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Abstract Because of its unrivaled predictive power, the molecular dynamics (MD)

method is widely used in theoretical chemistry, physics, biology, materials

science, and engineering. However, due to computational cost, MD

simulations can only be used to directly simulate dynamical processes over

limited timescales (e.g., nanoseconds or at most a few microseconds), even

though the simulation of nonequilibrium processes can often require

significantly longer timescales, especially when they involve thermal

activation. In this paper, we present an introduction to accelerated

molecular dynamics, a class of methods aimed at extending the timescale

range of molecular dynamics, sometimes up to seconds or more. The

theoretical foundations underpinning the different methods (parallel replica
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dynamics, hyperdynamics, and temperature-accelerated dynamics) are first

discussed. We then discuss some applications and recent advances, including

super-state parallel replica dynamics, self-learning hyperdynamics, and

spatially parallel temperature-accelerated dynamics.

Keywords: infrequent events; transition-state theory; accelerated

dynamics; hyperdynamics; parallel-replica dynamics; temperature-

accelerated dynamics; molecular dynamics; bond-boost hyperdynamics;

parallel-accelerated dynamics; Cu(100)

A long-standing limitation in the use of molecular dynamics (MD) simulation is
that it can only be applied directly to processes that take place on very short
timescales: typically nanoseconds if empirical potentials are employed, or
picoseconds if we rely on electronic structure methods. Many processes of
interest in chemistry, biochemistry, and materials science require study over
microseconds and beyond, due to either the natural timescale for the evolution or
the duration of the experiment of interest. The dynamics on these timescales is
typically characterized by infrequent-event transitions, from state to state,
usually involving an energy barrier. There is a long and venerable tradition in
chemistry of using transition-state theory (TST) [1–3] to compute rate constants
directly for these kinds of activated processes. If needed, dynamical corrections
to the TST rate, and even quantum corrections, can be computed to achieve an
accuracy suitable for the problem at hand. These rate constants then allow us to
understand the system behavior on longer timescales than we can directly reach
with MD. For complex systems with many reaction paths, the TST rates can be
fed into a stochastic simulation procedure such as kinetic Monte Carlo (KMC) [4],
and a direct simulation of the advance of the system through its possible states
can be obtained in a probabilistically exact way.

A problem that has become more evident in recent years, however, is that for
many systems of interest there is a complexity that makes it difficult, if not
impossible, to determine all the relevant reaction paths to which TST should be
applied. This is a serious issue, as omitted transition pathways can have
uncontrollable consequences on the simulated long-time kinetics.

Over the past decade or so, we have been developing a new class of methods
for treating the long-time dynamics in these complex, infrequent-event systems.
Rather than trying to guess in advance what reaction pathways may be
important, we return instead to an MD treatment, in which the trajectory itself
finds an appropriate way to escape from each state of the system. Since a direct
integration of the trajectory would be limited to nanoseconds, while we are
seeking to follow the system for much longer times, we modify the dynamics so
that the first escape will happen much more quickly, thereby accelerating the
dynamics. The key is to design the modified dynamics in a way that does as little
damage as possible to the probability for escaping along a given pathway — i.e.,
we try to preserve the relative rate constants for the different possible escape
paths out of the state. We can then use this modified dynamics to follow the
system from state to state, reaching much longer times than we could reach with
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direct MD. The dynamics within any one state may no longer be meaningful, but
the state-to-state dynamics, in the best case (as we discuss below), can be exact.
We have developed three methods in this accelerated molecular dynamics (AMD)
class, in each case appealing to TST, either implicitly or explicitly, to design the
modified dynamics. Each of the methods has its own advantages, and we and
others have applied these methods to a wide range of problems. The purpose of
this article is to give the reader a brief introduction to how these methods work,
and discuss some of the recent developments that have been made to improve
their power and applicability. Note that this brief review does not claim to be
exhaustive: various other methods aiming at similar goals have been proposed in
the literature. For the sake of brevity, our focus will exclusively be on the methods
developed by our group.

This paper is organized as follows: Sections 1, 2, and 3 discuss the basic
theoretical foundations underlying the three main AMD methods, namely parallel-
replica dynamics, hyperdynamics, and temperature-accelerated dynamics (TAD),
respectively. In Section 4, we present some recent improvements of the original
AMD methods, allowing them to tackle more complex, multi-timescale, systems
(Section 4.1), to tune themselves automatically to the system at hand (Section 4.2)
and to efficiently simulate systems of large sizes (Section 4.3). We then conclude by
discussing current and forthcoming challenges that need to be addressed to further
extend the applicability and performance of the AMD methods.

