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gramming, is widely used for estimation and detection

problems in digital communications and signal proc-
essing. It is used to detect signals in communication channels
with memory, and to decode sequential error-control codes
that are used to enhance the performance of digital commu-
nication systems. The Viterbi algorithm is also used in speech
and character recognition tasks where the speech signals or
characters are modeled by hidden Markov models. This arti-
cle explains the basics of the Viterbi algorithm as applied to
systems in digital communication systems, and speech and
character recognition. It also focuses on the operations and
the practical memory requirements to implement the Viterbi
algorithm in real-time.

The Viterbi algorithm, an application of dynamic pro-

Overview

The Viterbi Algorithm (VA) finds the most-likely state tran-
sition sequence in a state diagram, given a sequence of
symbols. In digital communication systems, the VA is widely
used to detect sequential error-control codes and to detect
symbols in channels with memory by finding the most-likely
noiseless sequence, given a sequence of symbols that are
corrupted by noise such as additive white gaussian noise
(1-6]. With each symbol in the noisy sequence, the VA
recursively finds the most-likely transition coming into each
state. The VA can also be applied to speech and character
recognition tasks where the speech symbols or characters are
modeled by hidden Markov models (HMMs). Given an ob-
servation sequence representing a word or a character, the VA
can be used to find the most-likely state sequence and the
likelihood score of this sequence in a given HMM [7-10].

In summary, the Viterbi algorithm is used to find the most
likely noiseless finite-state sequence, given a sequence of
finite-state signals that are corrupted by noise. The finite-state
signals are signals generated from a finite-state diagram such
as the one shown in Fig. 1a. That is, given a sequence of input
symbols and an initial state, one can derive a sequence of
output symbols based on the transitions and their input/output
relations in a given finite-state diagram. For example, in the
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Figure, if the initial state is 1, an input of -1 will cause a
transition from state 1 to state -1, and the output symbol of
this transition is 0.

To aid in visualizing the transitions from state to state, one
often represents a finite-state diagram by a time-indexed
equivalent called a trellis [2]. Figure 1b shows the trellis
equivalent of the two-state state diagram in Fig. 1a. That is,
at state 1 in Fig. 1b, an input symbol of -1 will cause a
transition from state 1 to state -1, and the output symbol of
this transition is 0. With this time-indexed representation of
a state diagram, we can see that if there are four symbols in
an input sequence, four stages of a trellis diagram is required
to show the transitions (Fig 2).

If a sequence of symbols, generated from a trellis, is
corrupted by additive white gaussian noise (AWGN), the VA
is the optimum method of finding the most-likely original
noiseless sequence, given this sequence of noisy symbols
[2-3]. The trellises can be a description of an error-control
code (such as a convolutional code or a trellis code described
later), or a communication channel (such as a partial-response
channel).

Viterbi Detection

As described previously, given a received sequence of
symbols corrupted by AWGN, the VA finds the sequence of
symbols in the given trellis that is closest in distance to the
received sequence of noisy symbols. This sequence computed
is the global most likely sequence. When Euclidean distance
is used as a distance measure, the VA is the optimal maxi-
mum-likelihood detection method in AWGN [2]. In practice,
however, the Hamming distance (defined later) is often used,
even though the performance of the VA is sub-optimal.
Regardless of the distance measure (Euclidean or Hamming),
the procedure to search for the most-likely sequence is the
same. We will use Euclidean distance to illustrate the VA.

To compute the global most-likely sequence, the VA first
recursively computes the survivor path entering each state.
The survivor path for a given state is the sequence of symbols,
entering the given state, that is closest in distance to the
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2. Four states of a trellis diagram.

received sequence of noisy symbols. The distance between
the survivor path and the sequence of noisy symbols is called
the path metric for that state. After the survivor paths entering
all states are computed, the survivor path that has the mini-
mum path metric is selected to be the global most-likely
path.

Let us assume that the received sequence of noisy symbols
is ¥ =(y1,¥2,¥3,.--x) At each recursion, that corresponds to

one stage of a trellis, the VA computes the most likely
transition coming into each state, and then updates the survi-
vor path and the path metric for that state (Fig. 3). That is, at
recursion n, the VA computes the most-likely transition
coming into state j by computing the metrics of all the
possible paths coming into state j, and then selecting the path
with the minimum metric as the survivor path coming into
state j, and its metric is the updated path metric for state j. If
Euclidean distance is used, the metric of a path is the accu-
mulated squared distances between the received sequence of
noisy symbols and the ideal sequence of symbols in that path.
That is, the metric of the path coming into state j from state
i, at recursion #n, is the sum of the branch metric of the
transition from state i to state j and the path metric of state i

State 1 State -1

previous updated previous updated

path path path path

metric metric metric metric
0.0025

0 0+3.8025_ _

o - 2%

0+0.0025

0.0025 <« 3.8025

0.0025 < 4.2025

computed at recursion (n - 1). The branch metric is the
squared distance between the received noisy symbol, yn, and
the ideal noiseless output symbol of that transition. (The
branch metric for Hamming distance is described later). That
is, the branch metric for the transition from state i to state j at
recursion » is

B;jn=(yp— Ci,j)2 (1)

where Ci; is the output symbol of the transition from state i
to state j. If we also define M; , as the path metric for state j
at recursion n, and {i} as the set of states that have transitions
to state j, then the most likely path coming into state j at
recursion # is the path that has the minimum metric,

M;,=min[M,;, | +B;,]

] €3]

After the most likely transition to state j at recursion n is

computed, the path metric for state j, Mj n, is updated and this

most likely transition, say from state m to state j, is appended

to the survivor path of state m at recursion (n - 1) in order to

form the updated survivor path coming into state j at the
current recursion, x.

