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INTRODUCTION:Statistical mechanics aims
to compute the average behavior of physical
systems on the basis of their microscopic con-
stituents. For example, what is the probability
that a protein will be folded at a given tem-
perature? If we could answer such questions
efficiently, then we could not only comprehend
the workings of molecules and materials, but
we could also design drug molecules and ma-
terials with new properties in a principled way.
To this end, we need to compute statistics

of the equilibrium states of many-body sys-
tems. In theprotein-folding example, thismeans
to consider each of the astronomically many
ways to place all protein atoms in space, to
compute the probability of each such
“configuration” in the equilibrium
ensemble, and then to compare the
total probability of unfolded and
folded configurations.
As enumeration of all configura-

tions is infeasible, one instead must
attempt to sample them from their
equilibrium distribution. However, we cur-
rently have no way to generate equilibrium
samples of many-body systems in “one shot.”
The main approach is thus to start with one
configuration, e.g., the folded protein state, and
make tiny changes to it over time, e.g., by using
Markov-chain Monte Carlo or molecular dy-
namics (MD). However, these simulations get
trapped in metastable (long-lived) states: For
example, sampling a single folding or unfold-
ing event with atomistic MD may take a year
on a supercomputer.

RATIONALE:Here, we combine deep machine
learning and statistical mechanics to develop
Boltzmann generators. Boltzmann generators
are trained on the energy function of a many-
body system and learn to provide unbiased,
one-shot samples from its equilibrium state.
This is achieved by training an invertible neural
network to learn a coordinate transformation
from a system’s configurations to a so-called
latent space representation, in which the low-
energy configurations of different states are
close to each other and can be easily sampled.

Because of the invertibility, every latent space
sample can be back-transformed to a system
configuration with high Boltzmann probability
(Fig. 1). We then employ statistical mechanics,
which offers a rich set of tools for reweight-
ing the distribution generated by the neural
network to the Boltzmann distribution.

RESULTS: Boltzmann generators can be
trained to directly generate independent sam-
ples of low-energy structures of condensed-
matter systems and protein molecules. When
initialized with a few structures from differ-
ent metastable states, Boltzmann generators
can generate statistically independent sam-

ples from these states and efficiently
compute the free-energy differences
between them. This capability could
be used to compute relative stabil-
ities between different experimental
structures of protein or other organic
molecules, which is currently a very
challenging problem. Boltzmann

generators can also learn a notion of “re-
action coordinates”: Simple linear interpola-
tions between points in latent space have a
high probability of corresponding to phys-
ically realistic, low-energy transition path-
ways. Finally, by using established sampling
methods such as Metropolis Monte Carlo in
the latent space variables, Boltzmann gener-
ators can discover new states and gradually
explore state space.

CONCLUSION: Boltzmann generators can
overcome rare event–sampling problems in
many-body systems by learning to generate
unbiased equilibrium samples from differ-
ent metastable states in one shot. They
differ conceptually from established enhanced
sampling methods, as no reaction coordi-
nates are needed to drive them between
metastable states. However, by applying ex-
isting sampling methods in the latent spaces
learned by Boltzmann generators, a plethora
of new opportunities opens up to design
efficient sampling methods for many-body
systems.▪
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Boltzmann generators overcome sampling
problems between long-lived states.The
Boltzmann generator works as follows: 1.We
sample from a simple (e.g., Gaussian)
distribution. 2. An invertible deep neural
network is trained to transform this simple
distribution to a distribution pXðxÞ that is
similar to the desired Boltzmann distribution
of the system of interest. 3.To compute
thermodynamics quantities, the samples are
reweighted to the Boltzmann distribution
using statistical mechanics methods.
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Computing equilibrium states in condensed-matter many-body systems, such as solvated
proteins, is a long-standing challenge. Lacking methods for generating statistically
independent equilibrium samples in “one shot,” vast computational effort is invested for
simulating these systems in small steps, e.g., using molecular dynamics. Combining deep
learning and statistical mechanics, we developed Boltzmann generators, which are shown
to generate unbiased one-shot equilibrium samples of representative condensed-matter
systems and proteins. Boltzmann generators use neural networks to learn a coordinate
transformation of the complex configurational equilibrium distribution to a distribution
that can be easily sampled. Accurate computation of free-energy differences and discovery
of new configurations are demonstrated, providing a statistical mechanics tool that can
avoid rare events during sampling without prior knowledge of reaction coordinates.

S
tatisticalmechanics is concernedwith com-
puting the average behavior ofmany copies
of a physical system based on its micro-
scopic constituents and their interactions.
For example, what is the average magne-

tization in an Isingmodel of interactingmagnetic
spins?Orwhat is the probability of a protein to be
folded as a function of the temperature? Under a
wide range of conditions, the equilibrium prob-
ability of a microscopic configuration x (setting
of all spins, positions of all protein atoms, etc.) is
proportional to e�uðxÞ , for example, the well-
known Boltzmann distribution. The dimension-
less energyuðxÞ contains the potential energy of
the system, the temperature, and, optionally,
other thermodynamic quantities.
Except for simple model systems, we presently

have no approach to directly draw “one-shot,”
i.e., statistically independent, samples x from
Boltzmann-type distributions to compute sta-
tistics of the system, such as free-energy dif-
ferences. Therefore, one currently must rely on
trajectory methods such as Markov chain Monte
Carlo (MCMC) or molecular dynamics (MD) sim-
ulations thatmake tiny changes to x in each step.
These methods sample from the Boltzmann dis-
tribution in the long run, but many simulation
steps are needed to produce a statistically inde-
pendent sample. This is because complex sys-
tems often have metastable (long-lived) phases
or states and the transitions between them are

rare events; for example, 109 to 1015 MD sim-
ulation steps are needed to fold or unfold a
protein. As a result, MCMC and MD methods
are extremely expensive and consume much of
the worldwide supercomputing resources.
A common approach to enhance sampling is

to speed up rare events by biasing user-defined
order parameters, or “reaction coordinates” (RCs),
thatmay be of amechanical (1–4), thermodynamic
(5–7), or alchemical nature (8, 9). Applying these
techniques to high-dimensional systems with a
priori unknown transition mechanisms is chal-
lenging, as identifying suitable order parame-
ters and avoiding rare events in other, unbiased
directions becomes extremely difficult. For ex-
ample, the development of enhanced simulation
protocols for the binding of small drugmolecules
to proteins has become a research area in its own
right (10).
In this study, we set out to develop a