1. PARALLEL-REPLICA DYNAMICS

The parallel-replica method [5] is perhaps the least glamorous of the AMD
methods, but is, in many cases, the most powerful. It is also the most accurate
AMD method, assuming only first-order kinetics (exponential decay); i.e., for any
trajectory that has been in a state long enough to have lost its memory of how it
entered the state (longer than the correlation time tcorr, the time after which the
system is effectively sampling a stationary distribution restricted to the current
state), the probability distribution function for the time of the next escape from
that state is given by

pðtÞ ¼ ke�kt (1)

where k is the rate constant for escape from the state. Parallel-replica allows for
the temporal parallelization of the state-to-state dynamics of such a system on M
processors. This is to be contrasted with standard parallelizations of MD
simulations in which spatial decomposition schemes are used.

We sketch the derivation here. For a state with total escape rate k which is
simultaneously explored on M processors, the effective escape rate for the first
escape of any replica is Mk. If the simulation time accumulated on one processor
is t, the total time on the M processors will then be tsum ¼Mt. Thus, using a
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simple change of variable, p(t) can be written as:

pðtÞdt ¼Mke�Mktdt (2)

¼ ke�ktsum dtsum (3)

¼ pðtsumÞdtsum (4)

implying that the probability to leave the state per unit MD time is the same
whether the simulation is run on one or M processors. While this derivation
applies for processors of equal speed, the same conclusion can be shown to be
valid if a heterogeneous set of processors is instead used; see ref. 5.

Figure 1 shows a schematic of the algorithm. Starting with a system in a
particular state, it is replicated on each of the M processors. Each replica is evolved
forward with independent thermostats for a time Dtdeph � tcorr to eliminate
correlations between replicas, a stage referred to as dephasing. After dephasing,
each processor carries out an independent constant-temperature MD trajectory,
together exploring phase space within the particular basin M times faster than a
single trajectory would. Once a transition is detected on any processor, all
processors are stopped. The simulation clock is then advanced by tsum, the
accumulated trajectory time summed over all replicas until the transition occurred.

The parallel-replica method also correctly accounts for correlated dynamical
events (there is no requirement that the system obeys TST), unlike the other AMD
methods. This is accomplished by allowing the trajectory that made the transition
to continue for a further amount of time Dtcorr � tcorr, during which recrossings
or follow-on events may occur. The simulation clock is then advanced by Dtcorr,
the new state is replicated on all processors, and the whole process is repeated.

The computational efficiency of the method is limited by both the dephasing
stage, which does not advance the system clock, and the correlated-event stage,

A B C D A

Figure 1 Schematic illustration of the parallel-replica method. The four steps, described in

the text, are (A) replication of the system into M copies, (B) dephasing of the replicas, (C)

propagation of independent trajectories until a transition is detected in any of the replicas,

and (D) brief continuation of the transitioning trajectory to allow for correlated events such

as recrossings or follow-on transitions to other states. The resulting configuration is then

replicated, beginning the process again. Reprinted, with permission, from ref. 6. Copyright

2002 by Annual Reviews. www.annualreviews.org
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during which only one processor accumulates time. (This is illustrated schema-
tically in Figure 1, where dashed line trajectories advance the simulation clock but
dotted line trajectories do not.) Thus, the overall efficiency will be high when

1

kM
� Dtdeph þ Dtcorr (5)

An extension to parallel-replica allows the method to be applied to driven
systems. To result in valid dynamics, the drive rate must be slow enough that at
any given time the rates for the different pathways in the system depend only on
the instantaneous configuration of the system [7].

Parallel-replica dynamics has been successfully applied to a number of
different problems, including the diffusion of H2 in crystalline C60 [8], the pyrolysis
of hexadecane [9], the diffusion of defects in plutonium [10], the transformation of
voids into stacking fault tetrahedra in FCC metals [11], the stretching of carbon
nanotubes [7], grain boundary sliding in Cu [12], the diffusion of Li through a
polymer matrix [13], the fracture process of metals [14], and the folding dynamics
of small proteins [15]. As parallel-computing environments become more common,
the parallel-replica method will become an increasingly important tool for the
exploration of complex systems.

