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Abstract

An algorithm has been designed to search for the escape paths with the lowest activation barriers when starting from a local minimum-energy
configuration of a many-atom system. The pathfinder algorithm combines: (1) a steered eigenvector-following method that guides a constrained
escape from the convex region and subsequently climbs to a transition state tangentially to the eigenvector corresponding to the lowest negative
Hessian eigenvalue; (2) discrete abstraction of the atomic configuration to systematically enumerate concerted events as linear combinations of
atomistic events; (3) evolutionary control of the population dynamics of low activation-barrier events; and (4) hybrid task+ spatial decompositions
to implement massive search for complex events on parallel computers. The program exhibits good scalability on parallel computers and has been
used to study concerted bond-breaking events in the fracture of alumina.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Many important material processes occur through a se-
quence of infrequent events [1,2]. An example is slow crack
growth, such as stress corrosion cracking, in which a sequence
of bond-breaking events over years leads to a catastrophic fail-
ure of a structure [3]. Enumeration of events with low activa-
tion barriers and accurate estimation of their barrier energies
are essential for understanding microscopic mechanisms of the
long-time dynamics as well as for predicting the lifetime of the
structure.

Various computational methods have been proposed for car-
rying out an exhaustive search of activated events in many-atom
systems [4,5], including the activation–relaxation technique [6],
the dimer method [7], and a variety of eigenvector-following
methods [8–11] especially those using the Lanczos algorithm
to obtain the lowest eigenvalue of the Hessian matrix and the
corresponding eigenvector [12]. In materials with complex mi-
crostructures, however, the search for activated events remains
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a hard computational problem [13,14], since the events with
the lowest activation barriers often involve unexpected combi-
nations of elementary atomistic events [15]. It is thus of great
importance to design an efficient algorithm with tractable com-
putational complexity to systematically search for such con-
certed events.

Discrete abstraction [16,17] of atomic configurations en-
ables the use of combinatorial techniques to systematically
enumerate concerted events. For example, an atomic config-
uration can be abstracted as a graph G = (Sv, Se), in which
atoms constitute the set of vertices Sv, and the edge set Se con-
sists of chemical bonds [18]. Graph-based topological analysis
(e.g., shortest-path circuit analysis) of million-to-billion node
chemical bond networks has been used successfully to discover
complex atomistic events underlying impact-damage [19] and
hardening [20] mechanisms of materials.

Another computational technique that can significantly ac-
celerate the combinatorial search for concerted events is evolu-
tionary computation [21,22]. In evolutionary algorithms, a pop-
ulation of candidate solutions in the search space is maintained,
and its dynamics is controlled with various techniques (e.g.,
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recombination and mutation) to obtain approximate solutions
while avoiding the combinatorial complexity of the search.

Advanced parallel and distributed computing technolo-
gies are also expected to facilitate massive searches for con-
certed events. Event-search algorithms are often implemented
as loosely-coupled parallel applications, in which multiple
search tasks are executed concurrently on distributed comput-
ers [23–25]. When each search task becomes computationally
demanding, a hybrid task + spatial decomposition approach
[26,27] can be implemented using the communicator construct
in the message passing interface (MPI) language [28], which is
a natural migration path to hybrid Grid remote procedure call
(GridRPC) + MPI programming on a Grid of geographically
distributed parallel computers [29].

This paper presents the design of a search algorithm for
activated events with low barrier energies, starting from a lo-
cal minimum-energy configuration of a many-atom system.
The pathfinder algorithm combines: (1) a steered eigenvector-
following (SEF) method that guides a constrained escape from
the convex region of the minimum and subsequently climbs to
a transition state tangentially to the eigenvector corresponding
to the lowest negative Hessian eigenvalue; (2) discrete abstrac-
tion of the atomic configuration to systematically enumerate
concerted events as linear combinations of atomistic events
(LCAE); (3) elitist control of the population dynamics of low
activation-barrier events; and (4) hybrid task + spatial decom-
positions (HTSD) to implement massive searches on parallel
computers. The program exhibits good scalability on parallel
computers and has been used to study concerted bond-breaking
events in the fracture of aluminum oxide.

This paper is organized as follows. The next section de-
scribes the pathfinder algorithm for systematic event search,
and its parallelization is discussed in Section 3. Numerical re-
sults are presented in Section 4, and Section 5 contains sum-
mary.

2. Pathfinder algorithm

Consider a system of N atoms with its state specified by a
3N -dimensional vector R = [r1x, r1y, r1z, . . . , rNx, rNy, rNz]T ∈
R

3N , where ri = [rix, riy, riz]T ∈ R
3 is the position of the ith

atom (R is a set of real numbers, and the superscript T denotes
a transpose). The forces F on the atoms are computed from the
potential energy function V (R) as

(1)F =
⎡
⎣ f1

...

fN

⎤
⎦ =

⎡
⎣ −∂V/∂r1

...

−∂V/∂rN

⎤
⎦ = −∂V

∂R
.

Let Rinit be an initial state, which is a local energy-minimum
such that F(Rinit) = 0 and such that all the eigenvalues of the
Hessian matrix,

(2)H = ∂2V/∂R2 ∈ R
3N×3N,

are positive at Rinit. (For systems with periodic boundary
conditions, we filter out the zero-eigenvalue translational mo-
tions [30].)
The problem is to find a set of activated events with the low-
est barrier energies, starting from Rinit. Within the framework of
the transition state theory [2,31], we define an event as a triplet
of states, e = (Rinit,Rtst,Rfin), that are interconnected by a con-
tinuous escape path R(τ ) (R → R

3N ; τ is a real-valued parame-
ter such that Rinit = R(τinit),Rtst = R(τtst), and Rfin = R(τfin)

with τinit < τtst < τfin). The ascent path R(τinit � τ � τtst) con-
nects Rinit to a transition state, taken here to be a saddle point
Rtst, at which F(Rtst) = 0, and at which only the lowest eigen-
value λ1 of the Hessian matrix is negative. The final state Rfin is
another local energy-minimum that is reached along a steepest-
descent path R(τtst � τ � τfin), staring from R = Rtst pushed
slightly away from Rinit. The barrier energy of event e is de-
fined as b(e) = V (Rtst) − V (Rinit).

The pathfinder algorithm generates a set of events with low
barrier energies in such a way that concerted events are sys-
tematically constructed from elementary events. Each event,
in turn, is generated from an event seed based on a steered
eigenvector-following algorithm. Section 2.1 first defines the
event seed and then describes the generation of a single event by
the steered eigenvector-following algorithm. Systematic con-
struction of concerted events through the control of event-
population dynamics in the pathfinder algorithm is described
in Section 2.2.

2.1. Steered eigenvector-following (SEF) event generator

In order to initiate an ascent path R(τinit � τ � τtst) from the
initial state, R(τinit) = Rinit, to a transition state, R(τtst) = Rtst,
we first define an event seed σ as a parameterized sequence
of (3N − 1)-dimensional surfaces S(τ), in which the atoms’
moves are constrained. A specific example for the slow crack-
growth problem is a bond-length constraint imposed on a given
atomic pair (i, j),

(3)σ = {
S(τ)

} = {‖rij‖ = rij (τ ) = r0
ij + ṙij (τ − τinit)

}
,

where rij = ri − rj , r0
ij is their bond length in the initial state,

and ṙij is the bond-stretching rate along the path.
The steered eigenvector-following event generator algo-

rithm consists of three algorithmic phases (see Table 1):
(1) steered centrifugal escape from the convex region (in which
the Hessian matrix is positive definite) of the initial energy-
minimum; (2) eigenvector-following climb to a transition state;
and (3) steepest descent to reach a final energy-minimum [32].