“Boltzmann generator” machine that is trained
on a given energy function uðxÞ and then pro-
duces unbiased one-shot samples from e�uðxÞ ,
circumventing the sampling problem without
requiring any knowledge of RCs. At first sight,
this enterprise seems hopeless for condensed-
matter systems and complex polymers. In these
systems, strongly repulsive particles are densely
packed, such that the number of low-energy con-
figurations is vanishingly small compared with
the number of possible ways to place particles.
Key to the solution is combining the strengths

of deep machine learning (11) and statistical
mechanics (Fig. 1A). We train a deep invertible
neural network to learn a coordinate transfor-
mation from x to a so-called “latent” representa-
tion z, in which the low-energy configurations
of different states are close to each other and
can be easily sampled, e.g., using a Gaussian

normal distribution. Enhancing MD sampling
by user-defined English coordinate transforma-
tions has been proposed previously (12). The
novelty of Boltzmann generators is that this
transformation is learned and, owing to the
deep transformation network, can be as com-
plicated as needed to represent state changes in
the many-body system. As Boltzmann gener-
ators are invertible, every sample z can be back
transformed to a configuration x with high
Boltzmann probability. We can improve the abil-
ity to find relevant parts of configuration space
by “learning from example,” where the potential
energy uðxÞ used to train the Boltzmann gen-
erator is complemented by relevant samples x,
e.g., from the folded or unfolded state of a pro-
tein but without knowing the probabilities of
these states. Then, we use statistical mechanics,
which offers a rich set of tools to generate the
target distribution e�uðxÞ when the proposal dis-
tribution is sufficiently similar.
This study demonstrates that Boltzmann gen-

erators can be trained to generate low-energy
structures of condensed matter systems and
protein molecules in one shot, as shown for
model systems and amillisecond-timescale con-
formational change of the bovine pancreatic
trypsin inhibitor (BPTI) protein. When the
Boltzmann generator is initialized with a few
structures from different metastable states, it
can generate statistically independent samples
from these states and can compute the free-
energy profiles of the corresponding transitions
without suffering from rare events. Although
Boltzmann generators do not require RCs, they
can be included in the training to sample con-
tinuous free-energy profiles and low-probability
states. When trained in this way, Boltzmann
generators can also generate physically realistic
transition pathways by performing simple lin-
ear interpolations in latent space. We also show
that multiple independent Boltzmann genera-
tors, trained on disconnected MD or MCMC
simulations of different states, can be used to
compute free-energy differences between these
states in a direct and inexpensive way and with-
out requiring any RCs. Finally, we demonstrate
that when using established sampling methods
such as Metropolis Monte Carlo in the latent
space of a Boltzmann generator, efficient meth-
ods can be constructed to find new states and
gradually explore state space.

Boltzmann generators

Neural networks that can draw statistically in-
dependent samples from a desired distribution
are called directed generative networks (13, 14).
Such networks have been demonstrated to gen-
erate photorealistic images (15), to produce de-
ceivingly realistic speech audio (16), and even to
sample formulae of chemical compounds with
certain physicochemical properties (17). In these
domains, the exact target distribution is not
known and the network is “trained by example”
using large databases of images, audio, or mol-
ecules. Here, we are in the inverse situation, as
we can compute the Boltzmann weight of each
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generated sample x, but we do not have sam-
ples from the Boltzmann distribution a priori.
The idea of Boltzmann generators is as follows
(Fig. 1A):
1) A neural network transformation Fzx is

learned such thatwhen sampling z froma simple
prior, e.g., a Gaussian normal distribution,FzxðzÞ
will provide a configuration x that has a high
Boltzmann weight, i.e., is coming from a dis-
tribution pX ðxÞ that is similar to the target
Boltzmann distribution.

2) To obtain an unbiased sample and to com-
puteBoltzmann-weighted averages, the generated
distributionpX ðxÞ is reweighted to theBoltzmann
distribution e�uðxÞ . This can be achieved with
various algorithms; here, the simplest one is used:
assign the statistical weightwðxÞ ¼ e�uðxÞ=pX ðxÞ
to every sample x and then compute desired
statistics, such as free-energy differences using
this weight.
For both training and reweighting, it is im-

portant that we can compute the probability

pX ðxÞ of generating a configuration x. This can
be achieved when Fzx is an invertible trans-
formation, which allows us to transform the
known prior distributionpZ ðzÞ topX ðxÞ (Fig. 1A,
materials and methods) (18, 19). Physically, in-
vertible transformations are analogous to flows
of a fluid that transform the probability density
from configuration space to latent space, or
vice versa. Volume-preserving transformations,
comparable to incompressible fluids, were intro-
duced in (19). Here, we use the non–volume-
preserving transformations introduced in (20)
(Fig. 1B), as they allow the probability distri-
bution to be scaled differently at different parts
of configuration space. Alternatively, Boltzmann
generators can be built using more general in-
vertible transformations (21–23). Invertibility is
achieved by adopting special neural network
architectures (Fig. 1B; materials and methods).
Multiple trainable invertible “blocks” can be
stacked, thus encoding complicated variable
transformations in the form of a deep invertible
neural network (Fig. 1A).
Boltzmann generators are trained by com-

bining two modes: training by energy and
training by example. Training by energy is the
main principle behind Boltzmann generators,
and proceeds as follows: We sample random
vectors z from a Gaussian prior distribution,
and then transform them through the neural
network to proposal configurations, x ¼ FzxðzÞ.
In this way, the Boltzmann generator will gen-
erate configurations from a proposal distribu-
tion pX ðxÞ, which initially will be very different
from the Boltzmann distribution, and will in-
clude configurations with very high energies.
Next, we compute the difference between the
generated distributionpX ðxÞ from the Boltzmann
distribution whose statistical weights e�uðxÞ are
known. For Boltzmann generators, a natural
measure of this difference is the relative en-
tropy, or Kullback–Leibler (KL) divergence. The
KL divergence can be computed as the fol-
lowing expectation value over samples z (mate-
rials and methods):

JKL ¼ Ez½uðFzxðzÞÞ � logRzxðzÞ� ð1Þ

Here, uðFzxðzÞÞ is the energy of the generated
configuration. Rzx is the determinant of the
Boltzmann generator’s Jacobian matrix and
measures how much the network scales the
configuration space volume at z. The invertible
network layers are designed such that Rzx can
be easily computed (materials and methods).
We treat JKL as a loss function: To train the
Boltzmann generator, we approximateJKL using
a batch of ~1000 samples, and then change the
neural network parameters so as to decreaseJKL.
A few hundred or thousand such iterations are
required to train the Boltzmann generator for the
examples in this study. The resulting few million
computations of the potential energy in Eq. 1 are
the main computational investment and take be-
tween 1min and fewhours for the present systems.
The KL divergence (Eq. 1) is equivalent to

the free-energy difference of transforming the
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Fig. 1. Boltzmann generators. (A) A Boltzmann generator is trained by minimizing the difference
between its generated distribution and the desired Boltzmann distribution. Generation proceeds
by drawing “latent” space samples z from a simple prior distribution (e.g., Gaussian) and
transforming them to configurations x. The variable transformation is formed by stacking
invertible transformations f1; :::; fn to a deep neural network Fzx and its inverse, Fxz. To compute
thermodynamics, such as configurational free energies, the samples must be reweighted to the
Boltzmann distribution. (B) A Boltzmann generator is composed of invertible neural network
blocks. Here, a non–volume-preserving transformation block is shown as an example.