2. HYPERDYNAMICS

Another possible avenue to accelerate the state-to-state evolution of a system of
interest is to construct an auxiliary system in such a way that the dynamics of the
latter are faster than that of the former while enforcing that one maps onto the other
by a suitable renormalization of time. Hyperdynamics [16] realizes this objective by
building on the concept of importance sampling [17,18] and extending it into the
time domain. In this approach, the auxiliary system is obtained by adding a
nonnegative bias potential DVbðrÞ to the potential of the original system V(r) so that
the height of the barriers between different states is reduced, as schematically
shown in Figure 2. The relationship between the dynamical evolution of the original
and biased systems is recovered using TST. Indeed, according to TST, the rate of
escape of the original system out of a given state A is given by

kTST
A! ¼ hjuAjdAðrÞiA (6)

where dAðrÞ is a Dirac delta function centered on the separatrix hypersurface
between state A (i.e., the hypersurface is at r ¼ 0) and the neighboring states, uA the
velocity normal to it, and hPiA the canonical ensemble average of a quantity P for a
system confined to state A. By standard importance sampling manipulations, the
last equation can be recast in a form where the averages are obtained on the biased
potential instead. We find:

kTST
A! ¼

hjuAjdAðrÞe
bDVbðrÞiAb

hebDVbðrÞiAb

(7)
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where b ¼ 1=kBT and kB is the Boltzmann constant. If we impose the condition that
the bias potential vanish at the separatrix, the last equation can be rewritten as

kTST
A! ¼

hjuAjdðrÞiAb

hebDVbðrÞiAb

(8)

This result is very appealing since the relative rates of escapes from A to other
states are invariant under the addition of the bias potential, i.e.,

kTST
Ab!B

kTST
Ab!C

¼
kTST

A!B

kTST
A!C

(9)

Thus, the state-to-state dynamics on the biased potential is equivalent to that
on the original potential as long as the time is renormalized to account for the
uniform relative increase of all the rates introduced by the biased potential. This
renormalization is in practice obtained by multiplying the MD timestep DtMD by
the inverse Boltzmann factor for the bias potential, so that n MD timesteps on the
biased potential are equivalent to an elapsed time of

thyper ¼
Xn

j¼1

DtMDeDVðrðtjÞÞ=kBT (10)

on the original potential. This renormalization can be shown to be exact in the
long-time limit. The overall computational speedup for hyperdynamics is simply

B

A

C

Figure 2 Schematic illustration of the hyperdynamics method. A bias potential ðDVðrÞÞ is

added to the original potential (V(r), solid line). Provided that DVðrÞ meets certain conditions,

primarily that it be zero at the dividing surfaces between states, a trajectory on the biased

potential surface ðVðrÞ þ DVðrÞ; dashed lineÞ escapes more rapidly from each state without

corrupting the relative escape probabilities. The accelerated time is estimated as the

simulation proceeds.
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given by the average boost factor

boostðhyperdynamicsÞ ¼
thyper

tMD
(11)

divided by the relative extra cost of calculating the bias potential and associated
forces.

Thus, if both the original and biased systems obey TST so that the
above-mentioned derivation holds, hyperdynamics can provide considerable
acceleration compared to direct-MD simulations. However, in practice, the
applicability of hyperdynamics is limited by the availability of low-overhead bias
potentials. Indeed, while some different forms have been proposed in the last
few years, often they are computationally expensive, tailored to a limited class
of systems or built on sets of restrictive assumptions about the nature
of the separatrix. The main challenge, which is the subject of active research in
different groups, thus remains the construction of bias potentials that are simple,
efficient, generic, and transferable. We present below one recent advance in
this area.

Despite the aforementioned difficulties, hyperdynamics has been successfully
applied to a variety of systems, including desorption of organic molecules from
graphitic substrates [19], surface diffusion of metallic clusters [20], heteroepitax-
ial growth [21], and the dynamics of biomolecules [22].

3. TEMPERATURE-ACCELERATED DYNAMICS

One natural way of speeding up the dynamics of a system is to simply raise the
temperature. However, while the rates of processes will increase with higher
temperatures, the relative probabilities of different events occurring will be
different than at the original temperature of interest. Correcting for this
reordering is the basic idea behind TAD [23]. In TAD, transitions are sped up
by increasing the temperature to some Thigh, but transitions that should not have
occurred at the original temperature Tlow are filtered out. The TAD method
assumes that the system obeys harmonic TST and, as a result, is more
approximate than the other AMD methods. However, for many applications,
especially in solids, this additional approximation is acceptable.

