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Abstract. We discuss a method based on sampling minimally entangled typical
thermal states (METTS) that can simulate finite temperature quantum systems
with a computational cost comparable to the ground state density matrix renor-
malization group (DMRG). Detailed implementation of each step of the method
is presented, along with efficient algorithms for working with matrix product
states and matrix product operators. Furthermore, we explore how the properties
of METTS can reveal characteristic order and excitations of systems and discuss
why METTS form an efficient basis for sampling. Finally, we explore the extent
to which the average entanglement of a METTS ensemble is minimal.
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1. Introduction

According to the elementary principles of quantum statistical mechanics, the average of an
observable is found by computing

〈A〉 = Tr[ρ A]=
1

Z
Tr[e−βH A]. (1)

While performing such a calculation directly is usually intractable for quantum many body
systems, one can still approximate the expectation value of A by strategies based on sampling.
For instance, many quantum Monte Carlo methods take advantage of the Trotter decomposition
of ρ to express an expectation value as a sum over virtual classical paths, which can then be
numerically sampled. In such approaches, the act of randomly choosing a path corresponds to
sampling both the thermal and the quantum fluctuations together.

However, it is also possible to sample only the thermal fluctuations, randomly selecting
quantum states rather than classical ones. This may be done by expanding the trace in
equation (1) in terms of an orthonormal basis |i〉 such that the expectation value of A takes
the form

〈A〉 =
1

Z

∑
i

〈i |e−βH/2 A e−βH/2
|i〉

=
1

Z

∑
i

P(i)〈φ(i)|A |φ(i)〉. (2)

In the first line we have used the cyclic property of the trace and in the second line the set of
normalized states |φ(i)〉 are defined as

|φ(i)〉 = P(i)−1/2e−βH/2
|i〉 (3)

together with the (unnormalized) probability distribution

P(i)= 〈i |e−βH
|i〉. (4)

One may then estimate 〈A〉 by sampling the states |φ(i)〉with probability P(i)/Z and averaging
the expectation values 〈φ(i)|A|φ(i)〉 computed at each step.

Although such a procedure could be carried out using any orthonormal basis of states |i〉,
not every choice would lead to an efficient algorithm. In particular, the computational cost of
working with a quantum state goes up the more entangled it is, as measured by the von Neumann
entanglement entropy across bipartitions of the system.

Therefore a natural choice for the basis |i〉 is the set of classical product states (CPS). These
are states with wavefunctions of the form

|i〉 = |i1〉|i2〉|i3〉 . . . |iN 〉, (5)

where i j are the states in a local basis that may be chosen arbitrarily for each site j . As a result
of their product structure, CPS have an entanglement entropy that is exactly zero.

One therefore might expect that, of all ensembles of states |φ(i)〉, those produced from
CPS have the least entanglement. Moreover, such |φ(i)〉 have all of the properties one intuitively
expects of typical states of a thermal system. At high temperatures they are effectively classical,
while at lower temperatures they spontaneously break symmetries of the Hamiltonian in systems
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that exhibit long-range order. They do not exhibit unphysical non-local correlations, and remain
factorized over parts of the system that do not interact. And expectations of observables
〈φ(i)|A|φ(i)〉 lie very close to the thermal average. For such reasons as well as others that
we will discuss below, these states have therefore been designated minimally entangled typical
thermal states (METTS) [1].

Not only does each METTS provide a good characterization of the thermal ensemble, but
there exists a simple algorithm, the pure state algorithm, for sampling many of them efficiently.
This is achieved by a random walk through the set of METTS where the next state is constructed
from a CPS obtained by measuring, or collapsing, the previous one. This collapsing step
automatically ensures that the METTS are sampled with the correct distribution, and it allows
one to optimize the sampling process by an appropriate choice of basis. Moreover, collapsing
each state may be seen as sampling the quantum fluctuations of the system, a fact that can be
used to accelerate the calculation of certain physical observables.