RESEARCH | RESEARCH ARTICLE
on S

eptem
ber 5, 2019

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/


Gaussian prior distribution to the generated
distribution (materials and methods, supple-
mentary materials): The first term E½uðFzxðzÞÞ�
is the mean potential energy, i.e., the internal en-
ergy of the system. The second termE½logRzxðzÞ�
is equal to the entropic contribution to the free
energy at the chosen temperature plus a constant
factor. The terms in Eq. 1 counterplay in an in-
terestingway: the first term tries tominimize the
energy and therefore trains the Boltzmann gen-
erator to sample low-energy structures. The sec-
ond term tries to maximize the entropy of the
generated distribution and therefore prevents
the Boltzmann generator from the so-calledmode
collapse (13), i.e., the repetitive sampling of a
singleminimum-energy configuration that would
minimize the first term.
Despite the entropy term in Eq. 1, training

by energy alone is not sufficient, as it tends to
focus sampling on the most stable metastable
state (fig. S2). We therefore additionally use
training by example, which is the standard train-
ing method used in other machine learning ap-
plications, and is here implemented with the
maximum likelihood (ML) principle. We ini-
tialize the Boltzmann generator with some
“valid” configurations x, e.g., from short initial
MD simulations or experimental structures, and
transform them to latent space via z ¼ FxzðxÞ.
Maximizing their likelihood in the Gaussian
distribution corresponds to minimizing the loss
function (18, 19):

JML ¼ Ex
1

2
∥FxzðxÞ∥2 � logRxzðxÞ

� �
ð2Þ

Here, the first term 1
2∥FxzðxÞ∥2 is the energy of a

harmonic oscillator corresponding to the Gaus-
sian prior distribution. Training by example is
especially useful in the early stages of training,
as it helps the Boltzmann generator to focus on
relevant parts of state space.
By combining training by energy and train-

ing by example, we can sample configurations
that have high probabilities and low free en-
ergies. However, sometimes we want to sample
states with low equilibrium probabilities, such
as transition states along a certain RCwhose free-
energy profile is of interest. For this purpose, we
introduce an RC loss that can optionally be used
to enhance the sampling of a Boltzmann gener-
ator along a chosen RC (materials and methods).

Results
Illustration on model systems

We first illustrate Boltzmann generators using
two-dimensional model potentials that have
metastable states separated by high energy bar-
riers: the double well potential and the Mueller
potential (Fig. 2, A and G). MD simulations stay
in one metastable state for a long time before a
rare transition event occurs. Hence, the distri-
butions in configuration space ðx1; x2Þ are split
into twomodes (Fig. 2, A and G; transition state
and intermediate state ensembles are shown in
yellow for clarity but are not used for training).
We are training Boltzmann generators using the
two short and disconnected simulations whose
samples are shown in Fig. 2, A and G (details in
supplementary materials, convergence in fig.
S1). Figure 2, B and H, shows the latent spaces

learned by the Boltzmann generator; note that
their exact appearance varies between different
runs due to stochasticity in neural network
training. In both latent spaces, the probability
densities of the two states and the transition/
intermediate states are “repacked” to form a
density concentrated around the origin.
We use the Boltzmann generators by sampling

from their latent spaces according to Gaussian
distributions. After transforming these variables
via Fzx , this produces uncorrelated and low-
energy samples from both stable states without
any sampling problem (Fig. 2, C, D, I, and J). A
variety of trainingmethods succeed in sampling
across the barrier such that the rare event na-
ture of the system is eliminated (fig. S2). Using a
Boltzmann generator trained by energy and by
example with simple reweighting reproduces
the precise free-energy differences of the two
metastable states, although no RC is used to
indicate the direction of the rare event (Fig. 2, E
and K, green). By additionally training with
the RC loss to promote sampling along x1
(double well) or x2 (Mueller potential), the
low-probability transition states are sampled
(Fig. 2, D and J, orange) and the full free-energy
profile can be reconstructed with high precision
(Fig. 2, E and K, orange).
The Boltzmann generator repacks the high-

probability regions of configuration space into
a concentrated latent space density. We there-
fore wondered about the physical interpretation
of direct paths in latent space. Specifically, we
interpolate linearly between the latent space
representations of samples from different energy
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Fig. 2. Application of Boltzmann generators on two-dimensional
bistable systems. (A and G) Two-dimensional potentials: double well
(x1 is the slow coordinate) and Mueller potential. Two short MD
simulation trajectories (blue, red) stay in their metastable states
without crossing. Transition state and intermediate state ensembles
are shown (orange) but were not used for training. (B and H) Latent-
space distribution of trajectories shown in (A) and (G) when mapped
through trained Fxz. (C and I) Potential energy distribution sampled by

MD simulation (gray) and by Boltzmann generators trained by energy
and by example (KL+ML, green) and using RC training (KL+RC, orange).
(D and J) Boltzmann generator sample distribution along the slow
coordinates. For the Mueller potential, xproj is defined as projection along
the vector (1,–1). (E and K) Free-energy estimates obtained from
Boltzmann generator samples after reweighting. (F and L) Paths
generated by linear interpolation in Boltzmann generator latent space
(B and H) between random pairs of “blue” and “red” MD samples.

RESEARCH | RESEARCH ARTICLE
on S

eptem
ber 5, 2019

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/


minima, similar to what is done with generative
networks in other disciplines (22, 17). When
mapping these linear interpolations back to
configuration space, they result in nonlinear
pathways that have low energies and high
probabilities (Fig. 2, F and L). Although there
is no general guarantee that linear paths in
latent space will result in low energies, this re-
sult indicates that the latent spaces learned by
Boltzmann generators can be used to provide
candidates of order parameters for bias-enhanced
or path-based sampling methods (1, 3, 24).
For the double-well system, the unbiased MD

simulation needs, on average, 4 × 106 MD steps
for a single return trip between the two states
(supplementary materials), and ~100 such cross-
ings are required to compute the free-energy dif-
ferencewith the sameprecision as theBoltzmann
generator results shown in Fig. 2E. The total
effort of training the Boltzmann generator (in-
cluding generating the initial simulation data)
corresponds to ~106 steps, but once this is done,
statistically independent samples can be gener-
ated at no significant cost. For this simple system,
the Boltzmann generator is therefore about a
factor of 100 more efficient than direct simu-
lation, but much more extreme savings can be
observed for complex systems, as shown below.

Thermodynamics of
condensed-matter systems

As a second example, we demonstrate that
Boltzmanngenerators can samplehigh-probability
structures and efficiently compute the thermo-
dynamics in crowded condensed-matter systems.
We simulated a dense system of two-dimensional
particles confined to a box, as suggested in (25)
(Fig. 3A). Immersed in a fluid is a bistable par-
ticle dimer whose open and closed states are
separated by a high barrier (Fig. 3B). Opening
or closing the dimer directly is not possible due
to the high density of the system but requires
concerted rearrangement of solvent particles.
At close distances, particles repel each other
strongly, resulting in a crowded system. Thus,
the fraction of low-energy configurations is
vanishingly small, and manually designing a
sampling method that simultaneously places
all 38 particles and achieves low energies ap-
pears unfeasible.
We trained a Boltzmann generator to sam-

ple one-shot low-energy configurations and used
it to compute the free-energy profiles of opening
or closing the dimer. Key to treating explicit-
solvent systems such as this one is to incorporate
the indistinguishability of solvent molecules. If
physically identical solvent molecules were to
be distinguished, then every exchange of sol-
vent molecule positions due to diffusion would
represent a new configuration, resulting in an
enormous configuration space even for this 38-
particle system. We therefore removed identical-
particle permutations from all configurations
input into or sampled by the Boltzmann gen-
erator by exchanging particle labels to mini-
mize the distance to a reference configuration
(supplementary materials).

