakano

Collaboratory for Advanced Computing \& Simulations
Department of Computer Science
Department of Physics \& Astronomy
Department of Chemical Engineering \& Materials Science
Department of Biological Sciences University of Southern California

Email: anakano@usc.edu

Load Balancing

- Goal: Keep all processors equally busy while minimizing interprocessor communication for irregular parallel computations
- Issues:
- Spatial data vs. generic graph
- Static vs. adaptive
- Incremental vs. non-incremental
- Load-balancing schemes:
- Recursive bisection

- Spectral method
- Spacefilling curve
- Curved space
- Load diffusion

Data Locality in Parallelization

Challenge: Load balancing for irregular data structures

Optimization problem:

- Minimize the load-imbalance cost
- Minimize the communication cost

- Topology-preserving spatial decomposition \rightarrow structured 6-step message passing minimizes latency

$$
\begin{aligned}
E & =t_{\text {comp }}\left(\max _{p}\left|\left\{i \mid \mathbf{r}_{i} \in p\right\}\right|\right)+t_{\text {comm }}\left(\max _{p}\left|\left\{i \mid\left\|\mathbf{r}_{i}-\partial p\right\|<r_{c}\right\}\right|\right) \\
& +t_{\text {latency }}\left(\max _{p}\left[N_{\text {message }}(p)\right]\right)
\end{aligned}
$$

Computational-Space Decomposition

Topology-preserving "computational-space" decomposition in curved space

Curvilinear coordinate transformation

$$
\xi=\mathbf{x}+\mathbf{u}(\mathbf{x})
$$

Particle-processor mapping: regular 3D mesh topology

$$
\left\{\begin{array}{l}
p\left(\xi_{i}\right)=p_{x}\left(\xi_{i x}\right) P_{y} P_{z}+p_{y}\left(\xi_{i y}\right) P_{z}+p_{z}\left(\xi_{i z}\right) \\
p_{\alpha}\left(\xi_{i \alpha}\right)=\left\lfloor\xi_{i \alpha} P_{\alpha} / L_{\alpha}\right\rfloor \quad(\alpha=x, y, z)
\end{array}\right.
$$

Wavelet-based Adaptive Load Balancing

- Simulated annealing to minimize the load-imbalance $\&$ communication costs, $E[\xi(x)]$
- Wavelet representation speeds up the optimization

$$
\xi(x)=x+\sum_{l, m} d_{l m} \psi_{l m}(x)
$$

A. Nakano, Concurrency: Practice and Experience 11, 343 ('99)

Load Balancing as Graph Partitioning

- Need: Decompose tasks without spatial indices
- Graph partitioning: Given a graph $G=\left(N, E, W_{N}, W_{E}\right)$
- N : node set = $\{j \mid$ tasks $\}$
- W_{N} : node weights $=\left\{w_{N}(j)\right.$: task costs $\}$
- E : edge set $=\{(j, k) \mid$ messages from j to $k\}$
- W_{E} : edge weights $=\left\{w_{E}(j, k):\right.$ message sizes $\}$ choose a partition $N=N_{1} \cup N_{2} \cup \ldots \cup N_{P}$ to minimize
- $\boldsymbol{\operatorname { m a x }}_{p}\left\{\sum_{j \in N p} \boldsymbol{w}_{N}(\mathrm{j})\right\}$
- $\max _{(p, q)}\left\{\sum_{j \in N p, k \in N q} w_{E}(j, k)\right\}$
- Graph bisection: Special case of $N=N_{1} \cup N_{2}$
- Choosing optimal partitioning is known to be NP-complete \rightarrow need heuristics

www.cs.berkeley.edu/~demmel/cs267_Spr16
Prof. James Demmel (UC Berkeley)

Spectral Bisection: Motivation

1. Graph as point masses connected via harmonic springs
2. The node of the eigenvector of the Hessian matrix, $\partial^{2} V / \partial x^{2}$, corresponding to the 2nd smallest eigenvalue separates the graph into 2

