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Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States
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We present a new Monte Carlo algorithm that produces results of high accuracy with reduced simula-
tional effort. Independent random walks are performed (concurrently or serially) in different, restricted
ranges of energy, and the resultant density of states is modified continuously to produce locally flat
histograms. This method permits us to directly access the free energy and entropy, is independent of
temperature, and is efficient for the study of both 1st order and 2nd order phase transitions. It should
also be useful for the study of complex systems with a rough energy landscape.
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Computer simulation has become an essential tool in
condensed matter physics [1], particularly for the study of
phase transitions and critical phenomena. The workhorse
for the past half-century has been the Metropolis impor-
tance sampling algorithm, but more recently new, efficient
algorithms have begun to play a role in allowing simula-
tion to achieve the resolution which is needed to accurately
locate and characterize phase transitions. For example,
cluster flip algorithms, beginning with the seminal work of
Swendsen and Wang [2], have been used to reduce criti-
cal slowing down near 2nd order transitions. Similarly,
the multicanonical ensemble method [3] was introduced to
overcome the tunneling barrier between coexisting phases
at 1st order transitions, and this approach also has utility
for systems with a rough energy landscape [4–6]. In both
situations, histogram reweighting techniques [7] can be ap-
plied in the analysis to increase the amount of information
that can be gleaned from simulational data, but the applica-
bility of reweighting is severely limited in large systems by
the statistical quality of the “wings” of the histogram. This
latter effect is quite important in systems with competing
interactions for which short range order effects might oc-
cur over very broad temperature ranges or even give rise to
frustration that produces a very complicated energy land-
scape and limit the efficiency of other methods.

In this paper, we introduce a new, general, efficient
Monte Carlo (MC) algorithm that offers substantial advan-
tages over existing approaches. Unlike conventional Monte
Carlo methods that directly generate a canonical distribu-
tion at a given temperature g�E�e2E�KBT , our approach is
to estimate the density of states g�E� accurately via a ran-
dom walk which produces a flat histogram in energy space.
The method can be further enhanced by performing mul-
tiple random walks, each for a different range of energy,
either serially or in parallel fashion (each walk moves in a
bounded range of energy so that moves that go outside the
range are rejected). The resultant pieces of the density of
states can be joined together and used to produce canonical
averages for the calculation of thermodynamic quantities at
essentially any temperature. We will apply our algorithm
to the 2D ten state Potts model and Ising model which
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have 1st- and 2nd-order phase transitions, respectively, to
demonstrate the efficiency and accuracy of the method.

Our algorithm is based on the observation that if we
perform a random walk in energy space with a probability
proportional to the reciprocal of the density of states 1

g�E� ,
then a flat histogram is generated for the energy distri-
bution. This is accomplished by modifying the estimated
density of states in a systematic way to produce a “flat”
histogram over the allowed range of energy and simulta-
neously making the density of states converge to the true
value. At the very beginning of the random walk, the den-
sity of states is a priori unknown, so we simply set all
densities of states g�E� for all energies E to g�E� � 1.
Then we begin our random walk in energy space by flip-
ping spins randomly. In general, if E1 and E2 are energies
before and after a spin is flipped, the transition probability
from energy level E1 to E2 is

p�E1 ! E2� � min

∑
g�E1�
g�E2�

, 1

∏
. (1)

This is also the probability to flip the spin. Each time
an energy level E is visited, we update the corresponding
density of states by multiplying the existing value by a
modification factor f . 1, i.e., g�E� ! g�E�f. The ini-
tial modification factor can be as large as f � f0 � e1 �
2.71828 . . . which allows us to reach all possible energy
levels very quickly, even for large systems. We keep walk-
ing randomly in energy space and modifying the density of
states until the accumulated histogram H�E� is “flat.” At
this point, the density of states converges to the true value
with an accuracy proportion to ln� f�. We then reduce the
modification factor to a finer one according to some recipe
such as f1 �

p
f0 (any function that monotonically de-

creases to 1 will do) and reset the histogram H�E� � 0.
Then we begin the next level random walk with a finer
modification factor f � f1, continuing until the histogram
is again “flat” after which we stop and reduce the modi-
fication factor as before, i.e., fi11 �

p
fi . The MC steps

needed for a given f generally increase as we refine the
modification factor. We stop the simulation process when
© 2001 The American Physical Society
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the modification factor is smaller than some predefined
final value [such as ffinal � exp�1028� � 1.000 000 01].
It is very clear that the modification factor f in our random
walk acts as a control parameter for the accuracy of the
density of states during the simulation and also determines
how many MC sweeps are necessary for the whole simu-
lation. It is impossible to obtain a perfectly flat histogram
and the phrase “flat histogram” in this paper means that
histogram H�E� for all possible E is not less than 80% of
the average histogram �H�E��. Since the density of states
is modified every time the state is visited, we obtain a rela-
tive density of states only at the end of the simulation. To
calculate the absolute values, we use the condition that the
number of ground states for the Ising model is 2 (all spins
are up or down) to rescale the density of states; and if mul-
tiple walks are performed within different energy ranges,
they must be matched up at the boundaries in energy.