The training is initialized with examples from
separate, disconnected simulations of the open
and closed states, but in later stages, training by
energy Eq. 1 dominates (supplementary mate-
rials, fig. S1, and table S1). The trainedBoltzmann
generator has learned a transformation of the
complex configuration space density to a con-
centrated, 76-dimensional ball in latent space
(Fig. 3C). Indeed, direct sampling from a 76-
dimensional Gaussian in latent space and trans-
formation via Fzx generates configurations in
which all particles are placed without significant
clashes and potential energies that overlap with
the energy distribution of the unbiased MD tra-
jectories (Fig. 3D). Also, realistic transition states

that have not been included in any training data
are sampled (Fig. 3D, middle).
To demonstrate the computation of thermo-

dynamicquantities,weperform training by energy
(Eq. 1) simultaneously to a range of temperatures
(supplementary materials). Although the temper-
ature changes the configuration space distribu-
tion in a complex way, it can be modeled as a
simple scaling factor in thewidth of theGaussian
prior distribution in latent space (materials and
methods). Then, we sample the Boltzmann gen-
erator for a range of temperatures and use sim-
ple reweighting to compute the free energies
along the dimer distances. As shown in Fig. 3E,
these temperature-dependent free energies agree
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Fig. 3. Repulsive particle system with bistable dimer. (A) Closed (blue) and open (red)
configurations from MD simulations (input data). (B) Bistable dimer potential. (C) Distribution of
MD simulation data in latent space coordinates z1; z2 after training the Boltzmann generator.
(D) Potential energy distribution from MD (gray) and Boltzmann generator for closed (blue), open
(red), and transition configurations (yellow). Insets show one-shot Boltzmann generator samples.
(E) Free-energy differences as a function of dimer distance and relative temperature sampled with
Boltzmann generators (generation and reweighting, green bullets with intervals indicating one
standard error from 10 independent repeats) and umbrella sampling (black lines). (F) Linear latent
space interpolation between the closed and open structures shown in the top row.
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precisely with extensive umbrella-sampling sim-
ulations that use bias potentials along the dimer
distance ((1), supplementary materials).
We estimate that the MD simulation needs at

least 1012 steps to spontaneously sample a single
transition from closed to open state and back
(supplementary materials), and ~100 such tran-
sitions would be needed to compute free-energy
differences with the precision of Boltzmann
Generators shown in Fig. 3E. The total effort to
train the Boltzmann generator is ~3 × 107 energy
evaluations, but then statistically independent
samples can be drawn in one shot at the entire
temperature range trained, resulting in at least
seven orders of magnitude speed-up compared
with MD.
As above, we perform linear interpolations

between the latent space representations of open-
and closed-dimer samples. A significant fraction
of all pair interpolations results in low-energy
pathways. The lowest-energy interpolation of
100 randomly selected pairs of end states is shown
in Fig. 3F, representing a physically meaningful
rearrangement of the dimer and solvent.

Exploring configuration space

In the previous examples, Boltzmann generators
were used to sample known regions of configu-
ration space and compute statistics thereof. Here,
we demonstrate that Boltzmann generators can
help to explore configuration space. The basic
idea is as follows: we construct an exploratory
sampling method using an established sampling
algorithm in latent space while simultaneously
training the Boltzmann generator transformation
using the configurations found so far.
We initialize the method with a (possibly

small) set of configurations X. Training is done
here byminimizing the symmetric loss function
J ¼ JKL þ JML (Eqs. 1 and 2). The likelihood loss
functionJML is initially biased by the input data,
but as X approaches an unbiased Boltzmann
sample, the symmetric loss converges to a mean-
ingful distance of probabilities (materials and
methods). As an example, here, we useMetropolis
Monte Carlo in the Boltzmann generator latent
space to update X (materials andmethods). The
step size is chosen adaptively but reaches the
order of the latent space distribution width.
Thus, large-scale configuration transitions in
physical space can be overcome in a singleMonte
Carlo step.
We now revisit the three previous examples

and initialize X with only a single input con-
figuration from the most stable state (Fig. 4,
A, D, and G). The exploration method quickly
fills the local metastable states and finds new
metastable states within a few 105 energy calls,
i.e., orders of magnitude faster than direct MD
(Fig. 4, B, E, and H). This demonstrates that
Boltzmann generators sample new, previously
unseen states with a significant probability, and
that this ability can be turned into exploring con-
figuration space when past samples are stored
and reused for training.
The Metropolis Monte Carlo method causes

the sample to converge toward the Boltzmann

distribution. However, we do not need to wait
for this method to be converged because, with
sufficient samples in the states of interest, the
equilibrium free energies can be computed by
reweighting as in Figs. 2 and 3 above. Although
new states are found, the data-based loss JML

may increase and decrease again while the
Boltzmann generator transformation is updated
to include these new states (Fig. 4, C, F, and I,
top row). During training, the energy-based loss
JKL decreases steadily until the full Boltzmann
distribution is sampled (Fig. 4, C, F, and I, mid-

dle row). We also observe that the Metropolis
Monte Carlo efficiency, defined by the product
of step length and acceptance rate, tends to
increase over time, although it may decrease
temporarily when more states are found (Fig.
4, C, F, and I, bottom row).
Due to the invertible transformation between

latent and configuration space, any sampling
method that involves reweighting or Monte
Carlo acceptance steps can be reformulated in
Boltzmann generator latent space and poten-
tially yield enhanced performance.
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Fig. 4. Exploration with Boltzmann generators from a single snapshot. (A to C) Double-well
potential, (D to F) Mueller potential, and (G and H) solvated particle dimer. (A, D, and G) Starting
configuration. (C, F, and I) Convergence of the loss terms (JML and JKL) and the MCMC efficiency
(product of step length and acceptance rate). (B, E, and H) Evolution of sample distribution over
MCMC iteration. As soon as sufficient density is available in the states of interest, these distributions
can be reweighted to equilibrium as in Figs. 2 and 3. iter, iterations; acc, acceptance.
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Complex molecules
Wedemonstrate that Boltzmann generators can
generate equilibriumall-atomstructures ofmacro-
molecules in one shot using the BPTI in an
implicit solvent model (Fig. 5 and supplemen-
tary materials). To train Boltzmann generators
for complex molecular models, we wrapped the
energy and force computation functions of the
OpenMM simulation software (26) in the stan-
dard deep learning library Tensorflow (27).
Training a Boltzmann generator directly on

the Cartesian coordinates resulted in large en-
ergies and unrealistic structures with distorted
bond lengths and angles. This problem was
solved by incorporating the following coordinate
transformation in the first layer of the Boltzmann
generator that is invertible up to rotation and
translation of the molecule (Fig. 5A and mate-
rials and methods): the coordinates are split
into Cartesian and internal coordinate sets. The
Cartesian coordinates include heavy atoms of
the backbone and the disulfide bridges. Cartesian
coordinates are whitened, i.e., decorrelated and
normalized, using a principal component analysis
(PCA) of the input data. During whitening, the
six degrees of freedom corresponding to global
translation and rotation of the molecule are dis-
carded. The remaining side-chain atoms are
measured in internal coordinates (bond lengths,
angles, and torsionswith respect to parent atoms)
and subsequently normalized.
After this coordinate transformation, the

