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a b s t r a c t

Reactive molecular dynamics (RMD) simulations describe chemical reactions at orders-of-magnitude
faster computing speed compared with quantum molecular dynamics (QMD) simulations. A major
computational bottleneck of RMD is charge-equilibration (QEq) calculation to describe charge transfer
between atoms. Here, we eliminate the speed-limiting iterative minimization of the Coulombic energy in
QEq calculation by adapting an extended-Lagrangian scheme that was recently proposed in the context
of QMD simulations, Souvatzis and Niklasson (2014). The resulting XRMD simulation code drastically
improves energy conservation compared with our previous RMD code, Nomura et al. (2008), while
substantially reducing the time-to-solution. TheXRMDcode has been implemented on parallel computers
based on spatial decomposition, achieving aweak-scaling parallel efficiency of 0.977 on 786,432 IBM Blue
Gene/Q cores for a 67.6 billion-atom system.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Molecular dynamics (MD) simulations follow time evolution of
the positions, rN = {ri | i = 1, . . . ,N}, of N atoms by numeri-
cally integrating Newton’s equations of motion, where the atomic
force law is mathematically encoded in the interatomic potential
energy E(rN) [1]. Reliable interatomic potentials are key to ac-
curately describing thermomechanical properties of materials. To
describematerial processes involving chemical reactions, in partic-
ular, quantum molecular dynamics (QMD) simulations [2–5] de-
termine the force law by minimizing the potential, E(rN , Nel),
as a functional of electronic wave functions  Nel(r) = { n(r) |
n = 1, . . . ,Nel} (Nel is the number of wave functions) usually in
the framework of density functional theory (DFT) [6]. Despite re-
markable progresses in O(N) DFT algorithms [7–10], the largest
QMD simulations to date have been limited to N ⇠ 104 for the
duration of 10�11 s [11,12]. To extend the limited spatiotemporal
scales covered by QMD simulations, reactive molecular dynamics
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(RMD) simulation methods [13] have been developed based on a
first principles-based reactive force-field (ReaxFF) approach [14,
15]. The ReaxFF approach significantly reduces the computational
cost of simulating chemical reactions, while reproducing the en-
ergy surfaces and barriers as well as charge distributions of DFT
calculations. RMD simulations describe formation and breakage of
chemical bonds using reactive bond orders [14,16,17]. The most
intensive computation in RMD simulations arises from a charge-
equilibration (QEq) scheme [18–20] to describe charge transfer
between atoms. QEq treats variable atomic charges as dynamic
variables, qN = {qi | i = 1, . . . ,N}. The charges and the resulting
force law are determined by minimizing the potential, E(rN , qN),
with respect to qN at every MD step. This variable N-charge prob-
lem is commonly solved iteratively with the conjugate gradient
(CG) method [21,22]. Though recent advancements in parallel
ReaxFF algorithms [23–25] have enabled large RMD simulations
[26–28] involving multimillion atoms, QEq computation remains
to be the major bottleneck toward achieving billion-atom RMD
simulations based on ReaxFF. The problem is that an excessively
large number of CG iterations are required to reach sufficient con-
vergence of charges qN to guarantee the conservation of the to-
tal energy as a function of time. Insufficiently converged charges
act as a heat sink of energy, and the resulting broken time re-
versibility causes the total energy to drift over time. A similar
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trade-off between the computational speed and energy conserva-
tion is encountered in QMD simulations, where insufficient con-
vergence of the iterative refinement of wave functions Nel causes
serious energy drift. Niklasson proposed an extended Lagrangian
scheme [29–31] that achieves excellent long-time energy con-
servation with drastically reduced number of iterations. In fact,
an extended Lagrangian scheme with no iteration (i.e. requiring
only one evaluation of energy gradient) has recently been demon-
strated [32]. The key idea is to introduce auxiliary wave functions
as dynamic variables that are numerically integrated by reversible,
symplectic integration schemes to address the broken reversibil-
ity problem, while the auxiliary wave functions are constrained to
iteratively determined wave functions by a harmonic potential.

In this paper, the extended Lagrangian scheme [29–32] is
adapted to RMD simulations, thereby eliminating speed-limiting
iterations in QEq calculation. The resulting XRMD simulation code
drastically improves the energy conservation compared with our
previous RMD code [23], while substantially reducing the time-to-
solution. This paper presents key features and implementation de-
tails of XRMD. The rest of the paper is organized as follows. The
next section describes the computational method. Benchmark re-
sults are presented in Section 3, and Section 4 contains conclusions.