1D example

Spectral Bisection

Laplacian matrix:
$\mathrm{L}(G)$ of a graph $G(N, E)$ is an $|N|$ by $|N|$ symmetric matrix:

- $\mathrm{L}(G)(i, i)=$ degree of node i (number of incident edges)
$-\mathrm{L}(G)(i, j)=-1$ if $i \neq j$ and there is an edge (i, j)
$-L(G)(i, j)=0$ otherwise

Theorems:

1. The eigenvalues of $L(G)$ are nonnegative:

$$
\left.\lambda_{1}=0 \leq \lambda_{2} \leq \cdots \leq \lambda_{N}\right)
$$

2. $\lambda_{2}(\mathrm{~L}(G)) \neq 0$ if and only if G is connected

Spectral bisection algorithm:

1. Compute eigenvector v_{2} corresponding to $\lambda_{2}(\mathrm{~L}(G)){ }_{2}^{1}$
2. For each node \boldsymbol{i} of \boldsymbol{G}
a. if $\mathbf{v}_{2}(i)<0$, put node i in partition N -
b. else put node i in partition $N+$

Example

1
2
3
4
5 $\left[\begin{array}{rrrrr}1 & 2 & 3 & 4 & 5 \\ 1 & -1 & & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 & \\ & & -1 & 2 & -1 \\ & & & -1 & 1\end{array}\right]$

$O(N) \lambda_{2}$ Computation

Lanczos algorithm:

- Given an $N \times N$ symmetric matrix A (e.g., $\mathrm{L}(G)$), compute a $K \times K$ "approximation" T by performing K matrix-vector products, where $K \ll N$
- Approximate A's eigenvalues \& eigenvectors using T's

```
Choose an arbitrary starting vector \(r\)
\(b(0)=||r||\)
\(\mathrm{j}=0\)
repeat
    j=j+1
    \(q(j)=r / b(j-1)\)
    \(r=A * q(j)\)
    \(r=r-b(j-1) * v(j-1)\)
    \(a(j)=v(j)^{T} * r\)
    \(r=r-a(j) * v(j)\)
    \(b(j)=||r||\)
until convergence
```


Multilevel Partitioning

Recursively apply:

1. Replace $G(N, E)$ by a coarse approximation $G_{\mathrm{c}}\left(N_{\mathrm{c}}, E_{\mathrm{c}}\right)$, \& partition G_{c}
2. Use partition of $G_{\mathbf{c}}$ to obtain a rough partitioning of G, then uncoarsen \& iteratively improve it

Multileve

(N+,N-) = Multilevel_Partition(N,E)
// returns $N+$ and $N-$ where $N=N+U N-$ if $|N|$ is small
1 Partition $G=(N, E)$ directly to get $N=N+U N-$ Return ($\mathrm{N}+\mathrm{N}, \mathrm{N}$)
else
Coarsen G to get an approximation $G_{C}=\left(N_{C}, E_{C}\right)$
$\left(N_{C}+, N_{c}-\right)=$ Multilevel_Partition $\left(N_{C}, E_{c}\right)$
Expand ($\left.N_{C}+, N_{C}-\right)$ to a partition (N+,N-) of N
Improve the partition (N+,N-)
Return ($\mathrm{N}+\mathrm{N}, \mathrm{N}$)
endif

An Extra Lesson

Continuous optimization is easier than discrete combinatorial optimization $c f$. - Linear combination of atomic potentials (LCAP) M. Wang et al., J. Amer. Chem. Soc. 128, 3228 ('06)

- Gradient-directed Monte Carlo (DGMC) X. Hu, J. Chem. Phys. 129, 064102 ('08)

LCAP: $v(\vec{r})=\sum_{\vec{R}, A} b_{A}^{\vec{R}} v_{A}^{\vec{R}}(\vec{r})$