learning problem is substantially simplified as
the transformed input data are already nearly
Gaussian distributed. We first demonstrate that
Boltzmann generators can learn to sample het-
erogeneous equilibrium structures when trained
with examples from different configurations. To
this end, we generated six short simulations of
20 ns each, starting from snapshots of the well-
known 1-ms simulation of BPTI produced on the
Anton supercomputer (28). In themore common
situation that no ultralongMD trajectory is avail-
able, the Boltzmann generator can be seeded
with different crystallographic structures or
homology models. To promote simultaneous
sampling of high- and low-probability config-
urations, we included an RC loss using two slow
collective coordinates that have been used ear-
lier in the analysis of this BPTI simulation
(supplementary materials) (29, 30). Boltzmann
generators of BPTIs that do not use RCs are dis-
cussed in the subsequent section.
A trained Boltzmann generator with eight

invertible blocks can sample all 892 atom po-
sitions (2676 dimensions) in one shot and pro-
duce locally and globally valid structures (Fig.
5C). The potential energies of samples exhibit
significant overlap with the potential energy
distribution of MD simulations (Fig. 5D), and
thus samples can be reweighted for free-energy
calculations. The probability distributions ofmost
bond lengths and valence angles are almost
indistinguishable from the distributions of the
equilibrium MD simulations (Fig. 5E). The only
exception is that the distributions of valence
angles involving sulfur atomsare slightly narrower.

The trained Boltzmann generator learns to
encode and sample significantly different struc-
tures (Fig. 5F). In particular, it generates indepen-
dent one-shot samples of the near-crystallographic
structure “X” (1.4-Å mean backbone RMSD to
crystal structure), and the open “O” structure,
which involves significant changes in flexible
loops and repacking of side chains (Fig. 5. G
and H). The X→O transition has been sampled
only once in the millisecond Anton trajectory,
which is consistent with the observation of a
millisecond-timescale “major–minor” state transi-
tion observed in nuclear magnetic resonance
spectroscopy (31). We note that X↔O transition
states are not included in the Boltzmann gen-
erator training data.
Sampling such a transition and collecting

statistics for it is challenging for any existing
simulation method. Brute-force MD simulations
would require several milliseconds of simula-
tion data. To use enhanced sampling, an order
parameter or RC able to drive the complex
rearrangement shown in Fig. 5, G and H, would
need to be found, but because BPTI has multi-
ple states with lifetimes on the order of ~10 to
100 ms (28, 30), the simulation time required
for convergence would still be extensive. The
computation of free-energy differences using
Boltzmann generators will be discussed in the
next section.

Thermodynamics between
disconnected states

We develop a reaction-coordinate–free approach
to compute free-energy differences from dis-
connected MD or MCMC simulations in sep-
arated states, such as two conformations of a
protein. As demonstrated above, this can be
achieved by a single Boltzmann generator that
simultaneously captures multiple metastable
states and maps them to the same latent space
Z, where they are connected via the Gaussian
prior distribution (Figs. 2, B and H, and 3C).
However, a more direct statistical mechanics
idea that has been successfully applied to cer-
tain simple liquids and solids is to compute
free-energy differences by relating to a tractable
reference state, e.g., ideal gas or crystal (32–34).
Here, we show that Boltzmann generators can
turn this idea into a general method applicable
to complex many-body systems.
Recall that the value of the energy-loss func-

tion JKL (Eq. 1) estimates the free-energy dif-
ference of transforming the Gaussian prior
distribution to the generated distribution in
configuration space. If we are now given MD
data sampled in two or more disconnected
states, thenwe can train independent Boltzmann
generators for each of them. The goal here is
not to explore configuration space, so training
by energy is combined with training by example
(Eq. 2) to restrain the generated distribution
around the separate states. For each Boltzmann
generator, the transformation free energy is
computed, e.g., hJ 1KLiand hJ2KLi, by sampling from
the Gaussian prior distributions and inserting
into Eq. 1. The free-energy difference between

the two states is directly given as a difference
between these two values, DA12 ¼ hJ2KLi � hJ 1KLi
(Fig. 6A).
We illustrate our method by computing

temperature-dependent free-energy differences
for the four systems discussed above, each using
two completely disconnected MD simulations as
input. Because the estimate of the free-energy
difference is readily available from the value of
the loss function, it can be conveniently tracked
for convergence while the Boltzmann genera-
tors are trained (Fig. 6B and fig. S3).
For the two-dimensional systems (double well,

Mueller potential), exact reference values for the
free-energy differences can be computed, and the
Boltzmann generator method recovers them ac-
curately with a small statistical uncertainty over
the entire temperature range (Fig. 6, C and D)
using 10-fold less simulation data and an ~10-fold
shorter training time than for the estimates using
a single joint Boltzmann generator reported in
Fig. 2 (supplementary materials).
For the solvated bistable dimer, we use sim-

ulations that are 10-fold shorter than for the
single joint Boltzmann generator reported in
Fig. 3 and train two independent Boltzmann
generators at multiple temperatures. As a ref-
erence, three independent umbrella-sampling
simulations were conducted at each of five dif-
ferent temperatures. Both predictions of the free-
energy difference between open and closed dimer
states are consistent and have overall similar
uncertainties (Fig. 6E and fig. S3B; note that
the uncertainty of umbrella sampling is strongly
temperature dependent). Although umbrella sam-
pling is well-suited for this system with a clear RC,
the two–Boltzmann-generator method required
50 times fewer energy calls than the umbrella-
sampling simulations at five temperatures and
yet makes predictions across the full temper-
ature range (supplementary materials).
Finally, we used the same method to predict

the temperature-dependent free-energy difference
of the “X” and “O” states in the BPTI protein.
Sampling this millisecond transition 10 times
by brute-force MD would take ~30 years on one
of the GTX1080 graphics cards that are used for
computations in this paper and would only give
us the free-energy difference at a single temper-
ature. Although speeding up this complex tran-
sition with enhanced samplingmay be possible,
engineering a suitable order parameter is a time-
consuming trial-and-error task. Training two
Boltzmann generators does not require any RC
to be defined.
Here, we used the two–Boltzmann-generator

method starting from two simulations of 20 ns
each, which were started from selected frames
of the 1-ms trajectory, but could generally be
started from crystallographic structures or ho-
mologymodels. Conducting theMD simulations,
training and analyzing the Boltzmann genera-
tors used a total of <3 × 107 energy calls, which
results in a converged free-energy estimate with-
in a total of about 10 hours on aGTX1080 graphics
card, i.e., about five orders of magnitude faster
than the brute-force approach (Fig. 6F and fig. S3C).
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Although no reference for this free-energy dif-
ference in the given simulationmodel is known,
the temperature profile admits basic consistency
checks: The x-ray structure is identified as the
most stable structure at temperatures below
330 K. The internal energy and entropy terms of
the free-energy difference (Eq. 1) are both positive
across all temperatures. Therefore, the free-energy
decreases at high temperatures as the entropic

stabilization becomes stronger. A higher configu-
rational entropy of the “O” state is consistent with
its more open loop structure (compare Fig. 5, G
and H) and the higher degree of fluctuations in
the “O” state observed by the analysis in (30).