In this paper, we elaborate upon the implementation of the pure state algorithm for
sampling METTS and its usage in realistic simulations. First, in section 2, we provide a
more detailed explanation of the pure state algorithm and its implementation. We begin with
a discussion of various methods for carrying out the imaginary time evolution implicit in
equation (3), as it is the most computationally intensive part of the algorithm and the step
where the most significant approximations must be made. Then, we turn to the measurement
of physical observables. While it is most convenient to calculate quantities like the total energy
using matrix product operators (MPOs), we will show how local observables can be calculated
more efficiently by taking advantage of the redundancy inherent in the matrix product state
(MPS) formalism (for readers unfamiliar with MPOs and MPS, a brief introduction is provided
in the appendix). We then conclude the section by discussing an efficient method for collapsing
a pure state into a CPS. The basis into which the CPS is measured can be arbitrary, and we will
demonstrate how this freedom may be exploited both to improve the sampling autocorrelation
time and to help calculate challenging observables.

In section 3, we turn our attention to the properties of the METTS themselves. The
properties of individual METTS can provide insight into the order that is present in a system
as well as characteristic thermal fluctuations. On the other hand, studying the entire METTS
ensemble will show us why it is such an efficient basis for sampling. Finally, we quantify the
sense in which METTS are minimally entangled and conjecture that although there exist thermal
decompositions with less entanglement than METTS at some temperatures, no decomposition
can outperform an optimal METTS ensemble at all temperatures.

Throughout, whenever we find it helpful to show the results of an explicit calculation,
we will choose as our model of interest the S = 1 bilinear–biquadratic chain with the
Hamiltonian

H = cos θ
∑

i

ESi · ESi+1 + sin θ
∑

i

(ESi · ESi+1)
2. (6)

In particular, we will focus on two special cases of this model, namely θ = 0, the S = 1
Heisenberg antiferromagnet and θ = arctan[1/3], the Affleck–Kennedy–Lieb–Tasaki (AKLT)
model possessing an S = 1 valence bond solid ground state [2]. At T = 0, both models are in
the same phase, the Haldane phase, which is characterized by, among other things, a gap to all
excitations [3] and a doubly degenerate entanglement spectrum [4].
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2. Producing minimally entangled typical thermal states (METTS) with the pure state
method

The pure state method consists of the following simple algorithm for producing a series of
METTS such that they are correctly distributed with probability P(i)/Z:

1. Choose a CPS |i〉.

2. Compute the METTS |φ(i)〉 = e−βH/2
|i〉P(i)−1/2 and calculate observables of interest.

3. Collapse a new CPS |i ′〉 from |φ(i)〉 with probability p(i→ i ′)= |〈i ′|φ(i)〉|2 and return to
step 2.

We will shortly discuss how to carry out these steps in practice. However, let us first see why
producing METTS in this way is guaranteed to give the correct distribution.

Consider the ensemble of all CPS |i〉 initially distributed with probability P(i)/Z . If we
randomly choose a CPS |i〉 from this ensemble and then follow the above steps, the probability
of measuring a particular CPS | j〉 at the end of step 3 will be∑

i

P(i)

Z
p(i→ j)=

∑
i

P(i)

Z
|〈 j |φ(i)〉|2

=

∑
i

P(i)

Z
|〈 j |e−βH/2

|i〉|2

P(i)
(7)

= 〈 j |e−βH
| j〉/Z

= P( j)/Z.

That the resulting ensemble of all such | j〉 have the same distribution as the original ensemble
is a consequence of the detailed balance condition

P(i)

Z
p(i→ j)=

P( j)

Z
p( j→ i). (8)

Therefore the ensemble of CPS with distribution P(i)/Z is a fixed point of this process. Finally
then, because each METTS |φ(i)〉 is produced deterministically from a CPS |i〉 in step 2, they
will be generated with probability P(i)/Z as well.

In addition to generating METTS with the correct distribution, the pure state method has
other important properties that make it advantageous for performing simulations. First, it may
be defined in a completely general way, allowing one to choose a specific implementation based
on the problem of interest. Next, it does not rely on a rejection method to perform sampling.
That is, every METTS produced (in what is the costliest step of the algorithm) can be used to
perform measurements. And the algorithm is readily parallelizable since its sampling method is
that of a Markovian random walk.

