
Load Balancing	

Aiichiro Nakano	
Collaboratory for Advanced Computing & Simulations	

Department of Computer Science	
Department of Physics & Astronomy	

Department of Chemical Engineering & Materials Science	
Department of Biological Sciences	
 University of Southern California	

Email: anakano@usc.edu	

Load Balancing	
• 	Goal: Keep all processors equally busy while minimizing inter-

processor communication for irregular parallel computations 	
• 	Issues:	
	- 	Spatial data vs. generic graph	
	- 	Static vs. adaptive	
	- 	Incremental vs. non-incremental	

• 	Load-balancing schemes:	
	- 	Recursive bisection	
	- 	Spectral method	
	- 	Spacefilling curve	
	- 	Curved space	
	- 	Load diffusion	

Data Locality in Parallelization	

Irregular	
data-structures/	
processor-speed	

Parallel	
computer	

Map	

Challenge: Load balancing for irregular data structures	

€

E = tcomp max p {i | ri ∈ p}() + tcomm max p {i | ri −∂p < rc}()
+tlatency max p Nmessage(p)[]()

Optimization problem:	
• 	Minimize the load-imbalance cost	
• 	Minimize the communication cost	
• 	Topology-preserving spatial decomposition 	
	→ structured 6-step message passing minimizes latency	

Computational-Space Decomposition	
Topology-preserving “computational-space”	
decomposition in curved space	

Curvilinear coordinate transformation	
ξ = x + u(x)	

Regular mesh topology 	
in computational space, ξ	

Curved partition 	
in physical space, x	

€

p ξi() = px ξix()PyPz + py ξiy()Pz + pz ξiz()
pα ξiα() = ξiαPα /Lα⎣ ⎦ α = x, y,z()

⎧
⎨
⎩ ⎪

Particle-processor mapping: regular 3D mesh topology	

A. Nakano & T. J. Campbell, Parallel Comput. 23, 1461 (’97)

Wavelet-based Adaptive Load Balancing	

1000

2000

3000

10 -3 10 -1 10 1 10 3

Plane wave

Wavelet

T
ot

al
 c

os
t

CPU time (min)

€

ξ(x) = x+ dlmψlm (x)
l,m
∑

•	Simulated annealing to minimize the load-imbalance
& communication costs, E[ξ(x)]	

•	Wavelet representation speeds up the optimization 	

A. Nakano, Concurrency: Practice and Experience 11, 343 (’99)

Load Balancing as Graph Partitioning	

www.cs.berkeley.edu/~demmel/cs267_Spr16!
Prof. James Demmel (UC Berkeley)!

• 	Need: Decompose tasks without spatial indices	
• 	Graph partitioning: Given a graph G = (N, E, WN, WE)	
	-	N: node set = {j | tasks}	
	-	WN: node weights = {wN(j): task costs} 	
	-	E: edge set = {(j,k) | messages from j to k}	
	-	WE: edge weights = {wE(j,k): message sizes} 	
	choose a partition N = N1 ∪ N2 ∪ … ∪ NP to minimize	
	-	maxp{∑j∈NpwN(j)}	
	-	max(p,q){∑j∈Np,k∈NqwE(j,k)}	

• 	Graph bisection: Special case of N = N1 ∪ N2	

• Choosing optimal partitioning is known 	
	to be NP-complete → need heuristics	

1 (2)
2 (2) 3 (1)

4 (3)

5 (1)

6 (2) 7 (3)

8 (1)

4

6

1
2

1

2
1 2 3

5

58 cut edges	

Spectral Bisection: Motivation	
1. 	Graph as point masses connected via harmonic springs	
2. 	The node of the eigenvector of the Hessian matrix, ∂2V/∂x2, corresponding

to the 2nd smallest eigenvalue separates the graph into 2 	

1D example!

1st eigenvector!

2nd eigenvector!

3rd eigenvector!

+	

+	

+	 +	

2D example!

2nd!
eigenvector!

Partitioned!
half!

circled!

Spectral Bisection	
Laplacian matrix:	
	 L(G) of a graph G(N,E) is an |N| by |N| symmetric matrix:	
	-	L(G)(i,i) = degree of node i (number of incident edges)	
	-	L(G)(i,j) = -1 if i ≠ j and there is an edge (i,j)	
	-	L(G)(i,j) = 0 otherwise	

Theorems:	
1. 	The eigenvalues of L(G) are nonnegative:	
	 	λ1 = 0 ≤ λ2 ≤ ••• ≤ λN)	

2. 	λ2(L(G)) ≠ 0 if and only if G is connected	

Spectral bisection algorithm:	
1. 	Compute eigenvector v2 corresponding to λ2(L(G))	
2. 	For each node i of G	
	 	a. 	if v2(i) < 0, put node i in partition N-	
	 	b. 	else put node i in partition N+	

Example!

€

1 2 3 4 5
1 1 −1
2 −1 2 −1
3 −1 2 −1
4 −1 2 −1
5 −1 1

O(N) λ2 Computation	
Lanczos algorithm:	
• 	Given an N×N symmetric matrix A (e.g., L(G)), compute a

K×K “approximation” T by performing K matrix-vector
products, where K << N	

• 	Approximate A’s eigenvalues & eigenvectors using T’s	

Choose an arbitrary starting vector r!
b(0) = ||r||!
j=0!
repeat!
 j=j+1!
 q(j) = r/b(j-1) !
 r = A*q(j)!
 r = r - b(j-1)*v(j-1)!
 a(j) = v(j)T * r!
 r = r - a(j)*v(j)!
 b(j) = ||r||!
until convergence!

€

T =

a1 b1
b1 a2 b2
! ! !

bK−2 aK−1 bK−1
bK−1 aK

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Multilevel Partitioning	
Recursively apply:	
1. 	Replace G(N,E) by a coarse approximation Gc(Nc,Ec), & partition Gc	
2. 	Use partition of Gc to obtain a rough partitioning of G, then uncoarsen
	& iteratively improve it 		

(N+,N-) = Multilevel_Partition(N,E)!
// returns N+ and N- where N = N+ ∪ N-!
 if |N| is small!
1 Partition G = (N,E) directly to get N = N+ ∪ N-!
 Return (N+,N-)!
 else!
2 Coarsen G to get an approximation Gc = (Nc,Ec)!
3 (Nc+,Nc-) = Multilevel_Partition(Nc,Ec)!
4 Expand (Nc+,Nc-) to a partition (N+,N-) of N!
5 Improve the partition (N+,N-)!
 Return (N+,N-)!
 endif!

(2,3)

(2,3)

(2,3)

(1)

(4)

(4)

(4)

(5)

(5)

(5)
Coarsening! Multilevel!

V-cycle!

An Extra Lesson	
Continuous optimization is easier than discrete combinatorial optimization	

cf.	• 	Linear combination of atomic potentials (LCAP)	
	 	 	M. Wang et al., J. Amer. Chem. Soc. 128, 3228 (’06)
	 	• 	Gradient-directed Monte Carlo (DGMC)	
	 	 	X. Hu, J. Chem. Phys. 129, 064102 (’08)

€

v(! r) = bA

!
R vA

!
R (! r)

!
R ,A
∑LCAP:	

