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Explicit reversible integrators, suitable for use in large-scale computer 
simulations, are derived for extended systems generating the canonical and 
isothermal-isobaric ensembles. The new methods are compared with the 
standard implicit (iterative) integrators on some illustrative example problems. 
In addition, modification of the proposed algorithms for multiple time step 
integration is outlined. 

1. Introduction 

Recently, explicit reversible multiple time step integrators have been developed to 
handle efficiently problems involving stiffvibrations, disparate masses, and long-range 
forces that occur in large-scale molecular dynamics (MD) calculations [1]. The 
methods are based on the Liouville operator formulation of Hamiltonian mechanics. 
However, it is often useful to perform dynamical calculations using so-called extended 
system schemes that generate statistical mechanical ensembles other than the 
traditional microcanonical ensemble. For example, it is possible to generate both the 
canonical and the isothermal-isobaric ensembles via continuous dynamics [2-7]. 
Although non-Hamiltonian in nature, the equations of motion possess the fun- 
damental symmetry of time reversibility. Fortunately, the Liouville operator for- 
realism can be extended to treat these more complicated non-Hamiltonian cases. 

In this article, explicit reversible integrators for systems yielding the canonical [6] 
and isobaric-isothermal ensembles [7] are developed. The resulting algorithms are 
straightforward to use and can be modified readily to accommodate the type of 
reversible multiple time step approaches found to be effective in microcanonical 
simulations [1]. In addition, since reversible integrators are required by the hybrid 
Monte Carlo algorithm/MD scheme [8], the new algorithms allow extended phase 
space methods to be used in conjunction with this technique. The reversible integrators, 
and their multiple time step generalizations, are tested on a variety of model and '  real' 
systems and the results compared with the standard implicit (iterative) integration 
schemes based on the usual velocity Verlet scheme. 

2. Equations of motion 

The equations of motion that generate the canonical and isobaric-isothermal 
ensembles are first reviewed briefly. 
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2.1. Canonical ensemble 

Martyna, Tuckerman and Klein (MTK), following Nos6 [3] and Hoover [4], 
employed a chain of Nos~-Hoover thermostats to drive a dynamical system to 
generate canonically distributed positions r~, and momenta p~. The equations of 
motion MTK proposed are as follows [6]: 

I ' i -  Pi 
m~ ' 

p~ = F~ - p ~ ,  

~i Pr 
Q, 

pr = - N f  k -Pr ' 

kr] p ,+i & LOj- - = / -pcj Q 

p2 

There are M thermostats ~, with masses Q~, and momenta p~; Here, N is the number 
of particles, Nf is the number of degrees of freedom (equal to dN, where dis the system 
dimension, if there are no constraints), and F~ = - V~ ~(r) is the force derived from the 
potential ~, which is a function of the N-particle position vector r. 

The conserved quantity for the M T K  dynamics is 

N ~2 M p2 M 
H' = Z.~-~-~ + Z ~--~ +r + k T Z  ~, (2) 

and the Jacobian [9] is 

_ d~ ,  dpr 
dt J(t) + "~ 2 (Vpi P i  "Jr V r  i r i )  , 

= �9 l ~ l  

J(t) = exp Nf ~1 + ~i �9 (3) 

The Jacobian is the weight associated with the phase space volume and is unity for 
systems that obey Liouville's theorem [9]. It represents the transformation to a set of 
variables {~ = N r s~pr ~ = s~pr or, equivalently, {log s I -~ Nf (1, log s~ = ~} for which 
the Jacobian J = 1. I f  the system studied is ergodic, the dynamics gives rise to the 
canonical (NVT) ensemble, i.e., the partition function is proportional to 

where 

fdpcd~dpdrexp[Nf~l+~=2~]5(E-H')~ 

n? i p2 

(4) 

(5) 
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2.2. Isothermal-isobaric ensemble (isotropic cetl fluetuations) 

In order to produce the isothermal-isobaric ensemble, the volume V of the 
simulation cell must be permitted to undergo only isotropic fluctuations. Following 
Anderson [2] and Hoover [4], the equations of motion are [7]: 

P~ ' P~ r 

(1 d ~ p~ pc _ Fi 

v=dVp. 
W "  

N 2 

P~ dV(P~.t- Pe~t) 4- d V' p~ PC" 
JV[ i=l m i  

Pr 

N 2 2 
Pi P~ pc = ~ _~-+~-~--(Nf+ 1)kT, (6) 

i=l ITli Vu 

where P~xt is the external/applied pressure, 

1 ~ p~ z~ ~r V) 
Pi.t = ~ [ ~ - - +  ~r, 'Fi-(dV)-~TT-~ ] (7) 

avLi=lm, i=~ o r  j 

is the internal pressure, p~ is the momentum associated with the logarithm of the 
volume, and W is the mass of the ' barostat'. Note that, in general, the particles and 
barostat can be coupled to separate chains of thermostats although, for simplicity, 
they have been coupled to the same single thermostat here. 

The conserved quantity is 

)_~ ~-i q_ P~ -4- p~ -4- 
n2 2 

H '  i=~m _ ~ _ ~ - ~ _ r  V)+(Nf+ 1)kT~ + Pex t V, (8) 

and the Jacobian of the dynamics is 

J = exp [(N~ + 1) Q. (9) 

The isothermal-isobaric partition function, 

f fo , , g ""3 d oc dp~dp~dV dpdrexp~-~-~ j ,  (10) 
(v) 

is therefore produced, where 

N ~ 2  2 2 
H " = 3  7 v~ . P; _ P ~ _  

~=l~-"2mmt---v---r~b(r'mi 2W 2Q V)+P~t V, (11) 

and D(V) is the domain defined by the volume [7]. 
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2.3. Isothermal-isobaric ensemble (full cell fluctuations) 

If full fluctuations of  the simulation cell size and shape are permitted then, 
following Parrinello and Rahman [5], the isothermal-isobaric (NPT) ensemble with 
partition function 

A exp [--tiPpet det [h ]] Q(h) det  [~]l-e (12) 

is generated (to within a constant) by the following equations of  motion [7]: 

P~ + P~r 
i'~ mi Wg 

1 i, = t - ~ g P , - [ ~ f f ) w P , - o P , ,  

F1 u_2q  
~g = V(Pilat--~Pext) -~" ] -  Z 1"1' / ~  p~ o LUf :imiJ - Pg' 

-PA 
- Q ,  

p/2 , 1 T r ~ = t ~ l  D~ = 2.~n.-t- ~ [ygpgj--(Nf+d2) kT, (13) 
i=l ~ "'g 

where h is the cell matrix (V = det [hi), I is the identity matrix, Tr [ff ~ ~g] is the sum of 
the squares of  all the elements of ~g, the cell variable momentum matrix, and the 
particles and cell variables have been coupled to a single thermostat. The pressure 
tensor is defined as 

(/~int)~fl V [~,~1 m ~  " " ] 

~b(r,h) (14) 
(r = a(hL~- 

Equations (13) have the conserved quantity 

H'= ~+~-~Tr[~t~g]+~N _ ~  1 P~ +#(r,h)+P~tdet[h]+(N~+d2)kT~, (15) 
i=1 i ff 

and Jacobian 
J = det [~]~-a exp [(Nf + d 2) ~], (16) 

which lead to the desired NPT ensemble [7]. 

2.4. Elimination of cell rotations 

The equations of  motion for the case of  a flexible simulation cell were derived using 
the full matrix h of  Cartesian cell parameters. The cell can therefore, in general, rotate 
in space [10]. This motion can make data analysis difficult and should be eliminated. 

The origin of the rotational motion of the cell lies in the pressure tensor P~ (see 
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equation (14)). If the pressure tensor is asymmetric (P~, + Pp~) at a given instant of 
time, then there will be a net torque acting on the cell that will cause it to rotate. Cell 
rotations can be eliminated by using the symmetrized tensor P~, = (P~,+ P~)/2 in the 
equations of motion and setting the initial total angular momentum of the cell to 
zero (~g - - t  = - p g).[7]. This approach is formally implemented by constraining ~ ~t, 
where ~g -- Vv~. 

2.5. Choice of  mass for the extended variables 

It is generally useful to thermostat the particles and the barostats independently 
using Nos6-Hoover chains. It has been shown elsewhere [3, 6] that the masses of the 
particle thermostats should be 

Qo~ = NrkT/~ 

Qp, = kT/~o~, 

where ~% is the frequency at which the particle thermostats fluctuate. Similarly, the 
masses of the barostat/cell parameter thermostats should be: 

Qbl = d2k r/c~ , 

Q~, = k r / ~ .  

Finally, the masses of the barostat/cell parameters themselves [3, 11] should be 

W = (Nf+d)kT/co~,  

Wg = (Nf + d) k T /  d~o~. 

3. Iterative velocity-Verlet based integrators 

The standard velocity-Verlet integration [12] is based on the equations 

At2 3 
x(At) = x(0) + :~(0) 3 t + X(0) ~ -  + C(At ), 

~(At) = ~(0) + [5~(0) + 2(At)] ~-~ + (9(At3). (17) 

If the second time derivative directly depends on the first derivative, then ~(At) must, 
in general, be determined iteratively, thus sacrificing reversibility and forming an 
implicit method. Iterative velocity-Verlet integration of the equations of motion 
presented in the previous section has been described elsewhere [7]. 

4. Explicit reversible integrators 

The purpose of this paper is to develop schemes for integrating the equations of 
motion presented in section 2 with explicit reversible integrators derived from the 
appropriate classical propagators using operator factorization techniques [13, 1]. This 
approach yields manifestly reversible integrators that weight the phase space correctly 
[13, 1]. We mention again that the phase space volume is conserved only for systems 
that obey Liouville's theorem, and the equations of motion given in section 2 do not 
necessarily have this property. Explicit reversible integrators are now presented that 
integrate the equations of motion for the different ensembles in order of increasing 



! 122 G.J .  Martyna et al. 

complexity: NVE, NVT,  N P T  with isotropic simulation cell fluctuations, and N P T  
with full simulation cell fluctuations. It will be shown that the new integrators can be 
modified easily to accommodate reversible multiple time step methods useful for 
studying systems involving stiff vibrations, long-range forces, and other problems 
involving a separation of time scales [1]. 

4.1. The evolution operator 

A system of coupled, first order differential equations can be evolved from time 
t = 0 to time t by applying the evolution operator 

F(t) -~ exp (iLt) F(O), (18) 

iL = F'Vr ,  

where iL is the Liouville operator and Fis  the multidimensional vector of independent 
variables (coordinates and velocities). In general, the action of the evolution operator 
on the coordinates cannot be performed analytically. Therefore, a short-time 
approximation to the true operator, accurate at time At = t /P,  is applied P times in 
succession to evolve the system: 

which, for an nth order factorization, carries an overall error tn/P n 1. 

4.2. Microcanonical ensemble (NVE) 

In the N V E  ensemble, the dynamics is Hamiltonian, and the Liouville operator is 
written as 

iL = ,=,L vi. V,+ ,=iE I.~_I V,. (20) 

A short-time approximation to the evolution operator can be generated via the Trotter 
formula [14] 

At 
exp(iLAt) -: exp( iLl  ~ ) e x p ( i L 2 A t ) e x p ( i L l  ~ ) +  C(At3), (21) 

N N 

with iL 1 = ~ [Fi(r)/mi]" Vv, and iL2 = ~ vi " V, . 
i ~ 1  i = l  

As outlined earlier, the approximate evolution operator can be used to generate the 
positions and velocities at time At: 

At 2 
r(At) = r(0) + Atv(O) + ~ F[r(0)], 

v(At) = v(0) + 2 ~  (F[r(0)] + F[r(At)]), (22) 

where the identity exp [a(O/Og(x))] x = g-l[.q(x) + a] has been used. The result is just the 
familiar velocity-Verlet integration scheme (section 3) [12], derived in an unfamiliar 
but powerful way [13, 1]. 
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Another feature of the operator formalism is the ease with which a product of 
operators in a factorized expression such as equation (21) can be translated directly 
into computer code. The operators can be applied sequentially, thus bypassing the 
need to calculate analytically the phase space vector F(At) in terms of the initial 
conditions F(0). This will be referred to as the direct translation technique. For 
example, the three operators that appear in equation (21) can be translated into three 
sets of instructions which update first the velocities, next the positions and finally the 
velocities. A pseudocode for performing these operations would appear as: 

v = v+2~-*F 

r = r + A t , v  

CALL FORCE 

v = v + ~ - * F  (23) 

where loops over the number of atoms are assumed. Here, the closed form expression 
for F(At) is simple (cf. equation (22)). In the more complex cases discussed below, such 
expressions rapidly become cumbersome, and the direct translation technique is the 
preferable approach. 