The path metrics and the survivor paths are updated for all
states at each recursion. At the end of the recursions, recur-
sion k in this case, the survivor path with the minimum path
metric is selected to be the most likely path. The most likely
path can be traced from the state that has the minimum path
metric backwards.

In practice, the received noisy symbols arrives continu-
ously. Thatis, k — < in the above case. From the description
given above, one has to wait for an infinite amount of time
before a most likely sequence can be determined. Note,
however, that if the survivor paths for all states converge to
one state, say state j, and at recursion n, all states will append
the survivor path coming into state j at recursion » to their
survivor paths. Thus, all states will have the identical survivor
path sequence prior to stage n. Therefore, we can trace back
from any state and obtain the most likely sequence up to stage
n (Fig. 4).

For a given trellis and the performance of the Viterbi
decoder required, one can determine the number of recur-
sions required for the survivor paths to converge with very
high probability. We call this number the survivor path
length, L. Therefore, after an initial delay of L recursions, one
can assume that the survivor paths for all states have con-
verged at L stages ago. Thus, one can start from any state and

Recursion or stage 0 1 2 3 4 5
Received noisy symbols 0.05 2.05 -1.05 -0.05

-2.00

state 1 &

state -1
Most-likely input symbols 1 1 -1 -1
Most-likely input symbols 0 2 0 -2

3. Update survivor paths for state 1 and -1.
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4. Survivor paths for states 1 and -1.
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trace its survivor path L stages backwards in order to find the
most likely symbol at (L -1) stages ago. In practice, L is
determined by computer simulation.

Example—Viterbi Detection

Given the trellis in Fig. 1 and the received noisy sequence
y=(0.05, 2.05, -1.05, -2.00, -0.05) at recursion 1, we first
calculate the branch metrics for all the possible transitions
(Eq. 1):

By =01 - C )% =(0.05-2) =38025

By _11 =0 —C__?=(0.05+2)* =4.2025
By 11 = B_1y, =(0.05) =0.0025

The next step is to update the survivor path coming into
each state. There are two possible transitions coming into
both state 1 and state -1. That is, in Eq. 2, {i} = {1, -1} for
both states. Thus, we first compute the sums of the branch
metrics, B, and their corresponding previous path metrics, M,
for the two paths entering each state. After that, we select the
path with the smaller sum as the survivor path coming into
that state (Eq. 2). In Fig. 3, we assume that at the beginning
of the recursions, all the path metrics are zero (M1,0=M-1
=0). Thus, for state 1 at recursion 1,

i

My, = min[M;, + B;,]
[ S T '
and since

([Myg + By 1= 0+38025)> ((M_y o + B_, ;1= 0+0.0025)

Then, M1,1 = 0.0025. That is, the survivor path for state 1
is the transition from state -1 to state 1, and 0.0025 is the
updated path metric for state 1. Similarly, we can calculate
the survivor path for state -1. The survivor paths are shown
in solid black lines in Fig. 3

If we recursively update the survivor paths for 5 stages,
given the noisy sequence y we will have a survivor for each
state as shown in Fig 4. To trace the survivor path for state 1,
one can trace from state 1 backwards to state -1 (at stage 4)
to state -1 (at stage 3), and so on. Note that since the two
survivor paths for both states merge at state -1 at stage 4, we
can trace back from either state and obtain the identical most
likely sequence from stage O to stage 4. Further, if we know
the most likely transitions, we can find the corresponding
sequence of output and input symbols from the given trellis.

In summary, at each recursion or stage, there are three
major steps in Viterbi detection:

1. Branch metric generation: The branch metrics for all
possible transitions between all pairs of states in the given trellis
are generated. The branch metric of a given transition is the
squared distance between the noisy received symbol and the
ideal output symbol associatedwith the transition (Eq. 1).

2. Survivor path and path metric update for all states: For
all of the incoming transitions to each state, add their branch
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metrics to their corresponding previous path metrics. The
path with the minimum sum is the survivor path for that state.
A survivor path is selected and its path metric updated for
each state at each recursion (Eq. 2).

3. Most likely path trace back: The survivor path of a given
state is traced L stages back in order to determine the most
likely transition at that stage. That is, the most likely symbols
in the sequence are determined at a latency of L stages.

Real-time Implementation

Given the basics of the VA in the previous section, we now
describe how the VA can be implemented in real time. Since
the implementation can vary significantly according to the
given trellis description and the application, we focus on the
general ways of implementing each step in the VA described
previously. We will use convolutional codes and trellis codes
as examples to illustrate how to estimate the amount of
computation and memory required to implement the VA for
a given trellis and application.