In each basin, the system is evolved at Thigh. When a transition is detected, the
saddle point for that transition is found. The trajectory is then reflected back into
the basin and continued. This procedure is referred to as ‘‘basin constrained
molecular dynamics’’ (BCMD). During the BCMD, a list of escape paths and
escape times at Thigh for each pathway is generated. Assuming that harmonic TST
holds, and knowing the saddle point energy for the transition, we can then
extrapolate each escape time observed at Thigh to obtain a corresponding escape
time at Tlow. This extrapolation, which does not require knowing the
preexponential factor, can be illustrated graphically in an Arrhenius-style plot
(ln(1/t) vs. 1/T), as shown in Figure 3. The time for each event seen at Thigh
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extrapolated to Tlow is

tlow ¼ thigheEaðblow�bhighÞ (12)

where b ¼ 1=kBT and Ea is the activation energy.
As the BCMD is continued, a new shorter-time event may be discovered. With

the additional assumption that there is a minimum preexponential factor, nmin,
which bounds from below all the preexponential factors in the system, we can
define a time at which the BCMD trajectory can be stopped. This time has the
property that the probability any transition observed later would replace the first

1 / T

ln
(1

/t
)

1 / Tlow1 / Thigh

T
high  tim

e

T
low  tim

e

ln(1/tstop)

ln(νmin)

ln(1/tshort )
low

ln(ν*min)

Figure 3 Schematic illustration of the temperature-accelerated dynamics method. Progress

of the high-temperature trajectory can be thought of as moving down the vertical timeline at

1/Thigh. For each transition detected during the run, the trajectory is reflected back into the

basin, the saddle point is found, and the time of the transition (solid dot on left timeline) is

transformed (arrow) into a time on the low-temperature timeline. Plotted in this Arrhenius-

like form, this transformation is a simple extrapolation along a line whose slope is the

negative of the barrier height for the event. The dashed termination line connects the

shortest-time transition recorded so far on the low-temperature timeline with the confidence-

modified minimum preexponential ðn�min ¼ nmin= lnð1=dÞÞ on the y-axis. The intersection of this

line with the high-T timeline gives the time (tstop, open circle) at which the trajectory can be

terminated. With confidence 1�d, we can say that any transition observed after tstop could

only extrapolate to a shorter time on the low-T timeline if it had a preexponential factor

lower than nmin.
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transition at Tlow is less than d. This ‘‘stop’’ time is given by

thigh;stop �
lnð1=dÞ
nmin

nmintlow;short

ln ð1=dÞ

� �Tlow=Thigh

(13)

where tlow,short is the shortest transition time at Tlow. When this stop time is
reached, the system clock is advanced by tlow,short, and the corresponding
transition is accepted. The TAD procedure is then started again in the new basin.
Thus, in TAD, two parameters govern the accuracy of the simulation: d and nmin.

The average boost in TAD can be dramatic when barriers are high and Thigh/
Tlow is large. However, as TAD relies upon harmonic TST for validity, any
anharmonicity error at Thigh will lead to a corruption of the dynamics. This
anharmonicity error can be controlled by choosing a Thigh that is not too high.

A number of advances have led to increased efficiency in particular systems.
‘‘Synthetic’’ mode [23], a KMC treatment of low-barrier transitions, can
significantly improve the efficiency in cases where low-barrier events are
repeated often. Furthermore, if we know something about the minimum barrier
to leave a given state, either because we have visited the state before and have a
lower bound on this minimum barrier or because the minimum barrier is
supplied a priori, we can accept a transition and leave the state earlier than the
time given by Equation (13) (see ref. 24 for details).

TAD has been demonstrated to be very effective for studying the long-time
behavior of defects produced in collision cascades [25,26]. An MD/TAD
procedure has also been applied to the simulation of thin-film growth of Ag
[27] and Cu [28] on Ag(100). Heteroepitaxial systems are especially hard to treat
with techniques such as KMC due to the increased tendency for the system to go
off lattice due to mismatch strain, and because the rate catalog needs to be
considerably larger when neighboring atoms can have multiple types. Other
applications for which TAD has proven effective include defect diffusion on
oxide surfaces [29], the diffusion of interstitial clusters in Si [30] and defect
diffusion in plutonium [10].

4. RECENT ADVANCES AND APPLICATIONS

While the basics of the three methods described above were established roughly
a decade ago, they provide such a fertile ground for further development that
they are still the subject of ongoing research. Currently, this research proceeds
along three main axes: (i) generalization of the methods to extend their range of
applicability, (ii) algorithmic improvements to make the methods more robust
and easier to apply, and (iii) creation of hybrid methods by combining AMD
methods together or with other simulation approaches. In the following, we
describe some recent advances along these three directions and discuss some
successful demonstrations and applications.
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4.1 Superstate parallel-replica dynamics

While the derivation of the parallel-replica method in Section 1 does not impose a
particular definition of a ‘‘state’’ of the system, the operational definition used in
practice often corresponds to a single basin of the potential energy surface, i.e., a
state is taken to be the ensemble of points of configuration space that converge to
the same fixed point under a local minimization of the energy of the system (e.g.,
using a steepest-descent algorithm). An exponential distribution of escape times
is then obtained if the typical timescale for a transition out of the state is long
compared to the characteristic vibrational period of the system around that fixed
point, i.e., if there is a separation of timescale between vibrations and transitions
between basins. While this definition has the virtue of being conceptually and
computationally simple, it limits the range of possible applications to systems
where the basins are deep enough (relative to kBT) and well separated from each
other and leaves many other, more complex, systems out of reach. There is thus a
clear need to develop strategies to capitalize on more general definitions of states
and hence higher-level gaps in the characteristic timescales spectrum.