The steered centrifugal escape phase starts from the initial
state Rinit, and performs a sequence of steepest-descent steps,

(4)R ← R + δτ 2

2〈m〉F,

where δτ (∼1 fs) is a time-discretization unit, and 〈m〉 is the
average mass of the atoms. (Various energy-minimization meth-
ods can be used in this step, such as variable-step steepest-
descent [12], conjugate-gradient [11] and quasi-Newton [4]
methods.) Each steepest-descent step is followed by the pro-
jection of state R onto the constrained surface,

(5)R ← P
(
S(τ)

)
R,
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Table 1
Steered eigenvector-following event generation algorithm

Algorithm event_generator
Input:

Rinit ∈ R
3N : an initial local minimum-energy state

σ = {S(τ)}: an event seed, i.e. a parameterized sequence of (3N − 1)-dimensional constraint surfaces
Output:

e = (Rinit,Rtst,Rfin): an event, i.e. a triplet of initial, transition, and final states

Steps:
1. Steered centrifugal escape

τ ← 0
R ← Rinit

do
τ ← τ + δτ

R ← R + (δτ2/2〈m〉)F // steepest-descent step
R ← P(S(τ))R // projection onto the constraint surface

while λ1 � −�λ1

2. Eigenvector-following climb
do

R ← R − δτ2

2〈m〉 (V1V1T
)F + δτ2

2〈m〉 (I − V1V1T
)F // eigenvector-following step

while maxiα{|fiα | | i = 1, . . . ,N;α = x, y, z} > �f

Rtst ← R

3. Steepest descent
R ← Rtst + δos(Rtst − Rinit) // push the state over the transition state away from the initial state
do

R ← R + (δτ2/2〈m〉)F // steepest-descent step

while maxiα{|fiα | | i = 1, . . . ,N;α = x, y, z} > �f

Rfin ← R
corresponding to the current time τ , where P(S(τ)) is the pro-
jection operator [33]. For the bond-length constraint in Eq. (3),
the projection operator is expressed as [34]

P
(
S(τ)

)
rk

(6)= rk + δki − δkj

2

(
rij (τ )

‖rij‖ − 1

)
rij (k = 1, . . . ,N),

where δki = 1 (if k = i) and 0 (else).
After each constrained steepest-descent step, the minimum

eigenvalue λ1 of the Hessian matrix is computed iteratively
using the Lanczos algorithm [4,12] in Appendix A. We use a
finite-difference method to evaluate the product of the Hessian
matrix H and a vector Q ∈ R

3N ,

(7)H(R)Q = cfd
[−F(R + Q/cfd) + F(R)

]
,

so that only the forces but not the Hessian matrix need to be
computed. We use various divide-and-conquer algorithms to
compute the forces in Eq. (7) in O(N) time. For example, a
space–time multiresolution molecular dynamics (MRMD) al-
gorithm [35] and a fast reactive force-field (F-ReaxFF) algo-
rithm [36] are used in cases of classical interatomic poten-
tials and semi-classical reactive force fields, respectively. To
compute the forces quantum-mechanically from the Hellmann–
Feynman theorem, we use an embedded divide-and-conquer
density-functional-theory (EDC-DFT) algorithm [37]. Conse-
quently, the computational complexity of the pathfinder algo-
rithm is O(N). In Eq. (7), cfd = maxiα{|qiα| | i = 1, . . . ,N;α =
x, y, z}/δfd and δfd (∼10−2 Å) is a discretization unit for fi-
nite differencing. It typically requires 4–8 force evaluations for
λ1 to converge within a convergence criterion �eigen (∼10−3).
The steered centrifugal escape steps are terminated when λ1
becomes negative. For systems with a large number of small
Hessian eigenvalues (due to floppy oscillations of dangling
bonds) such as amorphous solids, we alternatively introduce a

control parameter, −�λ1 (∼−10 eV/Å
2
), to terminate the es-

cape steps when λ1 < −�λ1.
Once the minimum Hessian eigenvalue becomes suffi-

ciently negative, the eigenvector-following climb phase per-
forms steepest ascent parallel to the Hessian eigenvector,

(8)V1 =
⎡
⎢⎣

v1
1
...

v1
N

⎤
⎥⎦ ∈ R

3N,

corresponding to λ1 and steepest descent perpendicular to it
[4,11,12]:

(9)R ← R − δτ 2

2〈m〉 (V
1V1T

)F + δτ 2

2〈m〉 (I − V1V1T
)F,

where I is the 3N by 3N identity matrix, and V(1) is normalized
as

(10)‖V1‖ =
(

N∑
i=1

∥∥v1
i

∥∥2

)1/2

= 1.

At a transition state, the forces are zero, whereas the energy
takes a minimum value for all directions except for V1, along
which the energy is instead maximum. Thus the eigenvector-
following climb, through steepest ascent parallel to V1 and
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Table 2
Pathfinder algorithm to search for concerted events with low activation barriers

Algorithm pathfinder
Input:

Rinit ∈ R
3N : an initial local minimum-energy state

{σ(k) | k = 1, . . . ,Nseed}: a set of Nseed elementary event seeds
Output:

{e(k) | k = 1, . . . ,Nelite}: a set of Nelite events with the lowest activation barriers

Steps:
1. Elementary (singly-excited) event generation

for k = 1 to Nseed
call event_generator: e(k) ← G(σ(k))

Nevent ← Nseed

2. Multiply-excited event generation
for excitation = 2 to Max_excitation

Ncombination ← 0
for ∀(σ (k), σ (l))(k, l ∈ [1,Nevent];k < l)

σ ← σ(k) ∪ σ(l) // composite event seed as a union
if m(σ) = excitation

Ncombination ← Ncombination + 1
σ(Nevent + Ncombination) ← σ

bestimate(σ (Nevent + Ncombination)) ← b(e(k)) + b(e(l)) // estimated barrier energy
sort σ(Nevent + 1 : Nevent + Ncombination) in ascending order of bestimate
for k = Nevent +1 to Nevent +min(Ncombination,Nadd_event) // generate only Nadd_event new events

call event_generator: e(k) ← G(σ(k))

b(e(k)) ← V (Rtst) − V (Rinit) // actual barrier energy
Nevent ← Nevent + min(Ncombination,Nadd_event)

sort e(1 : Nevent) in ascending order of b

Nevent ← min(Nevent,Nelite) // retain only Nelite new events
steepest descent perpendicular to it, converges to a transition
state. The eigenvector-following climb steps are terminated,
when the maximum force component of every atom falls below
a prescribed threshold value: maxiα{|fiα| | i = 1, . . . ,N;α =
x, y, z} < �f (∼ 0.1 eV/Å).

Once the eigenvector-following climb converges to a transi-
tion state Rtst, the state is pushed slightly away from Rinit [6],

(11)R ← Rtst + δos(Rtst − Rinit),

where the dimensionless overshoot parameter δos (∼0.1) is an
input parameter to the algorithm. The algorithm then performs
steepest-descent steps, Eq. (4), until the maximum force com-
ponent becomes less than �f , signifying the convergence to a
final local energy-minimum Rfin.

2.2. Concerted event generation by discrete linear
combination of atomistic events (LCAE)

The event generator in Section 2.1 defines a mapping, e ←
G(σ), from seed σ to event e. To systematically search for
events with low barrier energies, we introduce a discrete in-
dexing scheme, which allows the use of combinatorial search
techniques. For a specific example of the bond-length constraint
in Eq. (3), we first define a composite seed σ as a set of dis-
tinct atomic pairs, l(σ ) = {p1, . . . , pm(σ)}, along with the bond-
length constraints, Eq. (3), on the pairs. Here, the excitation
level m(σ) of seed σ is defined as the number of atomic pairs,
pi (i = 1, . . . ,m(σ )), which constitute the seed. An event seed
σ is thus indexed uniquely by a set l of distinct atomic pairs. For
example, {(15,783), (47,875), (175,811)} is a seed of excita-
tion level 3 consisting of atomic pairs (15,783), (47,875) and
(175,811), where the atoms are indexed by positive integers.
Similarly, an event e = G(σ) is indexed according to its seed
σ , from which it is generated. A population of events is stored
as an array of the event data type that consists of the atomic-pair
list of its seed, the triplet of its initial-, transition-, and final-state
energies, and other attributes such as the estimated and actual
barrier energies. In addition, the atomic configurations of the
transition and final states are stored in files.