4.3. Canonical (NVT) ensemble 

An integration scheme for the NVT ensemble can be formulated also using the 
approach described above. The Liouville operator for the equations of  motion, 
equation (1), is ..... 

LV,(,)] iL = ~ v~.V,/+ "Vvi 
i=l i=lL mi J 

N M 0 M 1 ~ C~ (24) 
i = l  i = 1  i=1  

where a chain of Nosd-Hoover thermostats of length M has been coupled to an N 
particle system [6] and 

GI Ql(i=l --NfkZ) 

1 
G, =~(Q,:_lv~i_i-kT) i> 1. (25) 

Using a simple generalization of the Trotter formula, the evolution operator can be 
written as 

exp ( iLAt) = exp ( iLsnc ~ ) exp (iLl ~ ) exp ( iL2 At) exp (iLl ~) exp ( iLNnc ~ t) 

+ e(At~), (26) 
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where La and L 2 retain their previous definitions, and iL~tJc = iL--iL 1 - - i L  2 consists 
of the rest of terms in iL. The Nosd-Hoover  chain (NHC) part of  the evolution 
operator, exp (iLNn c At/2), is simplified as follows: 

At = 1~ exp (27) exp iL NI~c 2-  ~=1 ~ z~Hc ~ne j 

(iL At)  /A t  0 \ ( At v 0 ) = exp [ w -  G~ ~ 1  exp exp k ~HC2~n~) \,~n~ vv~,i / \ 8n~ ~Mv<~ 18v[~_i 

(at o ( a t  0 ,  
x exp 14n~ M-10V~_~ exp --8n,,~ v~  v~ 18v--~_~l_~) 

/ At N ~ /A t  ~ 8 
x exp \! -- --2nr i=lL U-q V~" VVflj. exp \'|2~ ~.o i=1 )'~ U~Q --1~%i// 

x . . . e x p ~  8no ~,~ ~-"-~Sv~, 1 )exp 4~n~G~-~OV~ll 

At v v 8 (28) 

where a multiple time step, no > 1, approach has been used. For typical simulations, 
no can be taken to be one. However, if the frequency associated with the Nos6-Hoover  
chain is high (Q = NkT/~2), no must be taken rather large to generate accurate 
trajectories. Substantial reduction can be obtained by using a higher order algorithm 
to apply the N H C  part of the evolution operator, e.g., 

(.  A t ) n c l - ~  / w.At, q 
exp tLNrrc T = [I/HexpliL,,.o '~__v_-//, (29) 

i=1 k~=~ \ zno / j  

where the w~ are chosen such that when exp ( iL~  c At/2nc) is approximated as in 
equation (28), the error is (~(At/2no) ~ [15, 16]. The values of  the {nys, ~} are {n~ = 3, 
Wx = N3 = 1/(2-21/a), w2 = 1-2Wl} [15] or, alternatively, {n~ = 5, Wl = w~ = w~ = 
ws = 1/(4-4~/a), wa = 1 -4w~} [16]. Higher order methods involving more time steps 
are also possible [15, 16]. 

In the multiple time step procedure (equation (27)), the seemingly unnecessary 
factorization 

exp(t'[-v~vr l+Gk l l0v~k ~} 

~k--1 ~k i ~]~ 1 

has been employed. The action of  the unfactorized operator on v~ 1 gives 

sinh v~,, 
vr ~ -+ vr exp ( -  vr t') + t'G~ ~ exp -- vr t' ' 

~ U~# 

(30) 

(31) 
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while the factorized operator yields 

( ") v~ , + v~ , exp (-- v~ f)  + t'G~ i exp - v~e ~ . (32) 

The potentially singular hyberbolic sine function that appears in the unfactorized 
result, equation (31), can be expanded in a Maclaurin series to arbitrarily high order 
without loss of generality. This is equivalent to building progressively higher order 
Trotter formula solutions [17] to the operator. In fact, no degradation of accuracy was 
found to result from the use of the factorized version (i.e., the first term in the 
Maclaurin series expansion of the hyperbolic sine). 

The approach described above appears to be rather complicated. However, it is 
actually straightforward and computationally inexpensive to implement. One first 
applies the operator exp (iLNH c At/2) to update the {~, v:, v} (the operator alters only 
these variables). Next, one uses the updated velocities as input to the usual 
velocity-Verlet step, equation (22), and then applies exp (iLNn c At/2) to the output of 
this velocity-Verlet step. The procedure can be summarized as follows: 

where 

[-At , A" 

At At 

v(~)= VNHo[~;V(0),V~(0)] 
V'(At) = V~v [At;r(0),v (~)] 

1 
1 

(33) 

(34) 

and {rvv(t'; r', V), Vvv(t"; r', V)] represents the output of  a single velocity Verlet step of 
time increment t' using the initial conditions {r', v'}. A similar structure is used to 
indicate the action of the NHC part of the evolution operator. 

The direct translation technique can be used to convert the operator 
exp (iL~nc wj At/2no) into a set of instructions analogous to equation (27) : 
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C A L L  A T O M I C _ K E ( A K I N )  

S C A L E  = 1.0 

D O  k = 1,n~ 

D O  j = 1,ny~ 

At~ = w~ At~no 

GM = (QM ~ V~M_,--kT)/QM 

Ats 
vr = v~  + ~ *  G M 

a~, ~ = (Q~_~ v~_~-kr)/Q~_, 

V~&I__ 1 = U~M 1-[--~*GM-I 
{ At~ 

%, =v~,_ ,exp~-~-ve~)  

~176 

G i = 

vr -At~v8 r '~ 

( A K I N  - N~ kT)/QM_~ 

Ats 
Vr "~- 4 -  * [J1 

re, = vr �9 exp ( - At~ v 
8 6} 

{ At, 
S C A L E  = S C A L E * e x p / - ~ - v ~ q  } 

A K I N  = A K I N *  exp ( -  At~ v~h ) 

D O  i =  1 ,M 

~ = ~+-~*% 

E N D D O  

= ,exp/-- vq 

G 1 = ( A K I N -  Nf kT)/QM_I 

V~I = V~I -]- ~ * G 1 

V~I = v~l* exp ( - - ~ v r  
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VCM_, = V,M_~* exp ( Ats v *.) 

GM-1 = (QM-2 V~u-2-kr)/QM-~ 

At s 
~)~M--1 ---- V~M--1 + 4 -  * aM-1 

= 

GM = (QM-1 V~M_ ~-kT)/QM 

V~M -~ V~M+A~4S*GM 

ENDDO 

ENDDO 

v = v* SCALE (35) 

Note, a time-saving feature has been employed. The effect of the operator 
exp (iLz~uc w~ At/2n~) is to scale the particle velocities by the factor exp ( -  v~, ~) At/2ne). 
The only coupling of the particle velocities to the thermostat variables occurs through 
the total atomic kinetic energy (AKIN), which appears in the force on the first 
thermostat G 1. Therefore, a velocity scaling factor can be accumulated and applied to 
the velocities at the end of the procedure. In addition, the total particle kinetic energy 
can be evolved by multiplying by the factor exp (-vr wj At/2ne) at each step in the 
iteration. The entire propagator may be implemented by performing the procedure 
defined in equation (35) before and after performing the procedure defined in equation 
(23). A fifty line Fortran code based on this algorithm is presented in appendix A. 

The reversible N V T  integration method is not altered significantly if an arbitrary 
set of constraints is placed on the particle degrees of freedom. The operator 
exp (iLz~nc At/2no) acts by scaling the particle velocities by factors ofexp ( -  v~l wj At/2n~) 
at each step in the NHC multiple time step procedure (exp [ax(O/Ox)] x = x exp [a]). 
This scaling does not effect a given constraint if it is initially satisfied (daJdt = 
Y',v~'Vr, a~--0). Therefore, the new integration algorithm can be made consistent 
with a set of constraints by adding the iterative Shake/Rattle algorithm to the 
velocity-Verlet step in the usual way [18, 19]. Alternatively, the equations of motion 
generated by Gauss' principle of least constraint can be integrated reversibly in some 
cases by methods similar to those described earlier [20]. Note that, in a system with 
constraints and multiple chains of thermostats on the particle degrees of freedom 
(for example, all atoms of type X thermostatted with one chain and all atoms of type Y 
with another), atoms involved in a common constraint must be thermostatted by the 
same chain, independent of integration algorithm. If this is not the case, the number of 
degrees of freedom (N 0 associated with each individual chain becomes a complicated 
function of the particle positions. 
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4.4. Isothermal-isobaric (NPT) ensemble." isotropic cell fluctuations 

The Liouville operator for equations of  motion, equation (6), is 

iL = iL~ c -- 1 + ~ ,  ~ v~ v~" Vv~ + [G~- v~ v~] 0v~ 
f /  i = 1  

c~ ~v ~ [ - F ~ ( r ) ]  

( 7 8  i = 1  " " 

where v~ = pJm i # t i, 

(36) 

iL~rlcp = iLNuc + iLp, 

d N 0 :-(1 
[ / i = l  

/ = I L  i J " 

iL 2 = ~, [v~ + v, r j -  V,, + v ~ .  (40) 
i = 1  

This integrator can be implemented readily by analogy with the results of  the 
previous section. The operator, exp(iLN~czAt/2), is decomposed in the manner of 

where 

G~ = 1§  m~ v~Z + r~- F~(r)-- dV ~r dPe• t 
Nf ~:1 ~:1 ~V ' 

8 = l l o g  V, (37) 

and iL~H c retains its previous definition except that 

1 N ~. 7"] 
G 1 = : [ _ m ~ v ~ +  Wv~--(N~+l)k . (38) 

The equations of motion can be integrated using the approximate evolution operator, 

. A t  . A t  . exp ( iLAt ) = exp (,LNHcp ~ )  exp (~Ll ~ ) exp (tL2 At) exp (iLl ~ ) exp ( iLNi~c, ~ ) 

+ (9(At3), (39) 
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equation (29), and the operator exp(iLz~i~cewjAt/2no) is factorized similarly to 
equation (28): 

/. wjAt~ /wjAt 0 ~ / w~At 
exp['Lz~HC, ~ ) =  expl~neGM~)exp~--~v,Mv,~_~E,;~_l ) 

(wjAt 0 ~ { w~At 0 ] 
xexpk~GM-a  ov )exPl-~v~Mv~,_~Ov- ... 

~M_~/ \ e ~M t / 

{ wjAt 0 ,  /w~At 0 ,  ( wjAt v ~ ~ 

xexp(--w~A~tt[vr162 ] k e i=1 i ' i ]  

x e x p ( -  wjAt8nW v,~ v,~Ov~)exp(WjAtG ~--~ [ wjAt c~, i 4n~ c3vjexp~--~v~ive~) 

/ wjAt 0 \ /w~At 0 \ 

/ w. At 0 |\ l~__i/w, AtGi~\ x exp ( - - ~  v~ v~_l Ov ~ ] e x p \  4no Ov~J" (41) 

The direct translation of this operator into computer code can be carried out by 
analogy with equation (35). The full propagator, equation (41), is applied to the full 
phase space by first acting with the operator exp (iLNncp At/2) to update {~, v~, v~, v}, 
then performing a modified velocity-Verlet (MVV) step 

r~(At) = ri(0 ) exp [Atv,(0)] 

At At2F,~(r) 
sinh [~--~t v~(0)] 

At 
5- ~(0) 

e(At) = e(0) + Atv~(0) 

At 
vi(A/) = vi(0 ) ~- 2m [Fi(0) ~- F~(At)] (42) 

to update {e, v~, v, r}, and finally, again acting with the operator exp (iL~Hcp At/2) this 
time to update the output of the modified velocity-Verlet procedure. As stated 
previously, the potentially singular term, sinh (x)/x, can be expanded in a Maclaurin 
series to arbitrarily high order (e.g., eighth in practice). 

