Quantum Fourier Transform

Consider n-qubit quantum states $|x\rangle$, where $x \in\{0,1, \ldots, N-1\}\left(N=2^{n}\right)$ is an integer corresponding to binary representation of the n-qubit states:
$x=x_{n-1} x_{n-2} \cdots x_{1} x_{0}=x_{n-1} 2^{n-1}+x_{n-2} 2^{n-2}+\cdots+x_{1} 2^{1}+x_{0} 2^{0}\left(x_{0}, x_{1}, \cdots, x_{n-1} \in\{0,1\}\right)$.
Quantum Fourier transform (QFT) acting on the basis states is defined as
QFT: $|x\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{i \frac{2 \pi k x}{N}}|k\rangle$.
On a more general state defined through a function $f(x)$, QFT then acts as
QFT: $\sum_{x=0}^{N-1} f(x)|x\rangle \rightarrow \sum_{k=0}^{N-1}\left(\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} e^{i \frac{2 \pi k x}{N}} f(x)\right)|k\rangle=\sum_{k=0}^{N-1} \tilde{f}(k)|k\rangle$
where
$\tilde{f}(k)=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} e^{i \frac{2 \pi k x}{N}} f(x)$
is an ordinary discrete Fourier transform (DFT).
Now consider the product, $k x / N=k x / 2^{n}$, in Eq. (2):

$$
\begin{align*}
\frac{k x}{2^{n}} & =\frac{\left(k_{n-1} 2^{n-1}+k_{n-2} 2^{n-2}+\cdots+k_{1} 2^{1}+k_{0} 2^{0}\right)\left(x_{n-1} 2^{n-1}+x_{n-2} 2^{n-2}+\cdots+x_{1} 2^{1}+x_{0} 2^{0}\right)}{2^{n}} \\
& =\left(k_{n-1} 2^{n-1}+k_{n-2} 2^{n-2}+\cdots+k_{1} 2^{1}+k_{0} 2^{0}\right)\left(\frac{x_{n-1}}{2}+\frac{x_{n-2}}{2^{2}}+\cdots+\frac{x_{1}}{2^{n-1}}+\frac{x_{0}}{2^{n}}\right) . \tag{5}
\end{align*}
$$

Noting that the integer part of $k x / N$ does not contribute to $e^{i \frac{2 \pi k x}{N}}$, Eq. (5) can be simplified as
$\frac{k x}{2^{n}}=k_{n-1}\left(. x_{0}\right)+k_{n-2}\left(. x_{1} x_{0}\right)+\cdots+k_{1}\left(. x_{n-2} x_{n-3} \cdots x_{0}\right)+k_{0}\left(. x_{n-1} x_{n-2} \cdots x_{0}\right)$,
where the factors in parentheses are binary representation of fraction:
$. x_{m} x_{m-1} \cdots x_{0}=\frac{x_{m}}{2}+\frac{x_{m-1}}{2^{2}}+\cdots+\frac{x_{0}}{2^{m+1}}$.
Substituting Eq. (6) in Eq. (2), we obtain
QFT: $|x\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{i \frac{2 \pi k x}{N}}|k\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{k_{n-1}=0}^{1} \cdots \sum_{k_{0}=0}^{1} e^{i 2 \pi\left(k_{n-1}\left(. x_{0}\right)+\cdots+k_{0}\left(. x_{n-1} x_{n-2} \cdots x_{0}\right)\right)}\left|k_{0}\right\rangle$

$$
\begin{align*}
& =\frac{1}{\sqrt{2^{n}}} \sum_{k_{n-1}=0}^{1} e^{i 2 \pi k_{n-1}\left(. x_{0}\right)}\left|k_{n-1}\right\rangle \otimes \sum_{k_{n-2=0}}^{1} e^{i 2 \pi k_{n-2}\left(. x_{1} x_{0}\right)}\left|k_{n-2}\right\rangle \otimes \cdots \otimes \sum_{k_{0}=0}^{1} e^{i 2 \pi k_{n-1}\left(. x_{0}\right)}\left|k_{0}\right\rangle \\
& =\frac{1}{\sqrt{2^{n}}}(\underbrace{|0\rangle+e^{i 2 \pi\left(. x_{0}\right)}|1\rangle}_{k_{n-1}}) \otimes(\underbrace{|0\rangle+e^{i 2 \pi\left(. x_{1} x_{0}\right)}|1\rangle}_{k_{n-2}}) \otimes \cdots \otimes(\underbrace{|0\rangle+e^{i 2 \pi\left(. x_{n-1} x_{n-2} x_{n-3} \cdots x_{0}\right)}|1\rangle}_{k_{0}}) . \tag{8}
\end{align*}
$$

Equation (8) can be implemented as a quantum circuit as illustrated in Fig. 1 for 3 qubits. For j-th qubit $\left|x_{j}\right\rangle$, we first apply one-qubit Hadamard (H) gate as

$$
\begin{equation*}
\mathrm{H}:\left|x_{j}\right\rangle \rightarrow \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x_{j}}|1\rangle\right)=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i 2 \pi\left(\cdot x_{j}\right)}|1\rangle\right) . \tag{9}
\end{equation*}
$$

We then apply two-qubit controlled R_{1} gate where the control is $\left|x_{j-1}\right\rangle$, where
$R_{k}=\left[\begin{array}{cc}1 & 0 \\ 0 & \exp \left(i \frac{\pi}{2^{k}}\right)\end{array}\right]$.
This transform j-th qubit into
$\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i 2 \pi\left(. x_{j} x_{j-1}\right)}|1\rangle\right)$.
We continue applying controlled R_{2}, \ldots with successively lower qubit until reaching x_{0}.

Fig. 1: Quantum Fourier transform circuit for $n(=3)$ qubits.
For a n-qubit state, the quantum circuit is composed of $n+(n-1)+\cdots+2+1=\frac{n(n+1)}{2}=$ $O\left(n^{2}\right)$ gates. Compare this with the $O\left(N \log _{2} N\right)=O\left(2^{n} n\right)$ arithmetic operations in the classical fast Fourier transform (FFT) algorithm (cf. https://aiichironakano.github.io/phys516/03QD.pdf). The QFT algorithm thus achieves an exponential reduction of computation: $2^{n} n / n^{2}=2^{n} / n$.

Reference

1. J. Preskill, arXiv:2106.10522 (2021).