The pathfinder algorithm in Table 2 generates progressively
more complex composite events, starting from a set of ele-
mentary event seeds, {σ(k) | k = 1, . . . ,Nseed}, which is an
input to the algorithm. An example of elementary event seeds
for the slow crack-growth problem is a set of bond-stretching
event seeds for all pairs of atoms that are within a cut-off
radius from a crack tip. The algorithm first generates Nseed

elementary events from the elementary seeds by calling al-
gorithm event_generator in Table 1: e(k) ← G(σ(k)) (k = 1,

. . . ,Nseed).
In order to construct concerted events from these elemen-

tary events, we construct composite event seeds as unions of
simpler seeds. Here, a union, σ = σ(k) ∪ σ(l), of a seed-
pair (σ (k), σ (l)) is defined as the union of their corresponding
atomic-pair sets, l(σ (k)) ∪ l(σ (l)), along with the bond-length
constraints, Eq. (3), on all constituent atomic pairs. The corre-
sponding composite event is generated as

(12)e = G(σ) = G
(
σ(k) ∪ σ(l)

)
.
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The pathfinder algorithm maintains a population of events,
S = {e(1), . . . , e(Nevent)}, where Nevent = |S| is the number of
events in the population. At the beginning of the algorithm,
Nevent = Nseed and all events are singly excited, i.e. m(σ(k)) =
1 (k = 1, . . . ,Nevent). The algorithm then loops over excitation
levels from 2 to Max_excitation, where the control parameter
Max_excitation specifies the maximum excitation level consid-
ered by the algorithm. At each excitation level, all pairs of the
events (or their seeds) in S are considered as candidates for
creating new composite events by the union operation. A com-
posite event (or its seed σ ) is counted as a new event, only if its
number of pairs m(σ) is equal to the excitation level under con-
sideration and its atomic-pair set l(σ ) is distinct from those of
all the events in S.

In order to prune the combinatorial search space, we first
define the estimated barrier energy of a composite event seed,
σ = σ(k)∪σ(l), as bestimate(σ ) = b(e(k))+ b(e(l)). After enu-
merating all new composite events (let the number of which
be Ncombination), we sort them in ascending order of bestimate.
To avoid combinatorial explosion of the number of events to
be considered, we retain only the Nadd_event lowest (estimated)
barrier-energy events out of Ncombination, where Nadd_event is
one of the control parameters of the algorithm. The pathfinder
algorithm calls Algorithm event_generator in Table 1 to gen-
erate events for the Nadd_event new seeds and to estimate their
actual barrier energies. We then increment the number of event
Nevent by Nadd_event and sort all the events in ascending order of
the actual barrier energy b. We retain only the Nelite lowest (ac-
tual) barrier-energy events for the next excitation level, where
Nelite is another control parameter.

3. Parallelization by hybrid task + spatial decompositions
(HTSD)

The pathfinder algorithm has been implemented on paral-
lel computers by first assigning different events to separate
processors (task decomposition) and then using spatial decom-
position within each task for further parallelization. The par-
allel program is written in Fortran 90 and message passing
interface (MPI) [28] languages, in which all processors con-
stitute an overall MPI communicator, MPI_COMM_WORLD,
and processors are grouped into different event groups by defin-
ing multiple MPI communicators as subsets of MPI_COMM_
WORLD. (The MPI communicator construct combines a pro-
cessor group and a context, in such a way that messages
with different contexts are not intermixed.) In our program,
each event calculation is assigned a dedicated communicator.
One advantage of the hybrid task + spatial decomposition ap-
proach [26,27] implemented with MPI communicators is that
the program can be easily converted to a hybrid Grid remote
procedure call (GridRPC) + MPI program to be run on a
Grid of distributed parallel computers, in which the number of
processors change dynamically on demand and resources are
allocated and tasks are migrated adaptively in response to un-
expected faults [29].

The total number of processors is given by P = Mc × Pc,
where Mc is the number of communicators and Pc is the num-
ber of processors in each communicator. The number of events
to be generated at each algorithmic step is typically larger than
the number of communicators Mc, and thus communicator c ∈
[0,Mc −1] is assigned a set of events {k | (k −1) mod Mc = c}.
In spatial decomposition within each task [35], the total volume
of the system is divided into Pc subsystems of equal volume,
and each subsystem is assigned to a processor in an array of
Pc processors. To calculate the force on an atom in a subsys-
tem, the coordinates of the atoms in the boundaries of neigh-
bor subsystems are “cached” from the corresponding proces-
sors. After updating the atomic positions due to a steepest-
descent/ascent procedure, some atoms may have moved out of
its subsystem. These atoms are “migrated” to the proper neigh-
bor processors. With the spatial decomposition, the computa-
tion scales as N/Pc, while communication scales in proportion
to (N/Pc)

2/3. Tree-based algorithms such as the fast multipole
method (FMM) [38] incur an O(logPc) overhead, which is neg-
ligible for coarse-grained (N/Pc � Pc) applications [39].

4. Numerical results

Scalability of the parallel pathfinder algorithm has been
tested on a cluster of dual-core, dual-processor AMD Opteron
(at clock speed 2 GHz) nodes with Myrinet interconnect, with
4 GB of memory per 4-core node. We define the speed of a
program as a product of the total number of atoms and search
steps executed per second. The speedup is the ratio between the
speed of P processors and that of one processor. The parallel
efficiency is the speedup divided by P .

First, we have performed a strong-scaling (or fixed problem-
size) test to measure the efficiency of task decomposition par-
allelism. Here, the system is a cracked Al2O3 crystal consist-
ing of 1920 atoms, and multiple communicators (Mc = 32,

. . . ,512) of size Pc = 1 explore a large search space. We choose
Max_excitation = 2 and Nadd_event = Nelite = 512. The test
uses all four cores per node. Fig. 1 shows the speedup of the par-
allel pathfinder program over that on 32 processors (we normal-
ize the speedup on 32 processors as 32). The measured speedup

Fig. 1. Strong-scaling (fixed problem-size) speedup of the parallel pathfinder
algorithm over 32 processors (normalized so that the speedup is 32 for P = 32)
as a function of the number of processors P for a 1920-atom cracked Al2O3
system on dual-core, dual-processor AMD Opteron nodes. The circles are mea-
sured speedups, whereas the solid line denotes the perfect speedup.
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on 512 processors is 463.0, and thus the parallel efficiency is
0.904. Although multiple events are generated independently
on multiple processors, the parallel algorithm involves sequen-
tial bottlenecks such as the sorting of events, and accordingly
the parallel efficiency degrades for a larger number of proces-
sors.

Next, we have performed a weak-scaling (or isogranular)
test to measure the efficiency of spatial decomposition paral-
lelism. In addition to exploring a large number of events for
a relatively small number of atoms, the pathfinder program
often uses a single communicator to evaluate the barrier en-
ergies of a few well-defined events for a larger system. This is
the case in multimillion-atom simulations of fracture [40], im-
pact [19], and indentation [20] of materials on a large number
of processors Pc. In the weak-scaling test, the number of atoms
is scaled linearly with the number of processors. Specifically,
we choose N = 14 400Pc, whereas the number of communi-
cators is fixed as Mc = 1. Here, we choose Max_excitation = 1
and Nadd_event = Nelite = 1. Fig. 2 shows the total execution and
communication times of the parallel pathfinder program on the

Fig. 2. Weak-scaling (isogranular) test of the parallel pathfinder algorithm on
dual-core, dual-processor AMD Opteron nodes. The total execution (circles)
and communication (squares) times are plotted as a function of the number of
processors P for 14 400P -atom Al2O3 systems.
Opteron cluster for the number of processors P = 1, . . . ,512.
(The largest number of atoms is 7 372 800 for P = 512.) All
four cores per dual-processor, dual-core node are used for the
test, except for P = 1, where only one core is used. The ex-
ecution time increases slightly for large P , and the parallel
efficiency is 0.764 on 512 processors.

The isogranular parallel efficiency is typically used for
very large simulations that are performed for a small num-
ber of steps. The large granularity, N/P , in such applications
makes the parallel efficiency nearly perfect (∼1). For exam-
ple, we have recently performed benchmark tests including
134 billion-atom space–time multiresolution molecular dynam-
ics (MD) [35], 1.06 billion-atom reactive force-field MD [36],
and 11.8 million-atom (1.04 trillion grid points) quantum-
mechanical MD in the framework of the divide-and-conquer
density functional theory on adaptive multigrids [37], with the
parallel efficiency as high as 0.998 on 65 536 dual-processor
BlueGene/L processors [41]. We expect the isogranular parallel
efficiency of the parallel pathfinder algorithm to become simi-
larly high for such large-scale applications.

To illustrate the use of pathfinder, we simulate a 1920-atom
α-crystalline Al2O3 with a crack propagating in the 〈21̄1̄0〉 di-
rection in the {011̄0} plane (Fig. 3). The initial state is prepared
by first imposing displacements to the atoms according to a
linear elastic crack solution corresponding to the stress inten-
sity factor of 1.25 MPa

√
m [3], and then relaxing the atomic

configuration to the local energy-minimum, while fixing the po-
sitions of the two outer atomic layers in the 〈21̄1̄0〉 and 〈011̄0〉
directions. The periodic boundary condition is applied in the
〈0001〉 direction. The simulation uses an interatomic poten-
tial consisting of two- and three-body terms, which is similar
to those used in previous simulations [19,20,40]. The set of
elementary event seeds consists of 43 bonds that are within
2.5 Å from the crack tip. We choose Max_excitation = 4 and
Nadd_event = Nelite = 128.