2. Methods

2.1. Charge-equilibration (QEq) method

The interatomic potential energy in ReaxFF is composed of a
number of bonded and nonbonded terms [14,15]. The nonbonded
terms are Coulombic and van der Waals energies. The Coulombic
energy is expressed as

ECoulomb(r
N , qN) =

X

i

�iqi +
1
2

X

i

X

j

qiH(rij)qj, (1)

where ri,�i, and qi are the position, electronegativity, and charge
of the ith atom, respectively, and rij is the distance between a pair
of atoms i and j. In Eq. (1), the Coulombic interaction is defined as

H(rij) = Ji�ij +
T (rij)

⇥
r3ij + ��3

ij
⇤1/3 (1 � �ij), (2)

where Ji is the self-Coulomb repulsion coefficient, �ij is a parameter
for the smeared Coulombic function, and the Kronecker delta is
�ij = 1 (i = j) or 0 (i 6= j). The Coulombic interaction is screened
using a taper function, T (r), which has a finite range with a cutoff
length of rc .

In ReaxFF, atomic charges qi are variables that change dynam-
ically in time. When atomic positions are updated during RMD
simulation, the QEq subroutine updates charge distribution qN by
minimizing ECoulomb subject to charge-neutrality constraint,⌃i qi =
0. With the Lagrange-multiplier method, the constrained energy
minimization is equivalent to solving the electronegativity equal-
ization problem [18,22,33,19],

gi ⌘ �@ECoulomb

@qi
= �µ, (3)

where µ is the electrochemical potential. We solve this problem
iteratively using the CG method [21,23,34].

2.2. Extended Lagrangian QEq scheme

Our extended Lagrangian QEq scheme introduces auxiliary
variables, ✓N = {✓i | i = 1, . . . ,N}. System dynamics for extended
Lagrangian reactive molecular dynamics (XRMD) simulations is
derived from the extended Lagrangian,

LXRMD = LRMD + µ

2

X

i

✓̇2i � µ!2

2

X

i
(✓i � qi)2 , (4)

Table 1

Energy deviation during MD simulation for 1 ps.

Method Energy deviation
(10�3 kcal/mol/atom)

XRMD 6.8
RMD (CG tolerance: 10�8) 4.1
RMD (one CG iteration per MD step) 499

where LRMD is the RMD Lagrangian,

LMD =
X

i

mi

2
ṙ2i � E(rN), (5)

with mi being the mass of the ith atom and the dot denoting time
derivative. In Eq. (4), µ and ! are fictitious mass and frequency
parameters for the auxiliary charge degrees of freedom.

The time evolution of the dynamical system described by LXRMD
is determined by Euler–Lagrange equations of motion. In the limit
of µ ! 0, the equations become

mir̈i = � @

@ri
E(rN), (6)

✓̈i = !2(qi � ✓i). (7)

We numerically integrate Eqs. (6) and (7) using the velocity Verlet
algorithmwith a unit time step of �t . At each time step,we perform
just one step of CG iteration towardminimizing the Coulombic en-
ergy, Eq. (1), as a function of qN using the gradient in Eq. (3).We use
the auxiliary variable ✓N as an initial guess for the CG optimization
of qN . For extended Lagrangian-based QMD simulations, the rec-
ommended value for the dimensionless parameter, K = !2�t2, is
2 [31].We have found that the same valueworks for XRMD aswell,
and K = 2 will be used in the numerical tests discussed below.

We have implemented the extended Lagrangian QEq scheme
in our scalable parallel RMD simulation code [23]. All XRMD com-
putations are parallelized using spatial decomposition, where the
simulated system is decomposed into spatially localized subsys-
tems and each processor is assigned computations associated with
one subsystem. Message passing is used to exchange necessary
data for the computations utilizing the message passing interface
(MPI) library. The XRMD program is written in Fortran 90.

3. Results

We test our extended Lagrangian QEq scheme and the parallel
XRMDcodeusing oxidation of a silicon carbidenanoparticle (n-SiC)
as an example. We adopt ReaxFF parameterization by Newsome
et al. [35,36]. A n-SiC composed of 25 silicon (Si) and 25 carbon
(C) atoms is placed in oxygen environment. We place 50 oxygen
(O2) molecules randomly around the n-SiC using a Monte Carlo
procedure. The total number of atoms is 150 in a cubic box of side
16.289 Å. Fig. 1(a) shows the initial configuration of the n-SiC+O2
system. The equations of motion are integrated using a unit time
step of 0.25 fs.We first thermalize the system at temperature 300 K
by velocity scaling. Subsequently, we switch to themicrocanonical
ensemble to test the energy conservation. Single MPI process is
used for this test.

