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Logic

Logic = mathematical foundation for:
• Objective reasoning
• Formal proofs
• Computation  
Proposition: A declarative sentence that is either true or false, 
but not both

(Example) ‘today is Friday’
‘read this book’ ´ — imperative
‘what time is it’ ´ — interrogative

Predicate (propositional function): A statement involving 
variables 

(Example)  P(x, y): Student x has studied subject y
Truth value: True (T) or false (F)



Connectives (1)
Logical operators to form composite propositions from existing 
propositions
• Negation
¬p: “not p”; inverts the truth value

• Conjunction
p Ù q: “p and q”; T if both p and q are T 

• Disjunction 
p Ú q: “p or q”; F if both p and q are F, T otherwise 

• Exclusive or 
p Å q: T when exactly one of p and q is T 

Truth table: Combinatorial enumeration of the truth values of 
composite propositions; 2n rows for a n-proposition composite
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Connectives (2)
Implication: p ® q; F when p is T and q is F, and T otherwise

hypothesis    conclusion 

“if p, then q”  (“q if p”)
“p implies q”
“p is a sufficient condition for q”

Related implications
• Contrapositive: ¬q ® ¬p
• Converse: q ® p
• Inverse: ¬p ® ¬q

Biconditional: p « q; T if p and q has the same truth value
“q if and only if (iff) p”
“p is sufficient and necessary for q”
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Nested Connectives

• Use parenthesis
(p Ù q) Ú r

• Precedence: No need to memorize, except for
¬p Ù q is   (¬p) Ù q  not  ¬(p Ù q)

Operator Precedence
¬ 1
Ù
Ú

2
3

®
«

4
5

operate first

operate last



Logical Equivalences

• Tautology: A compound proposition that is always T
• p º q: p and q are logically equivalent; p « q is a tautology

Syntactically different composite propositions can have the
same meaning (truth values)    

Truth table can be used to determine the equivalence
(Example) “equivalence of contrapositive”

p ® q º ¬q ® ¬p 
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Basic Logical Equivalences (1)

p Ù T º p
p Ú F º p

Identity laws

p Ú T º T
p Ù F º F

Domination laws

p Ú p º p
p Ù p º p

Idempotent laws

¬(¬p) º p Double negation

Useful to simplify complex composite propositions



Basic Logical Equivalences (2)

p Ù q º q Ù p
p Ú q º q Ú p

Commutative laws

(p Ù q) Ù r º p Ù (q Ù r )
(p Ú q) Ú r º p Ú (q Ú r)

Associative laws

p Ú (q Ù r) º (p Ú q ) Ù (p Ú r )
p Ù (q Ú r) º (p Ù q ) Ú (p Ù r )

Distributive laws

Ù and Ú are commutative, associative, and distributive

Associative laws make the following well defined
• p1 Ù p2 Ù ... Ù pn T if all are T
• p1 Ú p2 Ú ... Ú pn  T if one is T



Basic Logical Equivalences (3)

¬(p Ù q) º ¬p Ú ¬q
¬(p Ú q) º ¬p Ù ¬q

De Morgan’s laws

p Ú (p Ù q) º p
p Ù (p Ú q) º p

Absorption laws

p Ú ¬p º T
p Ù ¬p º F

Negation laws

Generalized De Morgan’s theorem
• ¬(p1 Ù p2 Ù ... Ù pn) º ¬p1 Ú ¬p2 Ú ... Ú ¬pn

“it is not the case that all are T” º “one is F”
• ¬(p1 Ú p2 Ú ... Ú pn) º ¬p1 Ù ¬p2 Ù ... Ù ¬pn

“it is not the case that one is T” º “all are F”



Basic Logical Equivalences (4)

p ® q º ¬p Ú q
p ® q º ¬q ® ¬p (contrapositive)
p « q º (p ® q) Ù (q ® p)

Equivalences involving implication & biconditional 
in terms of other connectives 



Basic Logical Equivalences (5)

Additional logical equivalences can be derived, combining other 
logical equivalences that have already been established

(Example) Show that (p Ù q) ® (p Ú q) º T  
i.e., “(p Ù q) ® (p Ú q) is a tautology”

(p Ù q) ® (p Ú q) º ¬(p Ù q) Ú (p Ú q) p® q º ¬p Ú q
º (¬p Ú ¬q) Ú (p Ú q) De Morgan
º ¬p Ú ¬q Ú p Ú q Associative law
º (¬p Ú p) Ú (¬q Ú q) Associative law
º T Ú T Negation laws
º T Domination law

This is proof! 
Algebraic transformations



Quantifiers

Universe of discourse: The collection of values that a variable can 
take
Universal quantifier, ": "xP(x), “for all x P(x)”
“P(x) is T for all values of x in the universe of discourse”
(Example) Universe of discourse consists of all integers

"x(x + 1 > x) is T
"x(x2 > x) is F  (P(0) is F, counterexample) 

Existential quantification, $: $xP(x), “there is an x such that P(x)”
“There exists an element x in the universe of discourse such that 
P(x) is T”
(Example) Universe of discourse consists of all integers

$x(x > 3) is T (P(4) is T for example)



Negating Quantifiers

¬"xP(x) º $x¬P(x)
“it is not the case that P(x) is T for all x”
º “there exists x such that P(x) is F”
(Example) Negation of “all Americans eat cheeseburgers”