The explicit integration method, can be written as 
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where 

r(At) = 

v(At) = 

,(At) = 

v~(ht) = 

4 ( 6 0  = 

vdAt ) = 

v'(AO = 

rMvv[At;r(O),e(O),v(At], v (Ate] t,T) ~tT)_l 
A t  , VN.cr[~-;v (At),v~(A'~,, (Ate] 

\ 2 )  ~ \ 2 ) ]  

(Ate1 
\ 2 )  =~TJJ 

At , 

t~-)' ~t~-)3 

At , At 
vr [2-; v (At)' vr ( 2  - ) ' v(At]]'~\2JJ 

v~Hop [~; v(0), re(0), v,(0)] 

v~(~)= v~o~[~;v(o),vdo),v~(o)] 

g(~)= G.~ [-~; ~(o), v(O), vdO), vXo)] 

v~(~)= v~.o~[~;v(O),v~(O),,~(o)]. 

(43) 

(44) 

The notation is analogous to that of the previous section, equation (33). The label 
MVV refers to the modified velocity-Verlet step equation (42). Equation (43) can be 
bypassed using the direct translation technique discussed in the previous sections. In 
appendix B a short Fortran code is given that implements the isotropic constant 
pressure integrator. The method and the code can be modified easily to place an 
independent chain of thermostats on the barostat (a). 

4.5. Isothermal-isobaric (NPT) ensemble: full cell fluctuations 
The equations of motion, equation (13), have the associated Liouville operator, 

iL= iLNHc-- Ei=I g-[-~--f )u 

(7g h)~p--~-- + 2 [v~ +u r~] "Vr+ 2 [F~(r)] .Vv, ' (45) 
~ ~(h)~p ~=1 ~ i-~k m~ j 
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where v i = pi/m~ :g ti, 

1 N 
(Gg)~ = ~ i ~  1 mi(v,)~(v,) ~ 

+ ~ _ H ~ L m ,  v,-P~** 3~p+ (F~)~(r~)~-(~b h)~/~ , 
g L \  f i = l  

(46) 

and iLNn c retains its previous definition except that 

G~ = ~ -  [ ,n, v~ + Wg Tr [Vg t 7g] - (Nf + d 2) k . (47) 

The equations of  motion can be integrated using the approximate evolution 
operator, 

�9 At At) exp( iL iAt5 / At~ exp(iLAt) =exp ( iLNncp~)exp ( tL l~ )exp ( iL  2 \ ~ )exp~iLNncp~)  

+Cg(At~), (48) 

where 

iLNncp = iLNn c + iLp, 

iLp ~ [(C,g)~p-(u a ~ [[  Tr[gg]~ ] 
-- 2./tvg+ TU vd% ~p #(Vg)~ /=iL\ , / �9 

v,, 
,=lL ml J " 

iL~ = ~ [v,+Vgr,] .V,+ Z (u ,=1 ~ )~/. (49) 

The procedure used to apply this evolution operator is not very different from that 
used in the isotropic method. However, a matrix (u appears in the operators that 
generate the particle positions r~ rather than a single variable (G), and a matrix of cell 
parameters (h) is introduced rather than a scalar variable (e). Fortunately, 7g is 
constrained to be a symmetric matrix (see section 4.4). Therefore, the modified 
velocity-Verlet part of  the procedure becomes 

ri(At) = ~'~(0) (]~e (~) Eg(0) r~(0) + Atlas (-~) Eg(0) v~ (~--Z)} 

~(At) = G(0) {io (~)  ~'g(0) ~(0)} 

v~(~) = v(0) + 2~[r~(0)] 

vi(At ) = v,(0) + 2~ [F,(0) + F,(at)], (so) 
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where 

Iio exp 
t T)J=~ = 

exp(  t) L tT)J~,~ = -",2)6=~' (5l) 

the 2 are the eigenvalues Ofu and gg(0) is the associated matrix of eigenvectors 
(gtgyggg = ~'). (Note, for 3 x 3 matrices the eigenvalues and eigenvectors can be 
determined analytically.) 

A similar scheme is used to apply the operator 

d} = exp {- t' ~ [(u + [ ~  + v~_]Y') v,]' V,,} (52) 
that appears in the multiple time step factorization of exp ( i L ~ c p  t). That is, 

vi(t') = ~(0) io(0) ~g(o) vXO), (53) 
where 

[]'e(0)]~ = exp (-2~ t') 6~, (54) 

the 2 are the eigenvalues of the matrix (Tg(0) + [Tr[Tg(0)]/Nf + v~_(0)lT), and ~'g(0) is the 
associated matrix of eigenvectors. Again, the factors of sinh (x ) /x  can be expanded in 
a Maclaurin series to arbitrarily high order without loss of generality. Note that 
accumulation of the velocity scaling factor, as in equation (35), cannot be used in 
conjunction with the application of the operator exp (iLNHcpAt/2) because the 
velocities are both rotated and scaled (see appendix C). 

As before, the use of the direct translation technique is recommended over closed- 
form expressions for the phase space vector. Fortran code to apply this integrator is 
presented in appendix C. Note that the isotropic part (i.e., the volume) is calculated in 
exactly the same way as in the Andersen-Hoover method. 

It is often useful to introduce a set of constraints on the particle degrees of freedom 
into isothermal-isobaric calculations [10]. This is commonly accomplished through 
the use of one of two methods [10]. The first scheme divides the system into small 
groups of atoms that share common constraints and couples the barostat (% or u only 
to the centre-of-mass of each such group, and a centre-of-mass pressure virial replaces 
the full atomic result in the equations of motion. It can be shown that the ensemble 
average pressure generated by the centre-of-mass virial at constant volume and 
temperature is given correctly, provided the size of the groups is small in comparison 
with the size of the simulation cell. If, however, the groups are not rigid bodies, the 
isobaric ensemble defined by centre-of-mass volume scaling differs from the standard 
definition. The numerical implementation of the centre-of-mass N P T  method can be 
carried out straightforwardly. The centres-of-mass of the groups are evolved by 
reversible N P T  integration (isotropic or flexible), while the relative coordinates are 
evolved by reversible N V T  integration in conjunction with Shake/Rattle algorithms. 

The second N P T  scheme is formulated by coupling all the atoms in the system to 
the barostat. The constraints then make a non-trivial contribution to the pressure 
virial because V~ = - ~ i  2i a~ is a part of the total potential energy and contributes to 
the virial. Numerical integration of this latter N P T  method requires the iteration of a 
modified procedure, Shake/Rattle plus Roll (appendix D), through the first/second 
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application of the exp (iLNHcpAt/2) operator (see equation (39)). The integration 
scheme and the Roll algorithm are described in detail in appendix D. Alternatively, the 
Shake/Rattle plus Roll procedure can be replaced in some cases by a reversible 
Gaussian dynamics algorithm [20] to form a fully reversible explicit integrator. In 
contrast to the NVT method, the volume and the atoms involved in all sets of 
constraints formally must be coupled to the same thermostat. This restriction is 
generally relaxed as the volume is assumed to be approximately dynamically decoupled 
(large W). 

5. Multiple time step integration 

It is relatively straightforward to modify the preceding integrators to perform the 
type of multiple time step integration useful for treating problems involving long- 
range forces, high frequency vibrations and general problems involving separation 
of time scales. These integrators, called reference system propagator algorithms 
(RESPAs; to indicate explicit reversibility, the designation r-RESPA has also been 
used in the literature [21]) [1], are now defined. 

5.1. NVE-RESPA 

For completeness, the NVE-RESPA algorithm [1] is reviewed first. In NVE- 
RESPA, the evolution operator is broken up into several parts 

= 

�9 5t 
• exp ('LI ~-)] exp(iLa~)-t-O(At3), 

i L l = ~  ~ "Vvi, 
i = l  i 

N 

iL 2 = ~ v~ "V~i, 

iL 3 ~ [Fi(r)--F~f(r)] V . ~ 
= �9 vi  , 

i ~ 1  I_ i A 

where 

(55) 

(56) 

and 6t -- At/n. This factorization naturally gives rise to a process wherein the system 
is propagated using velocity-Verlet integration at small time step 5t for n steps 
under the influence of an arbitrary refernce force F ref. The error induced by this 
approximation is corrected by applying exp (iL 3 At/2) at both the beginning and end 
of the large time interval At. Thus, the presumably computationally expensive true 
force F, is evaluated only every n steps (multiple time step integration). In practice, the 
integrator is applied as follows: 

r(At) =rve~ [r(0), v(0) + ~ -~t IF(0) ~ref(0)] ;n, 6t] 

v(At) = Vv~ Jr(0), v(0)+ 7(At [F(0)--mF"e~(0).j. ]' n, 6t] 

+ At IF(At) --Fref(At)] (57) 
2 L m J" 
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That is, the aforementioned n-step velocity-Verlet (VV) integration procedure is 
performed starting with a velocity initial condition modified by the difference between 
the true force and the reference force at the beginning of each large step. Also, the 
velocities obtained from the n-step velocity-Verlet procedure must be modified by the 
difference between the reference force and the true force evaluated at the end of the 
large time step. 

The direct translation technique can be used to develop a conceptually simple 
RESPA integration procedure. For example, the operator, equation (55), can be 
rendered into pseudocode as 

v = v + 2 ~  * (F - F TM) 

DO i =  1,n 

v : v+2~*Fref  

r = r + S t , v  

CALL REF_FORCE 

= v+  8t ,F~e r 
v Tmm 

ENDDO 

CALL FORCE 

v = v + A t  �9 ( r  - r ,~ (58)  
z m  

o r  
DO i =  1,n 

v = v+2~*Fn~ 

r = r + S t * v  

CALL REF_FORCE 
F now = F ref 

IF(i.EQ.n) THEN 

CALL FORCE 
F n~ = F r~f + n*(F - F r~r) 

ENDIF 

V = V + 2 ~ - , e n ~  

ENDDO. (59) 

The latter formulation, equation (59), is particularly useful when combining RESPA 
integration with holonomic constraints. The standard holonomic constraint algo- 
rithms, Shake [18] and Rattle [2], can be simply inserted in equation (59) in the usual 
places (Shake before the calls to the forces, and Rattle before the ENDDO; see code 
in appendix E). 

In order to handle problems involving high frequency vibrations, it is generally 
sufficient to take F r~f = Fib. Thus, the system can be evolved under the action of the 
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large vibrational forces for a small time step St and the other softer forces applied only 
for the large time step At [1]. This, of course, saves many evaluations of the softer 
forces which usually take much more CPU time to evaluate than F ~b. 

In problems involving long-range forces, strong short-range interactions are also 
present. These can be separated out and placed in the reference force. For a system of 
particles interacting via a pair potential consisting of both a short-range repulsive and 
a long-range attractive interaction (as, for instance, in a Lennard-Jones fluid), it is 
useful to write the force on each particle as [1] 

F, = ~ f,j(r,j) = Z f,j(r,j) S(%) + Z f,J(%)[1 - S(r,j)], 
J J J 

F, = F~ ~~ + F~, ~ (60) 

If S(r) is chosen to change slowly from one to zero as r increases from ro - 2  to r~, for 
example [1], S(r) = 1 

= 1 + 72(2~- 3) 

= 0  

r-- (ro -- 2) 
7 -  2 ' 

r < r e - 2 ,  

ro-- 2 >~ r <~ ro, 
r > re, 

(6U 

then the short-range repulsive force is separated from the long-range attractive part 
as desired. Computer time is saved because the computation of the reference force, 
F~ ~f = F~. h~ requires fewer interparticle distance evaluations than a computation of 
the full force (due to the small cutoff distance, ro). The full force, which includes the 
long-range component, needs to be evaluated only for the large time step. 