Most importantly, the computational cost of the pure state algorithm is only modestly
greater than that of ground state density matrix renormalization group (DMRG). The typical
bond dimension m of the MPS representing each METTS produced by the imaginary time
evolution step ranges from m = 1 for β = 0 to m = m0 for very large β, where m0 is the bond
dimension necessary to represent the ground state using DMRG. As shown below, the imaginary
time evolution for a system with N sites scales as Nm3 per time step. Therefore the cost
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Figure 1. Low-temperature measurements of the (a) susceptibility and
(b) specific heat of the S = 1 Heisenberg chain with N = 100 sites. The quantum
Monte Carlo data shown by the solid black lines is treated here as exact.

of producing each METTS scales as Nm3β (ground state DMRG scales as Nm3). The CPS
collapse step is much less costly, scaling only as Nm2.

We have therefore been able to reach significantly lower temperatures with the METTS
approach than with previous DMRG-based finite temperature methods. For example, Feiguin
and White were able to simulate the S = 1 Heisenberg chain down to about T = 0.05 using the
ancilla method, where about m = 500 DMRG states had to be kept at the lowest temperatures
when using a truncation error cutoff of 1× 10−10. This is because their MPSs had to encode
both the system and environment spins [5].

In contrast, to reach comparable temperatures using METTS requires only about m = 60
states when using the same cutoff. This has allowed us to produce accurate results down to at
least T = 0.02, as shown in figure 1.

Since the computational cost of METTS is comparable to that of ground state DMRG,
we expect that it can treat comparably large ladders and two-dimensional (2D) systems.
This promises to be of great value for studying frustrated and fermionic models beyond one
dimension—especially models with nontrivial phases at finite temperature.
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Having defined the pure state method in a general setting, let us look more closely at each
step. We will discuss how to produce and sample METTS in detail, and we will demonstrate
that there is great flexibility within the basic algorithm that can allow us to optimize it for our
system of interest.

2.1. Imaginary time evolution

Since imaginary time evolution is both the costliest step of the algorithm and the source of most
numerical errors, we will begin by discussing some of the best methods for evolving a state
in imaginary time and their relative advantages and disadvantages with regard to producing
METTS.

In what follows, we will find it convenient to represent wavefunctions as MPSs and,
in certain cases, operators as MPOs. A brief review of this formalism may be found in
the appendix.

2.1.1. The Trotter–Suzuki method. For a one-dimensional (1D) system, the simplest way to
implement time evolution is to use a Trotter–Suzuki decomposition of the time evolution
operator, evolving each bond one at a time. When using this method for our 1D benchmark
calculations, we chose to do a second-order breakup as in the time-dependent DRMG method
of White and Feiguin [6]. Assuming that the Hamiltonian consists of a sum of nearest-neighbor
bond Hamiltonians H =

∑
n Hn, the operator e−τH may be decomposed as

e−τH
' e−τH1/2e−τH2/2 · · · e−τH2/2e−τH1/2 +O(τ 3) . (9)

We emphasize here that the labeling of the terms in the Hamiltonian is arbitrary. However,
for a 1D system with nearest-neighbor interactions it is convenient to let Hn refer to the
interactions on the nth bond, making the operator decomposition above perfectly suited for a
single DMRG sweep. Because each factor, or ‘gate’, in this breakup is a local operator, it can be
computed exactly such that the only error in this treatment of the time evolution operator is the
finite time step Trotter error. Then, each gate may be applied directly to the MPS representing
the state of the system by using DMRG to expose the two sites around the bond to be time
evolved.

While the Trotter–Suzuki method is accurate and convenient, it is directly applicable only
to systems with nearest-neighbor interactions along the path taken by the MPS through the sites
of the lattice. This makes it hard to apply to 2D systems, including those with nearest-neighbor
interactions. Even quasi-1D ladders and 1D chains with longer range interactions cannot be
treated by the above method without some modifications.

Various methods have therefore been developed to extend Trotter time evolution to such
systems, for example Feiguin and White’s method based on a Runge–Kutta differential equation
solver [7]. However, such methods turn out to be too inefficient for our purposes. Hence, we
will discuss below some alternative methods that will be more effective for these challenging
systems.

