Singular Value Decomposition

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Quantitative & Computational Biology University of Southern California

Email: anakano@usc.edu

Goal: Another matrix decomposition (SVD) for low-rank matrix approximation cf. Eigen decomposition $A = Q[\]Q^T$ QR decomposition $A = Q[\]$

See note on "least square fit" & Numerical Recipes Sec. 2.6

Rank of a Matrix

1

• $N \times M$ matrix A as a mapping: $\mathbb{R}^M \to \mathbb{R}^N$

$$M \begin{bmatrix} x \\ x \end{bmatrix} \quad x (\in \mathbb{R}^M) \xrightarrow{A} b = Ax (\in \mathbb{R}^N) \begin{bmatrix} b \\ b \end{bmatrix} N$$

- **Range of** *A*: Vector space $\{b = Ax | \forall x\}$
- **Rank** of *A*: Number, *m*, of linearly-independent vectors in the range, *i.e.*, how many linearly-independent *N*-element vectors are there in the range, such that

$$b = A^{\forall} x = \sum_{\nu=1}^{m} c_{\nu} |\nu\rangle$$

Low Rank Approximations of a Matrix

• **Rank-1 approximation:** $NM \rightarrow N + M$

$$\mathbf{N} \begin{bmatrix} \mathbf{M} \\ \psi \end{bmatrix} \cong \begin{bmatrix} u \\ u \end{bmatrix} \begin{bmatrix} v \end{bmatrix} |u\rangle \langle v | \forall x \rangle \propto |u\rangle$$

• Rank-2 approximation: $NM \rightarrow 2(N + M)$

$$\psi \quad \left] \cong \left[u_1 \right] w_1 \left[\begin{array}{c} v_1 \\ \end{array} \right] + \left[u_2 \right] w_2 \left[\begin{array}{c} v_2 \\ \end{array} \right] \right]$$

• Rank- $m (m \ll N, M)$ approximation: $NM \rightarrow m(N + M)$

$$\psi \qquad \Bigg] \cong \sum_{\nu=1}^{m} \Bigg[u_{\nu} \Bigg] w_{\nu} [v_{\nu}]$$

Singular Value Decomposition

- **Problem:** Optimal approximation of an $N \times M$ matrix ψ of rank-*m* (*m* << *N*)?
- **Theorem:** An $N \times M$ matrix ψ (assume $N \ge M$) can be decomposed as

$$\psi = UDV^{T} = \sum_{\nu=1}^{M} U_{i\nu} d_{\nu} V_{j\nu} = \sum_{\nu=1}^{M} u_{i}^{(\nu)} d_{\nu} v_{j}^{(\nu)}$$

where $U \in \mathbb{R}^N \times \mathbb{R}^M$ & $V \in \mathbb{R}^M \times \mathbb{R}^M$ are column orthogonal & D is diagonal

 $M \qquad U^{T}U = V^{T}V = I_{M}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ See appendix on polar & singular decompositions

$$\mathbf{N} \begin{bmatrix} \psi \\ \psi \end{bmatrix} = \begin{bmatrix} U \\ U \\ M \end{bmatrix} \begin{bmatrix} d_1 & & \\ & \ddots & \\ & & & \\ & & & \\ & & & M \end{bmatrix} \begin{bmatrix} V^T \\ & & & \\ & & & \\ & & & M \end{bmatrix}$$

• **Theorem:** Sort the SVD diagonal elements in descending order, $d_1 \ge d_2 \ge ... \ge$ $d_M \ge 0$, & retain the first *m* terms $\psi^{(m)} = \sum_{\nu=1}^{m} u^{(\nu)} d_{\nu} v^{(\nu)T}$

v = 1which is optimal among \forall rank-*m* matrices in the 2-norm sense with the error $\min_{rank(A)=m} \|A - \psi\|_2 = \|\psi^{(m)} - \psi\|_2 = d_{m+1}$ **Use the program!** *cf.* <u>singular.c & svdcmp.c</u> *cc -o* singular singular.c svdcmp.c -Im