5.2. Extended system RESPA 
The approximate evolution operators that generate integrators for the extended 

systems methods presented in the previous section are of the form 

�9 At At . . At exp ( i LAt) = exp ( tLNncx ~)  exp ( iLl ~)  exp (1L~ At) exp ( iLl ~ ) exp ( tLNHcx ~)  

+ C(At3), (62) 

where iLNHcx denotes either iL~H c or iL~ncr. In addition, the inner sequence of  three 
operators in equation (62) leads to a velocity-Verlet or modified velocity Verlet 
integration. This realization makes it straightforward to define an appropriate 
RESPA. 

The first variant of RESPA presented here, is useful when the evolution prescribed 
by the operator exp (iLNHc~ At/2) is slow compared with the time scale associated with 
the reference force. It is formed by writing 

�9 At St . 8 t  n exp ( iLAt) = exp (tLNHcx ~)  exp ( iL3 ~ ) [exp (iLl ~) exp ( iL2 ~t) exp (~Ll ~) ] 

At At 3 

and is named XO-RESPA (extended system outside-reference system propagator 
algorithm). In general, XO-RESPA can be applied in systems that have fast vibrations 
as the time scale associated with the extended system variables is usually chosen to be 
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slow compared with these motions (i.e., through the masses Q and W). Two exceptions 
are in path integral molecular dynamics where it is most efficient to have the extended 
system variables (the thermostats) evolve on the same time scale as the vibrations of 
the path integral chain polymer [22] and in NPT simulations of systems with stiff 
bonds (atomic virial) that give rise to a strong coupling between the system and the 
baro/thermostat  velocities�9 The XO-RESPA factorization may also be applied to the 
long-range force problem. However, it may be the case that the extended system 
variables have been chosen to evolve on a time scale close to that of the short-range 
forces�9 Such systems require a different RESPA factorization. 

I f  the motion prescribed by exp (iL~cx t') occurs on the same time scale as that 
generated by the reference force, then a useful RESPA must include the application of 
this operator for the small time step St: 

exp . 5t . At . 5t 

5t 5t 

�9 5t 5t 3 • [exp (-- ,LNHc~ ~) exp ( iL3 ~)  exp (iLN~c~ ~) ] + C(At ). (64) 

The resulting integrator, XI-RESPA (extended system inside-reference system 
propagator algorithm), is constructed so that when n = 1 the original extended system 
algorithm (equation (62)) is recovered. Also, the operator exp ( -  iLN~cx 5t/2) is never 
really applied, as can be seen by rewriting XI-RESPA as 

�9 5t exp iLAt = [ exp ( lLz~H c~ ~) exp ( iL3 ~)  exp ( iL1 ~) exp ( iL2 5 t) exp ( iL 1 ~) 

�9 5 t  . 5t • exp ( ~L~ncx ~) ] [exp ('LN~cx-~) exp ( iL~ ~) exp ( iL2 St) 

• {. 5t\]~-~Iexp �9 5t 5t 

5t . At . 8t 

More specific information on the formulation of XO-RESPA and XI-RESPA for 
each type of the extended system method is provided in the following subsections. 

5.3�9 NVT-RESPA 
In the case of NVT-RESPA, the operators, iLl, iL~ and iL3, retain exactly the same 

definitions as for the NVE-RESPA case. Therefore, NVT-XO-RESPA is simply NVE- 
RESPA modified by the application of the extended system operator exp (iLNH c At/2) 
at the beginning and the end of each large time interval At. NVT-XI-RESPA is only 
slightly different. It can be defined as an n time step, reversible, NVTintegration of the 
reference system wherein the particle velocities are modified by the difference between 
the true force and reference force (as in NVE-RESPA) after/before the first/final 
(2nth) application ofexp (iLNH e 5t/2). A Fortran implementation of NVT-XO-RESPA 
and NVT-XI-RESPA is provided in appendix E. 
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5.4. NPT-RESPA 

The NPT-RESPA case is somewhat more difficult to formulate than the NVTcase. 
Here, the operator factorizations defined in equations (64) and (65) generate an n-step, 
modified, velocity-Verlet procedure that depends on the degrees of  freedom associated 
with the cell volume (Andersen-Hoover) and cell shape (Parrinello Rahman). In 
addition, under NPT-XI-RESPA the last/first exp(iLNHcpSt ) operator in the 
factorization, equation (65), contains different volume or cell shape related forces 
from the others in the sequence. For  isotropic constant pressure, the operators iLl, iL2, 
and iL 3 are 

i L l = ~  ~ "Vv.? 
i=1 i 

N 0 
iL~ = ~ [v~+rJ .% + v , ~ ,  

i=1 

iL a = ~ [F~(r)--F~ef(r)] �9 V~, (66) 
i=1 [ mr J 

and in XI-RESPA the operator iL~ci, always contains the reference force on the 
logarithm of the volume (the reference virial) 

= l~ re f ( r  ~ __ , ] p r e f  V ,  (67) G~ ~f 1+ m ~ v ~ + ~ r  i ~ i  ~-, ~-ext 

but the first and last operator in the break up, equation (65), also contain n times the 
difference virial 

G ref n r " ref ref = -- P;xt) a~ ff ~ + ~ [F~ -- F, (r)] - d(P~x t , 

where nSt = At. For  fully flexible constant pressure, the required operators are 

N [F~ef(r)] 
i L I = E  ~ - ~  'Vv? 

i=1 i 

i--~l[ ref ;L3 = V,-r  (0] .V 
m i  J vi '  

(68) 

(69) 

and in XI-RESPA the operator iLNHcI~ always contains the force on the unit cell (the 
reference tensorial virial) 

N 
ref ref (Fg)~Z = F, m~(v~ )~(vi)p 

i = l  

N 

V ~ ( e r e f ~  t r  ~ _ ref + ~ ,  ~ J~, v~ P~xt VS~p, (70) 
i 1 

but the first operator and last operator in the break up, equation (65), also contain n 
times the difference virial, 

(~efr~ (Fg)~/~+n F F TM ref (71) = ( ,-- , )~(ri)z-- [(Pext-- P~'xt) V] 5~p g]~fl .= 
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Despite these complications, NPT-XO-REPSA and NPT-XI-RESPA are applied in 
an analogous manner to their NVT counterparts. 

6. Stability of integrators 

Newtonian or Hamiltonian (NVE) dynamics obey Liouville's theorem and thus 
preserve the phase space volume. An integrator or map derived from a (symmetric) 
Trotter breakup of the evolution operator is also phase space volume preserving. 
Therefore, the dynamics generated by such an integrator or map will conserve not the 
true Hamiltonian, but rather a modified, time-step dependent Hamiltonian, /)(At) 
[23]. This occurs because, in one dimension, phase space volume preservation implies 
Hamiltonian flow. For example, velocity-Verlet integration of H = p2/2m + mco~x2/2 
conserves H = p2/(2m[1 - (coAt~2)2]) + mco2x2/2. This guarantees that for all time t, the 
instantaneous energy H(t) generated by the map will only fluctuate about H(0) and not 
drift away, thus preserving the integrity of the energy shell over a trajectory. It also 
indicates that, in the region of stable evolution (coAt < 2 for the oscillator), the map 
can possess closed orbits (d = 1); the orbits differ from those of the true Hamiltonian. 
In addition, the map does not generate the exact dynamics of the modified Hamiltonian 
/t, but only conserves it (phase errors accumulate). Nonetheless, any Trotter 
factorization of the evolution operator will, in one dimension, possess, by construction, 
a desirable level of accuracy. In higher dimensional problems, velocity-Verlet 
integration (one class of these maps), has at least been observed empirically to produce 
long trajectories with well behaved energy conservation in many applications [24]. 
Other factorizations of more recent origin [1] seem to exhibit this same property. 

Extended system methods are not Hamiltonian and always have a greater than 
one-dimensional phase space. It is, therefore, unclear from the standpoint of analytical 
theory whether or not integrators which correctly weight the phase space (have the 
correct J) will possess any special properties relative to the conserved quantity H' 
(which is not a Hamiltonian). It will be demonstrated empirically (see section 7) that 
Trotter factorizations of the evolution operator with the form 

At At = exp/iL~c~2~exp/iL1-2~exp(iL~At)exp['l ) ~  ) ~tL12)exp~ l L ~ c ~  {. At~ exp (iLAt) 

+ (9(At 3 ) (72) 

generate dynamics that conserve H '  to good tolerance, while factorizations such as 

At At exp(iLAt) = exp(iLl-~)exp(iLNrlC~)exp(iL2At)exp iLNi~c~)exp(iL~ ~ )  

+ (9(At a) (73) 

behave less satisfactorily. One possible explanation of this observation is that applying 
the quasi-Hamiltonian portion of the evolution operator, 

exp (iL 1 At/2) exp (iL 2 At) exp (iL 1 At/2), 

and modifying the result with a high accuracy, multiple time-step treatment of the 
extended variables (thermostat, barostats, etc.) preserves some of the features of 
Hamiltonian flow described above. The iterative velocity-Verlet algorithms which are 
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used commonly in extended systems simulations [24] are formulated in a similar way. 
The salient difference between the two types of method, i.e., the reversible algorithms 
described here and iterative velocity-Verlet, is that a multiple time-step treatment of 
the extended system degrees of freedom is used in place of an iterative self-consistent 
scheme. 

The observed differences in the ability of the two Trotter factorizations, equations 
(72) and (73), to conserve H '  have important ramifications for the multiple step 
methods defined in the previous section. In general, XO-REPSA give good energy 
conservation for all choices of n, the number of inner time steps. That is, given a 
reference force and a fixed value of At, the improvement in energy conservation will 
saturate at large n, as is observed in N V E - R E S P A  (propagation using only the 
reference force has a finite level of accuracy). The XI-RESPA algorithm, however, will 
be shown (numerically) to behave differently (see section 7). Energy conservation 
improves with increasing n, and then degrades. A more accurate reference force (Fre f 
a better description ofF)  increases the critical value ofn. This phenomenon is observed 
because as n increases, XI-RESPA approaches the less desirable integrator, equation 
(73) (i.e., 6t-+ 0 but At finite). Despite theses difficulties, some level of XI-RESPA is 
often desirable or necessary. Path integral MD simulations [22], for instance, utilize 
high frequency thermostats to promote the efficient sampling of  phase space. 
N V T - X I - R E S P A  is therefore employed to generate accurate trajectories. Similarly, 
N P T - X I - R E S P A  integration is required to produce the correct equilibrium volume dis- 
tribution in systems which contain molecules with stiff intramolecular bonds. 
Basically, XI-RESPA must be used with a number n of inner RESPA steps 
commensurate with the quality of the reference force. 

7. Results 

Applications of the integrators developed in the previous sections to instructive 
model problems and more realistic atomic as well as molecular systems are presented 
in this section. 

7.1 Mode l  problems 

In order to illustrate some of the general properties of the reversible integrators, a 
one-dimensional harmonic oscillator (m = 1,co = 1 , k T  = 1, Q = 1, Q~ = 1, M = 2, 
x(0) = 1, v(0) = 1, At = 0"03) is studied under canonical dynamics ( N V T ) .  Although 
this is a simple one-dimensional problem, it nonetheless contains sufficient complexity 
to be of pedagogical value. In addition, very long trajectories (many oscillator 
'periods') can be generated, allowing one to determine unambiguously the relative 
efficiency of various algorithms. 

First, the ability the multiple time step Yoshida/Suzuki method [15, 16] defined in 
equation 29 to reduce the computational overhead associated with the application of 
the Nos~-Hoover chain (NHC) operator exp ( i L ~  c At/2) is demonstrated. In figure 1, 
the deviation of the conserved quantity from its initial value, [E(t)--E(O)]/[E(O)I, is 
plotted versus time as a function of the number of inner steps no used in the NHC 
multiple time step procedure, equation (29). Yoshida/Suzuki intetgration, denoted as 
n e x ny~ for a ny~ step algorithm, is observed to reduce the total number of steps (n e ny~) 
necessary to achieve converged results relative to the simple algorithm (no equal length 
steps, ny S = 1) by a factor of from seven to fourteen. (Note, the baseline on the 48 x 1 
result is not flat; it becomes flat at 96 x 1.) 
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Figure 1. The deviation of the conserved quantity from its initial value, AE(t) = [E(t)-E(0)]/  
[E(0)], for a harmonic oscillator undergoing Nosd-Hoover chain dynamics (m = 1, co = 1, 
Q~ = 1), plotted versus time as a function of the number of inner steps no used in the 
NHC multiple time step procedure, equation (29). Yoshida/Suzuki integration is denoted 
by n c x ny s for a total of n c x r /y  s inner steps. 