For example, in the case of pyrolysis of hexadecane, it was shown that a state
could be defined as the ensemble of all configuration space points that share the
same network of covalent bonds [9]. In that case, these ‘‘superstates’’ contain a
large number of simple energy basins of the potential energy surface, each
corresponding to a different conformation of the molecular backbone. There, the
method exploited the separation of timescale between the rapid changes of
dihedral angles of the backbone (intrasuperstate transitions) and the slow
covalent bond breaking process (intersuperstates transitions) rather than between
the vibrational timescale and that of sampling of the different dihedral angles.
This enables one to ignore the ‘‘irrelevant’’ fast transitions that would demand
incessant dephasing and decorrelation and concentrate directly on the real kinetic
bottlenecks.

Another common situation that arises is one where the infrequent-event
system of interest is coupled to a complex and rapidly evolving environment
such that, considered as a whole, the combined system makes transitions so
rapidly that any computational gain is impossible using a traditional definition of
a state. A specific example of this type of system is a solid surface in contact with
a liquid. We might be interested in following the evolution of the surface
morphology during electrochemical deposition or etching, or discovering the
relevant steps of a surface-catalytic reaction or a corrosive process. In this type of
system, a single potential energy basin definition of a state would imply that
transitions occur every few femtoseconds. However, the vast majority of these
would correspond to local changes in the coordination of liquid atoms, and only
very rarely would the configuration of the solid atoms, which are really the
variables of interest here, change. Similarly to the case of pyrolysis discussed
above, a superstate can be here defined as all the points of configuration space
that converge to the same configuration of the slow variables of the system — the
position of the atoms belonging to the solid phase — under minimization of the
energy.
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In order to demonstrate that this definition is proper, we carried out
superstate parallel-replica simulations of the diffusion of an adatom on a Ag(100)
surface (modeled using the embedded atom method) in contact with a film of a
prototypical fluid (modeled using a Lennard-Jones potential). Here the
interaction strength of liquid atoms with other liquid atoms or with silver atoms
was taken to be 10 times weaker than the corresponding silver–silver interaction.
The liquid film was left free to expand to its liquid–vapor equilibrium density.
The distribution of 500 adatom hopping times at 600 K is shown in the left panel
of Figure 4 for a direct simulation using conventional MD and for a superstate
parallel-replica simulation. The results clearly show that transition statistics are
equivalent for the two approaches, implying that our superstate definition
restores the timescale separation essential for the validity of the method. In this
case the simulation was quite efficient, with a parallel efficiency of around 0.8
despite the presence of very fast transitions in the liquid.

This good agreement is not due to a negligible effect of the liquid on the
adatom dynamics. Indeed, as shown in the right panel of Figure 4, the hopping
kinetics are strongly affected by the liquid. Quantitatively, a fit to a standard
Arrhenius rate expression kðTÞ ¼ n0expð�DE=kBTÞ, where n0 is the vibrational
prefactor for the transition and DE its activation energy, shows that the presence
of the liquid significantly increases both DE (from 0.53 to 0.70 eV) and n0 (from
7.17� 1013 to 6.28� 1014 s�1). Interestingly, while the liquid slows down diffusion
in the regime we probed, the results suggest that it could actually assist the
adatom’s diffusion at temperatures exceeding about 900 K. One must however be
careful with such extrapolations because the relevant physics could be
significantly modified as the liquid approaches its critical point. Indeed these
modifications to the kinetics stem from many, often conflicting, factors, and their
effects are extremely difficult to obtain accurately from higher-level models. The
development of direct but efficient methods to probe the kinetics of complex
systems like this is thus extremely useful.

Note that, in the two cases discussed above, chemical intuition was essential
in properly defining superstates such that an appropriate separation of
timescales was obtained. For more complex systems, intuition alone will not be
sufficient and considerable effort might be required to identify an exploitable gap
in the characteristic timescales of the system. There is thus a need to develop on-
the-fly methods to appropriately define superstates based on MD data alone.
Efforts toward this goal are presently under way [31].