Fig. 3 shows the resulting events with 60 lowest barrier en-
ergies, which are a mixture of singly- to quadruply-excited
events. Such multiplicity of low activation-barrier events is
common in crack growth, which often involves complex events
Fig. 3. (Left) The initial state of the 1920-atom cracked Al2O3 system, where yellow and red spheres are Al and O atoms, respectively. The positions of the Al
(green) and O (grey) atoms at the outer layers are fixed according to a linear-elastic crack solution. (Right) Events with the lowest barrier energies and their excitation
levels.
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Algorithm Lanczos
Input:

R ∈ R
3N : a state

logical initialize: TRUE for the first call in each event generation; FALSE otherwise

Output:
λ1: the minimum eigenvalue of the Hessian matrix, H(R) = ∂2V/∂R2

V1 ∈ R
3N : the Hessian eigenvector corresponding to λ1

Steps:
if initialize

randomize � ∈ R
3N , such that it contains no translational motion

s ← 0
βs ← ‖�‖
Qs (∈ R

3N) ← 0
do

s ← s + 1
Qs ← �/βs−1

cfd ← maxiα{|qs
iα

| | i = 1, . . . ,N;α = x, y, z}/δfd

� ← cfd[−F(R + Qs/cfd) + F(R)] − βs−1Qs−1

αs ← QsT�

� ← � − αsQs

βs ← ‖�‖

diagonalize Ts =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1
β1 α2 β2

. . .
. . .

. . .

βs−2 αs−1 βs−1

βs−1 αs

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, so that Q̃T
s TsQ̃s = diag(λ̃s

1, . . . , λ̃s
s )

*

while |(λ̃s
1 − λ̃s−1

1 )/λ̃s−1
1 | > �eigen

λ1 ← λ̃s
1

V1 ← ∑s
k=1 Qk q̃1

k

V1 ← V1/‖V1‖
* diag(λ̃s

1, . . . , λ̃s
s ) is an s by s diagonal matrix, with its diagonal elements given by λ̃s

1, . . . , λ̃s
s . Q̃s =

[q̃1, . . . , q̃s ] is an s by s orthogonal matrix, with q̃m ∈ R
s is the mth eigenvector of Ts .
other than individual bond breakings at the crack tip. An ex-
ample is nanovoid nucleation ahead of the crack tip in glasses,
which results from collective atomic motions and long-range
stress relaxation [40].

5. Summary

We have designed a search algorithm for escape paths with
low activation barriers starting from a local energy minimum
configuration of a many-atom system. The pathfinder algo-
rithm combines: (1) a steered eigenvector-following method to
generate an escape path tangentially to the eigenvector corre-
sponding to the lowest negative Hessian eigenvalue; (2) sys-
tematic combinatorial generation of concerted events as linear
combinations of atomistic events; (3) control of population dy-
namics of low activation-barrier events; and (4) hybrid task +
spatial decompositions to implement the algorithm on parallel
computers. We have observed reasonable constant problem-
size and isogranular parallel efficiencies. The program has been
used to study concerted bond-breaking events in the fracture of
alumina crystal. The pathfinder algorithm could be combined
with other event-population control schemes such as genetic
algorithms [21], which could then be used in kinetic Monte
Carlo simulations [42,43] that feature on-demand construction
of event lists during runtime to explore atomistic mechanisms
underlying long-time behavior of materials [44].
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Appendix A. Lanczos algorithm to obtain the minimal
Hessian eigenpair

The Lanczos algorithm is used to compute the minimum
eigenvalue λ1 and the corresponding eigenvector V1 of the
Hessian matrix, to be used in the steered eigenvector-following
event generator algorithm in Table 1.
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Abstract

A scalable parallel algorithm has been designed to study long-time dynamics of many-atom systems based on the nudged elastic band method,
which performs mutually constrained molecular dynamics simulations for a sequence of atomic configurations (or states) to obtain a minimum
energy path between initial and final local minimum-energy states. A directionally heated nudged elastic band method is introduced to search
for thermally activated events without the knowledge of final states, which is then applied to an ensemble of bands in a path ensemble method
for long-time simulation in the framework of the transition state theory. The resulting molecular kinetics (MK) simulation method is parallelized
with a space–time-ensemble parallel nudged elastic band (STEP-NEB) algorithm, which employs spatial decomposition within each state, while
temporal parallelism across the states within each band and band-ensemble parallelism are implemented using a hierarchy of communicator
constructs in the Message Passing Interface library. The STEP-NEB algorithm exhibits good scalability with respect to spatial, temporal and
ensemble decompositions on massively parallel computers. The MK simulation method is used to study low strain-rate deformation of amorphous
silica.
 2007 Elsevier B.V. All rights reserved.

PACS: 02.70.-c; 02.70.Ns; 82.20.Db

Keywords: Nudged elastic band method; Transition state theory; Molecular kinetics simulation; Parallel computing

1. Introduction

Atomistic mechanisms of material processes often involve a
sequence of thermally activated events that occur in complex
microstructures. For example, various atomistic events, such
as bond switching and double-defect recombination, have been
postulated to account for plastic flow in amorphous silica [1,
2], but they are yet to be characterized quantitatively. Atom-
istic simulation of slow material processes (e.g., low strain-rate
deformation) is challenging because of the existence of unex-
pected events such as the creation of nanometer-scale voids
ahead of the crack tip during fracture of amorphous silica [3,
4]. The major computational challenge here is to couple vast
spatiotemporal scales for enumerating a sequence of complex
atomistic events and accurately evaluating their activation en-

E-mail address: anakano@usc.edu.

ergies, thereby reliably calculating the rate of the material
processes.

To address this challenge, a number of methods have been
proposed for long-time dynamics simulations [5]. Among these
methods, those based on path integrals [6–8] are computation-
ally advantageous for the study of complex material processes,
since they offer excellent scalability on parallel computers.
These simulation methods use a sequence of atomic configura-
tions (or states) that interpolate initial and final local minimum-
energy states to find transition states [9] and estimate the ac-
tivation energies of the associated events. The scalability of
the path-based simulation methods arises from the temporal
concurrency along a path [10], in addition to the spatial decom-
position parallelism within each state that constitutes the path
[11]. One of the widely used path-based simulation methods is
the nudged elastic band (NEB) method [12,13], which is em-
ployed in this paper.

0010-4655/$ – see front matter  2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2007.09.011
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For complex material processes, however, final states of
events are often unknown, and thus exhaustive search for
events is needed [14–16]. In this paper, a slight modification
of the NEB method—directionally heated nudged elastic band
(DHNEB) method—is used to search for events without the
knowledge of final states, where mutually constrained mole-
cular dynamics (MD) simulations with separate temperature
controls are performed for a sequence of states in a band. Such
unsupervised search for events can be incorporated into kinetic
Monte Carlo simulation [17–20] to study long-time processes,
where a requisite event list is generated on the fly [21]. We
use a path ensemble method (PEM) to enumerate events by
concurrently applying the DHNEB method to an ensemble of
bands. The resulting molecular kinetics (MK) simulation pro-
vides an additional parallelization axis [22,23], i.e. ensemble
parallelism, to the spatiotemporal parallelism of path-based
simulation. In this paper, we design a space–time-ensemble
nudged elastic band (STEP-NEB) algorithm to implement MK
simulation on massively parallel computers.

This paper is organized as follows. The next section de-
scribes the DHNEB and MK simulation methods, and their
scalable parallelization based on the STEP-NEB algorithm is
explained in Section 3. Numerical results are presented in Sec-
tion 4, and Section 5 contains summary.

2. Simulation method

Consider a set of N atoms and its state represented by a 3N -
dimensional vector R ∈ R3N (R is a set of real numbers), which
contains the 3-dimensional positions of the N atoms. Long-time
behavior of the system is often studied in the framework of the
transition state theory [9], which describes the time evolution of
the state in terms of a sequence of thermally activated events.
Each event is defined as a triplet of states (Rinit,Rtst,Rfin) inter-
connected by a minimum energy path (MEP) R(λ) (R → R3N ;
λ is a real-valued parameter such that Rinit = R(λinit), Rtst =
R(λtst), and Rfin = R(λfin) with λinit < λtst < λfin). The poten-
tial energy function V (R), which describes how atoms interact
with each other, is required to be stationary, ∂V/∂R = 0, at all
three states. In addition, the initial (Rinit) and final (Rfin) states
are local energy minima such that all eigenvalues of the Hessian
matrix, H = ∂2V/∂R2 ∈ R3N×3N , are positive, whereas the
transition state (Rtst) is a saddle point, at which only the lowest
Hessian eigenvalue is negative.