2.1.2. Trotter–Suzuki with swap gates. The first method extends the Trotter–Suzuki method by
utilizing swap gates, a tool that is familiar in quantum computing. A swap gate S(i j) exchanges
the states on two identical sites i and j . For a spin or boson system, S(i j)= δsi s′j δs j s′i , the dia-
grammatic representation of which is shown in figure 2(a). Swap gates can be used for fermionic
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(a)

(b)

Figure 2. Diagrams illustrating (a) the structure of a swap gate tensor, which is a
product of two identity tensors and exchanges the states of two lattice sites, and
(b) the application of swap gates to an MPS, allowing a Trotter time evolution
gate to act on effective nearest-neighbor sites while actually evolving a system
with longer range interactions.

systems as well. In the case of spinless fermions, for instance, S(i j) takes the same form as for
bosons, but with an overall minus sign multiplying the case in which both sites are occupied.

Now, a generic Trotter–Suzuki breakup of the time evolution operator for a Hamiltonian
containing only one site or two site interaction terms can be written in the form

e−τH
' Ki1 j1 Ki2 j2 Ki3 j3 · · · (10)

where the sites acted on by a given gate Ki j are not necessarily nearest-neighbors along the path
taken by the MPS through the lattice. However, Ki j can be written in terms of a gate that does
act on neighboring sites by using the identity

Ki j =2i j−1K (i j)
j−1 j2 j−1 i , (11)

where the swap operators 2 can be defined as a product of nearest-neighbor swap gates as

2i j−1 = Si i+1Si+1 i+2 · · · S j−2 j−1,

2 j−1 i = S j−2 j−1 · · · Si+1 i+2Si i+1 =2
†
i j−1.

(12)

The operator K (i j)
j−1 j is the exponentiation of the same two-body term in the Hamiltonian as Ki j ,

but acts instead on the sites j − 1 and j .
To make use of the above identity for the purpose of applying the single gate Ki j , one

first applies the swap gates comprising 2 j−1 i to the original MPS |ψ〉, yielding an effective
MPS |ψ ′〉. Then, the gate K (i j)

j−1 j is applied to |ψ ′〉 as a local operator. Finally, the swap gates
composing 2i j−1 are applied, restoring the original order of the sites.

Finally, when applying many Trotter gates Ki j to an MPS, it is useful to observe that
because S(i j)2 = 1, the ordering of the Trotter gates in the decomposition can be chosen such
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(a) (b)

Figure 3. Diagrams illustrating (a) the left orthogonality condition equation (13)
and (b) the right orthogonality condition equation (14).

that many of the swap gates cancel. Whenever this is the case, the repeated pair of gates can
simply be omitted from the algorithm, leading to a significant speedup.

One way of arranging the Trotter decomposition to take advantage of this cancellation is as
follows: taking j > i , order the Ki j first by i , from left to right, and then for each i , by j from
left to right. Then all of the gates are applied in a single sweep that is arranged as a nested loop,
where i is iterated over in the outer loop and j in the inner loop. In practice, all of the gates can
be produced before applying any of them to the MPS so that cancellations can be found and the
corresponding pairs of gates omitted. Even when taking advantage of cancellations, however,
this method scales as L x L2

y m3 for an L x × L y ladder instead of scaling proportionally to the
number of sites as in the case of a chain.

2.1.3. Imaginary time evolution with MPOs. The remaining methods for time evolution that
we will discuss are based on MPOs. But before we turn to the formation of the time evolution
MPO itself, let us first consider how to apply it to an MPS.

A concept that will be useful is that of the orthogonality center of an MPS. If we take the
center to be at site i , then all of the MPS matrices As j such that j < i have been made left
orthogonal in the sense that∑

α j−1s j

(As j )
†
α′jα j−1

As j
α j−1α j

= δα′jα j (13)

and all of the matrices As j such that j > i have been made right orthogonal such that∑
s jα j

As j
α j−1α j

(As j )
†
α jα

′

j−1
= δα j−1α

′

j−1
. (14)

These conditions are illustrated in figure 3.
When an MPS has a well-defined orthogonality center, the set of A matrices to its left and

right define an orthonormal basis for each half of the system. The matrix at the orthogonality
center then defines the coefficients of the wavefunction in this basis, that is,

|ψ〉 =
∑

siαi−1αi

Asi
αi−1αi
|αL

i−1〉|si〉|α
R
i 〉, (15)

where the site index si = 1, 2, . . . , d, while the bond indices α j = 1, 2, . . . ,m. Alternatively,
when performing two-site operations one can take the orthogonality center to be a bond that can
optionally include the sites adjacent to it.