4.2 Self-learning hyperdynamics

As illustrated in the previous section, the AMD algorithms often have to be tuned
and sometimes even tailored for particular applications. This might be
straightforward in some cases, but might require considerable care in others. It
would thus be highly desirable if the methods could be made to automatically
adapt themselves to every system, or even to every state of every system, in order
to deliver optimal performance while maintaining tight control on accuracy.
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In the current state of affairs, nowhere is this need more pressing than in
hyperdynamics.

Indeed, as discussed above, the applicability of hyperdynamics is often
hampered by the difficulty in building bias potentials that satisfy all the formal
requirements — namely that (i) the bias potential should vanish at any dividing
surface between different states and (ii) the kinetics on the biased potential obeys
TST — while providing substantial acceleration of the dynamics. Both
requirements are very challenging to meet in practice. Indeed, condition
(i) must be obeyed for all dividing surfaces around all states, which, given that
the transition pathways or even the possible conformations that the system can
adopt are a priori unknown, is highly nontrivial to enforce at a reasonable
computational cost. An important step in that direction has however been
recently taken by Miron and Fichthorn, with the introduction of their ‘‘bond-
boost’’ bias potential [32]. As the name suggests, the bond-boost potential is
composed of pairwise terms that tend to soften the bonds between atoms. The
key assumption here is that transitions between states will involve the formation
or breaking of some bond so that the proximity to a transition state will be
signaled by an unusually large distortion of a bond. If the overall bias potential is
then designed to vanish when any bond in the system distorts by more than some
critical amount (say by more than 20% of its equilibrium length), then it should
be possible to safely turn off the bias before a dividing surface is reached. Now,
we will make use of the following bond-boost functional form:

DVbð�Þ ¼ min
a
½dVað�aÞ� (14)

with �a ¼ ½ra � r
eq
a �=r

eq
a , where ra and r

eq
a , are the current and equilibrium length of

bond a, respectively. Following Miron and Fichthorn, we define

dVað�aÞ ¼
Sa 1�

�a
q

� �2
" #

; j�aj 	 q

0; otherwise

8><
>: (15)

where q corresponds to the critical bond deformation and Sa controls the strength
of the bias applied along bond a. Note that in this formalism, only the bond that
has the minimal value of dV will experience a bias force. Of course, the identity of
the biased bond will change frequently in the course of the dynamics. Assuming
that a conservative value of q is known (which we acknowledge can be a delicate
issue), the bond-boost potential can be used to accelerate the dynamics of systems
where transitions involve significant bond distortion.

The remaining question is that of the choice of the local bias strengths Sa.
Since a suitable choice of q already guarantees that the bias potential vanishes at
dividing surfaces, they should be tuned to yield the largest possible boost while
making sure that requirement (ii) is respected, namely that TST is obeyed on the
biased potential. Typically, this amounts to requiring that the (biased) potential
basin corresponding to each state be sampled on a vibrational timescale, or, in
other words, that it is free of local minima where the system could get trapped.
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The pairwise nature of the bond-boost makes this task easier since such traps
would show up as a non-convexity of some of the biased effective pair potentials,
which in the canonical ensemble can be taken to be the pairwise potential of
mean force (PMF, denoted as V). Thus, assuming that V is approximately
quadratic for |e|oq, the safety condition can be enforced by setting
Sarmin[Va(�q), Va(q)], so that Va(ea)+dVa(ea) is convex over [�q, q].

The pairwise PMF of a system vibrating in state A can be defined as:

VA
a ðrÞ ¼ 2

1

b
ln
hraðrÞiA
hraðr

eq
a ÞiA

� �
(16)

where hraðrÞiA is the canonical distribution function of the length of bond a. The
bias potential can thus be parameterized by computing the relative probability
density that each bond is at e ¼7q over that of being at e ¼ 0. A direct-MD
evaluation of Vað
qÞ would however be prohibitively expensive given that the
crossing of any ea ¼7q point is by definition a rare event. Since the set of
configurations where any of the ea ¼7q forms a hypersurface at which the bias
potential vanishes, hyperdynamics can be used to speed up the evaluation of Va.
The key to avoiding the circular problem where VA

a is needed to carry out
hyperdynamics but hyperdynamics is needed to efficiently compute VA

a is to
instead aim at estimating a lower bound. This way, a safe but conservative
parameterization of the bias can be turned on even before the convergence of
VA
a ðqÞ is achieved. As the statistics improve, the lower bound on the PMF can be

made tighter and thus the bias potential parameterization more aggressive, until
convergence is finally achieved. This feedback loop between improvement of the
PMF estimate and acceleration of the rate of improvement of this estimate makes
the procedure, termed self-learning hyperdynamics, extremely efficient. Once a
transition to a new state is detected, the Sa is set to zero, and the procedure is
repeated. Under self-learning hyperdynamics, the bias potential is thus
continually adjusted to provide optimal performances while ensuring accuracy.
The complete mathematical and implementation details of the method will be
available in an upcoming publication [33].