Error-control codes are introduced to preserve the integ-
rity of communication systems. Trellis codes and convolu-
tional codes are examples of one generalized and useful type
of coding called sequential coding. In particular, trellis codes,
which were introduced about ten years ago, can be very
powerful, bringing system performance to near theoretical
limits in AWGN channels [32-33].

The input/output relations of these sequential codes are
specified by finite-state diagrams or trellises. That is, given a
trellis, an input sequence of symbols to be encoded, and an
initial state, one can derive an output sequence of coded
symbols (called codewords) based on the input/output rela-
tions of the transitions in the trellis. This sequence of code-
words can be corrupted by AWGN in a communication
channel. To decode the sequences of codewords that are
corrupted by AWGN, the VA, first proposed in 1967 as a
method of decoding convolutional codes [1], is the optimum
detection method for these sequential codes on AWGN chan-
nels [1-6].

Step I1: Branch Metric Generation

For optimal VA performance in AWGN, the branch metric
of a given transition is defined as the squared distance be-
tween the noisy symbol and the output symbol of the transi-
tion. That is, from Eq. 1,

Bijn=0n=Cip) =ya = 20,Cj +(Ci ) 3)

In the VA, comparison between the path metrics are required
to determine the survivor path. Thus, one is only concerned
with the differences between the path metrics. That is, one
can arbitrarily add a constant to all the path metrics without
changing the comparison result. Since the path metrics are
made up of the accumulated branch metrics (Eq. 2), we can
focus only on the branch metrics for our discussion. Since all
the branch metrics have the term ynz (Eq. 3), we can subtract
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yn2 from all the branch metrics without changing the differ-
ences among them. That is, one can represent the branch
metrics by:

B;jn="29.C; +(Ci.j)2 “4)

without changing the comgarison result. Cjj is defined in the
given trellis, and thus C;;” can be precomputed. Therefore,
one needs addition and multiplication operations and/or ta-
ble-lookup operations to compute the branch metrics.

Note that Eq. 4 may be simplified further,depending on
the nature of the transition output symbols C; ;. For example,
consider the following two cases:

Case I: The transition output symbols are binary and are
represented by -a and a. Thatis, C; ; € {-a,a} . In this case, we

can further simplify the branch metric. Since

B _p - 0 for Ci,jZCk,j
i.j.n k.j.n —2y,C; i +2y,Ch i for G #Cy ;i
n'-i,j n“k,j ij k,j

dividing all branch metrics by 2 will not change the compari-
son results, we can represent the branch metrics as

Bijn==¥nCij ={ n or Clj_ _a
yp Jor Cij=-a (5)
In this case, only negation operations are required to
compute the branch metrics. This result can be applied to
convolutional codes with anti-podal signaling and using soft-
decision decoding discussed in the next section.

CaselIl: C;; € (b, b+k}, where k > 0. In other words, the
transition output symbols are either b or b + k, where k is the
distance between the two symbols. Similar to case I, we can
simplify the branch metric expression. The difference of the
branch metrics is

0 for C; ;= Cy
B jn =By jn =1 29,k—2bk—k* for C; =b and C; j=(b+k)
~2y,k+2bk +k* for C; ; =(b+k)and C; =b

Even though dividing all branch metrics by k, a positive
constant, will change the differences of the branch metrics, it
will not change the comparison results. Thus, we can denote

’

the new difference, B;;, — Bi jn-

0 for C; ;= Cy
Bil,j,n 7Bl:,j,n =42y, —2b—k for Ci.j =band Ck,j =(b+k)
-2y, +2b+k forCiyj=b+kande'j=b

Equivalently,
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, I
Bi - Bk,j.n =

JJn

0 for Ci‘j :Ck,j
= b)—((b+k)—y,) for C;j=band C; j =(b+k)
((b+K)=y,) =Yy —b) for C;;=(b+kyand Cy;=b

Note that, in this case, the branch metric can be represented
as the distance between the noisy symbol and the output
symbol of the given transition. Thus,

P Yo —b for C;;=b
BT\ b+ k) -y, for Cj=b+k 6

That is, only addition operations or table-lookup operations
are required to compute the branch metrics. This property can
be applied to computing the branch metrics of some trellis
codes when their branch metrics can be computed one dimen-
sion at a time and the nearest codewords in each given
dimension are either b or (b + k) (the value of b can be
different in different dimensions).

Computing the branch metrics can vary significantly, ac-
cording to the given trellis and the application. The following
section explains how the branch metrics can be computed for
convolutional codes and trellis codes.

Convolutional Codes

Convolutional codes are described by trellises. For the most
commonly used convolutional codes, the inputs and outputs
are defined in binary digits (or bits). For a rate k/n, N-state
convolutional code, there are N-states in the trellis and 2k
transitions exiting and entering each state. For each transi-
tion, there are k input bits and n output (coded) bits (Fig. 5).
If the n coded bit sequence is sent into an AWGN channel,
each transmitted bit can be corrupted by the noise in the
channel. The received waveform representing each transmit-
ted bit at the receiver is quantized into an m-bit symbol, where

states

output (coded) bits / input bit
5. An example of a rate 1/2, 4-state convolutional code.
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m is the quantization precision at the receiver. These quan-
tized noisy symbols are then sent intothe Viterbi decoder.In
the Viterbi decoder, one can use either Hamming distance
(hard decision decoding) or Euclidean distance (soft decision
decoding) for branch metric computation. Hard and soft
decision decoding are described in the following sections.