When performing the usual singular value decomposition (SVD) or density matrix
diagonalization in DMRG, one takes the tensor ψ(αi−1si si+1αi+1) representing the wavefunction
and splits it into matrices Asi and Asi+1 . These matrices give an optimal representation of the
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tensor ψ and because they define expansion coefficients of the wavefunction in an orthonormal
basis, the truncation of the wavefunction is also optimal. If there was no orthogonality center,
or an SVD was performed away from the center, such an operation would optimally represent a
local tensor but not an optimal truncation of the wavefunction.

In applying an MPO W to an MPS |ψA〉, one destroys its orthogonality. Apart from issues
of efficiency, the simplest approach for forming the product W |ψA〉 would be as follows. Define
the matrices B as

Bsi
βi−1βi
= Bsi

(ωi−1αi−1)(ωiαi )
=

∑
s′i

W
si s′i
ωi−1ωi A

s′i
αi−1αi (16)

for each site i . If the bond dimension of W is k and |ψA〉 is m, this defines a new MPS
|ψB〉 =W |ψA〉 of bond dimension mk if we think of the βi = (ωiαi) as combined, or fat, indices.

To guarantee proper truncation in this naive approach, one would first sweep left to right,
performing SVDs to make the basis to the left orthogonal, but leaving the bond dimension as
mk since the basis to the right is not orthogonal. Once at the right edge, the SVDs in the reverse
sweep could truncate the bond dimension to m or to some specified truncation error. However,
this procedure scales as Nm3k3 and would be highly inefficient if k ∼ 10–100.

Verstraete and Cirac recommended a better approach (in a different context) that scales
as Nm3k + Nm2k2 based on fitting an MPS |ψB〉 to the product W |ψA〉 [8]. Form a random
MPS |ψB〉 of bond dimension m and orthogonalize it to have any arbitrary orthogonality center.
The optimal two-site wavefunction ψ(βi−1si si+1βi+1) at this center is then found by forming
tensors L and R representing the product in the basis for the left and right halves of the
system and combining them with the local W and A matrices as in figure 4. This ψB minimizes
‖|ψB〉−W |ψA〉‖

2. One may then split ψB into matrices Bsi and Bsi+1 and sweep back and forth
through the system, repeating this process until it converges.

Verstraete and Cirac originally advocated a single-site version of this approach but we
have found the two-site version better—for example, the value of m can be automatically
set to achieve a specified truncation error much more readily, particularly if one is keeping
track of conserved quantum numbers. However, even when using the two-site version, this
fitting procedure may fail to converge for systems with non-nearest-neighbor interactions in
a reasonable number of iterations. The reason seems to be related to the ‘sticking’ problem of
DMRG. When two distant sites are strongly entangled, the method has trouble building up this
entanglement when improving the state near each site one at a time. On the other hand, the naive
method above does not have such a sticking problem.

We have therefore developed an alternative approach, the zip-up algorithm, which has
similar scaling to the fitting method but which does not get stuck. We begin by identifying
the MPO W with an MPS |W 〉 by combining its primed and unprimed (i.e. bra and ket)
site indices. The orthogonality centers of |ψA〉 and |W 〉 are then moved to the first site. This
arrangement guarantees that the product of W and |ψ〉 at the first site has a basis to the right that,
while not orthogonal, is not drastically ill-conditioned. By this we mean that while some linear
dependence of the basis can exist, no basis state is expected to have a norm that is significantly
bigger than one (norms much less than one are less of a problem).

Then, starting from the first site, we form the product MPS |ψB〉 as follows. Define the
tensor C1 as

C s1
ω1α1
=

∑
s′1

W
s1s′1
ω1 A

s′1
α1 . (17)
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(a)

=

=

(b)

Figure 4. The fitting algorithm for multiplying an MPO times an MPS. Firstly,
the tensors (a) L and R are formed by combining |ψA〉, the MPO W acting on
it and the resulting state |ψB〉 moving from the edges of the system toward the
orthogonality center. Then, ψB is defined by the tensor in (b) and split via SVD
into matrices Bi and Bi+1. Finally, the orthogonality center of |ψB〉 is shifted and
the process is repeated until convergence.