The efficiency of the method can be appreciated from Figure 5, where the
evolution of hyper-time with MD time under self-learning hyperdynamics is
shown for two defects — a silver monomer and trimer — on a Ag(100) surface at
room temperature. The results show that, after an initial bootstrapping period
during which the bias potential is turned off completely, the learning procedure
quickly leads to an increase of the bias strengths, thereby increasing the boost
factor, until convergence is finally achieved. One can show that in the early part
of the learning process, the hyper-time actually increases exponentially with MD
time, which makes the procedure very efficient. This example also clearly shows
that the bias potential needs to be tuned for each state if optimal performance is
to be achieved. Indeed, for a trimer, the maximal safe boost is found to be around
80 while it exceeds 1,000 for the monomer system. A safe nonadaptive approach
would thus demand that the minimal safest boost of any of the possible states of
the system be used, which, as we demonstrated, may be much smaller than the
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typical safest boost for a given state. Application of this methodology to the study
of the mechanical properties of nanowires is currently under way.

4.3 Spatially parallel TAD

While direct-MD simulation with a short-range empirical potential requires O(N)
computational work as the system size N is increased, the AMD methods do not
exhibit such favorable scaling. This is relatively easy to understand if we consider
a system that is made larger in a self-similar way, so that doubling N leads to at
least twice as many reactive pathways and twice the total escape rate. A parallel-
replica dynamics simulation on the doubled system will reach the first transition
in half the wall-clock time, while the dephasing and correlated-event overhead
will remain the same. For large enough N, this overhead will dominate the
simulation. In hyperdynamics, the bias potential must vanish near every dividing
surface, and increasing N increases the fraction of time that the system spends
near some dividing surface. Thus, for a valid bias potential, no matter what the
form, as N is increased, the boost drops, ultimately approaching unity in the
large-N limit.

For TAD, the overall computational work to advance the system by a given
time scales at best as N2�g, where g ¼ Tlow/Thigh. The power of �g comes from the
reduction in thigh,stop from Equation (13) as tlow,short decreases with N, one power
of N comes from the cost of each high-T force call, and the other power of N comes
from the fact that accepting a transition advances the system by a time inversely

10-14

10-12

10-10

10-8

10-6

10-14 10-13 10-12 10-11 10-10 10-9

H
yp

er
-T

im
e 

(s
)

MD-Time (s)

Monomer
Trimer

100

102

10-12 10-10 10-8

B
oo

st
 F

ac
to

r

Figure 5 Evolution of the hyper-time as a function of MD time for a monomer and a trimer

on a Ag(100) surface at T ¼ 300 K under self-learning hyperdynamics. Inset: Evolution of the
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proportional to N. If the saddle searches involve all N atoms instead of being
localized to a fixed number of atoms, the TAD work at large N is dominated by the
cost of these searches, causing an overall scaling of roughly N3+1/3�g.

As a consequence of this unfavorable scaling with N, applications of the AMD
methods to date have involved at most a few thousand atoms, and have typically
been much smaller than that. Since many processes of interest require larger
system sizes to capture the essential physics, we are seeking ways to make larger
AMD simulations feasible. One important step in this direction is our recent
development of a spatially parallel TAD approach [34], which we describe very
briefly here.

Spatially parallel TAD, or ParTAD, builds on a parallelization approach
originally developed for KMC, the synchronous sublattice (SL) algorithm [35]. In
the SL method, the system is spatially divided into a lattice of regions, or patches,
each owned by one processor, and each of these regions is further subdivided
into SL patches. At any given time, for each of the lattice regions, KMC or TAD
dynamics evolve within one, but only one, of the SL patches. After a ‘‘cycle time,’’
all processors switch to the next SL patch and again perform dynamics for one
cycle time. The simulation then proceeds by repeating this process so that all SL
patches cyclically become active.

Figure 6(a) shows an example of a two-dimensional SL definition appropriate
for surface diffusion or growth, while Figure 6(b) shows the TAD simulation cell
for one processor, consisting of the active SL patch, a ‘‘ghost region’’ of additional
moving atoms taken from the adjacent SL patches, and a layer of nonmoving
atoms further out. During the TAD dynamics, any attempted event determined to
be in the ghost region is excluded from consideration for acceptance, since it is
not in the dynamically active patch.
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Figure 6 Illustration of the spatial partitioning in the ParTAD method. (a) Lattice and
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with permission, from ref. 34. Copyright 2007 by the American Physical Society. http://
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The important feature in the SL method is that there is always a buffer of
dormant SL region separating any two dynamically active regions, which
eliminates the difficulty associated with synchronizing events and resolving
conflicts at the boundaries between processors. For a finite cycle time, the SL
method is not exact, but if the cycle time is comparable to or shorter than a typical
reaction time, it is extremely accurate. A detailed discussion and demonstration
of the requirements for accuracy in the case of KMC can be found in ref. 35.