SVD for Image Compression

Original Image

Iterations

Iterations

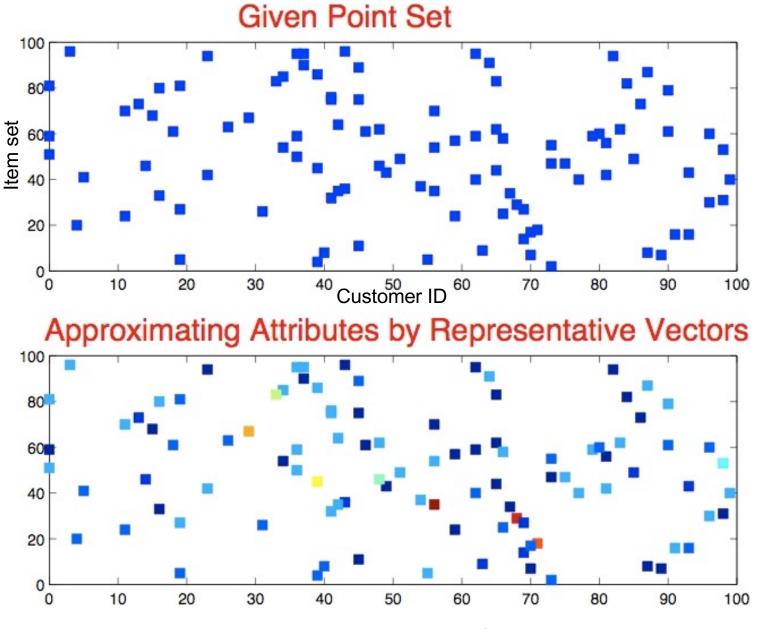
D. Richards & A. Abrahamsen

Iterations

Iterations

Iterations

SVD in Data Mining



N. Ramakrishnan & A. Y. Grama

Reduced Density Matrix

• Quantum system coupled to an environment

B: Block

$$\{|i\rangle = \psi_i(x)|i = 1, ..., N\}$$
 $\{|j\rangle = \phi_i(X)|j = 1, ..., M\}$

• **VQuantum state of block + environment**

$$|\psi\rangle = \sum_{i=1}^{N} \sum_{j=1}^{M} \psi_{ij} |i\rangle |j\rangle$$
 or $\Psi(x,X) = \sum_{i=1}^{N} \sum_{j=1}^{M} \psi_{ij} \psi_i(x) \phi_j(X)$

• Reduced density matrix

$$\begin{array}{l} \left\langle \forall A \right\rangle = \sum_{i} \sum_{j} \psi_{ij}^{*} \langle j | \langle i | A \sum_{i'} \sum_{j'} \psi_{i'j'} | i' \rangle | j' \rangle \\ \text{Arbitrary operator} \\ \text{in the block} \end{array} = \sum_{i} \sum_{j} \sum_{i'} \sum_{j'} \psi_{i'j'} \psi_{ij}^{*} \langle i | A | i' \rangle \langle j | j' \rangle \\ = \sum_{i} \sum_{i'} \sum_{j} \psi_{i'j} \psi_{ij}^{*} \langle i | A | i' \rangle = \sum_{i} \sum_{i'} \rho_{i'i} A_{ii'} = \operatorname{tr}_{B}(\rho A) \\ \rho_{i'i} = \sum_{j} \psi_{i'j} \psi_{ij}^{*} \qquad A_{ii'} = \langle i | A | i' \rangle$$

Low-Rank Approx. to Reduced Density Matrix

$$\begin{split} \psi &\cong \psi^{(m)} = \sum_{\nu=1}^{m} u^{(\nu)} d_{\nu} v^{(\nu)T} \qquad \psi_{ij}^{(m)} = \sum_{\nu=1}^{m} u_{i}^{(\nu)} d_{\nu} v_{j}^{(\nu)} \\ \rho &= \psi \psi^{T} \cong \psi^{(m)} \psi^{(m)T} = \sum_{\nu=1}^{m} \sum_{\nu'=1}^{m} u^{(\nu)} d_{\nu} \left(v^{(\nu)T} v^{(\nu')} \right) d_{\nu'} u^{(\nu')T} \\ &= \sum_{\nu=1}^{m} \sum_{\nu'=1}^{m} u^{(\nu)} d_{\nu} \left(\delta_{\nu\nu'} \right) d_{\nu'} u^{(\nu')T} = \sum_{\nu=1}^{m} u^{(\nu)} d_{\nu}^{2} u^{(\nu)T} \equiv \rho^{(m)} \\ \rho_{ii'}^{(m)} &= \sum_{\nu=1}^{m} u_{i}^{(\nu)} d_{\nu}^{2} u_{i'}^{(\nu)} \end{split}$$

- **Density matrix renormalization group = systematic procedure to accurately obtain a quantum ground state:**
 - **1.** Incrementally add environment to a block
 - 2. Solve the global (= block + environment) ground state
 - **3.** Construct a low-rank approx. to represent the block with reduced d.o.f.