Thinking of C1 as a matrix Cs1 (ω1α1), where (ω1α1) is a combined or ‘fat’ index, one may
compute its SVD as

Cs1 (ω1α1) =Us1β13β1 V †
β1 (ω1α1)

. (18)

At this step, it is crucial to perform a truncation, keeping only the m largest singular values
contained in 31. This may be done by setting m explicitly or by specifying a cutoff on the
truncation error. After truncating, the first matrix of |ψB〉 is defined as Bs1

β1
=Us1β1 and is

therefore left orthogonal by construction.
The remaining B matrices may now be found recursively. To go on to the next step, one

computes

C s2
β1ω2α2

=

∑
s′1,ω1,α1,s′2

U †
β1s′1

C
s′1
ω1α1 W

s2s′2
ω1ω2 A

s′2
α1α2 (19)

this time thinking of the result as a matrix C(β1s2)(ω2α2) and computing its SVD to find U(β1s2)β2 .
The matrix Bs2 may then be set as Bs2

β1β2
=U(β1s2)β2 and the process continued by defining

C3 = C t3
β2ω3α3

analogously in terms of U2, C2, A3 and W3.
For clarity, the construction of the C tensors is depicted graphically in figure 5.

Asymptotically, if one assumes that k < m, this algorithm scales as Nm3kd .
We note that when performing the SVDs in the above procedure, it is important to use

a truncation error cutoff versus a fixed m during the initial left to right sweep to compensate
for the modest loss of efficiency stemming from the fact that each truncation optimizes a local
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=
(a)

=

(b)

=

=

Figure 5. The tensors (a) C1 and (b) C2 generated in the first two steps of
the zip-up method for multiplying an MPO times an MPS. Indices grouped by
parentheses are to be thought of as a single fat index for the purpose of computing
an SVD.

tensor, not |ψB〉 itself. Once the computation of |ψB〉 reaches the right boundary, the return SVD
is fully efficient since the B matrices are left orthogonal and during this return sweep m can be
reduced to an optimum value. For typical 2d clusters, we find that such a procedure leads to an
intermediate m̃ that is about twice m.

Finally, it may be useful to combine the above two approaches. One could perform an
initial left to right sweep using the zip-up algorithm with a fixed m̃ ' m to obtain an initial
guess for |ψB〉 and then switch to the fitting algorithm for the return sweep (and possibly
additional sweeps) until convergence is reached.

2.1.4. Taylor series construction of the time evolution MPO. Having discussed the application
of an MPO to an MPS, let us now turn to the construction of an MPO representation of the time
evolution operator Kτ = e−τH . The first method we will discuss relies on expanding Kτ in a
Taylor series.

To construct the MPO for Kτ using this approach, one begins by constructing an MPO
representation of the Hamiltonian H . While it is sometimes possible to work out the MPO for
H explicitly, such as in the case of translationally invariant 1D systems, more complex systems
can be treated by constructing MPOs for each term in the Hamiltonian and summing them
together (see the appendix for further details on adding and multiplying MPOs).

Having found an MPO representation of H , the Taylor series approach begins with
breaking the timestep τ into small fractions ε = τ/n. One may then approximate Kε = e−εH
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in a Taylor series that is truncated at a high order p such that the error is controlled by ε p.
Finally, this series may be summed by utilizing MPO multiplication and addition algorithms.
In doing so, it is important to arrange the computational steps so as not to repeat any expensive
calculations such as computing powers of H . One such arrangement is given by the following
algorithm.

Compute the MPO W0 =−εH . Then compute the MPOs W j recursively as

W j =−εH

(
1 +

1

p− j + 1
W j−1

)
, (20)

where j = 1, . . . , p. The timestep operator itself is then given by Kε = 1 + Wp.
Finally, the MPO for Kτ may be found by computing the nth power of Kε using the zip-up

method for MPO multiplication described in the appendix. In doing so, it is helpful to choose n
to be a power of two so that Kτ may be computed by repeatedly squaring Kε . In this way, fewer
MPO multiplications are required.