Section 2.1 summarizes the nudged elastic band (NEB)
method to approximately obtain a MEP given initial and fi-
nal states, and Section 2.2 introduces its extension, directionally
heated nudged elastic band (DHNEB) method, which searches
for an event starting only from an initial state. Section 2.3 de-
scribes a path ensemble method (PEM) that applies the DHNEB
method to an ensemble of bands to implement molecular kinet-
ics (MK) simulation of long-time processes.

2.1. Nudged elastic band method

Let a nudged elastic band (NEB) be a sequence of S states,
β = (R0, . . . ,RS−1), where the two ends of the band are the

Fig. 1. Schematic of a nudged elastic band. (a) A NEB consists of a sequence
of S states (yellow parallelograms), Rs (s = 0, . . . , S − 1), where each state
consists of N atoms (red spheres), i = 1, . . . ,N . Corresponding atoms in con-
secutive states interact via harmonic forces represented by blue wavy lines.
(b) Abstraction of a NEB consisting of S states (cyan circles) connected by har-
monic forces (magenta lines). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

initial (R0 = Rinit) and final (RS−1 = Rfin) states of an event,
respectively (see Fig. 1) [12,13]. The band is a discrete approx-
imation to a path R(λ).

The NEB method obtains a MEP iteratively by integrating
mutually constrained ordinary differential equations to follow
the dynamics of the states:

(1)M
d2

dt2 Rs = Fs − Mγs
d

dt
Rs (s = 0, . . . , S − 1),

where M = diag(m1,m1,m1, . . . ,mN,mN,mN) ∈ R3N×3N is
a diagonal mass matrix (mi is the mass of the ith atom) and
γs (∼10−2 fs−1) is the friction coefficient in the sth state. The
force Fs acting on the sth state is derived from the interatomic
potential energy V (R) as

(2)Fs =






− ∂V
∂Rs

|⊥ + Fspr
s |‖

= (I − τ̂s τ̂
T
s )(− ∂V

∂Rs
) (1 ! s ! S − 2)

+ kspr(‖τ+
s ‖ − ‖τ−

s ‖)τ̂s

− ∂V
∂Rs

(s = 0, S − 1),

where I ∈ R3N×3N is the identity matrix, τ̂s = τs/‖τs‖ ∈ R3N

is a normalized tangential vector along the band (‖τs‖ is the
norm of vector τs ), and the superscript T denotes a transpose.
The tangential vector τs is defined as follows. Let

(3)τ+
s = Rs+1 − Rs; τ−

s = Rs − Rs−1

be vectors that connect consecutive images. Then, the tangential
vector τs is defined as

(4)τs =






if V (Rs+1) > V (Rs) > V (Rs−1),

τ+
s ,

else if V (Rs+1) < V (Rs) < V (Rs−1),

τ−
s ,

else if V (Rs+1) > V (Rs),

τ+
s &V max

s + τ−
s &V min

s ,

else τ+
s &V min

s + τ−
s &V max

s ,

where

&V
fn
s = fn

(∣∣V (Rs+1) − V (Rs)
∣∣,

∣∣V (Rs−1) − V (Rs)
∣∣)

(5)( fn = max,min)
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and the max and min functions return the greater and smaller
of the arguments, respectively. In Eq. (2), kspr is a harmonic
spring force constant that mutually constrains the motion of
consecutive states. The tangential spring forces Fspr

s |‖ thus drive
the states Rs equidistant from each other along the path R(λ),
whereas the perpendicular force −∂V/∂Rs |⊥ drives each sys-
tem toward an energy minimum perpendicular to the path. It
has been shown that a band with zero forces, Fs = 0 (s =
0, . . . , S − 1), is a discretized approximation to a MEP [12,13].
It should be noted that a number of different definitions have
been used for the tangential vectors in the NEB method [24]. In
this paper, we adopt the definition given in Ref. [13].

To numerically integrate the second-order ordinary differen-
tial equations, Eq. (1), each state Rs is augmented with cor-
responding velocities Us = dRs/dt ∈ R3N , and accordingly a
band is extended to β = ((R0,U0), . . . , (RS−1,US−1)). Inte-
gration of Eq. (1) brings the band to a zero-force configura-
tion (hence a MEP) by gradually decelerating the velocities
through the frictional forces −Mγs dRs/dt . For each extended
state (Rs ,Us), Eq. (1) is equivalent to molecular dynamics
(MD) simulation [25], except that the interstate forces Fspr

s |‖
are added and the physical intrastate forces −∂V/∂Rs are pro-
jected orthogonal to the path in Eq. (2) for the intermediate
(s = 1, . . . , S − 2) states. This makes it rather trivial to convert
an existing MD program to a NEB program. It is also notewor-
thy that the dynamics of the initial (s = 0) and final (s = S − 1)
ends of the band are not constrained by those of the interme-
diate states, and thus Eq. (1) brings the initial and final states
to physical local minimum-energy configurations even when
starting from approximate minima. This is in contrast to the
conventional NEB algorithm that does not relax the initial and
final ends of the band, which are assumed to be local minimum-
energy states.

2.2. Directionally heated nudged elastic band (DHNEB)
method

In the standard NEB method described in Section 2.1, the
frictional forces −Mγs dRs/dt in Eq. (1) are used to quench
the band to a zero-force configuration, thereby attaining a MEP,
given both initial and final states. Our directionally heated
nudged elastic band (DHNEB) method instead generates an
event (Rinit,Rtst,Rfin) starting only from an initial state Rinit
(i.e. without the knowledge of a final state Rfin). To do so, the
DHNEB method adds a separate heat bath [26] to the MD sim-
ulation of each state in the band, so that it is maintained at a
desired temperature. For state s, Eq. (1) is thus integrated ei-
ther: (a) with a heat bath at temperature Ts and zero friction
(γs = 0) for thermalization; or (b) without heat bath but with
finite friction (γs (= 0) for quenching.

Given a local minimum-energy state Rinit, the DHNEB
method starts with an initial band, in which all states Rs (s =
0, . . . , S − 1) are located near Rinit. This is achieved by a ther-
malization phase that duplicates Rinit in all S states Rs , initial-
izes atom velocities Us randomly according to the Maxwell–
Boltzmann distribution at a common temperature Ts = T , and
then integrates Eq. (1) for time ttherm ∼ 0.1 ps, with the force

Fig. 2. Algorithmic steps of the directionally heated nudged elastic band
method, which consist of thermalization, directional heating, and quench of a
band. Black solid curves represent the potential energy surface V (R), whereas
circles (with color-coded temperature) are the states interconnected by har-
monic forces (gray lines) to form the band. The letters i and f mark the initial
and final ends of the band. The figure illustrates two consecutive calls to the
DHNEB algorithm, where the final state of the first call is used as the initial
state in the second call. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

replaced by the physical force Fs = −∂V/∂Rs . Here, no fric-
tional force is applied (i.e. γs = 0), and the temperature of each
state is kept at T using a heat bath (see Fig. 2). Note that this
is equivalent to performing MD simulations independently for
the S states.

In the next directional heating phase of the DHNEB method,
the final end (s = S − 1) of the band is heated to TS−1 =
Theat (Theat ) T ) using a heat bath, while the initial and in-
termediate (s = 0, . . . , S − 2) states are quenched through the
frictional forces using a common friction coefficient γs = γ

in Eq. (1) without temperature control. The directional heat-
ing allows the final state to escape the concave region (where
∂2V/∂R2 > 0) of the initial local energy minimum to explore
another minimum assisted by high temperature, while the initial
state is anchored to Rinit due to the quench. The time duration
of the directional heating phase is theat ∼ 1 ps.