<u>S. R. White, *Phys. Rev. B* 48, 10345 ('93);</u>

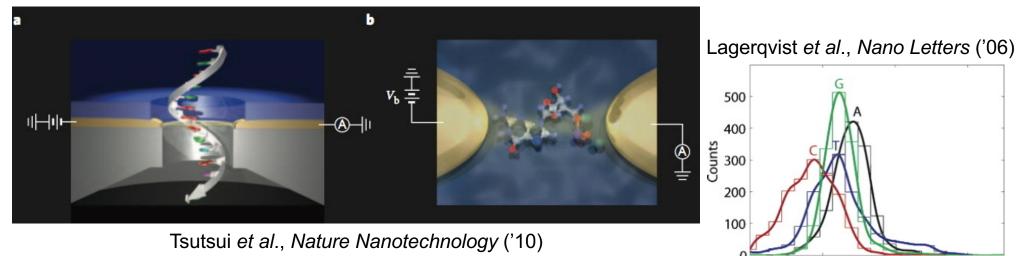
<u>G. K.-L. Chan & S. Sharma, Annu. Rev. Phys. Chem. 62, 465 ('11)</u>

- Entanglement entropy: A measure of the degree of quantum entanglement between two subsystems. If a state describing two subsystems A and B is a *separable* state |Ψ_{AB}⟩ = |φ_A⟩|φ_B⟩, then the reduced density matrix ρ_A = Tr_B|Ψ_{AB}⟩⟨Ψ_{AB}| = |φ_A⟩⟨φ_A| is a *pure state*. Thus, the entropy of the state is zero. A reduced density matrix having a non-zero entropy is therefore a signal of the existence of entanglement in the system.
- Area law: A quantum state satisfies an *area law* if the leading term of the entanglement entropy grows at most proportionally with the *boundary* between the two partitions. Area laws are remarkably common for ground states of local gapped quantum many-body systems. *It greatly reduces the complexity of quantum many-body systems*. *The density matrix renormalization group and matrix product states, for example, implicitly rely on such area laws*.

SVD for Rapid Genome Sequencing

• \$10M Archon X prize for decoding 100 human genomes in 10 days & \$10K per genome (http://genomics.xprize.org): Preemptive attack on diseases

• Quantum tunneling current for rapid DNA sequencing?



 10^{-1}

10

Current (nA)

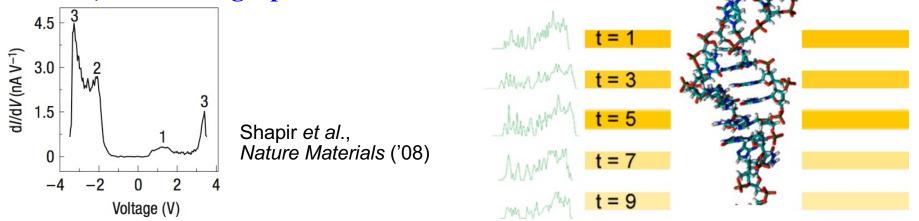
10

 10^{3}

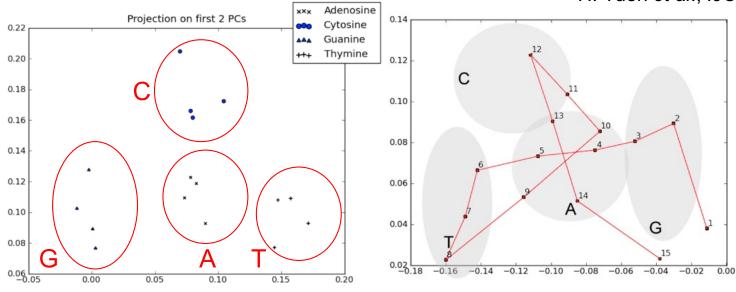
• Tunneling current alone cannot distinguish the 4 nucleotides (A, C, G, T)

Rapid DNA Sequencing via Data Mining

• Use tunneling current (I)-voltage (V) characteristic (or electronic density-ofstates) as the 'fingerprints' of the 4 nucleotides



Principal component analysis (PCA) & fuzzy c-means clustering clearly distinguish the 4 nucleotides
 H. Yuen *et al.*, *IJCS* 4, 352 ('10)



http://www.henryyuen.net/

• Viterbi algorithm for even higher-accuracy sequencing

SVD *vs***. PCA** (in Economics)

SVD of N (number of companies) × T (number of time points) of stock-price time series

$$\Xi_{T \times N}^{T} = \bigcup_{T \times N} \sum_{N \times N} \sum_{N \times N} V_{N \times N}^{T}$$

Stock correlation matrix

$$\mathbf{C}_{N \times N} = \mathbf{\Xi} \mathbf{\Xi}^{T}_{N \times T \ T \times N}$$

Principal component analysis (PCA): Eigen decomposition of the correlation matrix

 $\rho(\lambda)$

0.0

$$C = \Xi \Xi^{T}$$

$$= V\Sigma \widetilde{U^{T}U} \Sigma V^{T}$$

$$= V\Sigma^{2} V^{T}$$

Probability Density **Compare the spectrum with** that of random matrix theory (RMT) for judging statistical significance