Hard Decision Decoding

For hard decision decoding, each noisy symbol in the
received sequence of noisy symbols is quantized to one bit
before it is compared to the corresponding coded bit in the
coded bit sequence of the given transition. The number of
bits in which the two sequences differ iscalled the Ham-
ming distance, and it is used as the branch metric for that
transition. For example, if the received sequence of noisy
symbols {0.05, 0.4, 0.8} is quantized to the bit sequence
{0, 0, 1}, and if the coded bit sequence of the given
transitionis {0, 1, 1}, then the Hamming distance is 1. The
Hamming distance can easily be calculated using exclu-
sive-or type of operations. If the processor has a precision
more than the number of bits in each coded bit sequence,
one exclusive-or operation is required to generate the
Hamming distance for each transition in the trellis. Thus,
if there are m distinct coded bit sequences in the trellis, m
exclusive-or operations at most are required to generate the
branch metrics of all the transitions and m memory loca-
tions are required to store these metrics.

Soft Decision Decoding

In hard decision decoding, the noisy symbols are quantized
to bits before the Hamming distances are computed. This
may result in some loss in performance in the Viterbi
decoder. To keep the information contained in the received
noisy symbols, soft decision decoding computes the
branch metrics by using the noisy symbols directly instead
of quantizing them into bits. For each noisy symbol in the
sequence, it calculates the squared distance between each
noisy symbol and the corresponding coded bit in the coded
bit sequence of the given transition, and then adds these
distances together to form the branch metric of that transi-
tion. That is, if the given noisy symbol is x and the coded
bits are represented by a and b, then the distance to coded
bits are (x - a)2 and (x -b)z, respectively. For a commonly
used rate k/n convolutional code with binary output sym-
bols represented by, say -a and a, one can use negation
operations to compute the metric for each bit as discussed
in Case I above. Since there are n bits in the output (or
coded) bit sequence of each transition,n noisy symbols are
received at the input of theViterbi decoder at each recur-
sion. Thus, n negation operations are required to find the
metric of all the received symbols and (n - 1) additions are
required to compute the branch metric for a given coded
bit sequence. Therefore, if m is the number of distinct
coded bit sequences in the given trellis, at most M(n - 1)
additions and n negations are required to compute the
branch metrics for all the transitions and m memory loca-
tionsare required to store these branch metrics.
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Trellis Codes

For an n-dimensional trellis code, each code word has n-di-
mensions. That is, each codeword has n one-dimensional
symbols. In trellis codes, the output for each transition in the
trellis is a number denoting a subset (or called a coser) (Fig.
6, [5, 34-35]. Each coset usually consists of more than one
codeword. To compute the branch metric of a given transi-
tion, one should first find the codeword in the coset associ-
ated with the given transition that is closest in distance to the
received noisy symbol. The squared distance between this
codeword and the received noisy symbol is the branch metric
of the transition. Once the branch metrics are computed for
all the transitions, the same procedures described above can
be used to update the survivor path entering each state.

The way to compute the nearest codeword in a given coset
is depends on the configuration of the codewords in the coset.
For most practical applications, one can compute the branch
metric for a higher dimensional symbol by computing the
squared distances one or two dimensions at a time, and then
add these distances to form the branch metrics of a higher
dimensional symbol. For example, if the received noisy sym-
bol has four dimensions, it can be represented by four one-di-
mensional symbols, (w, x, y, z). In many applications, one can
take w, x, y and z independently and compute the squared
distances to their respective nearest one-dimensional code-
word in the given coset. After that, these squared distances
are added together to form the branch metrics of the four-di-
mensional symbol. Note that depending on the arrangement
of the codewords in a given coset, one might be able to use

Coset number
of the
corresponding
transition
output

2064

4602

1357

3175

5713

7531

6. An example of an 8-state, rate 2/3 trellis code.
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absolute linear distances, rather than squared distances, as
branch metrics (see Case II above).

In some trellis codes, the codewords in a higher dimen-
sional coset are made up of unions and cross products of
codewords in lower dimensional cosets. Thus, to find the
nearest codeword of a higher dimensional noisy symbol, one
can first find the closest codeword in each coset by finding
the closest codewords in the respective lower dimensional
cosets. After that, comparisons can be made to find the
codeword, among the closest codewords, that is closest in
distance to the received noisy symbol. That is, one may
require the add-compare-select operations, described in the
next section, to compute the branch metrics.

The operations required to compute the branch metrics of
a trellis code vary significantly, depending on the structure
of the cosets in the code. In general, one may use squaring
operations or table-lookup operations to find the squared
distances. Additions and add-compare-select operations may
also be required.