2.1.5. Trotter–Suzuki construction of the time evolution MPO. An alternative method for
constructing the time evolution MPO K = e−τH is to make use of the Trotter–Suzuki
decomposition of equation (9), where K is approximated as a product of gates Ki j . But instead
of applying the gates directly to the MPS representing the system, one combines them together
to form an MPO for K .

Now, explicitly writing an MPO representation for a gate Ki j can be challenging, as it is
not a simple product of single site operators and will not generally act on sites adjacent to each
other in the MPS. However, one solution is to use the swap gate technique described above. One
first works out the set of swap gates and local K (i j)

j−1 j gate operators that form K and removes
any redundant gates. Then the MPO for K may be computed by creating an identity MPO and
applying the gates directly to it, taking care to truncate the MPO bond dimension after each gate
is applied. Or, if even greater accuracy is required, one may follow the steps above to construct
an MPO for Kε = e−εH with ε = τ/2n and then use the zip-up method to square it n times and
obtain K .

An important advantage of this Trotter–Suzuki method over the Taylor series approach is
that errors are easier to identify and control. In particular, we have found that the parameters
controlling the error in the Taylor series method must be reduced whenever the number of
lattice sites N is increased in order to maintain the same accuracy. This can be traced to the fact
that the Hamiltonian generally possesses at least one eigenvalue that scales as N , while other
eigenvalues scale as N p with p < 1.

In contrast, the Trotter–Suzuki approach to computing K does not suffer from this difficulty
since one works with gates acting only on pairs of sites, and such gates may be constructed
exactly. The only sources of error that remain, then, are the finite timestep Trotter error and the
truncation error in the construction of the MPO.

2.2. Measurement of observables

After producing a METTS, one wants to measure a number of bulk quantities, such as the
energy, as well as local observables, such as the magnetization on each site. For bulk observables
that consist of local terms summed over the entire lattice, it is usually convenient to use an
MPO representation. We must therefore find an efficient way to compute expectation values of
such MPOs.
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On the other hand, it is more efficient to work with local observables explicitly, and to
compute their expectation values only in terms of the orthogonality center of the MPS. As we
will see later, this second approach is particularly important as it is the key to performing an
efficient CPS collapse in the last step of the pure state method.

2.2.1. Computing the expectation value of an MPO. Operators formed by summing over local
terms, most notably the Hamiltonian, can generally be written as an MPO with relatively
small bond dimension k. Since we will need to compute the expectation value of these MPOs
with respect to MPS that have a relatively large bond dimension m, let us see how to do this
efficiently.

Consider computing the matrix element 〈ψA|Ŵ |ψB〉, where Ŵ is an MPO of bond
dimension k, and |ψA〉 and |ψB〉 are MPS of bond dimension m. Of course, this reduces to
an expectation value if |ψA〉 = |ψB〉.

One starts the computation at the beginning of the chain, defining L1 as

Lα1ω1β1 =

∑
s1t1

(As1)†α1
W s1t1
ω1

B t1
β1
. (21)

Then L2 can be produced from L1 by computing

Lα2ω2β2 =

∑
t2β1

[∑
s2ω1

[∑
α1

Lα1ω1β1(A
s2)†α1α2

]
W s2t2
ω1ω2

]
B t2
β1β2

. (22)

Here the order of operations in performing the sum is crucial to ensure good scaling—in
particular one should not sum over both the α1 and β1 indices simultaneously.

One then proceeds to define L3 in terms of L2 in a similar manner until the end of the chain
is reached. In this way, one computes the matrix element exactly as there is no truncation step.
If the steps of the algorithm are followed in the order given above and we assume that k < m,
the computation scales as Nm3kd.

2.2.2. Computing the expectation value of a local operator. While any operator may be
applied to a state by representing it as an MPO, it is often more efficient to compute the action
of local operators on an MPS explicitly. The basic idea is to shift the orthogonality center of the
MPS (defined in section 2.1.3 above) such that it lies within the set of sites on which the local
operator acts. This way any MPS matrix on which the operator acts trivially is excluded from
the computation.