The new reversible N V T  in tegrator  has been tested against the s tandard  iterative 
method  described in reference [7]. The quanti ty,  

AE(At) = ( 1 )  k~l E(kAt)-E(O) 
E(O) ' 

(74) 

the average deviation o f  the conserved quanti ty,  is used to assess the accuracy o f  the 
trajectories. In  figure 2, results for  the two N V T  methods,  again for the harmonic  
oscillator, are presented as a funct ion o f  time step At, for two different values o f  the 
N H C  parameter  Q = kTr 2. The N V E  results are shown as a reference. As the N H C  
time scale r decreases (~ > 1), the energy conservat ion o f  the iterative method  degrades 
while that  o f  the reversible method  remains the same. Therefore,  when r = 1/co = 1, 
the reversible method  achieves the same relative energy conservat ion as the iterative 
method  with about  twice the same step. 
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Figure 2. The deviation of the conserved quantity versus time step for a harmonic oscillator 
undergoing Nos~-Hoover chain dynamics (m = 1, ~o = 1) for two different values of the 
Nos6-Hoover chain parameter Q~. The squares are the results ofiterative velocity-Verlet, 
the triangles are the results of the new explicit method, and the circles are the results of 
an NVE calculation performed using velocity-Verlet. (a) Q~ = 1 ; (b) Qk = 10. 

The alternative breakup of  the Liouville operator,  equation (73), has also been 
investigated. In figure 3, the deviation of the conserved quantity as a function of  time, 
generated by the alternative scheme, is presented. As stated in the previous section, the 
method is not nearly as well behaved as the recommended formulation (see figure 1). 

NVT-XI-RESPA (extended system inside-reference system propagat ion algor- 
ithm) integration of  the oscillator system under N V T  dynamics (Q = 1) has been 
examined in order to illustrate the care that  is necessary in the use of  the algorithm. 
The trivial reference force F~e f = --2a~2x is employed for this purpose. In figure 4, the 
average deviation of  the conserved quantity is presented versus the number  n of  inner 
time steps used to integrate the reference system. Standard NVE-RESPA is included 
as a benchmark. As discussed in the previous section, NVT-XI-RESPA begins to 
approach the less stable breakup, equation (73), in the large n limit. Hence, there is a 
critical value of n above which the stability of  the algorithm degrades. The critical 
value of n increases as a reference system becomes more accurate (here, as 2 -+ 1). This 
is in contrast  to the NVE-RESPA and NVT-XO-RESPA methods, which give good 
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the conserved quantity from its initial 
[E(t)- E(O)]/[E(O)], for a harmonic oscillator undergoing Nos~-Hoover chain dynamics 
(m = l, co = 1, Qg = 1) using decomposition equation (73). 

energy conservation for all values of n (i.e., the average deviation of the conserved 
quantity reaches a plateau). The critical value of  n in XI-RESPA is within the plateau 
region of NVE-RESPA. It is, therefore, a useful algorithm. Again, however, n must 
not be taken larger than warranted by the reference force. The results described above 
are not peculiar to this simple model and have been observed in many different 
systems. 

7.2. Lennard-Jones fluid 

A somewhat more realistic system, Lennard-Jones argon (e = l lg '8K,  a = 
3-405 A, T* = 0-75, p* = 0.8, N = 864, Rout = 3o-), has been studied under NVE, and 
both 'massive'  NVT and NPT dynamics. In a 'massive' calculation [7, 25], an 
independent N H C  is placed on every degree of freedom (including the volume) for a 
total of  3N chains in NVT dynamics or 3N+  1 chains in NPT dynamics. This 
represents a stringent test of the reversible method. The extended system time scale 
parameter used in the calculations was taken to be ~ = 2500 fs for both the barostat 
and thermostats. 

In figure 5(a), the average deviation of the conserved quantity as a function of  time 
step is presented. The behaviour of  the conserved quantity is essentially the same for 
NVE, NVT  and NPT dynamics. The iterative integrators give similar results (not 
shown). However, the reversible formalism does allow multiple time step integration 
to be formally developed (a more ad hoc iterative scheme has been presented elsewhere 
[22]). Accordingly, the results of long-range forces XI-RESPA calculations are 
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Figure 4. The average deviation of the conserved quantity for a harmonic oscillator 
undergoing Nos~-Hoover chain (m = l ,o )=  I, Q~ = 1), and Newtonian dynamics, 
plotted versus the number of inner time steps nre f used to integrate the reference system 
(F,.et =-2co2x, At--0"01). The circles are Newtonian dynamics, and the triangles are 
Nos~-Hoover dynamics. (a) ,t -- 0"5; (b) 2 = 0.9. 

presented in figure 5(b) for r~ = 2a, 2 = 0.3a,~t = 25 fs, and nr~ f, the number  of  
multiple time steps. The energy conservation is essentially unchanged with nr~ f ranging 
from 1 to 4. 

7.3 Liquid all-atom butane 

A flexible all-atom butane model [26] has been examined in the liquid phase 
(T  = 267 K, V = 159 A3/molecule, N = 64 molecules) under NVE, and b o t h '  massive '  
NVT and NPT dynamics. The average deviation of  the conserved quantity AE at the 
typical time step At = 0-5 fs is the same for the three types of  dynamics and is 
independent o f  integrator. Table 1 shows AE from a series of  butane simulations using 
reversible NVT and Andersen-Hoover  NPTintegration with no RESPA (n = 1), and 
NVT-XO-RESPA and NPT-XI-RESPA (n > 1). The number  n of  multiple time steps 
was chosen to give a constant value for the inner time step 6t = 0"25 fs in all of the 
RESPA calculations. The data in table 1 show that the reversible multiple time step 
method, NVT-XO-RESPA, can be employed to integrate the system to the same level 
of  accuracy as the small time step (0.5 fs) using a 3 fs time step and n = 12 RESPA 
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Table 1. Average deviation of the conserved quanti ty AE from liquid all-atom butane 
simulations with reversible N V T  and Andersen-Hoover  N P T  integration with no 
RESPA (n = 1), and N V T - X O - R E S P A  and N P T - X I - R E S P A  (n > 1). 

104AE 

At (fs) n N V T  N P T  

0.25 1 0-426 0.344 
0'5 1 1.616 1.624 

1'0 4 0.473 0.489 
2-0 8 0.898 0-739 
3"0 12 1-753 1.606 
4"0 16 3-838 3.322 
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Figure 5. The average deviation of the conserved quantity for a Lennard-Jones system (e = 
119.8 K , a  = 3-405 .~, T* = 0-75, p* = 0 ' 8 , N =  864, Rcut = 3a) undergoing N V E  (circ- 
les), N V T  (triangles), and N P T  (squares) dynamics : (a) plotted versus the time step (no 
RESPA);  (b) plotted versus the number  nre f of RESPA steps under  RESPA with 
R~r~f~ = 2a, At = (n~f 25) fs. 

c u t  
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Table 2. Average deviation of the conserved quantity AE from liquid pseudoatom tetradecane 
simulations with Andersen-Hoover NPT integration with no RESPA (n~f = n~,tr ~ = 1), 
and NPT-XI-RESPA (nail = 2, n~nt~ ~ > 1). 

At (fs) nlr f nmtra 10~AE 

0'5 1 1 0-153 
1.0 1 1 0.641 

2.0 2 2 0"161 
4.0 2 4 0"169 
6"0 2 6 0-234 
8"0 2 8 0"372 

10"0 2 10 0.549 
12.0 2 12 0'697 
14"0 2 14 0'962 

steps (all intramolecular  interactions in the reference force but  no intermolecular  
terms). Similar results have been reported elsewhere for NVE-RESPA [21]. The 
A n d e r s e n - H o o v e r  equat ions can be integrated at the same level o f  accuracy by using 
NPT-XI-RESPA (see table 1). Note  that,  in constant  pressure simulations, NPT-XO- 
R E S P A  is inappropr ia te  as NPT-XI-RESPA integrat ion with a sufficient number  o f  
N H C  multiple time steps {no = 3, ny s = 3} is required to give the correct  average 
volume (the volume generated by the small time step calculations). 

7.4. Solid cholesterol acetate 

Cholesterol  acetate is a molecular  solid o f  space g roup  P111 at the state point  
{T = 123 K, Pext = 0} [27]. As in the butane  example above, NVT-XO-RESPA integra- 
t ion allows a time step o f  3 fs (n = 10) to be used wi thout  degradat ion  o f  energy 
conservat ion in simulations o f  an al l -atom model  [28] o f  cholesterol acetate. Reversible 
P a r r i n e l l c ~ R a h m a n - H o o v e r  NPT simulations under  NPT-XI-RESPA were found  to 
per form similarly well. Both  the NVT-XO-RESPA and NPT-XI-RESPA methods  
gave results in agreement  with all facets o f  the corresponding small time step 
calculations. In  contrast ,  NPT-XO-RESPA is no t  sufficiently accurate to yield the 
correct  average volume (i.e., the volume generated by the s tandard  me thod  (no 
RESPA)  using a small time step o f  0-5 fs). 

7.5. Liquid pseudoatom tetradecane 

A flexible pseudoa tom model  [29] o f  tetradecane has been simulated in the liquid 
phase (T  = 323 K, V = 444 A3/molecule,  N = 48 molecules) to illustrate the utility o f  
using a double  R E S P A  factorization. Here, the reference force consists o f  all the 
intramolecular  contr ibut ions Fvi b as well as the short - ranged par t  Fshor t o f  the 
Lennard-Jones  potential  (r c = l '8a,  2 = 0"250). The Fvi b are evaluated at each inner 
time step St, the Fs~ort each nintr a inner time steps, and the full force each nlr f x nintr a 
inner time steps. Table 2 shows AE f rom a series o f  tetradecane simulations using 
reversible A n d e r s e n - H o o v e r  N P T  integrat ion with no R E S P A  (nh. f = n~ntr a = 1) and 
NPT-XI-RESPA (nh. f = 2, nintr a :> 1). The number  o f  multiple time steps, na~f x nintra, 
was chosen to give a constant  value for the inner time step 6t = 0"5 fs in all o f  the 
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RESPA calculations. The data in table 2 show that  the reversible multiple time step 
method, N P T - X I - R E S P A ,  can be employed to integrate the equations of  motion to 
the same level of  accuracy as the typical, small time step (1 fs) using a time step as large 
as 12 fs with nlr ~ x/qintra = 2 • 12 RESPA steps. 

8. Conclusion 

New reversible integrators for extended system dynamics have been derived and 
applied to both realistic and model problems. The performance of the new methods 
was found to be as good as, or better than, the standard iterative schemes [24]. The 
most  significant advantage of the reversible integrators is that their multiple time step 
generalizations (RESPA), which can deliver large savings in CPU time, are easy to 
define and implement. In addition, the new schemes can be used in conjunction with 
other methods, such as hybrid Monte  Carlo [8], that require reversible evolution. 
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Appendix A 

In this appendix, For t ran code that  implements the explicit method for integrating 
systems in the N V T  ensemble is presented. A system of N particles is assumed to be 
coupled to a single Nos~-Hoover  chain. Continuation cards have been eliminated 
for clarity. 