After the directional heating locates a new local energy min-
imum, the quench phase of the algorithm integrates Eq. (1) for
tquench ∼ 2 ps by turning off the heat bath attached to the fi-
nal state and applying frictional force γS−1 = γ , so that RS−1
reaches a new local minimum-energy state Rfin. (The initial and
intermediate (s = 0, . . . , S − 2) states are quenched as well us-
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Table 1
Directionally heated nudged elastic band algorithm

Algorithm DHNEB

Input:
Rinit ∈ R3N : an initial local minimum-energy state
T : temperature at which the system is thermalized
Theat: temperature to which the final end, RS−1, of the band is heated in the directional heating phase
γ : friction coefficient
ttherm: time duration to thermalize the system
theat: time duration to directionally heat the band
tquench: time duration to quench the band

Output:
event e = (Rinit,Rtst,Rfin): a triplet of initial, transition and final states

Variable:
β = ((R0,U0), . . . , (RS−1,US−1)): a nudged elastic band, where Rs and Us are the atomic positions and velocities in the sth state

Steps:
1. initialize band β at atomic positions Rs ← Rinit with random velocities Us according to the Maxwell–Boltzmann distribution at temperature T for all states,

s = 0, . . . , S − 1
2. thermalization: call NEBDyn(β, ttherm,−∂V/∂Rs , Ts = T for s ∈ [0, S − 1])
3. directional heating: call NEBDyn(β, theat,Fs ,γs = γ for s ∈ [0, S − 2] and TS−1 = Theat)
4. quench: call NEBDyn(β, tquench,Fs ,γs = γ for s ∈ [0, S − 1])
5. Rfin ← RS−1; Rtst ← arg min(V (Rs )) (s = 0, . . . , S − 1)

ing the same friction coefficient γs = γ .) The quench phase
of the DHNEB algorithm embodies the standard NEB method,
and thus the band converges to a MEP connecting the original
and new local minima. The transition state Rtst of the corre-
sponding event is determined as the state with the highest po-
tential energy, i.e. Rtst ← arg min(V (Rs)) (s = 0, . . . , S − 1).
It should be noted that this is an approximate transition state
due to the discrete approximation to the MEP. The approxima-
tion can be systematically improved by increasing the number
of states S in the band or by using the climbing image NEB
method [27].

Table 1 shows the DHNEB algorithm that finds an event
e = (Rinit,Rtst,Rfin), given an initial local minimum-energy
state Rinit. The thermalization, directional heating, and quench
phases of the DHNEB algorithm are implemented by calling
the NEB dynamics algorithm, NEBDyn, in Table 2, which
integrates Eq. (1) numerically with time discretization unit
&t (∼1 fs) using a symplectic, reversible time integrator [28].
The inputs to the NEBDyn algorithm are: (a) initial band
augmented with velocities, β = ((R0,U0), . . . , (RS−1,US−1));
(b) simulated time duration t , for which Eq. (1) is integrated;
(c) forces—either the mutually constrained forces Fs in Eq. (2)
or the physical forces −∂V/∂Rs(s = 0, . . . , S − 1); and (d) ei-
ther a friction coefficient γs or a desired temperature Ts for each
state s ∈ [0, S − 1]. The output from the NEBDyn algorithm is
the updated band β after the time integration for t . The DHNEB
algorithm can be applied repeatedly to search for the next event
by starting a new thermalization–directional heating–quench
cycle, using the previous Rfin as a new Rinit. Fig. 2 illustrates
two thermalization–directional heating–quench cycles of the
DHNEB algorithm.

As a method to explore the energy landscape, the DHNEB
algorithm is equivalent to other simulation methods such as
simulated annealing [29] and temperature-accelerated dynam-
ics [30]. An advantage of the DHNEB algorithm is the inte-
gration of activation-barrier estimation into event search, which

Table 2
Nudged elastic band dynamics algorithm

Algorithm NEBDyn

Input:
initial band β = ((R0,U0), . . . , (RS−1,US−1))

t : simulated time duration
F̃s = Fs or −∂V/∂Rs (s = 0, . . . , S − 1): constrained forces in Eq. (2)

or physical forces
Ts or γs (s = 0, . . . , S − 1): desired temperatures or friction coefficients

Output:
updated band β = ((R0,U0), . . . , (RS−1,US−1))

Steps:
for ∀s ∈ [0, S − 1] with a desired temperature Ts

augment the state (Rs ,Us ) with a heat-bath degree of freedom
with temperature Ts

compute initial forces F̃s ({Rs |s = 0, . . . , S − 1}) for all states,
s = 0, . . . , S − 1

do step = 1 to ,t/&t- // &t is the time discretization unit
Us ← Us + (&t/2)M−1F̃s (s = 0, . . . , S − 1) // update velocities
Rs ← Rs + &tUs (s = 0, . . . , S − 1) // update atomic positions
update forces F̃s ({Rs |s = 0, . . . , S − 1}) for all states, s = 0, . . . , S − 1
Us ← Us + (&t/2)M−1F̃s (s = 0, . . . , S − 1) // update velocities
for ∀s ∈ [0, S − 1] with a friction coefficient γs

Us ← exp(−γs&t)Us // damp velocities

makes the programming straightforward when a massive num-
ber of events and their activation barriers need to be enumer-
ated. The quality of the obtained energy landscape by all these
methods can be improved by increasing the size of the statisti-
cal ensemble, which will be addressed in the next subsection.

2.3. Path ensemble method (PEM) for molecular kinetics
(MK) simulation

The DHNEB method is a stochastic simulation method that
finds an event assisted by temperature, starting from a given
initial state. For many-atom systems, however, a large num-
ber of events may exist for each initial state [31,32]. To con-
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Table 3
Molecular kinetics simulation algorithm

Algorithm MK

Input:
Rinit ∈ R3N : an initial local minimum-energy state
Nstep: total number of simulation steps
T : temperature
Theat: temperature for directional heating in the DHNEB algorithm in Table 1
ttherm: time duration to thermalize the system
theat: time duration to directionally heat the band

Output:

(e
(1)
∗ , e

(2)
∗ , . . . , e

(Nstep)
∗ ): a sequence of events that are selected according to Eq. (7), one at a simulation step

(t
(1)
∗ , t

(2)
∗ , . . . , t

(Nstep)
∗ ): a sequence of times when the events occur

Variable:
E = {βb | b = 0, . . . ,B − 1}: ensemble of B nudged elastic bands
t : simulated time

Steps:
t ← 0
do l = 1 to Nstep

for ∀βb ∈ E

eb = (R(b)
init,R(b)

tst ,R(b)
fin ) ← DHNEB(Rinit) // generate an event by calling the DHNEB algorithm

&b ← V (R(b)
tst ) − V (R(b)

init) // calculate the activation energy

rb = {ttherm + theat exp[&b
kB

( 1
T − 1

Theat
)]}−1 // estimate the reaction rate of event b

r ← ∑B−1
b=0 rb

for ∀βb ∈ E

Pb ← rb/r // calculate the probability that event b occurs
select an event b∗ ∈ [0,B − 1] according to probability distribution Pb

e
(l)
∗ ← eb∗

t ← t − ln(ξ)/r , where ξ is a uniform random number in the range [0,1]
t
(l)
∗ ← t

Rinit ← R(b∗)
fin

struct a list of multiple events, we introduce a path ensem-
ble method (PEM), which applies the DHNEB method to an
ensemble of B bands, E = {βb | b = 0, . . . ,B − 1}, starting
from a common initial state Rinit but with different random ve-
locities. This generates a list of possible events {eb = (R(b)

init,

R(b)
tst ,R(b)

fin ) | b = 0, . . . ,B − 1} with the associated barrier en-
ergies {&b = V (R(b)

tst ) − V (R(b)
init) | b = 0, . . . ,B − 1}. In the

framework of the transition state theory [9], we calculate the
rate of the bth event as [30]

(6)rb =
{
ttherm + theat exp

[
&b

kB

(
1
T

− 1
Theat

)]}−1

,

where ttherm and theat are the time durations of the thermaliza-
tion and directional heating phases of the DHNEB method, re-
spectively, kB is the Boltzmann constant, and T and Theat are the
temperatures used for the thermalization and directional heating
phases of the DHNEB method, respectively (see Section 2.2).

In kinetic Monte Carlo simulation [17–20], these rates are
used to numerically integrate the master equation that governs
transitions among local minimum-energy states to describe the
long-time dynamics of the system. Specifically, we select one
event b∗ from the list of possible events according to probability

(7)Pb = rb

r
= rb

∑B−1
b=0 rb

,

and the state is changed to the corresponding final state R(b∗)
fin .

According to the probability density, p(tevt) = r exp(−rtevt),
of the time span between two successive events in a Poisson
process, the simulated time is advanced by

(8)tevt = − ln(ξ)/r,

where ξ is a uniform random number in the range [0,1]. This
procedure is repeated by using R(b∗)

fin as the initial state Rinit in
the next simulation step.