Fig. 1(b) shows the total energy as a function of time during
MD simulation. We compare three cases: (1) XRMD code; (2) RMD
code, where CG iterations at each MD step are continued until the
change in the Coulombic energy ECoulomb per iteration falls below
10�8 of |ECoulomb|; and (3) RMD code performing only one CG iter-
ation per MD step. Total energy conservation of XRMD is compa-
rable to converged RMD, while RMD with single CG step exhibits
significant energy drift. Table 1 summarizes total energy drift dur-
ing 1 ps MD simulation with the three methods.
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Fig. 1. (a) A snapshot of the simulated n-SiC surrounded by O2 molecules. Silicon, carbon, and oxygen atoms are colored cyan, yellow, and red, respectively. (b) Total energy
as a function of time for XRMD code compared with two RMD results: with (i) converged CG iterations with a tolerance of 10�8; and (ii) one CG iteration per MD step.
(c) Total, potential, and kinetic energies obtained with XRMD code. The kinetic energy is shifted by a constant value (i.e., the total energy at time 0). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Total energy of converged RMD and that of XRMD during 1 ps.

Fig. 1(c) plots time evolutions of the total, potential and kinetic
energies obtained with XRMD code. The kinetic energy is shifted
by the total energy at time t = 0 to better compare the changes of
the three energy terms. It should be noted that the n-SiC+O2 sys-
tem is highly reactive, where the surface of n-SiC is continuously
oxidized during simulation. These exothermic reactions release a
large amount of heat, resulting in decreased potential energy and
increased kinetic energy. Comparedwith the changes in the poten-
tial and kinetic energies, the total energy iswell conservedwith the
XRMDmethod.

To magnify small deviations in the total energy for both XRMD
and converged RMD simulations, Fig. 2 shows time evolution of the
total energy over 1 ps. The two energy values are nearly identical
up to 500 fs and subsequently exhibit very small difference even at
this fine scale.

To validate atomic trajectories obtained by XRMD, Fig. 3 plots
the difference of atomic coordinates after 1 ps of microcanoni-
cal MD simulation between XRMD and converged RMD with CG
tolerance of 10�8. In the figure, the horizontal axis is atom ID 2
{1, 2, . . . , 150}. The difference in atomic coordinates between the
two methods mostly falls within ±0.1 (Å) except for a few atoms.

Fig. 4 plots the difference of atomic charges after 1 ps of mi-
crocanonical MD simulation between XRMD and converged RMD
methods. The largest difference in atomic charge is 0.081e for one
of the carbon atoms on the n-SiC surface. The simulated systemun-
dergoes extensive reduction and oxidation reactions with associ-
ated large changes in atomic charges. The figure shows that charge
dynamics is accurately described by XRMDdespitemuch less com-
puting time compared with fully converged RMD. To quantify the
overall accuracy of XRMD, Table 2 summarizes the average and

Table 2

Average and standard deviation of the absolute difference between XRMD and
converged RMD methods.

X (Å) Y (Å) Z (Å) Charge (e)

Average 0.084 0.080 0.074 0.0092
Standard deviation 0.112 0.116 0.104 0.0134

standard deviation of the absolute difference in atomic coordinates
and charges obtained with XRMD compared with those in con-
verged RMD with CG tolerance of 10�8.

As demonstrated above, XRMDprovides sufficient accuracy that
is comparable to fully converged RMD but at much less computa-
tional cost. To test the difference in computing time in realistic sim-
ulations, we perform benchmark tests using one of our production
simulations. The system is a n-SiC of diameter 460 Å in oxygen en-
vironment with the total number of atoms, 10,007,652 (Fig. 5). We
use 1280MPI processes that are assigned to 20⇥8⇥8 spatial sub-
systems in the x, y and z directions. Two sets of benchmark tests are
performed on different platforms: (1) dual quad-core AMD2.3 GHz
Opteron central processing units (CPUs) with 10 Gbit/s Myrinet
interconnect; and (2) dual octa-core Intel Xeon E5-2665 2.4 GHz
CPUswith 56Gbit/s Infiniband interconnect.We use Intel compiler
version 14.0 linked with OpenMPI version 1.8.1. The identical exe-
cutable is used for bothmeasurements. 1280MPI processes are run
on 107 computing nodes on Myrinet and 80 nodes on Infiniband.
Wemeasure timing of the QEq subroutine over 5MD steps. Table 3
summarizes the measured wall-clock time of the four benchmarks
(i.e., XRMD and RMDwith CG tolerance of 10�8 on both platforms).
Computation time of XRMD is 8.6 times or 4.4 times smaller than
that of RMD, respectively, on theMyrinet and Infiniband platforms.
QEq computation involves heavy communication in order to ex-
change atomic charges within a cut off radius of rc ⇠ 10 Å from
subsystem boundaries at every CG iteration. The latter platform
has much faster network interconnect, and accordingly, it penal-
izes extensive QEq computations in RMD less severely.