“there is an American who do not eat cheeseburgers”
¬$xP(x) º "x¬P(x)
“it is not the case that there exists x such that P(x) is T”
º “P(x) is F for all x”
(Example) Negation of “there is an honest politician”

“all politicians are dishonest”
These equivalences are just De Morgan’s theorems: 
• ¬(P(x1) Ù P(x2) Ù ... Ù P(xn)) º ¬P(x1) Ú ¬P(x2) Ú ... Ú ¬P(xn)
• ¬(P(x1) Ú P(x2) Ú ... Ú P(xn)) º ¬P(x1) Ù ¬P(x2) Ù ... Ù ¬P(xn)



Nesting Quantifiers

1. "x"yP(x,y): “P(x,y) is T for every pair x,y”
2. $x$yP(x,y): “there is a pair for which P(x,y) is T”
3. "x$yP(x,y): “for every x there is a y for which P(x,y) is T”
4. $x"yP(x,y): “there is a x, for which P(x,y) is T for all y”

(Example) P(x, y) = “x relies upon y” 
"x($yP(x,y)): “everyone has someone to rely on”
$x("yP(x,y)): “there is a needy person who relies on everybody”



Proof

Axioms: Statements assumed to be T, defining a mathematical 
structure 
Theorem: A statement that can be shown to be T
Proof: Demonstration that a theorem is T 
Rules of inference: Patterns to deduce a true statement 
(conclusion) from a set of other true statements (hypotheses)
General form: If we know that a set of hypotheses are all T, 
then a conclusion is T

hypothesis 1 (h1)
hypothesis 2 (h2)
...                  
\ (denotes “therefore”) conclusion (c)        

Associated tautology: h1 Ù h2 Ù ... ® c



Examples of Axioms

Axioms of Euclidean geometry (~300BC)
1. Given two distinct points, one can draw one and only one line segment connecting these 

points. 
2. Given two distinct points, one can draw one and only one circle centered at the first point 

and passing through the second one. 
3. Any two right angles are equal. 
4. Every line segment can be infinitely continued in either direction. 
5. For any given line l and a point P not on that line one can draw one and only one line l1

through P that will not intersect the original line l .

Axioms of Riemann’s geometry (1854)
Euclid’s axioms 1-4
5’. Given a straight line and a point not on the line, there are no straight lines through the 

point parallel to the original line.

Axioms in Newtonian mechanics
1. An object at rest tends to stay at rest and an object in motion tends to stay in motion with 

the same speed and in the same direction unless acted upon by an unbalanced force.
2. The acceleration of an object as produced by a net force is directly proportional to the 

magnitude of the net force, in the same direction as the net force, and inversely 
proportional to the mass of the object.

3. For every action, there is an equal and opposite reaction.



Rules of Inference

Rule of Inference Tautology Name
p .
\ p Ú q

p ® (p Ú q) Addition

p Ù q .
\ p

(p Ù q) ® p Simplification

p
q .
\ p Ù q

(p) Ù (q) ® p Ù q Conjunction

p
p ® q .
\q

[p Ù (p ® q)] ® q Modus ponens

¬q
p ® q .
\¬p

[¬q Ù (p ® q)] ® ¬p Modus tollens



Rules of Inference

Rule of Inference Tautology Name
p ® q
q ® r     .
\p ® r

[(p ® q) Ù (q ® r)] ® (p ® r) Hypothetical 
syllogism

p Ú q
¬p .
\q

[(p Ú q) Ù ¬p] ® q Disjunctive 
syllogism

p Ú q
¬p Ú r .
\q Ú r

[(p Ú q) Ù (¬p Ú r)] ® (q Ú r) Resolution



Rules of Inference for Quantified Statements

Rule of Inference Name
"xP(x)                            .
\P(c) for a particular c

Universal instantiation

P(c) for an arbitrary c 
\"xP(x)

Universal generalization

$xP(x)                   .
\P(c) for some c

Existential instantiation

P(c) for some c 
\$xP(x)

Existential generalization



Methods of Proving Theorems

Proving implications p ® q:

Direct proof: Assume p is T, and use rules of inference to 
prove that q is T

Indirect proof: Prove its contrapositive; assume ¬q, and 
prove ¬p

Proof by cases: Prove (p1 Ú p2) ® q by proving (p1 ® q) 
and (p1 ® q)
• Based on [(p1 Ú p2) ® q] º [(p1 ® q) Ù (p2 ® q)]



Sample Direct Proof

Write your answer to a homework at this 
level of readability!



Proof by Contradiction

Proving p:
• Prove ¬p ® (q Ù ¬q)
• Since (q Ù ¬q) º F (contradiction, by negation law), ¬p ® F
• This is only T, if ¬p = F (i.e., p = T)

(Example) Prove that p: “Ö2 is irrational”
• Assume ¬p: “Ö2 is rational (i.e., Ö2 = a/b, where integers a & b

have no common factors)”.
• It follows that 2 = a2/b2, hence 2b2 = a2.  This means a2 is even, 

which implies a is even.  Furthermore, since a is even, a = 2c
for some integer c.  Thus 2b2 = 4c2, so b2 = 2c2.  This means b2 is 
even, which implies b is even.

• It has been shown that ¬p ® “Ö2 = a/b, where integers a & b
have no common factors” Ù “2 divides both a & b”. 



Existence Proofs

Existence proof: Proving $xP(x)

• Constructive proof: Find an element a such that P(a) is T

• Nonconstructive proof: For example, proof by contradiction 
— prove that its negation leads to contradiction 