Because of the exponential growth of the density of
states in energy space, it is not efficient to simply up-
date the density of states until enough histogram entries
are accumulated. All methods based on the accumulation
of entries, such as the histogram method [7], Lee’s version
of the multicanonical method (entropic sampling) [3], the
broad histogram method [8], and the flat histogram method
[9,10] have the problem of scalability for large systems.
These methods suffer from systematic errors and substan-
tial deviations which increase rapidly for large system size.
The algorithm proposed in this paper is of both high ef-
ficiency and accuracy over wide ranges of temperature
for sizes that are beyond those that are tractable by other
approaches.

We should point out here that during the random walk
(especially for the early stage of iteration), the algorithm
does not exactly satisfy the detailed balance condition,
since the density of states is modified constantly during the
random walk in energy space; however, after many itera-
tions, the density of states converge to the true value very
quickly as the modification factor approaches 1. From
Eq. (1), we have

1
g�E1�

p�E1 ! E2� �
1

g�E2�
p�E2 ! E1� , (2)

where 1
g�E1� is the probability at the energy level E1 and

p�E1 ! E2� is the transition probability from E1 to E2 for
the random walk. We can thus conclude that the detailed
balance condition is satisfied to within the accuracy pro-
portion to ln� f�.

The convergence and accuracy of our algorithm may be
tested for a system with a 2nd order transition, the L 3 L
Ising square lattice with nearest neighbor coupling which is
generally perceived as an ideal benchmark for new theories
[11] and simulation algorithms [7,12]. We simulated both
small lattices for which exact results are available as well
as L � 256 for which exact enumeration is impossible. In
Fig. 1, the densities of states estimated by our algorithm
are shown along with the exact results obtained by the
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FIG. 1. Comparison of the density of states obtained by our
algorithm for 2D Ising model and the exact results calculated by
the method in Ref. [13]. Relative errors ´�log���g�E����� are shown
in the inset.

method proposed by Beale [13]. We only show the density
for systems up to L � 50 which is the maximum size
we can calculate with the Mathematica program used in
Ref. [13]. Since no difference is visible, we show the
relative error ´�log���g�E�����, which is defined as ´�X� �
j�Xsim 2 Xexact��Xexactj for a general quantity X in this
paper. With our algorithm we obtain an average error
as small as 0.035% on the 32 3 32 lattice with 7 3 105

sweeps. It is possible to estimate the density of states
for small systems with the broad histogram method [8].
Recent broad histogram simulational data [14] for the 2D
Ising model on a 32 3 32 lattice with 106 MC sweeps
yielded an average deviation of the microcanonical entropy
from about 0.08% from the exact solution [13].

With the Monte Carlo algorithm proposed in this paper,
we can estimate the density of states efficiently even for
large systems. Because of the symmetry of the density of
states for Ising model g�E� � g�2E�, we need only to es-
timate the density of states in the region E�N [ �22, 0	,
where N is total lattice sites. To speed up the simulation
for L � 256, we perform 15 independent random walks,
each for a different region of energy from E�N � 22
to E�N � 0.2 using ffinal � exp�1028�. To reduce the
“boundary effect,” random walks over adjacent energy re-
gions overlap by DE�N � 0.06. The density of states for
E�N [ �22, 0.2	 is obtained by joining 15 densities of
states from random walks on different energy regions using
a total simulational effort of only 6.1 3 106 MC sweeps.

One advantage of our algorithm is that we can readily
calculate the Gibbs free energy and the entropy, quantities
which are not directly available in conventional Monte
Carlo simulations. With the density of states, the Gibbs
free energy can be calculated by

F�T � � 2kBT ln�Z� � 2kBT ln

√√√ X
E

g�E�e2bE

!!!
. (3)
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Although it is impossible to calculate the exact density
of states of Ising model on a lattice as large as L � 256
with the method proposed by Beale [13], the free energy
and specific heat were calculated exactly by Ferdinand and
Fisher [15] on finite-size lattices. In Fig. 2, we compare
simulational data and exact solutions for the Gibbs free
energy as a function of temperature. The agreement is
excellent and a more stringent test of the accuracy shows
that the relative error ´�F� is smaller than 0.0008% for
temperature region T [ �0, 8	.