Step 2: Survivor Path Update

To find the survivor path entering each state, the branch
metric of a given transition is added to its corresponding
previous path metric. This sum is compared to all the other
sums corresponding to all the other transitions entering that
state. The transition that has the minimum sum is chosen to
be the survivor path (Eq. 2). That is, if we denote mem[k] as
location k of memory mem, branch as the memory segment
that stores the branch metrics, and path as the memory
segment that stores the path metrics, we can perform the
following operations to find the survivor path for a given
state:

To initialize the metric:
min = branch{i] + path [],

To find the path with the minimum path metric:
if (( branch{k] + path[l] ) min)
min = branch[k] + path[l];

if (( branch{m] + path[n])
min = branch{m] + path{n];

We can define a new type of operation called an add-com-
pare-select operation with the instruction:

acsmin(a, b, min), index
to perform the following operations:

if ((a + b) min){

min=a+ b;

index — predetermined memory location;}
where index is used as an index to update the path with the
minimum metric (survivor path). The implementation of the
index is discussed later.

Given a trellis with a total of M transitionsand N states, a
maximum of (M - N) acsmin operations are required to
perform the comparison and N sums are required to initialize
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the metric for each state. The number of memory accesses
required to store the indexes for the survivor paths is depend-
ent on the way the survivor path memory is implemented. The
survivor path memory is discussed in the following section.

The other real-time implementation issue for the survivor
path update is the possibility of overflows in the registers that
hold the path metrics, since the registers are of finite lengths.
In order to ensure that the path metric registers will not
overflow, the conventional approach is to renormalize the
path metrics by subtracting a constant from all the path
metrics, to be compared from time to time. This renormali-
zation will not affect the comparison results, since the differ-
ences of the path metrics are not affected by subtracting a
constant from all the path metrics to be compared. One can
use the path metric with the minimum value, compared to all
the path metrics at the current recursion, as the constant to be
subtracted. With this approach, additional comparison and
subtraction operations are required to renormalize the path
metrics.

We can avoid the extra computation required to renormal-
ize the path metrics by designing the registers to store the path
metrics to be of length greater than 2Dmax, where Dyax is the
maximum possible difference between path metrics [36]. In
this case, we can use the comparison rule described below
and determine which path metric is smaller or larger, without
worrying about overflows in the path metric registers. We can
use the modulo arithmetic concept to explain the effects of
overflows in a register that stores a path metric. We can
imagine that due to the finite precision of the register, a path
metric is basically running on a circle in the clockwise
direction every time a positive number is added to it (Fig. 7
is an example where the register length is 3 bits). Thus, if we
can make sure that this circle is large enough so that the
distance between the two path metrics to be compared on the
circle is always less than half the length of the circumference
of the circle, then we know that the metric that is farther along
in the clockwise direction has a larger value.

The way to determine which metric is larger or smaller is
described as follows:

Let m; =(my,,...my¢) and m, =(my,,...ny) be the two

metrics to be compared, and d = (d,....dy) = (m, —m,) using

000

Distance between
two metrics

100
7. Finite precision effects of path metrics.
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2’s complement arithmetic. If Z((m;,m,) denotes the logical
result of comparing the path metrics i and m, , then

L ifm <my

0, otherwise

Z(ﬁlsﬁ2)={

and Z((my,m,)=d,

Step 3: Optimum Path Trace Back

At each recursion or each decoding stage, the survivor path
for each state is updated. In practice, the survivor path length,
L, is the delay required for the survivor paths for all states to
converge with very high probability. Thus, after L recursions,
one can trace back from any arbitrary state and find the most
likely transition at (L - 1) previous stages.

There are many ways to store and trace the survivor paths.
For example, [39-41] provides ways to implement the survi-
vor path memories for high-speed Viterbi decoding using
multiple processors. This section focuses on two general and
commonly used methods to store the survivor paths.

Method I stores the symbols associated with a survivor
path directly.That is, at each recursion, the symbols associ-
ated with the complete survivor path for each state are up-
dated. For the Viterbi detection example discussed earlier, the
survivor path memory for state 1 at recursion 4, is [1, -1, 1,
1], where the left most symbol is the most recently stored data.
At recursion 5, the survivor path for state 1 becomes [1, -1,
-1,1,1].

The disadvantage of this scheme is that the complete
survivor path for each state has to be updated at each recur-
sion. Thus, the number of memory accesses required to
update the survivor paths may be large. However, for convo-
lutional codes that use bits as input symbols, one may pack
many bits in the survivor path together to form a word and
thus the number of memory accesses required to update the
survivor paths may be reduced significantly. The advantage
of this method is that no trace back is required to find the most
likely symbol, because it can be read directly from the survi-
vor path memory of a chosen state.

Method II is a more commonly used method that uses
pointers to keep track of the survivor paths. A straightforward
implementation of the survivor path memory can be imple-
mented by dividing the memory into several blocks (Fig. 8).
The number of blocks is dependent on how long one wants
to keep the survivors. That is, the number is dependent on the
survivor path length, L. Each block in the survivor path
memory corresponds to one stage of a trellis or one recursion.
Each location in each block stores the survivor path pointer
for each state. The survivor path pointers are implemented as
offsets from location 0 of each block. The offset gives the
location that contains the pointer to the survivor path at the
previous stage.