Discussion and conclusion

Boltzmann generators can overcome rare event-
sampling problems in many-body systems by

generating independent samples from different
metastable states in one shot. We have demon-
strated this for dense and unstructured many-
body systems with up to 892 atoms (over 2600
dimensions) that are placed simultaneously, with
most samples having globally and locally valid
structures and potential energies in the range of
the equilibrium distribution. In contrast to other
generative neural networks, Boltzmann generators
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Fig. 5. One-shot sampling of all-atom structures in different
conformations of the BPTI protein. (A) Boltzmann generator for
macromolecules: Backbone atoms are whitened using PCA; side-chain
atoms are described in normalized internal coordinates (crds). (B) BPTI
x-ray crystal structure (PDB: 5PTI). Cysteine disulfide bridges and
aromatic residues are shown for orientation. (C) One-shot Boltzmann
generator sample of all 892 atoms (2670 dimensions) of the BPTI
protein similar to the x-ray structure. (D) Potential energy distribution
from MD simulation (gray) and Boltzmann generator one-shot samples

(blue). (E) Distribution of bonds and angles compared between
MD simulation (black) and Boltzmann generator (blue).
(F) Representative snapshots of four clusters of structures
generated with the Boltzmann generator. Backbone root mean
square deviation from the x-ray structure is given below the
structure (in angstroms). Marked are the x-ray–like structure
“X” and the open structure “O.” (G and H) Magnification of the
most variable parts of the Boltzmann-generated samples from the
“X” and “O” states. Side chains are shown in atomistic resolution.
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produce unbiased samples, as the generated prob-
ability density is known at each sample point and
can be reweighted to the target Boltzmann distri-
bution. This feature directly translates into being
able to compute free-energy differences between
different metastable states.
In contrast to enhanced samplingmethods that

directly operate in configuration space, such as
umbrella sampling ormetadynamics, Boltzmann
generators can sample betweenmetastable states
without any predefined RC connecting them.
This is achieved by learning a coordinate trans-

formation in which different metastable states
become neighbors in the transformed space
where the sampling occurs. If suitable RCs are
known, then these can be incorporated into the
training to sample continuous pathways between
states, e.g., to compute a continuous free-energy
profile along a reaction.
As in many areas of machine learning, the

key to success is to choose a representation of
the input data that supports the learning prob-
lem. For macromolecules, we have found that a
successful representation is to describe its back-

bone in Cartesian coordinates and all atoms that
branch off from the backbone in internal coor-
dinates. Additionally, normalizing these coor-
dinates to mean 0 and variance 1 already makes
their probability distribution close to a Gaus-
sian normal distribution, thus simplifying the
learning problem considerably.
We have shown, in principle, how explicit

solvent systems can be treated. For this, it is
essential to build the physical invariances into
the learning problem. Specifically, we need to
account for permutation invariance: when two
equivalent solventmolecules exchange positions,
the potential energy of the system is unchanged
and so is the Boltzmann probability.
We have demonstrated scaling of Boltzmann

generators to 1000’s of dimensions. Generative
networks in other fields have been able to gen-
erate photorealistic images with 106 dimensions
in one shot (15). However, for the present ap-
plication, the statistical efficiency, i.e., the use-
fulness of these samples to compute equilibrium
free energies, will decline with increasing dimen-
sion. Scaling to systems with 100,000’s of dimen-
sions or more, such as solvated atomistic models
of large proteins, can be achieved in different
ways. Sampling of the full atomistic system may
be addressedwith a divide-and-conquer approach:
In each iteration of such an approach, one would
resample the positions of a cluster of atoms using
the sum of potential energies between cluster
atoms and all systematoms and then, e.g., perform
Monte Carlo steps using these cluster proposals.
Alternatively, Boltzmann generators could be used
to sample lower-dimensional free-energy surfaces
learned from all-atom models (35, 36).
A caveat of Boltzmann generators is that, de-

pending on the training method, they may not
be ergodic, i.e., they may not be able to reach all
configurations. Here, we have proposed a train-
ing method that promotes state space explora-
tion by performing Monte Carlo steps in the
Boltzmann generator’s latent space while train-
ing the network. This may be viewed as a gen-
eral recipe: Thewhole plethora of existing sampling
algorithms, such as umbrella sampling, meta-
dynamics, and replica exchange, can be reformu-
lated in the latent space of a Boltzmann generator,
potentially leading to dramatic performance gains.
Any such approach can always be combinedwith
MD or MCMC moves in configuration space to
ensure ergodicity.
Finally, the Boltzmann generators described

here learned a system-specific coordinate trans-
formation. The approach would become much
more general and efficient if Boltzmann gen-
erators could be pretrained on certain building
blocks of a molecular system, such as oligopep-
tides in solvent or a protein, and then reused
on a complex system consisting of these build-
ing blocks. A promising approach is to involve
transferrable featurization methods developed
in the context of machine learning for quan-
tum mechanics (37–40).
In summary, Boltzmann generators represent

a powerful approach to addressing the long-
standing rare-event sampling problem inmany-body
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Fig. 6. Thermodynamics between disconnected states by coupling multiple Boltzmann
generators. (A) Using multiple Boltzmann generators, we can compute free-energy
differences between states without requiring RCs using only disconnected MD simulations
in each of them. This is possible because each Boltzmann generator estimates the
free-energy difference to a common reference state. (B) Example for tracking convergence:
estimate of free-energy difference for the double well potential (multiple temperatures)
as a function of the training iterations of two Boltzmann generators. Convergence plots
for the other systems are shown in fig. S3. Results show estimates from two Boltzmann
generators with mean and one standard error computed from bootstrapping the converged
segment of the free-energy estimate. (C) Left-to-right transition in the double well,
(D) left-to-right transition in the Mueller potential, (E) closed-to-open transition in the
solvated bistable particle dimer, (F) X→O transition in an atomistic model of BPTI.
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systems and open the door for new developments
in statistical mechanics.

Materials and methods
Invertible networks

We used invertible networks with trainable pa-
rameters q to learn the transformation between
the Gaussian random variables z and the
Boltzmann-distributed random variables x:

z ¼ Fxzðx; qÞ

x ¼ Fzxðz; qÞ:
Hence Fxz ¼ F�1

zx . Each transformation has a
Jacobian matrix with the pairwise first deriva-
tives of outputs with respect to inputs:

Jzxðz; qÞ ¼ @Fzxðz; qÞ
@z1

; :::;
@Fzxðz; qÞ

@zn

� �

Jxzðx; qÞ ¼ @Fxzðx; qÞ
@x1

; :::;
@Fxzðx; qÞ

@xn

� �

The absolute value of the Jacobian’s deter-
minant, jdet Jzxðz; qÞj, measures how much a
volume element at z is scaled by the trans-
formation. Below, we will omit the symbol q
and use the abbreviations:

