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Load Balancing	
• 	Goal: Keep all processors equally busy while minimizing inter-

processor communication for irregular parallel computations 	
• 	Issues:	
	- 	Spatial data vs. generic graph	
	- 	Static vs. adaptive	
	- 	Incremental vs. non-incremental	

• 	Load-balancing schemes:	
	- 	Recursive bisection	
	- 	Spectral method	
	- 	Spacefilling curve	
	- 	Curved space	
	- 	Load diffusion	



Data Locality in Parallelization	
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Challenge: Load balancing for irregular data structures	
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E = tcomp max p {i | ri ∈ p}( ) + tcomm max p {i | ri −∂p < rc}( )
+tlatency max p Nmessage(p)[ ]( )

Optimization problem:	
• 	Minimize the load-imbalance cost	
• 	Minimize the communication cost	
• 	Topology-preserving spatial decomposition 	
	→ structured 6-step message passing minimizes latency	



Computational-Space Decomposition	
Topology-preserving “computational-space”	
decomposition in curved space	

Curvilinear coordinate transformation	
ξ = x + u(x)	

Regular mesh topology 	
in computational space, ξ	

Curved partition 	
in physical space, x	
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p ξi( ) = px ξix( )PyPz + py ξiy( )Pz + pz ξiz( )
pα ξiα( ) = ξiαPα /Lα⎣ ⎦ α = x, y,z( )
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Particle-processor mapping: regular 3D mesh topology	

A. Nakano & T. J. Campbell, Parallel Comput. 23, 1461 (’97) 



Wavelet-based Adaptive Load Balancing	
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ξ(x) = x+ dlmψlm (x)
l,m
∑

•	Simulated annealing to minimize the load-imbalance 
& communication costs, E[ξ(x)]	

•	Wavelet representation speeds up the optimization 	

A. Nakano, Concurrency: Practice and Experience 11, 343 (’99) 



Load Balancing as Graph Partitioning	

www.cs.berkeley.edu/~demmel/cs267_Spr16!
Prof. James Demmel (UC Berkeley)!

• 	Need: Decompose tasks without spatial indices	
• 	Graph partitioning: Given a graph G = (N, E, WN, WE)	
	-	N: node set = {j | tasks}	
	-	WN: node weights = {wN(j): task costs} 	
	-	E: edge set = {(j,k) | messages from j to k}	
	-	WE: edge weights = {wE(j,k): message sizes} 	
	choose a partition N = N1 ∪ N2 ∪ … ∪ NP to minimize	
	-	maxp{∑j∈NpwN(j)}	
	-	max(p,q){∑j∈Np,k∈NqwE(j,k)}	

• 	Graph bisection: Special case of N = N1 ∪ N2	

•  Choosing optimal partitioning is known 	
	to be NP-complete → need heuristics	
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Spectral Bisection: Motivation	
1. 	Graph as point masses connected via harmonic springs	
2. 	The node of the eigenvector of the Hessian matrix, ∂2V/∂x2, corresponding 

to the 2nd smallest eigenvalue separates the graph into 2  	

1D example!

1st eigenvector!

2nd eigenvector!

3rd eigenvector!
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2nd!
eigenvector!

Partitioned!
half!

circled!



Spectral Bisection	
Laplacian matrix:	
	 L(G) of a graph G(N,E) is an |N| by |N| symmetric matrix:	
	-	L(G)(i,i) = degree of node i (number of incident edges)	
	-	L(G)(i,j) = -1 if i ≠ j and there is an edge (i,j)	
	-	L(G)(i,j) = 0 otherwise	

Theorems:	
1. 	The eigenvalues of L(G) are nonnegative:	
	 	λ1 = 0 ≤ λ2 ≤ ••• ≤ λN)	

2. 	λ2(L(G)) ≠ 0 if and only if G is connected	

Spectral bisection algorithm:	
1. 	Compute eigenvector v2 corresponding to λ2(L(G))	
2. 	For each node i of G	
	 	a. 	if v2(i) < 0, put node i in partition N-	
	 	b. 	else put node i in partition N+	

Example!
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1 2 3 4 5
1 1 −1
2 −1 2 −1
3 −1 2 −1
4 −1 2 −1
5 −1 1



O(N) λ2 Computation	
Lanczos algorithm:	
• 	Given an N×N symmetric matrix A (e.g., L(G)), compute a 

K×K “approximation” T by performing K matrix-vector 
products, where K << N	

• 	Approximate A’s eigenvalues & eigenvectors using T’s	

Choose an arbitrary starting vector r!
b(0) = ||r||!
j=0!
repeat!
  j=j+1!
  q(j) = r/b(j-1) !
  r = A*q(j)!
  r = r - b(j-1)*v(j-1)!
  a(j) = v(j)T * r!
  r = r - a(j)*v(j)!
  b(j) = ||r||!
until convergence!
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Multilevel Partitioning	
Recursively apply:	
1. 	Replace G(N,E) by a coarse approximation Gc(Nc,Ec), & partition Gc	
2. 	Use partition of Gc to obtain a rough partitioning of G, then uncoarsen 
	& iteratively improve it 		

(N+,N-) = Multilevel_Partition(N,E)!
// returns N+ and N- where N = N+ ∪ N-!
  if |N| is small!
1   Partition G = (N,E) directly to get N = N+ ∪ N-!
    Return (N+,N-)!
  else!
2   Coarsen G to get an approximation Gc = (Nc,Ec)!
3   (Nc+,Nc-) = Multilevel_Partition(Nc,Ec)!
4   Expand (Nc+,Nc-) to a partition (N+,N-) of N!
5   Improve the partition (N+,N-)!
    Return (N+,N-)!
  endif!
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An Extra Lesson	
Continuous optimization is easier than discrete combinatorial optimization	

cf.	• 	Linear combination of atomic potentials (LCAP)	
	 	 	M. Wang et al., J. Amer. Chem. Soc. 128, 3228 (’06) 
	 	• 	Gradient-directed Monte Carlo (DGMC)	
	 	 	X. Hu, J. Chem. Phys. 129, 064102 (’08) 
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v(! r ) = bA
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∑LCAP:	