To trace the survivor path memory, a block counter is
used to keep track of the current block of data to be read. To
trace one stage of the survivor path, the block counter is
decremented and concatenated with the offset read from
memory to form the address of the memory location that
contains the offset, pointing to the survivor path at the pre-
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Survivor paths: state 1a_

state -1
Survivor path 0 1<1+—0 1 1 1
memory: 11 o 0 0=l—1 1

8. Example: tracing the survivor path memory.

vious stage. Figure 8 illustrates the organization of the survi-
vor path memory. The survivor path memory in this example
contains two locations in each block to store the survivor
paths for state 1 and state -1. Location 0 of each block stores
the survivor path pointer for state 1, and location 1 of each
block stores the survivor path pointer for state - 1. Therefore,
if we want to trace the survivor path from state 1 of the most
recently stored block, we can set the pointer to read location
0 of this block. Since the content in location 0 has a value of
1, after decrementing the block counter and concatenating
with the offset value of 1, we read location 1 of the previous
block. The content in location 1 is 0 and thus the content in
location 0 of the previous block will be read. In this way, one
can trace the most-likely path.

After pointing to the last block in the survivor path mem-
ory, the block counter overflows and the overflow bit is
ignored to ensure automatic wraparound. Thus, we can imag-
ine the survivor path memory to be a circular block of
memory, as shown in Fig. 9. The block counter resets to
location O of the survivor path memory when the limit of the
survivor path memory is reached. If the survivor path length
is L, there should be at least (L + 1) blocks in the survivor path
memory. The survivor path updates can be implemented in
a first-in first-out manner. The oldest block of data is over-
written continuously in the survivor path memory. The block
counter to trace the survivor path, on the other hand, starts
tracing the survivor path from this same block of most re-
cently stored data at the next period, but tracing back in the
opposite direction from the block pointer that stores the
updated survivor path pointers.

The advantage of using this scheme is that one needs to
update only the survivor path pointers of the current recur-
sion, as compared to Method I, where the symbols associated
with the complete survivor paths of all states are to be
updated. Using this implementation method, the survivor
path memory requires (L + 1)N locations and log2(N), bits for

Block pointer to store
the survivor path

Block pointer to store
the survivor path

C 3

traceback
Block pointer to trace
the survivor path

traceback
Block pointer to trace
the survivor path

At recursion, k At recursion, k+1

9. Organization of survivor path memory.
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each location, where n is the total number of states in the
given trellis. Further, L memory-indexing operations are
requiredto trace the survivor path memory and n» memory
accessesare required to update the survivor path pointers for
all states. For a rate 1/n convolutional code, L is about
5(log2(N) [4] or longer, depending on the application..

Viterbi Algorithm Applied to HMMs

In speech and character recognition, hidden Markov models
(HMMs) can be used to model spoken words or written
characters [7-9]. HMMs are similar to the finite state dia-
grams or trellises of convolutional codes discussed pre-
viously. However, the states in an HMM are “hidden”
because each state is associated with a set of discrete symbols,
with an observation probability assigned to each symbol, or
is associated with a set of continuous observation with a
continuous observation probability density. Each transition
in the state diagram of an HMM also has a transition prob-
ability associatedwith it. Figure 10 is an example of an HMM
where the transition probabilities for all transitions are 0.5
and the observation symbols are Head and Tail. For state 1,
the observation probabilities for Head and Tail are 0.75, and
0.25, respectively.

Given an observation sequence representing a word or a
character, the VA can be used to find the most likely state
sequence and the accumulated probability (called the likeli-
hood score) associated with this sequence in a given HMM.
During training, when an HMM is being designed for the
given observation sequence, the probability measures the
likelihood an HMM matches the observation sequence. After
the HMMs representing, for example, a set of words or
characters are defined, the VA can also be used during the
recognition process to determine the HMM within the set of
HMMs that best matches with a given observation sequence.
Thatis, the VA, given an observation sequence, computes the
likelihood score of the most likely state sequence in each
HMM and selects the HMM with the highest likelihood score
to be the HMM (corresponds to a given work or character)
that best matches with this observation sequence.

This section addresses the basics of the VA applied, to find
the state sequence that best matches with the given observa-
tion sequence in a given one-dimensional HMM used in
speech and character recognition. VA applied to two-dimen-
sional HMMs, for example, and off-line (not real-time) char-
acter recognition [12] can readily be generalized once the
basics of the one-dimensional case is mastered.