SUBROUTINE INTEGRATE 
C THIS ROUTINE INTEGRATES THE SYSTEM FROM t=0 TO t=DT 
C HERE 
C N = THE NUMBER OF PARTICLES 
C X,Y,Z = THE PARTICLE POSITIONS 
C FX,FY,FZ = THE COMPONENTS OF THE PARTICLE FORCES 
C MASS = THE PARTICLE MASSES 
C NNOS = M OF THE TEXT 
C NNOS1 = M + 1 OF THE TEXT 
C XLOGS = ~ OF THE TEXT 
C VLOGS = v~ OF THE TEXT 
C GLOGS = Gi OF THE TEXT 
C QMASS = Q~ OF TEXT 
C GNKT = N I k T  OF THE TEXT 
C GKT = kT OF THE TEXT 
C NYOSH = nu, OF THE TEXT 
C NRESN = nc OF THE TEXT 
C DT = At OF THE TEXT 
C DT2 = At~2 
C DT22 = At2~2 

C WDTI = w A t / n c  OF THE TEXT 
C WDTI2 = w A t / 2 n c  ETC. 
C 
C UPDATE THE PARTICLE VELOCITIES, 
C THERMOSTAT VELOCITIES AND THERMOSTAT POSITIONS 
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IF(NNOS.GT.0)CALL NHCINT 
DO I = 1,N 

VX(I) = VX(I) + DT2*FX(I)/MASS(I) 
VY(I) = VY(I) + DT2*FY(I)/MASS(I) 
VZ(I) = VZ(I) + DT2*FZ(I)/MASS(I) 

ENDDO 
C UPDATE THE PARTICLE POSITIONS 

DO I = 1,N 
X(I) = X(I) + VX(I)*DT 
Y(I) = Y(I) + VY(I)*DT 
Z(I) = Z(I) + VZ(I)*DT 

ENDDO 
C APPLY CONSTRAINTS 

CALL SHAKE 
C GET THE NEW FORCE 

CALL GETFORCE 
C UPDATE THE PARTICLE VELOCITIES 

DO I = 1,N 
VX(I) = VX(I) + DT2*FX(I)/MASS(I) 
VY(I) = VY(I) + DTZ*FY(t)/MASS(I) 
VZ(I) = VZ(I) + DT2*FZ(I)/MASS(I) 

ENDDO 
C APPLY THE CONSTRAINTS 

CALL RATTLE 
C UPDATE THE PARTICLE VELOCITIES, 
C THERMOSTAT VELOCITIES AND THERMOSTAT POSITIONS 

IF(NNOS.GT.0)CALL NHCINT 
RETURN 
END 

C 
C 

SUBROUTINE NHCINT 
C THIS ROUTINE DOES THE NOSE-HOOVER PART OF THE 
C INTEGRATION FROM t=0 TO t=DT/2 
C GET THE TOTAL KINETIC ENERGY 

SCALE = 1.D0 
CALL GETKINP(MASS,VX,VY,VZ,AKIN) 

C UPDATE THE FORCES 
GLOGS(1) = (AKIN- GNKT)/QMASS(1) 

C START THE MULTIPLE TIME STEP PROCEDURE 
DO 15 IRESN = 1,NRESN 

DO 10 IYOSH = 1,NYOSH 
C UPDATE THE THERMOSTAT VELOCITIES 

VLOGS(NNOS) = VLOGS(NNOS) + GLOGS(NNOS)*WDTI4(IYOSH) 
DO INOS = 1,NNOS-1 

AA = EXP(-WDTI8(IYOSH)*VLOGS(NNOSI-INOS) ) 
VLOGS(NNOS-INOS) = VLOGS(NNOS-INOS)*AA*AA 

+ WDTI4(IYOSH)*GLOGS(NNOS-tNOS)*AA 
ENDDO 

C UPDATE THE PARTICLE VELOCITIES 
AA = EXP(-WDTI2(IYOSH)*VLOGS(1) ) 
SCALE = SCALE*AA 

C UPDATE THE FORCES 
GLOGS(1) = (SCALE*SCALE*AKIN- GNKT)/QMASS(1) 

C UPDATE THE THERMOSTAT POSITIONS 
DO INOS = 1,NNOS 

XLOGS(INOS) = XLOGS(INOS) + VLOGS(INOS)*WDTI2(IYOSH) 
ENDDO 
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C UPDATE THE THERMOSTAT VELOCITIES 

DO INOS = 1,NNOS-1 
AA = EXP(-WDTI8(IYOSH)*VLOGS(INOS+I) ) 
VLOGS(INOS) -- VLOGS(INOS)*AA*AA 

+ WDTI4(IYOSH)*GLOGS(INOS)*AA 
GLOGS(INOS+I) = (QMASS(INOS)*VLOGS(INOS)*VLOGS(INOS) 

-GKT)/QMASS(INOS+I) 
ENDDO 
VLOGS(NNOS) = VLOGS(NNOS) + GLOGS(NNOS)*WDTI4(IYOSH) 

10 CONTINUE 
15 CONTINUE 

C UPDATE THE PARTICLE VELOCITIES 
DO I = 1,N 

VX(I) --- VX(I)*SCALE 
VY(I) = VY(I)*SCALE 
VZ(I) = VZ(I)*SCALE 

ENDDO 
RETURN 
END 

Appendix B 

In this appendix, Fortran code that implements the explicit method for integrating 
systems undergoing Andersen-Hoover-NPT dynamics (isotropic simulation cell 
fluctuations) is presented. A system of N particles and the volume is assumed to be 
coupled to a single Nos6-Hoover  chain. Continuation cards have been eliminated for 
clarity. (See the comments in the code presented in appendix A for a complete 
definition of  the variables.) 

SUBROUTINE INTEGRATE 
C THIS ROUTINE INTEGRATES THE SYSTEM FROM t=0 TO t=DT 
C HERE 
C XLOGV = e OF THE TEXT 
C VLOGV = v~ OF THE TEXT 
C GLOGV = G~ OF THE TEXT 
C VMASS = W~ OF THE TEXT 
C O D N F = I + ~ 7 ,  W H E R E d = 3  

@ 

C GN1KT = (Nf + 1)kT 
C PINT = is the internal Pressure minus velocity-dependent part  
C PEXT = is the external Pressure 

PARAMETER(E2=I.D0/6.D0,E4=E2/20.D0, 
E6=E4/42.D0,E8=E6/72.D0) 

C 
C UPDATJg THE PARTICLE VELOCITIES, dLOG(V)/dt, 
C THERMOSTAT VELOCITIES AND THERMOSTAT POSITIONS 

CALL NHCPISOINT 
DO I = 1,N 

VX(I) = VX(I) + DT2*FX(I)/MASS(I) 
VY(I) = VY(I) + DT2*FY(I)/MASS(I) 
VZ(I) = VZ(I) + DT2*FZ(I)/MASS(I) 

ENDDO 
C UPDATE THE PARTICLE POSITIONS 

AA = EXP(DT2*VLOGV) 
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AA2 = AA*AA 
ARG2 = (VLOGV*DT2)*(VLOGV*DT2) 
POLY = (((E8*ARG2+E6)*ARG2+E4)*ARG2+E2)*ARG2+I.D0 
BB = AA*POLY*DT 
DO I = 1,N 
X(I) = X(I)*AA2 + VX(I)*BB 
Y(I) = Y(I)*AA2 + VY(I)*BB 
Z(I) = Z(I)*AA2 + VZ(I)*BB 

ENDDO 
C UPDATE LOG(V) 

XLOGV = XLOGV + VLOGV*DT 
C GET THE NEW FORCE 

CALL GETFORCE 
C THERMOSTAT VELOCITIES AND THERMOSTAT POSITIONS 

DO I = 1,N 
VX(I) = VX(I) + DT2*FX(I)/MASS(I) 
VY(I) = VY(I) + DT2*FY(I)/MASS(I) 
VZ(I) = VZ(I) + DT2*FZ(I)/MASS(I) 

ENDDO 
CALL NHCPISOINT 
RETURN 
END 

C 
C 

SUBROUTINE NHCPISOINT 
C THIS ROUTINE DOES THE 
C ANDERSEN-HOOVER P/NOSE-HOOVER CHAIN 
C PART OF THE INTEGRATION FROM t=0 TO t = D T / 2  
C GET THE TOTAL KINETIC ENERGY 

SCALE = 1.D0 
CALL GETKINP(MASS,VX,VY,VZ,AKIN) 

C UPDATE THE FORCES 
GLOGS(1) = (AKIN + VMASS*VLOGV*VLOGV - GN1KT)/QMASS(1) 
GLOGV = (ODNF*AKIN+3.D0*(PINT-PEXT)*VOL)/VMASS 

C START THE MULTIPLE TIME STEP PROCEDURE 
DO 15 IRESN = 1,NRESN 

DO 10 IYOSH = 1,NYOSH 
C UPDATE THE THERMOSTAT VELOCITIES 

VLOGS(NNOS) = VLOGS(NNOS) + GLOGS(NNOS)*WDTI4(IYOSH) 
DO INOS = 1,NNOS-1 

AA = EXP(-WDTI8(IYOSH)*VLOGS(NNOSI-INOS) ) 
VLOGS(NNOS-INOS) = VLOGS(NNOS-INOS)*AA*AA 

+ WDTI4(IYOSH)*GLOGS(NNOS-INOS)*AA 
ENDDO 

C UPDATE dLOG(V)/dt  
AA = EXP(-WDTI8(IYOSH)*VLOGS(1) ) 
VLOGV = VLOGV*AA*AA + WDTI4(IYOSH)*GLOGV*AA 

C UPDATE THE PARTICLE VELOCITIES 
AA = EXP(-WDTI2(IYOSH)*(VLOGS(1)+ODNF*VLOGV)) 
SCALE = SCALE*AA 
AKIN = AKIN*AA*AA 
GLOGV = (ODNF*AKIN+3.D0*(PINT-PEXT)*VOL)/VMASS 

C UPDATE THE THERMOSTAT POSITIONS 
DO INOS = 1,NNOS 

XLOGS(INOS) -- XLOGS(INOS) + VLOGS(INOS)*WDTI2(IYOSH) 
ENDDO 

C UPDATE dLOG(V)/dt  
AA = EXP(-WDTI8(IYOSH)*VLOGS(1) ) 
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VLOGV = VLOGV*AA*AA + WDTI4(IYOSH)*GLOGV*AA 

C UPDATE THE FORCES 
GLOGS(1) = (AKIN + VMASS*VLOGV*VLOGV 

- GNIKT)/QMASS(1) 
C UPDATE THE THERMOSTAT VELOCITIES 

DO INOS = 1,NNOS-1 
AA = EXP(-WDTI8(IYOSH)*VLOGS(INOS+I) ) 
VLOGS(INOS) = VLOGS(INOS)*AA*AA 

+ WDTI4(IYOSH)*GLOGS(INOS)*AA 
GLOGS(INOS+I) = (QMASS(INOS)*VLOGS(INOS)*VLOGS(INOS) 

-GKT)/QMASS(INOS+I) 
ENDDO 
VLOGS(NNOS) = VLOGS(NNOS) + GLOGS(NNOS)*WDTI4(IYOSH) 

10 CONTINUE 
15 CONTINUE 

C UPDATE THE PARTICLE VELOCITIES 
DO I = 1,N 

VX(I) : VX(I)*SCALE 
VY(I) = VY(I)*SCALE 
VZ(I) = VZ(I)*SCALE 

ENDDO 
RETURN 
END 

A p p e n d i x  C 

In this appendix, Fortran code that implements the explicit method for integrating 
systems undergoing Parr inel lo-Rahman-Hoover  N P T  dynamics is presented. A 
system of N particles and the box variables is assumed to be coupled to a single 
Nosd-Hoover  chain. Continuation cards have been eliminated for clarity. (See the 
comments in the code presented in appendices A and B for a complete definition of  the 
variables.) 