Even for vanishing cycle times, the ParTAD method introduces an additional
approximation into the dynamics compared to regular TAD; because the
subpatch has a fixed size, concerted processes larger than this size, if they exist,
will be suppressed. In exchange, the method gives a very favorable computa-
tional scaling with system size, which appears to be roughly order log(N) as
processors are added in proportion to N [34].

Metallic film growth is an example where the larger size scale and long-time
capability of ParTAD is valuable, since experimental deposition rates are far
slower than MD can access, and the morphological features sometimes take on a
scale that requires a large simulation cell to prevent artifacts. We have recently
studied films of Cu deposited at low temperature onto clean Cu(100) surfaces
at varying deposition angles. Our goal was to understand recent X-ray diffra-
ction observations [36] that these films have large surface-normal compressive
strain, thought to be due to an enhanced concentration of bulk vacancies. We
used MD for the deposition events and ParTAD between deposition events to
achieve a growth rate several orders of magnitude slower than we could with
MD alone.

(a)

(c)

(b)

(d)
[100]

Figure 7 Surface morphology for Cu/Cu(100) films grown to 7-monolayer thickness using

ParTAD. (a) Normal-incidence deposition; (b) deposition 301 off normal; (c) deposition 601 off

normal; and (d) blow-up of portion of 601 film, showing (100)-oriented cliffs. Arrows indicate

the deposition direction. Reprinted, with permission, from ref. 37. Copyright 2008 by the

American Physical Society. http://link.aps.org/doi/10.1103/PhysRevLett.101.116101
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Figure 7 shows 7-monolayer (ML) films grown with ParTAD on 36 processors
at three different deposition angles at a growth rate of 5,000 ML/s at T ¼ 40 K. On
this millisecond timescale, activated events do occur, although the experimental
growth rate is still much slower (0.02 ML/s).

Our synthesized X-ray diffraction spectrum at a deposition angle of 601 off
normal is in very good agreement with experiment, but inspection of the film
shows that the large compressive strain arises not from large-scale vacancy
incorporation, as had been previously suggested, but rather from nanoscale
roughness, as can be seen in Figure 7(c). This roughness, caused by shadowing
and the suppression of thermally activated ‘‘downward-funneling’’ events at low
temperature, also shows interesting vertical (100) ‘‘cliffs’’ (Figure 7(d)). An
analysis of the relevant activation barriers for the suppressed downward-
funneling events also leads to an estimate of the critical temperature for the onset
of compressive strain TcB120–150 K, in good agreement with experiment.

5. CONCLUSION

Since their introduction a little more than 10 years ago, the AMD methods have
proven useful in a variety of situations where the timescales of interest are out of
reach of direct MD and where the kinetics are too rich to be adequately described
with a limited list of predetermined pathways. When the activation barriers
between the different states are high relative to the thermal energy, any of the
AMD methods can yield colossal accelerations, providing a view of atomistic
dynamics over unprecedented timescales. Further, by leveraging the particular
strength of each of the methods, or, as demonstrated above, by generalizing and
combining them with other techniques, a wide variety of situations can be
efficiently simulated. More discussion of the specific strengths and weaknesses of
the methods can be found in a recent review [38].

If the methods have enjoyed considerable successes, they have also sometimes
failed to provide significant acceleration. In most, if not all, of the problematic
cases, this failure is related to the presence of large numbers of states connected
by very low barriers. In this situation, the low barriers limit the boost, and a huge
number of transitions may be required before the timescale of interest can be
reached. While some strategies have been put forward to mitigate this issue (e.g.,
superstate parallel-replica dynamics, synthetic TAD [23], state-bridging hyper-
dynamics [39]), more work is required before victory can be claimed. For
example, an on-the-fly state definition algorithm that automatically identifies an
exploitably large separation of timescales would tremendously extend the reach
of parallel-replica dynamics, enabling it to address notoriously difficult problems
like protein folding, where the energy landscape is extremely rough. Statistical
analysis tools could also be used to identify dynamically ‘‘irrelevant’’ states that
could be ignored or lumped with others without affecting the long-time
dynamics. Many of these ideas are now being explored and will hopefully lead
to more general and robust AMD methods in the next few years.
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