The entropy is a very important thermodynamic quantity
that cannot be calculated directly in conventional Monte
Carlo simulations. It can be estimated by integrating over
other thermodynamic quantities, such as specific heat, but
such calculations are not so reliable since the specific heat
itself is not so easy to estimate accurately. With an accurate
density of states estimated by our method, the entropy can
be calculated easily by S�T � �

U�T �2F�T �
T , where U�T � �

�E�T �
P

E Eg�E�e2bE�
P

E g�E�e2bE is the internal en-
ergy. According to our calculation, the errors for L � 256
are smaller than 1.2% in all temperature regions T [ �0, 8	
[16]. Very recently, with the flat histogram method [9] and
the broad histogram method [8], the entropy was estimated
with 107 MC sweeps for the same model on a 32 3 32 lat-
tice; however, the errors in Ref. [10] are even much bigger
than our errors for 256 3 256.

A more stringent test of the accuracy of the density of
states is calculation of the specific heat defined by the
fluctuation expression

C�T � �
�E2�T 2 �E�2

T

T2 . (4)

Our simulational data on the finite-size lattice are com-
pared with the exact solution obtained by Ferdinand and
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FIG. 2. Comparison of the Gibbs free energy per lattice site
calculated directly from the density of states from our simu-
lation for the L � 256 Ising model and the exact solutions from
Ref. [15]. The relative errors ´�F� are shown in the inset. The
density of states was obtained by random walks with only 6.1 3
106 MC sweeps totally.
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Fisher [15] in Fig. 3. A stringent test of the accuracy is
provided by the inset which shows the relative error ´�C�.
The average error over the entire range T [ �0.4, 8	 only
used a total of 6.1 3 106 MC sweeps is 0.39%. The rela-
tive errors are not bigger than 4.5% even with fine scale
near Tc. Recently, Wang et al. [12] estimated the specific
heat of the same model on a 64 3 64 lattice by the tran-
sition matrix Monte Carlo reweighting method [17], and
with 2.5 3 107 MC sweeps, the maximum error in tem-
perature region T [ �0, 8	 was about 1%. When we apply
our algorithm to the same model on the 64 3 64 lattice,
with a final modification factor of 1.000 000 001 and a total
of 2 3 107 MC sweeps on single processor, the errors of
the specific heat are reduced below 0.7% for all tempera-
ture [16]. The relatively large errors at low temperature
reflect the small values for the specific heat at low tem-
perature. The errors in specific heat estimated from the
density of states with a broad histogram method are ob-
viously visible even for systems as small as 32 3 32 [8],
whereas with our method, such differences are invisible
even for a system as large as 256 3 256.

With our algorithm, we not only dramatically reduce the
computational effort by avoiding multiple simulations for
different temperatures close to the transition, but also over-
come the slow kinetics at low temperature or near Tc for
both 1st and 2nd-order phase transitions since the random
walk does not depend on the temperature. To show how
our simulation method overcomes the tunneling barrier be-
tween order and disorder phases at a 1st-order phase tran-
sition, we perform random walks to calculate the density
of states for the 2D ten state Potts model [18] with near-
est neighbor interactions on square lattices of size 60 #

L # 200. In Fig. 4, we show the canonical distributions
at the temperatures at which the peaks are of equal height.
Because of the double peak structure of strongly 1st-order
phase transitions [19], conventional Monte Carlo simula-
tions are not efficient since it takes an extremely long time
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FIG. 3. Specific heat for the 2D Ising model on a 256 3 256
lattice in a wide temperature region. The relative error e�C� is
shown in the inset in the figure.
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FIG. 4. Canonical distributions for the 2D ten state Potts model
on L 3 L lattice at Tc P�E, Tc� � g�E�e2E�KBTc . For L � 150
and 200, multiple random walks were performed in different
energy regions with locally flat histograms. The peaks are
normalized to 1. Tc�L� is 0.701 243 for L � 200; Tc�`� �
0.701 232 . . . (exact solution). In the inset, we show the overall
histograms for L � 100 and 200. 3.1 3 107 visits per energy
level (6.2 3 107 MC sweeps) were used for L � 100 with a
single random walk. With multiple random walks, the density
of states for L � 200 was obtained with only 9.8 3 106 visits
per energy level.

to tunnel from one peak to the other. Considering the val-
ley which we find for L � 200 is as deep as 9 3 10210, it
is impossible for conventional Monte Carlo algorithms to
overcome such a tunneling barrier with available compu-
tational resources.

All thermodynamic quantities we discussed so far are
directly related to energy. It is also possible to calculate
any quantities which may not directly relate to energy [16].
The random walk is not restricted to energy space, and our
algorithm can be applied to any other parameter space. To
apply our algorithm to a new system, the only thing we
need to know is the Hamiltonian, and the algorithm can
then be optimized to estimate the relevant density of states
to the property and temperature range of interest.
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