SUBROUTINE INTEGRATE 
C THIS ROUTINE INTEGRATES THE SYSTEM FROM t=0 TO t=DT 
C HERE 
C BOX = h OF THE TEXT 

C VBOXG = Pg/W~ OF THE TEXT 
C VIEG = EIGENVALUES OF VBOXG 
C VIEGV = EIGENVECTORS OF VBOXG 

t - +  

C GBOXG = Gg OF THE TEXT 
C PINT = THE INTERNAL PRESSURE TENSOR(MINUS VELOCITY-DEPENDENT PART) 
C PEXT = THE EXTERNAL PRESSURE TENSOR = I*PEXT 
C AKIN(J,I) - ~kN=l ra~(vk)j(vk)~ 
C ONF = I lN  s 

C ONFM = (l/Ns)I 
C 
C UPDATE THE PARTICLE VELOCITIES, BOX VELOCITIES, 
C THERMOSTAT VELOCITIES AND THERMOSTAT POSITIONS 

CALL NHCPFULLINT 
DO I = 1,N 

VX(I) = VX(I) + DT2*FX(I)/MASS(I) 
VY(I) = VY(I) + DT2*FY(I)/MASS(I) 
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VZ(I) = VZ(I) + DT2*FZ(I)/MASS(I) 

ENDDO 
C UPDATE THE PARTICLE POSITIONS 

CALL DIAG (VTEMP,VEIG,VEIGV) 
DO I = 1,3 

AA = EXP(DT2*VEIG(I)) 
AA2(I) = AA*AA 
ARG2 = (VEIG(I)*DT2)*(VEIG(I)*DT2) 
POLY = (((E8*ARG2+E6)*ARG2+E4)*ARG2+E2)*ARG2+I.D0 
BB(I) = AA*POLY*DT 

ENDDO 
DO I = 1,N 

U1 = X(I)*VEIGV(1,1)+ Y(I)*VEIGV(2,1)+ Z(I)*VEIGV(3,1) 
uz = X(I)*VEIGV(12)+ Y0)*VEIGV(22)+ Z(I)*VEIGV(a,2) 
ua  = X(1)*VEIGV(1,3)+ Y(I)*VEIGV(2,3)+ Z(I)*VEIGV(3,3) 
UV1 = VX(I)*VEIGV(1,1)+VY(I)*VEIGV(2,1)+VZ(I)*VEIGV(3,1) 
UV2 = VX(I)*VEIGV(1,2)+VY(I)*VEIGV(2,2)+VZ(I)*VEIGV(3,2) 
u v 3  = VX(I)*VEIGV(1,a)+vY(I)*VEIGV(2,a)+VZ(I)*VEIGV(3,3) 
U1 = UI*AA2(1) + UVI*BB(1) 
u2 = U2*AA2(2) + UV2*BB(2) 
U3 = Ua*AA2(3)  + Wva*uB(a) 
X(I) = UI*VEIGV(1,1)+ U2*VEIGV(1,2)+ Ua*VEIGV(1,3) 
Y(I) = UI*VEIGV(2,1)+ U2*VEIGV(2,2)+ U3*VEIGV(2,3) 
Z(I) = UI*VEIGV(3,1)+ U2*VEIGV(3,2)+ U3*VEIGV(3,3) 

ENDDO 
C UPDATE THE BOX 
C UBOX(J,I) = VEIGV(K,J)*BOX(K,I) (SUM OVER K) 

CALL MATMUL(UBOX,VEIGV,BOX,1) 
DO I = 1,3 

DO J = 1,3 
UBOX(J,I) = UBOX(J,I)*AA2(J) 

ENDDO 
ENDDO 

C BOX(J,I) = VEIGV(J,K)*UBOX(K,I) (SUM OVER K) 
CALL MATMUL(BOX,VEIGV,UBOX,0) 

C GET THE NEW FORCE 
CALL GETFORCE 

C UPDATE THE PARTICLE VELOCITIES, BOX VELOCITIES 
C THERMOSTAT VELOCITIES AND THERMOSTAT POSITIONS 

DO I = 1,N 
VX(I) = VX(I) + DT2*FX(I)/MASS(I) 
VY(I) = VY(I) + DT2*FY(I)/MASS(I) 
VZ(I) = VZ(I) + DT2*FZ(I)/MASS(I) 

ENDDO 
CALL NHCPFULLINT 
RETURN 
END 

SUBROUTINE NHCPFULLINT 
C THIS ROUTINE DOES THE 
C PARRINELLO-RAHMAN-HOOVER/NOSE-HOOVER CHAIN 
C PART OF THE INTEGRATION FROM t=0 TO t=DT/2 
C GET THE TOTAL KINETIC ENERGY 

CALL GETKINP(MASS,VX,VY,VZ,AKIN,AKINTOT) 
C GET BOX KINETIC ENERGY 

CALL GETKINB (BMASS,VBOXG,AKINB) 
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C UPDATE THE FORCES 
GLOGS(1) = (AKINTOT + AKINB - GND2KT)/QMASS(1) 
DO I = 1,9 

GBOXG(I,1) = (ONFM(I,1)*AKINTOT+AKIN(I,1) 
+ VOL*(PINT(I,1)-PEXT(I,1)))/BMASS 

ENDDO 
C START THE MULTIPLE TIME STEP PROCEDURE 

DO 15 IRESN = 1,NRESN 
DO 10 IYOSH = 1,NYOSH 

C UPDATE THE THERMOSTAT VELOCITIES 
VLOGS(NNOS) = VLOGS(NNOS) + GLOGS(NNOS)*WDTI4(IYOSH) 
DO INOS = 1,NNOS-1 

AA = EXP(-WDTI8(IYOSH)*VLOGS(NNOSI-INOS) ) 
VLOGS(NNOS-tNOS) = VLOGS(NNOS-INOS)*AA*AA 

+ WDTI4(IYOSH)*GLOGS(NNOS-INOS)*AA 
ENDDO 

C UPDATE THE BOX VELOCITIES 
AA = EXP(-WDTI8(IYOSH)*VLOGS(1) ) 
DO I = 1,9 

VBOXG(I,1) = VBOXG(I,1)*AA*AA + WDTI4(IYOSH)*GBOXG(I,1)*AA 
ENDDO 

C UPDATE THE THERMOSTAT POSITIONS 
DO INOS = 1,NNOS 

XLOGS(INOS) = XLOGS(INOS) + VLOGS(INOS)*WDTI2(IYOSH) 
ENDDO 

C UPDATE THE PARTICLE VELOCITIES 
TRVG = ONF*(VBOXG(1,1)+VBOXG(2,2)+VBOXG(3,3)) 
DO J = 1,9 

VTEMP(J,1) = VBOXG(J,1) + TRVG + VXLOGS(1) 
ENDDO 
CALL DIAG (VTEMP,VEIG,VEIGV) 
SC1 -- EXP(-VEIG(1)*WDTI2(IYOSH)) 
SC2 = EXP(-VEIG(2)*WDTI2(IYOSH)) 
SC3 = EXP(-VEIG(3)*WDTI2(IYOSH)) 
DO I = 1,N 

UV1 = VX(I)*VEIGV(1,1)+VY(I)*VEIGV(2,1)+VZ(I)*VEIGV(3,1) 
UV2 = VX(I)*VEIGV(1,2)+VY(I)*VEIGV(2,2)+VZ(I)*VEIGV(3,2) 
UV3 = VX(I)*VEIGV(1,3)+VY(I)*VEIGV(2,3)+VZ(I)*VEIGV(3,3) 
UV1 = UVI*SC1 
UV2 = UV2*SC2 
UV3 = UV3*SC3 
VX(I) = UVI*VEIGV(1,1)+ UV2*VEIGV(1,2)+ UV3*VEIGV(1,3) 
VY(I) = UVI*VEIGV(2,1)+ UV2*VEIGV(2,2)+ UV3*VEIGV(2,3) 
VZ(I) = UVI*VEIGV(3,1)+ UV2*VEIGV(3,2)+ UV3*VEIGV(3,3) 

ENDDO 
C GET THE TOTAL KINETIC ENERGY 

CALL GETKINP (VX,VY,VZ,AKIN,AKINTOT) 
C UPDATE THE FORCES 

DO I = 1,9 
GBOXG(I,1) = (ONFM(I,1)*AKINTOT+AKIN(I,1) 

+VOL*(PINT(I,1)-PEXT(I,1)))/BMASS 
ENDDO 

C UPDATE THE BOX VELOCITIES 
AA = EXP(-WDTIS(IYOSH)*VLOGS(1) ) 
DO I = 1,9 

VBOXG(I,1) = VBOXG(I,1)*AA*AA + WDTI4(IYOSH)*GBOXG(I,1)*AA 
ENDDO 

C UPDATE THE FORCES 
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CALL GETKINB(BMASS,VBOXG,AKINB) 
GLOGS(1) = (AKINTOT + AKINB - GND2KT)/QMASS(1) 

C UPDATE THE THERMOSTAT VELOCITIES 
DO INOS = 1,NNOS-1 

AA = EXP(-WDTI8(IYOSH)*VLOGS(INOS+I) ). 
VLOGS(INOS) = VLOGS(INOS)*AA*AA 

+ WDTI4(IYOSH)*GLOGS(INOS)*AA 
GLOGS(INOS+I) = (QMASS(INOS)*VLOGS(INOS)*VLOGS(INOS) 

-GKT)/QMASS(INOS+I) 
ENDDO 
VLOGS(NNOS) = VLOGS(NNOS) + GLOGS(NNOS)*WDTI4(IYOSH) 

10 CONTINUE 
15 CONTINUE 

RETURN 
END 
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Appendix D 

The standard Shake and Rattle constraint method is designed to work in 
conjunction with the velocity-Verlet integration algorithm (NVE)  [18]. It also can be 
used in conjunction with the explicit N V T  integration scheme as described in section 
4.3. However, if constraints are desired in N P T  simulations, the Shake and Rattle 
algorithms must be modified. The modification is given the sobriquet 'Rol l '  for 
reasons that will be come clear in the derivation. 

In the following derivation, it is assumed, as in the N V T  case, that common 
thermostats are assigned to variables involved in common sets of constraints. 
It is not assumed that a single thermostat is assigned to the volume and all the 
constrained degrees of freedom. The explicit N P T  integration algorithm can be 
thought of as evolving the system from t = 0 to t = At/2  through the action of 
exp (iL 2 At) exp (iL 1 At/2) exp (iLz~c P At/2) on the initial conditions (t = 0) and then 
from t = At~2 to t = At through the action of exp (iLNHcP At/2)exp (iL 1 At/2) on the 
conditions generated at t = At/2.  The particle positions at t = At and velocities at 
t = At /2  can be written in the form 

r~(At) ~ fi ~(2, O) r~(O) 

+ "~(2, 0) (Atv~NncP)(2, 0) + At2 zm[  ( )  k F , 0  + ~ 2~ F::)(0)]) 

u  ~ i \ ~ J ~ m  k 

where Vz~HcP()~, 0) indicates the action of exp (iLNi~c P At/2) on v(0), 2 are the Lagrange 
(k-) multipliers and 2~Fc,~0) are the constraint forces (F~)(0)=-V,~(0)a~(r(0)) ). The 

tensors Rv(2,0) and Rx(2,0) (see equation (51)) revert to scalars under isotropic 
Andersen-Hoover dynamics. The dependence of v(NacP)(2, 0) on the multipliers is 
induced by the operator exp (iLNHep At/2), which depends directly on the multipliers 
through the position-dependent part of the pressure tensor 

k*/P(r)~int]~fl ---- F/ ,  -I- ~ z~ Fci (r i )  ft. 
�9 k J ~  

(D 2) 
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The velocities at time t = At can be written exactly as 

v~(At) = fi v(2, At) S~(2, At) v~ ~- + Tmm F~(At) + ~ 2~ V~)(At) 
k 

(0) At vda0 = (At) At) Z (D 3) 

Here, the tensor R,.(2, At), and the scalars S~(2, At) and Sv(2, At) are generated by the 
action of the evolution operator exp (iL~Hcp At/2) on the particle and cell velocities 
obtained by applying exp (iL 1 At/2) to the conditions at t = At/2. 