0.5 0.5

State 1

State 2

State 1: p(Head) =0.75

p(Tail) = 0.256

State 2: p(Head) = 0.25

p(Tail) = 0.75

10. Example, hidden Markov model (HMM).
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Applying the VA to HMMs

Given an observation sequence, the VA finds the most likely
state sequence in a given HMM and the likelihood associated
with this most likely sequence. At the beginning of each
search, each state in a given HMM has some pre-defined
initial likelihood score. To find the most-likely transition and
update the state likelihood score for each state at the next time
instant, or the next stage of the trellis, one must find the most
likely transition coming into a given state. This is done by
adding the transition probabilities of all the transitions com-
ing into this given state to their corresponding previous state
likelihood scores, and selecting the transition with the maxi-
mum sum to be the the most likely transition coming into this
state. This sum is then added to the observation probability
assigned by the given state, to the current observation symbol
in order to form the updated state likelihood score for this
given state. The most likely transitions and the state likeli-
hood scores are updated for all states at each recursion. This
process is performed recursively until all symbols in the given
observation sequence is processed. At the end of the recur-
sion, the path associated with the state that has the highest
likelihood score is selected as the most likely state sequence
for the given observation sequence. That is, if the observation
sequence is = (y1, ¥2,..., Yk), then for state j at recursion n, one
wants to compute

M;,=max[M;, +T,;1+0;,
10 )

where Oj, is the observation probability for y, assigned by
state j at recursion n, Tjj is the transition probability of the
transition from state i to state j, Mj» is the state likelihood
score for state j at recursion #, and {i} is the set of states that
have transitions to state j.

In recognition tasks, one is often only concerned with the
likelihood score of the most likely state sequence rather than
the state sequence itself. (In this case, the forward algorithm
[8] is also often used.) For some applications, such as during
training when the HMM is being defined, one would also be
interested to know the most likely state sequence itself. Thus,
the most likely transition for each state should be registered
at each recursion so that the most likely state sequence can
be traced at the end of the recursion.

A VA Example

Given the HMM in Fig. 10, the observation sequence =
(Head, Tail), and the initial state likelihood scores for state 1
and 2 to be 0.5 and 0 respectively, one can compute the most
likely state sequence in the HMM recursively. At recursion
1, one can first calculate the observation probabilities for state
1 (01,1) = p(Head) = 0.25) and for state 2 (02,1 = p(Head) =
0.25). After that, one can compute the updated state likeli-
hood scores for state 1 and 2. For state 1

My = “E?;X[Ml.o +T11+ 0y,
I

Since
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(M0 +T11=05+05)> (M4 +T5;1=0+0.5)
My =[M+T,]+0,; =175

Similarly, one can compute M2,1= 1.25, M1 2 =2.50, and M2.2
=3.0.

In summary, at each stage in the recursion for each symbol
in the observation sequence, there are two steps:

Step 1: Computation of observation probabilities: Com-
pute the observation probability of the current symbol for
each state by finding the probability assigned to the observa-
tion symbol for that state as defined by the given HMM.

Step 2: Update state likelihood scores: Update the most-
likely path entering each state and update its state likelihood
score. That is, for a given state, compare the sums of the
transition probabilities of all transitions entering this state to
their corresponding previous state likelihood scores, and se-
lect the transition with the maximum accumulated likelihood
score to be the most likely transition. This maximum value is
added to the observation probability computed in step 1 for
this given state in order to form the updated state likelihood
score for this state. If one has to find the most likely state
sequence itself, the most likely transition to this state should
also be registered .

At the end of the recursion, the path that has the highest
likelihood score is selected to be the most likely path or state
sequence. In some applications, only the likelihood score is
of importance. However, for some other applications, the
trace back is also necessary to find the most likely state
sequence.

Real-time Implementation

Real-time implementation of VA applied to HMMs is similar
to that of Viterbi detection discussed previously. The differ-
ences between the trellises of codes/channels used in Viterbi
detection and the HMMs are that the symbols in the trellis of
a code/channel are associated with the transitions, and the
symbols in an HMM are associated with the states.

In Viterbi detection, the received symbols are noisy and
the VA finds the sequence of transition output symbols that
is closest in Euclidean distance to the received sequence of
noisy symbols. In HMMs, each state has a set of symbols
associated with it and each symbol in the set is assigned an
observation probability. The transition probability for each
transition is pre-defined in a given HMM. Given a sequence
of observation symbols, the VA finds the observation prob-
ability assigned to each symbol by each state, and then adds
these probabilities to the corresponding transition prob-
abilities in order to compute the most likely state sequence
and its likelihood score in the given HMM. Thus, Euclidean
distances are used in Viterbi detection, and likelihood scores
are used in HMM . Further, in Viterbi detection, the path with
the minimum accumulated metric, measured in distances, is
computed and in HMM, the path with the maximum metric,
measured in probability, is computed.
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Computing Observation Probabilities
In HMMs,each state in the model is associated with a set of
discrete symbols, with an observation probability assigned to
each symbol, or a set of continuous observations with a
continuous observation probability density. Given a discrete
observation symbol, table-lookups can be used to find the
observation probability for that symbol for each state. For
continuous probability densities, computations are required
to find the observation probabilities. For an HMM with N
states, a total of N table-lookups or computations are required
to compute the observation probabilities for the N states. In
Viterbi detection, the states are not hidden, and there are no
sets of symbols associated with the states. Thus, no compu-
tation is required to compute the observation probabilities.
However, each transition in the trellis of a code/channel
has one or more symbols associated with it. The branch metric
for that transition is the squared Euclidean distance between
the received noisy symbol and the nearest symbol in the set
of possible symbols. On the other hand, HMMs have no
symbols associated with each transition, and the transition
probability for each transition is pre-defined in a given
HMM. Therefore, the VA applied to HMM s requires compu-
tation of observation probabilities for all states, and Viterbi
detection requires computing the branch metrics for all tran-
sitions.