RxzðxÞ ¼ jdet JxzðxÞj

RzxðzÞ ¼ jdet JzxðzÞj
We use invertible transformations because
they allow us to transform random variables
as follows:

pX ðxÞ ¼ pZ ðzÞRzxðzÞ�1

¼ pZ

�
FxzðxÞ

�
RxzðxÞ ð3Þ

pZ ðzÞ ¼ pX ðxÞRxzðxÞ�1

¼ pX

�
FzxðzÞ

�
RzxðzÞ ð4Þ

Trainable invertible layers

We use the RealNVP transformation as train-
able part of invertible networks (20). The main
idea is to split the variables into two channels,
x ¼ ðx1; x2Þ , z ¼ ðz1; z2Þ , and do only trivially
invertible operations on each channel, such
as multiplication and addition. Additionally,
we use arbitrary, noninvertible artificial neural
networks S and T that respectively scale and
translate the second input channel x2 using a
nonlinear transformation of the first input
channel x1.

fxzðx1; x2Þ
:
� z1 ¼ x1
z2 ¼ x2⊙exp

�
Sðx1; qÞ

�
þ T ðx1; qÞ ð5Þ

logRxz ¼
X

i

Siðx1; qÞ ð6Þ

fzxðz1; z2Þ
:
� x1 ¼ z1
x2 ¼

�
z2 � T ðx1; qÞ

�
⊙exp

�
� Sðz1; qÞ

�

ð7Þ

logRzx ¼ �
X

i

Siðz1; qÞ ð8Þ

A RealNVP “block” is defined by two stacked
RealNVP layers with channels swapped, such
that both channels are transformed:

ðy1; y2Þ ¼ fxyðx1; x2Þ

ðz1; z2Þ ¼ fyzðy2; y1Þ
Boltzmann generators are built by putting
the forward and the inverse of such blocks in
parallel that share the same nonlinear trans-
formations T and S and parameters (Fig. 1B).

PCA whitening layer

We define a fixed-parameter layer “W” to trans-
form the input coordinates intowhitenedprincipal
coordinates. For systemswith rototranslationally
invariant energy,we first removeglobal translation
and rotation by superimposing each configuration
to a reference configuration. We then perform
PCA on the N input coordinates X by solving the
eigenvalue problem:

1

N
XTXR ¼ RL

whereR ¼ ½r1; :::; rN � are principal components
vectors and L ¼ diagðl1; :::; ldÞ their variances.
For systems with rototranslationally invariant
energy, the six smallest eigenvalues are 0 and
are discarded along with the corresponding
eigenvectors. The whitening transformation
and its inverse are defined by:

W ðxÞ : z ¼ L�1
2R⊤x

W�1ðzÞ : x ¼ RL
1
2z

Note that when translation and rotation are
removed in the transformation, this layer is only
invertible for x where translation and rotation
are removed as well. However, the network is
always invertible for the relevant sequence
z→x→z. The Jacobians of W are:

logRxz ¼ � 1

2

X
i

logli

logRzx ¼ 1

2

X
i

logli

Mixed coordinate transformation layer

To treat macromolecules, we defined a new
transformation layer “M” that transforms into
mixed whitened Cartesian and normalized in-
ternal coordinates. We first split the coordinates
into a Cartesian and an internal coordinate set,

x→½xC ; xI � . xC is whitened (see above), xI is
transformed into internal coordinates (ICs). For
every particle i in xI , we define three “parent”
particles, j, k, and l, and the Cartesian co-
ordinates of particles i, j, k, and l are converted
into distance, angle and dihedral ðdij ;aijk; fijklÞ.
Finally, each IC is normalized by subtracting the
mean and dividing by the standard deviation of
the corresponding coordinates in the input data
(Fig. 5A). PCA whitening and IC normalization
are essential for training Boltzmann generators
for complex molecules, as this sets large fluc-
tuations of the whole molecule on the same scale
as small vibrations of stiff coordinates such as
bond lengths. We briefly call the transformation
to normalized internal coordinates IðxÞ.
The inverse transformation is straightforward:

The Cartesian set is first restored by applying
W�1 . Then, the particles in the internal co-
ordinate unnormalized and then placed in a
valid sequence, i.e., first particles I, whose pa-
rent particles are all in the Cartesian set, then
particles with parents that have just been placed,
etc. As for theW layer, theM layer is invertible
up to global translation and rotation of the mol-
ecule thatmay have been removedduringwhiten-
ing. Additionally, we prevent noninvertibility in
dihedral space by avoiding the generation of angle
values outside the range ½�p; p� (supplementary
materials).
The Jacobians of the M layer are computed

using Tensorflow’s automatic differentiation
methods.

Training and using Boltzmann generators

The Boltzmann generator is trained by mini-
mizing a loss functional of the following form:

J ¼ wMLJML þ wKLJKL þ wRCJRC : ð9Þ

where the terms represent ML (“training by
example”), KL (“training by energy”), and RC
optimization and the w’s control their weights.
Below, we will derive these terms in detail.
We call the “exact” distributions m and the gen-

erated distributions q. In particular,mZ ðzÞ is the
Gaussian prior distribution from which we
sample latent space variables and qX ðxÞ is the
distribution that results from the network trans-
formation Fzx . Likewise, mX ðxÞºexpð� uðxÞÞ is
the Boltzmann distribution in configuration space
and qZ ðzÞ is the distribution that results from
the network transformation Fxz:

mZ ðzÞ→
Fzx

qX ðxÞ

mX ðxÞ→
Fxz

qZ ðzÞ
A special case is to use Boltzmann generators
to sample from the Boltzmann distribution of
the canonical ensemble. Other ensembles can
be modeled by incorporating the choice of en-
semble into the reduced potential (41). The
Boltzmann distribution has the form:

mX ðxÞ ¼ Z�1
X e�bU ðxÞ ð10Þ
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where b�1 ¼ kBT with Boltzmann constantkB
and temperature T. When we only have one
temperature, we define the reduced energy:

uðxÞ ¼ U ðxÞ
kBT

To workwithmultiple temperatures ðT 1; :::;TK Þ,
we define a reference temperature T 0 and re-
duced energyu0ðxÞ ¼ UðxÞ=kBT 0. The reduced
energies are then obtained by scaling with the
relative temperature tk ¼ Tk=T0:

ukðxÞ ¼ T 0

Tk
u0ðxÞ ¼ u0ðxÞ

tk
:

To generate the prior distribution, we sample
the input in z from the isotropic Gaussian
distribution:

mkZ ðzÞ ¼ N ð0; s2kIÞ ¼ Z�1
Z e�

1
2z

2=s2k ; ð11Þ

withnormalization constant ZZ. This corresponds
to the prior energy of a harmonic oscillator:

uk
Z ðzÞ ¼ �logmkZ ðzÞ ¼

1

2s2k
z2 þ const: ð12Þ

Thus, the variance takes the same role as the
relative temperature. We (arbitrarily) choose
variance 1 for the standard temperature and
obtain:

s2k ¼ tk:

Latent KL divergence

The KL divergence measures the difference be-
tween two distributions q and p:

KLðq∥pÞ ¼ ∫qðxÞ½logqðxÞ � logpðxÞ�dx;

¼ �Hq � ∫qðxÞlogpðxÞdx;

whereHq is the entropy of distribution q. Here,
we minimize the difference between the prob-
ability densities predicted by the Boltzmann
generator and the respective reference distri-
bution. Using Eqs. 3, 4, and 10, the KL diver-
gence in latent space is:

KLq½mZ∥qZ � ¼ �HZ � ∫mZ ðzÞlogqZ ðz; qÞdz;
¼ �HZ � ∫mZ ðzÞ logmX

�
Fzxðz; qÞ

�h

þ logRzxðz; qÞ
i
dz;