The Shake/Roll procedure is designed to determine the Lagrange multipliers such 
that the r(At) satisfy the constraints %(r(At))= 0, for all k, to within a desired 
tolerance. In order to accomplish this, the initial values of the entire phase space 
{h(0), u ~(0), v~(0), v(0), r(0)} are first stored. The evolution operator 

exp (iL 2 At) exp (iL~ At/2) exp (iLN~c~. At/2) (D 4) 

is then applied to these initial conditions to take the system to time t = At/2. The 
multipliers required in equations (D 1) and (D 2) are taken from the Rattle/Roll 
procedure of the previous time step. Next, the particle positions, velocities, and 
position dependent part of the pressure tensor (i.e., the multipliers) are refined 
iteratively by assuming that the {vN.cF(2,0),R~(2,0),R~(2,0)} are approximately 
independent of the multipliers, the constraints are approximately independent of each 
other and that it is sufficient to solve a linearized equation for the increment to each 
of the multipliers. For the N P T  integration scheme outlined were, equation (D 1), the 
result is 

- 2a~(At) 
52 k. = 

At2 Z m[~[ 1~ ~,(2, 0) F~)(0)] �9 (k) vo, (at)' 
i 

At ~ 
r(n~w)(At) = r(~ +~m R v(2, 0) 52~ F~e)(0), 

(~,(,,m,,( , .... ~' + V--~0) ~ (F::) 
= 

(now) = 2~old) + 52e, (D 5) 
/c 

where F~')(At) is evaluated using r(~ The only difference between this procedure 
and the standard Shake method is the insertion of the rotation matrix/tensor 
1/~(2, 0), and hence 'roll'. After iterating Shake/Roll, equation (D 5), to convergence 
by cycling through the constraints a number of times, holding {VNHcp(2,0), 

~(2, 0), Rz(2, 0)} fixed, new {v~cp(2, 0), R ~(2, 0), R~(2, 0)} are generated by applying 
exp (iL~ At) exp (iL~ At/2) exp (iLNHcr At/2) to the initial conditions. This time, 
however, the refined multipliers (i.e., the refined constraint forces and position 
dependent part of the pressure tensor) are inserted in the evolution operator. The 
Shake/Roll procedure is then applied to the new input. This process of generating 
{vNi~cp(2, 0), R~,(2, 0), R ~(2, 0)}, followed by Shake/Roll refinement of the multipliers 
is continued until final convergence. Here, final convergence means that the action 
of the operator 

exp (iL~ A0 exp (iL~ At~2) exp (iL~Hcv At/2) 
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on the initial conditions results in r(At) that satisfy the constraints to the desired 
tolerance. Although, in principle, it may take many cycles through the algorithm to 
attain final convergence, in practice, the approximations are sufficiently good that 
usually only two iterations are necessary. Note, the implementation of the method is 
simplified if the multipliers are stored. This poses no particular problems on modern 
computers because the number of  multipliers scales linearly with the number of 
particles. 

In contrast to Shake/Roll,  the Ratt le/Roll  scheme is designed to determine the 
Lagrange multipliers such that the first time derivative of each constraint is zero, 

d~(At) = ~[vi(At ) +7g(At) ri(At)]'V,,(at)a~(r(At)) = 0, (D 6) 
i 

within a given tolerance. As in Shake/Roll,  the initial conditions {7g(At/2), ~(At/2),  
v~,(At/2), v(At/2)} are first stored. The multipliers from the Shake/Roll  procedure are 
then used as input to exp (iLNHcp At/2) exp (iL 1 At/2) and the initial conditions evolved 
to t = At. This produces a first guess to {Rv(2, At), S~(2, At), Sv(2, At)}. The Ratt le/Roll  
procedure iteratively refines the particle and cell velocities assuming that the 
{R v(2, At)Si(2 , At), Sv(dt , At)} are constant, the constraints are independent of each 
other, and that it is sufficient to solve a linearized equation for the increment to each 
of the multipliers: 

52~ = - 2dk(At) 
At E rail[ ~ v( ,~, At) si(~, , At) Fc~(At)] �9 Fo~(At ) ' 

i 

v~new)(At) = v~~ + 2 ~  52k !1,~(2, At) S~(2, At) F(~)(At), 

(p(r)(At~(new) ~D(r)[At~(old) ~ n t ~ . ~  = ~ntt~JJ~/~ + 52~(F~)(At))~(r~(At)) z, 

V~new)(nt) ~--- V~~ "}- ~ Sv(/~ , At) ~'~k E (V~)(At))~(r*(At))p, 
i 

]~( . . . .  ) = ~(o1,~) + 82k, (D 7) k ~k 
where the contribution of  the pressure tensor to 62~ has been neglected as Wg is 
generally large. After iterating Rattle/Roll ,  equation (D 7)), to convergence by cycling 
through the constraints a number of  times, holding {Rv(2,At),S,(2,At), Sv(2,At)}  
fixed, new {11.(2, At), Si(2, At), Sv(2 , At)} are generated using the refined constraint 
forces and position dependent part of the pressure tensor in 

exp (iLNHcP At/2) exp (iL 1 At/2). 

The Ratt le/Roll  refinement is then repeated. Note, these subsequent Ratt le/  
Roll calculations require very few iterations to converge as the multipliers are 
already fairly accurate. The full algorithm, which consists of generating the 
{Rv(2, At), Sd2, At) Sv(2, At)} followed by a Ratt le/Roll  refinement, converges rapidly 
(in about  three iterations). As in Shake/Roll,  convergence is defined to mean that the 
action of  the operator 

exp (iLNHcp At/2) exp ( iL 1 At/2) 

on the initial conditions generates {v(At), 7g(At)} that satisfy the condition on the time 
derivatives of the constraints to within the desired tolerance. 
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Appendix E 

In this appendix, For t ran code that implements N V T - X O - R E S P A  and N V T - X I -  
RESPA is presented. A system of  N particles is assumed to be coupled to a single 
N o s ~ H o o v e r  chain. Continuation cards have been eliminated for clarity. See the 
comments  in the code presented in the previous appendices for a complete definition 
of  the variables. 

SUBROUTINE INTEGRATE 
C THIS ROUTINE INTEGRATES THE SYSTEM FROM t=0 TO t=DT 
C USE NVT-XO-RESPA OR NVT-XI-RESPA 
C HERE 
C NRESP = THE NUMBER OF INNER TIME STEPS 
C DT = At OF THE TEXT 
C DTI = 5t OF THE TEXT 
C 
C UPDATE THE PARTICLE VELOCITIES, 
C THERMOSTAT VELOCITIES AND THERMOSTAT POSITIONS 

IF(XORESP.EQ.1)CALL NHCINT(DT2) 
DO 10 IRES = 1,NRESP 

IF(XIRESP.EQ.1)CALL NHCINT(DTI2) 
IF(IRES.EQ.1)THEN 

DO I = 1,N 
VX(I) = VX(I) + DT2*(FX(I)-FXREF(I))/MASS(I) 
VY(I) = VY(I) + DT2*(FY(I)-FYREF(I))/MASS(I) 
VZ(I) = VZ(I) + DT2*(FZ(I)-FZREF(I))/MASS(I) 

ENDDO 
ENDIF 
DO I = 1,N 

VX(I) = VX(I) + DTI2*FXREF(I)/MASS(I) 
VY(I) = VY(I) § DTI2*FYREF(I)/MASS(I) 
VZ(I) = VZ(I) + DTI2*FZREF(I)/MASS(I) 

ENDDO 
C UPDATE THE PARTICLE POSITIONS 

DO I = 1,N 
X(I) = X(I) + VX(I)*DTI 
Y(I) = Y(I) + VY(I)*DTI 
Z(I) = Z(I) + VZ(I)*DTI 

ENDDO 
C APPLY CONSTRAINTS 

CALL SHAKE 
C GET THE NEW FORCES 

IF(IRES.NE.NRES)CALL GETFREF 
IF(IRES.EQ.NRES)CALL GETFREFANDF 

C UPDATE THE PARTICLE VELOCITIES 
DO I = 1,N 

VX(I) = VX(I) + DTI2*FXREF(I)/MASS(I) 
VY(I) = VY(I) + DTI2*FYREF(I)/MASS(I) 
VZ(I) = VZ(I) + DTI2*FZREF(I)/MASS(I) 

ENDDO 
IF(IRES.EQ.NRESP)THEN 

DO I = 1,N 
VX(I) = VX(I) + DT2*(FX(I)-FXREF(I))/MASS(I) 
VY(I) = VY(I) + DT2*(FY(I)-FYREF(I))/MASS(I) 
VZ(I) = VZ(I) + DT2*(FZ(I)-FZREF(I))/MASS(I) 
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ENDDO 
ENDIF 

C APPLY THE CONSTRAINTS 
CALL RATTLE 
IF(XIRESP.EQ.1)CALL NHCINT(DTI2) 

10 CONTINUE 
C UPDATE THE PARTICLE VELOCITIES, 
C THERMOSTAT VELOCITIES AND THERMOSTAT POSITIONS 

IF(XORESP.EQ.1)CALL NHCINT(DT2) 
RETURN 
END 

1157 

References 

[1] TUCKERMAN, M., MARTYNA, G. J., and BERNE, B. J., 1992, J. chem. Phys., 97, 1990. 
[2] ANDERSEN, H. C., 1980, J. chem. Phys., 72, 2384. 
[3] Nos~, S., 1984, J. chem. Phys., 81, 511. 
[4] HOOVER, W. G., 1985, Phys. Rev. A, 31, 1695. 
[5] PARRINELLO, M., and RAHMAN, A., 1980, Phys. Rev. Lett., 45, 1196. 
[6] MARTYNA, G. J., TUCKERMAN, M. E., and KLEIN, M. L., 1992, J. chem. Phys., 97, 2635. 
[7] MARTYNA, G. J., TOBIAS, D. J., and KLEIN, M. L., 1994, J. chem. Phys., 101, 4177. 
[8] DUANE, S., KENNEDY, A. D., PENDLETON, B. J., and ROWETH, D., 1987, Phys. Lett. B, 195, 

216. 
[9] ARNOLD, V. I., 1978, Mathematical Methods of Classical Mechanics (New York: Springer- 

Verlag). 
[10] Nos~, S., and KLEIN, M. L., 1983, Molec. Phys., 50, 1055. 
[11] MELCHIONNA, S., CICCOTTI, G., and HOLIAN, B. L., 1993, Molec. Phys., 78, 533. 
[12] SWOPE, W. C., ANDERSEN, H. C., BERENS, P. H., and WILSON, K. R., 1982, J. chem. Phys., 

76, 637. 
[13] CREUTZ, M., and GOKSCH, A., 1989, Phys. Rev. Lett., 63, 9. 
[14] TROTTER, H. F., 1959, Proc. Amer. math. Soc., 10, 545. 
[15] YOSHIDA, H., 1990, Phys. Lett. A, 150, 262. 
[16] SUZUKI, M., 1991, J. math. Phys., 32, 400. 
[17] RAEDT, H. D., and RAEDT, B. D., 1983, Phys. Rev. A, 28, 3575. 
[18] RYCKAERT, J. P., CICCOTTI, G., and BERENDSEN, H. J. C., 1977, J. comput. Phys., 23, 327. 
[19] ANDERSEN, H. C., 1983, J. comput. Phys., 52, 24. 
[20] TUCKERMAN, M., and PARRINELLO, M., 1994, J. chem. Phys., 101, 1302. 
[21] WATANABE, M., and KARPLUS, M., 1993, J. chem. Phys., 99, 8063. 
[22] TUCKERMAN, M. E., BERNE, B. J., MARTYNA, G. J., and KLEIN, M. L., 1993, J. chem. Phys., 

99, 2796. 
[23] AUERBACH, S., and FRIEDMAN, A., 1991, J. comput. Phys., 93, 189. 
[24] ALLEN, M.P., and TILDESLEY, D.J., 1989, Computer Simulation of Liquids (Oxford: 

Clarendon Press). 
[25] TOBIAS, D. J., MARTYNA, G. J., and KLEIN, M. L., 1993, J. phys. Chem., 97, 12959. 
[26] TOBIAS, D. J., Tu, K., and KLEIN, M. L., 1996, J. phys. Chem., in press. 
[27] WEBER, H. P., CRAVEN, B. M., SAWZIK, P., and MCMULEAN, R. K., 1991, Acta crystalloflr. 

B, 47, 116. 
[28] Tu, K., TOBIAS, D. J., and KLEIN, M. L., unpublished. 
[29] SIEPMANN~ J. L., KARABORNI, S., and SMIT, B., 1993, Nature (Lond.), 365, 330. 