Updating State Likelihood Scores

Similar to Viterbi detection, add-compare-select operations
can be used to add the transition probabilities to their corre-
sponding previous state likelihood scores and select the path
with the maximum accumulated probability to be the most
likely path coming into this state. This accumulated prob-
ability is added to the observation probability of the given
state in order to form its updated state likelihood score.
Contrary to the add-compare-select operations used in Viterbi
detection, where the minimum sum is selected, the transition
with the maximum sum is selected. Thus, we define a new
add-compare-select operation that finds the maximum value:

acsmax(a, b, max), index

to perform the following operations:

if ((a + b) > max {

max = a + by

index — predetermined memory location; }
where index is used as an index to update the transition with
the maximum likelihood score.

In addition to the addmax operations, another add opera-
tion is required to add the accumulated probability to the
observation probability of that state. Thus, VA used for HMM
requires an additional add operation at the end of the search
to update the state likelihood score for the given state. There-
fore, using our definition for acsmazx, if there are m transitions
coming into a given state, (m - 1) acsmax operations and 2
add operations (one to initialize the maximum, and one to add
the accumulated probability to the observation probability)
are required to update the most likely path and the state
likelihood score for each state.
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Tracing of the Most Likely State Sequence

In Viterbi detection, the most likely path is to be computed,
and the trace back can be performed continuously after an
initial delay or latency. For the VA applied to HMMs, the
best state sequence may not be of interest. In many cases, only
the likelihood score associated the most likely state sequence
is required. However, if the most likely state sequence is of
interest, the trace back is performed at the end of the recur-
sion. The trace back of the most likely state sequence can be
implemented using previous state pointers similar to Viterbi
detection. However, a large memory space may be required
to store the survivor paths for all states if the observation
sequence is long. For example, if there are 128 states in an
HMM and 1000 symbols in the observation sequence, 1000
stages in the recursion are required and 128,000 memory
locations are required to store the survivor path pointers for
all states. Fortunately, in many applications, one can explore
the structure of the HMMs and reduce the memory required
to store the survivor paths for all states.

For example, in speech recognition and on-line character
recognition, a special type of model known as left-right
models [7, 9] is often used.The state transitions in these
models are connected either to the state it originated from, or
to the next state (Fig. 11). With this special structure, one can
keep track ofthe survivor path for each state by counting the
number of times the path stayed in the same state, or if the
survivor path comes from the previous state, inheriting the
path counts from that previous state.

An example of the implementation of this scheme is given
in Fig 12. In the figure, the numbers given in the boxes
indicate the number of times the survivor paths stayed in the
same state. For example, at frame 4, the survivor path for state
2 came from state 1. Thus, state 2 inherits the survivor path
count of state 1. At frame 5, the survivor path for state 2 came
from the same state, state 2. Thus, the survivor path count for
state 2 is incremented by 1.

LO.Q.C

11. Example of a special kind of left-right model.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5
State 1m . @ L .
State 2 ¢

] p] BHil Bl
State 3 ¢ . . . .
State 4 ~ - . . .

12. Example, survivor paths storage for the special left-right
model in Fig. 11.
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Summary

We have described the basics of the VA that is widely used
in digital communication systems to detect sequential error-
control codes and signals in channels with memory. Given a
sequence of noisy symbols, the VA computes the most likely
sequence in the given trellis recursively. At each recursion,
there are three major steps in Viterbi detection: generation of
branch metrics, updating the survivor paths and path metrics,
and tracing the most likely path. The general methods of
implementing these steps in real-time were also described,
and the implementation of the VA for decoding convolutional
codes and trellis codes were explained. In general, one may
need addition, multiplication and/or table look-up operations
to generate the branch metrics. Addition and add-compare-
select operations are required to find the survivor paths, and
memory referencing operations are required to trace the most
likely path. Depending on how the survivor path memory is
implemented, one might also need indexing operations to
access the memory.

We have also described the way the VA can be applied to
hidden Markov models used in speech and character recog-
nition. Given an observation sequence representing a word
or a character, the VA can be used to find the most likely state
sequence and the likelihood score of this sequence in a given
HMM. This operation is performed recursively, and at each
recursion, there are two major steps: computing the observa-
tion probabilities, and updating the state likelihood scores for
all states. If one wants to know the most likely state sequence,
in addition to its likelihood score, one also needs to trace this
most likely sequence at the end of the recursion. Real-time
implementation of the VA applied to HMMs, and the differ-
ences between the VA used in digital communication systems
and the VA used for HMMs, were also discussed. In general,
table-lookup operations can be used to compute the observa-
tion probabilities if the observation symbols are discrete.
Addition and add-compare-select operations are used to up-
date the survivor paths and the state likelihood scores for all
states. Memory referencing operations are required to trace
the most likely state sequence.

Hui-Ling Lou is a Member of Technical Staff with the
Signal Processing Research Department at AT&T Bell Labo-
ratories, Murray Hill, NJ.
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