Table 3 shows the resulting molecular kinetics (MK) sim-
ulation algorithm to study long-time processes. It starts with
a given local minimum-energy state Rinit, and returns a se-
quence of events (e

(1)
∗ , e

(2)
∗ , . . . , e

(Nstep)
∗ ), where Nstep is the total

number of MK simulation steps. At the lth simulation step, an
event e

(l)
∗ is selected according to the probability, Eq. (7). In ad-

dition, the algorithm returns the sequence of times (t
(1)
∗ , t

(2)
∗ ,

. . . , t
(Nstep)
∗ ), at which these events occur.

3. Space–time-ensemble parallel nudged elastic band
(STEP-NEB) algorithm

The MK simulation method is implemented on parallel com-
puters based on a space–time-ensemble parallel nudged elastic
band (STEP-NEB) algorithm. It first assigns the B bands in the
ensemble to separate groups of processors (ensemble decompo-
sition), each of which is in turn decomposed into S processor
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Fig. 3. Processor indexing in the space–time-ensemble parallel nudged elas-
tic band algorithm. Ensemble decomposition first divides the processors into B

groups commb (b = 0, . . . ,B − 1), each assigned a band in the ensemble. Tem-
poral decomposition in turn divides each commb into S subgroups commb,s

(s = 0, . . . , S − 1), each for a state in band b. Spatial decomposition then di-
vides each state into D spatial domains.

subgroups (temporal decomposition) representing the S states
that constitute each band (see Fig. 3). We then use spatial de-
composition within each state for further parallelization.

The parallel program is written in Fortran 90 and Message
Passing Interface (MPI) [33] languages, in which all proces-
sors constitute an overall MPI communicator, MPI_COMM_
WORLD. (The MPI communicator construct combines a proces-
sor group and a context, in such a way that messages with
different contexts are not intermixed.) The processors are
first grouped into B processor groups, each consisting of SD
processors, by defining B MPI communicators commb (b =
0, . . . ,B − 1) as subsets of MPI_COMM_WORLD. The com-
municator commb, which performs the computation associated
with the bth band, is in turn grouped into S sub-communicators
commb,s (s = 0, . . . , S − 1), each consisting of D processors.
The communicator commb,s performs parallel MD simulation
for the sth state in the bth band using D processors. Due to
this hierarchical decomposition (see Fig. 3), the total number of
processors in the STEP-NEB algorithm is given by

(9)P = BSD.

One advantage of the hybrid task (ensemble and time) + spatial
decomposition approach [34] implemented with MPI commu-
nicators is that the program can be easily converted to a hy-
brid Grid remote procedure call (GridRPC) + MPI program to
be run on a Grid of distributed parallel computers, in which
the number of processors changes dynamically on demand, re-
sources are allocated adaptively, and tasks are migrated auto-
matically in response to unexpected faults [35].

We employ spatial decomposition to parallelize the com-
putation within each commb,s [36]. Here, the total volume of
the simulated system is divided into D domains of equal vol-
ume, and each domain is assigned to a processor in an array

of D processors. Specifically, we use regular 3-dimensional
mesh topology that maps atom i at position ri = (rix, riy, riz)

to processor d(ri ) in an array of D = DxDyDz processors:

(10)
{

d(ri ) = dx(rix)DyDz + dy(riy)Dz + dz(riz),

dα(riα) = ,riαDα/Lα- (α = x, y, z),

where Lα is the simulation box size in the α direction (α =
x, y, z). The P processors are globally indexed in such a way
that the d th domain of the sth state in the bth band is assigned
to processor

(11)p = bSD + sD + d.

Fig. 4 shows the resulting tree structure of the processor orga-
nization in the space–time-ensemble parallelism.

To calculate the intrastate force −∂V/∂Rs acting on an atom
in a spatial domain, the coordinates of the atoms in the bound-
aries of neighbor domains are “cached” from the corresponding
processors within the same communicator commb,s [36]. After
updating the atomic positions due to time stepping, some atoms
may have moved out of its domain. These atoms are “migrat-
ed” to the proper neighbor processors within the same commb,s

[36]. With the spatial decomposition, the computational cost
scales as N/D, while communication scales in proportion to
(N/D)2/3. For long-range interatomic potentials used in MD
simulations, tree-based algorithms such as the fast multipole
method (FMM) [37] incur an O(logD) overhead, which is neg-
ligible for coarse-grained (N/D ) D) applications [38].

To calculate the interstate force Fspr
s acting on the ith atom in

the d th domain of the sth state, we need to know the position of
the same atom in states s − 1 and s + 1 within the same band b.
However, these corresponding atoms may not reside in the same
spatial domain d , since the atoms migrate among processors
in the spatial decomposition scheme. Under an assumption that
the distance between any corresponding atoms between consec-
utive states is bounded by a cutoff distance rc, we search for the
corresponding atoms in the consecutive states with the aid of
global indexing of the N atoms as follows. In the first step, we
augment the set of atomic positions, Ab,s,d = {ri | d(ri ) = d},
that reside in each spatial subsystem d of state s in band b,
by caching atoms that are in the nearest-neighbor domains in
the same state s but are within distance rc from domain d :
A′

b,s,d = Ab,s,d ∪ {ri | (d(ri ) (= d) ∧ (‖ri − ∂d‖ < rc)}, where
∂d is the 2D boundary that encloses the 3D spatial domain d .
Each processor p = bSD + sD + d then copies the augmented
atomic positions, A′

b,s−1,d and A′
b,s+1,d , of the same spatial do-

main d in the lower (s −1) and upper (s +1) states from proces-
sors p− = bSD + (s − 1)D + d and p+ = bSD + (s + 1)D + d ,
respectively. (Note that the copying is not required for the initial
(s = 0) and final (s = S − 1) states, since there is no interstate
force on them.) For each atom i in Ab,s,d , we search for the cor-
responding atoms in A′

b,s−1,d and A′
b,s+1,d by way of its global

index. Using the linked-list cell method, the computational time
for the search is O(N/D) [36]. The communication cost of the
temporal decomposition is O(N/D) for copying A′

b,s−1,d and
A′

b,s+1,d .
Ensemble decomposition duplicates the above band calcu-

lation, each involving SD processors, B times on P = BSD
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Fig. 4. Tree-structured processor organization in the hierarchical space–time-ensemble parallelization. An ensemble consists of B bands, each consisting of S states.
Each state in turn contains D spatial domains.

Fig. 5. Weak-scaling (isogranular) test of spatial decomposition in the STEP-NEB algorithm on dual-core, dual-processor AMD Opteron nodes. The total exe-
cution (circles) and communication (squares) times (a), as well as the parallel efficiency (b), are plotted as a function of the number of processors P = BSD for
648,000D-atom SiO2 systems, where B = 1, S = 4, and D = 1–256.

processors. It involves O((N/D) log(BS)) overhead to multi-
cast the new initial state Rinit among processors assigned the
same spatial domain, i.e. those with the same p mod D. The
multicast cost at the beginning of each MK simulation step
is greatly amortized over 103–104 MD steps in the DHNEB
method per MK iteration.

4. Numerical results

4.1. Scalability on parallel computers

Scalability of the STEP-NEB algorithm is tested on a clus-
ter of dual-core, dual-processor AMD Opteron (at clock speed
2 GHz) nodes with Myrinet interconnect, with 4 GB of memory
per 4-core node. We define the speed of a program as a product
of the total number of atoms and MK simulation steps executed
per second. The speedup is the ratio between the speed of P

processors and that of one processor. The parallel efficiency is
the speedup divided by P .