Next, we test the scalability of the parallel XRMD code on mas-
sively parallel settings using RDX crystal as an example. Numeri-
cal tests are performed on the IBM Blue Gene/Q computer, Mira,
at the Argonne National Laboratory. Mira consists of 48 racks each
with 1024 nodes. Each node has a 16-core processor operating at
1.6GHz for computation, 32MBof L2 cachewith hardware transac-
tional memory and speculative operation functionality [12,37,38],
and 16 GB DDR3 main RAM. The processor employs PowerPC A2
architecture that supports quad floating operation units, 16 kB of
L1 instruction and data cache, and 4-way multithreading per core
enabling 64 concurrent threads on one node. Though it is highly
energy efficient (55 Watts per node) thanks to the relatively low
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Fig. 3. Difference in atomic coordinates after 1 ps of MD simulation between XRMD and converged RMD methods in (a) x, (b) y, and (c) z directions.

Table 3

Wall-clock time for 5MD steps of 10million-atom simulation using 1280MPI processes. XRMD and fully converged RMD simulations are run on bothMyrinet and Infiniband
platforms.

Network Number of nodes Wall-clock time (s)
Converged RMD (CG tolerance 10�8) XRMD

10 Gbit/s Myrinet 107 69.9 8.09
56 Gbit/s Infiniband 80 13.4 3.03

Fig. 4. Atomic charges after 1 ps ofMD simulationwith converged RMD and XRMD
methods.

clock speed, the Blue Gene/Q chip delivers a peak performance of
204.8 Gflop/s. Each node has 11 links—10 links to connect comput-
ing nodes and one link to I/O node. Each link can simultaneously
transmit and receive data at 2GB/s, amounting to a total bandwidth
of 44 GB/s. A 5-dimensional torus network is used for peer-to-peer
communications.

We first perform an isogranular-scaling test of XRMD code on
theBlueGene/Q, inwhich thenumber of atomsper coreN/P is kept
constant. Fig. 6 shows the wall-clock time per XRMD simulation
stepwith scaledworkloads—86,016P-atom RDX system on P cores
of Blue Gene/Q. By increasing the number of atoms linearly with
the number of cores, the wall-clock time remains almost constant,
indicating excellent scalability. To quantify the parallel efficiency,
we first define the speed of the XRMD code as a product of the total
number of atoms and the number ofMD steps executed per second.
The isogranular speedup is given by the ratio between the speed of
P cores and that of 8192 cores as a reference system. The weak-
scaling parallel efficiency is the isogranular speedup divided by
P/8192. With the granularity of 86,016 atoms per core, the parallel
efficiency is 0.977 on P = 786,432 for a 67,645,734,912-atom sys-
tem. This demonstrates a very high scalability of the XRMD code.

We also perform a strong-scaling test by simulating a RDX
crystal containing a total of 4,227,858,432 atoms. In this test,

Fig. 5. Snapshot of 10 million-atom simulation. The color code is the same as
that for Fig. 1(a). O2 molecules are not shown for the clarity of presentation. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

the number of cores ranges from P = 49,152 to 786,432,
while keeping the total problem size constant. Fig. 7 shows
the wall-clock time per MD simulation step as a function of
P . The time-to-solution is reduced by a factor of 14.17 on
786,432 cores compared with the 49,152-core run (i.e., using
16-times larger number of cores). This signifies a strong-scaling
speedup of 14.17, with the corresponding strong-scaling parallel
efficiency of 0.886. It is more difficult to achieve high strong-
scaling parallel efficiency compared with weak-scaling parallel
efficiency. This is due to decreasing granularity, and accordingly
increasing communication/computation ratio for larger number of
processors, in the former. With 16 times smaller system size of the
weak-scaling test, the observed strong-scaling parallel efficiency is
considered excellent.
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Fig. 6. Wall-clock time per MD simulation step of parallel XRMD code, with scaled
workloads—86,016P-atom RDX system on P cores (P = 8192, . . . , 786,432) of Blue
Gene/Q.

Fig. 7. Wall-clock time per MD simulation step of parallel XRMD code with
strong scaling—4,227,858,432-atom RDX system on P cores (P = 49,152, . . . ,
786,432) of Blue Gene/Q.

4. Conclusion

We have eliminated speed-limiting CG iterations in QEq calcu-
lation for RMD simulations by adapting the extended Lagrangian
scheme that has recently been developed forQMDsimulations. The
resulting XRMD code has drastically improved the energy conser-
vation compared with our precious RMD code, while substantially
reducing the time-to-solution. The XRMD code has also demon-
strated high parallel efficiency, 0.977 on 786,432 Blue Gene/Q
processors. These results demonstrate a wide applicability of the
extended Lagrangian scheme beyond the original QMD domain.
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