¼ �HZ þ logZX þ Ez∼mZ ðzÞ u
�
Fzxðz; qÞ

�h

�logRzxðz; qÞ
i

Here, q are the trainable neural network pa-
rameters. BecauseHZ andZX are constants in q,
the KL loss is given by:

JKL ¼ Ez∼mZ ðzÞ
h
u
�
Fzxðz; qÞ

�
� logRzxðz; qÞ

i
ð13Þ

Practically, each training batch samples points
z ∼ qZ ðzÞ from a normal distribution, transforms
them via Fzx , and evaluates Eq. 13. As shown in
the supplementary materials, the KL loss can be
rewritten to:

JKL ¼ U � HX þHZ ð14Þ

which is, up to the constantHZ , equal to the free
energy of the generated distributionwith internal
energy U and entropic factor HX .
We can extend Eq. 13 to simultaneously train

at multiple temperatures, obtaining:

JT
1 ;:::;TK

KL ¼
XK

k¼1

Ez∼mkZ ðzÞ uk
�
Fzxðz; qÞ

�h

� logRzxðz; qÞ
i

The KL divergenceKLq½mZ∥qZ � is alsominimized
in probability density distillation used in differ-
ent contexts, e.g., in the training of recent audio
generation networks (16).

Reweighting and interpretation of latent KL
as reweighting loss

A simple way to compute quantitative statistics
using Boltzmann generators is to use reweight-
ing of probability densities by assigning the
statistical weight wX ðxÞ to each generated con-
figuration x. Using Eqs. 3 and 4, we obtain:

wX ðxÞ ¼ mX ðxÞ
qX ðxÞ ¼

qZ ðzÞ
mZ ðzÞ

ð15Þ

ºe
�uX

�
FzxðzÞ

�
þuZ ðzÞþlogRzxðz;qÞ

Equilibrium expectation values can then be com-
puted as:

E½O� ≈

XN

i¼1
wX ðxÞOðxÞXN

i¼1
wX ðxÞ

ð16Þ

All free-energy profiles shown in Figs. 2 and 3
and fig. S2 were computed by �kBT logpðRðxÞÞ
where pðRðxÞÞ is a probability density com-
puted from a weighted histogram of the coor-
dinate RðxÞ using the weighted expectation
(Eq. 16). Histogram bins with weights worth
less than 0.01 samples are discarded to avoid
making unreliable predictions.
Using Eq. 15, it can be shown that minimiza-

tion of the KL divergence (Eq. 13) is equivalent
to maximizing the sample weights:

minKLq½mZ∥qZ �
¼ minEz∼mZ ðzÞ½logmZ ðzÞ � logqZ ðz; qÞ�
¼ maxEz∼mZ ðzÞ½logwX ðxjzÞ�

Configuration KL divergence and ML

Likewise, we can express the KL divergence
in x space where we compute the divergence
between the probability of generated samples
with their Boltzmann weight. Using Eqs. 3, 4,

and 11:

KLq½mX∥qX � ¼ HX � ∫mX ðxÞlogqX ðx; qÞdx

¼ HX � ∫mX ðxÞ logmZ
�
Fxzðx; qÞ

�h

þ logRxzðz; qÞ
i
dx:

¼ HX þ logZZ þ Ex∼mðxÞ
1

s2
∥Fxzðx; qÞ∥2

�

� logRxzðx; qÞ�
This loss is difficult to evaluate because we can-
not sample from mðxÞ a priori. However, we can
approximate the configuration KL divergence
by starting from a sample rðxÞ, resulting in:

JML ¼ �Ex∼rðxÞ½logqX ðx; qÞ�
¼ Ex∼rðxÞ

1

s2
∥Fxzðx; qÞ∥2 � logRxzðx; qÞ

� �

JML is the negative log-likelihood, i.e., mini-
mizing it maximizes the likelihood of the
sample rðxÞ in the Gaussian prior density.

Symmetric divergence

The two KL divergences above can be naturally
combined to the symmetric divergence

KL sym ¼ 1

2
KL½mX∥qX � þ

1

2
KL½mZ∥qZ �

which corresponds, up to an additive constant,
to a Jensen–Shannon divergence that uses the
geometric mean of m ¼ ffiffiffiffiffiffiffiffiffiffiffi

qXqZ
p

instead of the
arithmetic mean.

Reaction coordinate loss

In some applications, we do not want to sam-
ple from the Boltzmann distribution but pro-
mote the sampling of high-energy states in a
specific direction of configuration space, for
example, to compute a free-energy profile along a
predefined RC rðxÞ (Fig. 2, E and K). This is
achieved by adding the RC loss to the minimiza-
tion problem:

JRC ¼ ∫p
�
rðxÞ

�
logp

�
rðxÞ

�
drðxÞ

¼ Ex∼qX ðxÞlogp
�
rðxÞ

�

To implement this loss, the function r is a user
input,minimumandmaximumbounds are given,
and pðrðxÞÞ is computed as a batchwise kernel
density estimate between the bounds.

Adaptive sampling and training

We define the following adaptive sampling
method that trains a Boltzmann generator
while simultaneously using it to propose new
samples. Themethod has a sample bufferX that
stores a predefined number of x samples. This
number is chosen such that low-probability
states of interest still have a chance to be part
of the buffer when it represents an equilibrium
sample. For the examples in Fig. 4, it was chosen
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to be 10,000 (double well, Mueller potential)
and 100,000 (solvated particle dimer). X can be
initialized with any candidates for configura-
tions; in the examples in Fig. 4, it was initialized
with only one configuration (copied to all ele-
ments of X); for the particle dimer system, we
additionally added small Gaussian noise with
standard deviation 0.05 nm to avoid the initial
Boltzmann generator overfitting on a single point.
The Boltzmann generator was initially trained by
example, minimizing JML, using batch-size 128
and 20, 20, and 200 iterations for double well,
Mueller potential, and particle dimer, respectively.
We then iterated the following adaptive sampling
and training loop using batch-size 1000 for all
examples.
1. Sample batch fx1; :::; xBg from X.
2. Update Boltzmann generator parameters q
by training on batch.
3. For each x in batch, propose a Metropolis
Monte Carlo step in latent space with step size s:

z0 ¼ TxzðxÞ þ sNð0; IÞ:
4. Accept or reject proposal with probability
minf1; expð�DEÞg using:

DE ¼ u
�
Tzxðz0Þ

�
� uðxÞ � logRzxðz0; qÞ þ

logRxzðx; qÞ
5. For the accepted samples, replace x by x0 ¼
Tzxðz0Þ.
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and then transformed back into the complex one using the correct statistical weighting.

systemGaussian coordinates of the same dimensionality. Thus, configurations can be sampled in this simpler coordinate 
used to construct invertible transformations between the coordinates of the complex system of interest and simple
independent soft condensed-matter samples at equilibrium (see the Perspective by Tuckerman). Supervised training is 

 used neural networks and deep learning to generate distributions ofet al.only occur through rare events. Noé 
become computationally expensive for complex systems, where the transition from one equilibrium state to another may 

Molecular dynamics or Monte Carlo methods can be used to sample equilibrium states, but these methods
Efficient sampling of equilibrium states
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