First, we perform a scalability test associated with spatial de-
composition. Here, we fix the number of bands in the ensemble
B = 1 and that of states per band S = 4, and vary the number

of spatial domains per state D from 1 to 256 (i.e. the total num-
ber of processors P = BSD = 4–1024). In our weak-scaling
(or isogranularity) test, the number of atoms is scaled linearly
with the number of spatial domains: N = 648,000D. We set
Nstep = 1 and ttherm = theat = tquench = 10&t . All the numerical
tests in this paper are performed for silica (SiO2) material, using
a many-body interatomic potential [39]. The isogranular scaling
test corresponds to a situation, in which the MK program is used
to evaluate the barrier energies of a few well-defined events for
a large system. This is the case in million-to-billion atom sim-
ulations of fracture [40], impact [41], and indentation [42] of
materials on a large number of processors D. Fig. 5(a) shows
the total execution and communication times per MK simula-
tion step of the STEP-NEB program on the Opteron cluster for
the number of processors P = 4, . . . ,1024. (The largest num-
ber of atoms per state is 165,888,000 for D = 256.) All four
cores per dual-processor, dual-core Opteron node are used for
the test. The execution time increases only slightly for large P ,
showing excellent scalability. Fig. 5(b) shows the parallel effi-
ciency as a function of the number of processors for the same
test; it is 0.728 on 1024 processors.
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Fig. 6. (a) Speedup of temporal decomposition in the STEP-NEB algorithm (normalized so that the speedup is 4 for P = 4) as a function of the number of processors
P (P = 4–1024) for a 192-atom amorphous SiO2 system on dual-core, dual-processor AMD Opteron nodes, where we fix B = D = 1. The circles are measured
speedups, whereas the solid line denotes the perfect speedup. (b) Speedup of ensemble decomposition in the STEP-NEB algorithm as a function of the number of
processors P (= 4, . . . ,1024) for silica material (N = 192 atoms). Here, we fix the number of states per band S = 4 and the number of spatial domains per state
D = 1, while the number of bands is varied from B = 1 to 256.

The isogranular parallel efficiency is typically used for very
large simulations, and their large granularity, N/D, makes
the parallel efficiency nearly perfect (∼1). For example, we
have recently performed benchmark tests including 134 billion-
atom space–time multiresolution MD [36], 1.06 billion-atom
chemically reactive force-field MD [43], and 11.8 million-atom
(1.04 trillion electronic degrees-of-freedom) quantum-mechan-
ical MD in the framework of the divide-and-conquer density
functional theory on adaptive multigrids [44], with the parallel
efficiency as high as 0.998 on 131,072 BlueGene/L processors
[45]. We expect the isogranular parallel efficiency of the STEP-
NEB algorithm to become similarly high for such large-scale
applications.

Next, we test the scalability of temporal decomposition,
where we fix the number of bands B = 1 and the number of
domains per state D = 1. We vary the number of states per
band S = 4 to 1024. Here, the simulated system is amorphous
SiO2 consisting of N = 192 atoms, and we set Nstep = 1 and
ttherm = theat = tquench = 20&t . The test uses all four cores per
node. Fig. 6(a) shows the speedup of the STEP-NEB program
(we normalize the speedup on 4 processors as 4). The measured
speedup on 1024 processors is 586.3, and thus the parallel effi-
ciency is 0.573.

The relatively low efficiency shown in Fig. 6(a) is partly
due to the small granularity, N/D = 192, as well as the
non-dedicated operation of the Linux cluster, on which we
have observed the reduction of parallel efficiency by ∼0.2 on
1024 processors for MD simulation [45]. In addition, the effi-
ciency is expected to be higher in production runs, where the
number of MD steps per MK simulation step, NMD/Nstep =
(ttherm + theat + tquench)/(&tNstep), is well over 103 (see Sec-
tion 4.2), compared with 60 in this test. In fact, the parallel
efficiency on 1024 processors decreases from 0.573 to 0.450,
when NMD/Nstep is further reduced from 60 to 30. With con-

stant B and N/D, the algorithm has a small O(logS) overhead
for multicasting the new initial state at every MK step, and
this multicast cost is amortized over NMD/Nstep steps. Hence,
a larger number of MD steps per MK step leads to higher effi-
ciency.

Finally, we test the scalability of ensemble decomposition,
where we fix the number of states per band S = 4 and the num-
ber of spatial domains per state D = 1. The number of bands
per ensemble is varied from B = 1 to 256. The simulated sys-
tem is amorphous SiO2 consisting of N = 192 atoms, and we
set Nstep = 1 and ttherm = theat = tquench = 20&t . Although mul-
tiple events are generated independently by different processor
groups, the parallel algorithm involves sequential bottlenecks
such as the selection of an event that occurs, and accordingly
the parallel efficiency degrades for a larger number of proces-
sors. Fig. 6(b) shows the speedup of the STEP-NEB program
on the Opteron cluster as a function of the number of proces-
sors (normalized to be 4 on 4 processors). On 1024 processors,
the measured speedup is 675.6, and thus the parallel efficiency
of ensemble decomposition is 0.660, which is slightly higher
than that of temporal decomposition on the same number of
processors.

4.2. Molecular kinetics simulation of low strain-rate
deformation of amorphous silica

We use the MK simulation method to study low strain-rate
deformation of amorphous silica (a-SiO2) at temperature T and
shear strain rate ε̇. To do this, we slightly extend the MK simu-
lation algorithm in Table 3: at the end of each MK step, we in-
crement the shear strain imposed on the system by ε̇tevt, where
tevt is defined in Eq. (8). Here, the shear is applied by deforming
the MD simulation box tensor [46].
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Fig. 7. Molecular kinetics simulation of amorphous silica at strain rate 106 s−1 and temperature 300 K. (a) Histogram of activation barriers for the events at strain
between 0.1 and 0.15. (b) Stress-strain relation of the same simulation.

We first prepare an initial a-SiO2 state containing 192 atoms
by a melt-quench procedure, with the periodic boundary condi-
tion applied to all directions [47,48]. We then perform MK sim-
ulations at strain rate ε̇ = 106 s−1, using the number of bands
per ensemble B = 8, the number of states per band S = 16,
and the number of spatial domains per state D = 1. We set the
temperatures T = 300 K and Theat = 900 K, and the MD sim-
ulation times ttherm = 0.1 ps, theat = 1 ps, and tquench = 2 ps.
Though we have not introduced explicit convergence criteria to
stop the NEB minimization procedure, the quenching phase of
the DHNEB algorithm is equivalent to 2000 steepest-descent
quench steps of the standard NEB method (with a unit time
step of 1 fs), with which forces are typically converged within
10−2 eV/Å. For taking statistical averages, multiple MK sim-
ulations are performed with the same parameters but differ-
ent random number sequences. Fig. 7(a) shows a histogram of
the activation barriers of the events that are selected accord-
ing to the probability distribution, Eq. (7), during the simula-
tion (only events for strain range [0.1,0.15] are included). The
histogram demonstrates the existence of many low activation-
barrier events in a-SiO2, which makes the application of accel-
erated MD simulation techniques [5] to this system difficult.

Fig. 7(b) shows the calculated stress-strain relation. It is an
average over eight MK simulation runs with different random
number sequences. Such calculation will be useful for the study
of yield stress as a function of the strain rate ε̇, when the rate
is less than 106 s−1. In contrast, MD simulations are usually
applicable only to higher strain rates above ε̇ = 109 s−1.

To estimate the error of the activation barriers in Fig. 7, we
have used a quasi Newton method [49] to obtain the fully con-
verged transition state starting from each approximate transition
state (i.e. the state with the highest energy in the band). The es-
timated error is typically 10−3 eV/atom, which will not change
the results in Fig. 7. However, other quantities such as the low-
est Hessian eigenvalue at the approximate transition state have
larger uncertainties. The lowest Hessian eigenvalue has an er-

ror on the order of 10%, which necessitates the refinement step
for the computation of this quantity.

5. Summary

We have designed a scalable parallel algorithm to study
long-time dynamics of many-atom systems. A directionally
heated nudged elastic band method searches for thermally acti-
vated events without the knowledge of final states, which is then
applied to an ensemble of bands in a path ensemble method
in the framework of the transition state theory. We have par-
allelized the resulting molecular kinetics simulation method
using a space–time-ensemble parallel nudged elastic band algo-
rithm, which employs spatial decomposition within each state,
while temporal parallelism across the states within each band
and band-ensemble parallelism are implemented using a hier-
archy of communicator constructs in the Message Passing In-
terface library. The STEP-NEB algorithm has exhibited good
scalability with respect to spatial, temporal and ensemble de-
compositions on a massively parallel computer. Finally, we
have demonstrated the use of MK simulation for low strain-rate
deformation of amorphous silica.

MK simulation of a physical phenomenon produces a mas-
sive catalogue of complex atomistic events, and understanding
of the phenomenon requires the elucidation of the catalogued
events. This necessitates automated (or computerized) identifi-
cation of primary events as well as their annotation and clas-
sification. Such “computational thinking” will be greatly fa-
cilitated by discrete abstraction [11,50], such as graph-theory
based data mining [51,52], combined with creative massive-
date visualization [53] techniques.
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