For example, consider the computing of the expectation value of a single site operator Ôi

acting on site i . If we take the orthogonality center to be the site i , then because the matrices As j

for all j<i obey the left orthogonality condition equation (13) and the matrices As j for all j>i
obey the right orthogonality condition equation (14), the expectation value of Ôi reduces to

〈ψA|Ôi |ψA〉 =

∑
αi−1αi s′i si

(As′i )†αiαi−1
〈s ′i |Ôi |si〉A

si
αi−1αi

. (23)

Or, if we are interested in applying the operator to the state to obtain Ôi |ψA〉, this can be
done by making the replacement

Asi
αi−1αi
→

∑
s′i

〈si |Ôi |s
′

i〉A
s′i
αi−1αi (24)

while keeping all other A matrices fixed.
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Expectation values of multi-site local operators such as 〈ψA|ÔiÔi+1|ψA〉may be calculated
in a similar way. Assuming that the orthogonality center is at site i or i + 1, one now includes
both the matrices Asi and Asi+1 . However, in contrast to the single-site computation, it is
important in such multi-site expectation values to break up the tensor contractions such that
the scaling of any one operation never exceeds m3d.

Finally, while each local expectation value may be computed with a scaling no worse than
m3d, one usually wants to perform such a calculation at each site in the system. Since this
necessarily involved shifting of the orthogonality center, the overall scaling will then be Nm3d2

as an SVD must be computed at each step.

2.2.3. Estimation of errors. While the methods discussed above give an efficient way to
calculate observables for a single METTS, one must also consider the properties of the METTS
ensemble when estimating averages and computing error bars. This is because correlations exist
both between sequential METTS and between related observables within a METTS.

As we will discuss in the next section, the autocorrelation time of the METTS pure state
method can be made quite short (less than five steps or so) by properly choosing the basis into
which the CPS are collapsed. However, when estimating the error in a series of expectation val-
ues, it is still best to remove the effects of correlations by using a binning procedure as follows.

After calculating expectation values of an observable A, one collects sequential values into
bins whose size is larger than the autocorrelation time. The average value within each bin is
then computed. Each bin average may now be taken to be statistically independent and the error
estimated as the standard error of these bin averages.

However, for quantities such as the specific heat or magnetic susceptibility, given by
Cv =

β2

N [〈H 2
〉− 〈H〉2] and χ = β

N [〈m2
〉− 〈m〉2], computing the error as the sum of the errors

in the first and second moments greatly overestimates the true error even when using binning.
This can be traced to the fact that, from one step of the pure state algorithm to the next, the first
and second moments of a bulk observable A are strongly correlated. That is, if 〈A〉 is relatively
large for a particular METTS, so is 〈A2

〉.
A simple way to deal with this difficulty is therefore to use a resampling method, such as

the bootstrap method but with correlations taken into account. In other words, from the entire
set of A expectation values, one randomly samples a new set of the same size as the original
but with replacement, such that a value may appear more than once. One then calculates 〈A〉
for this resample. But then, instead of repeating this procedure independently for 〈A2

〉, one
resamples instead the same subset of METTS. So, if the expectation value of A calculated from
a particular METTS is included in the resample n times, the corresponding expectation value of
A2 is included n times as well.

The bootstrap method then consists of repeating the above process a large number of times,
each time obtaining an estimate for the second cumulant 〈A2

〉− 〈A〉2. If the process is repeated
enough times, the resulting distribution of second cumulant estimates should be approximately
Gaussian. Finally, the error in the second cumulant may be estimated as the standard deviation
of this Gaussian distribution.

2.3. Collapsing METTS into CPS

After generating a METTS by imaginary time evolution and calculating observables of interest,
the METTS must be collapsed into a CPS so that a new METTS can be generated with the
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correct probability. This can be done in any basis, a fact that one can exploit to reduce the
autocorrelation time of the pure state algorithm and to accelerate the measurement of certain
observables.

It is also important, for reasons of efficiency, to carry out this collapse for each site one at a
time. We will therefore discuss how to collapse a METTS in practice and show that the resulting
algorithm scales as Nm2d2.

2.3.1. CPS collapse algorithm. Since collapsing METTS is simplest for the case of a spin-1/2
model, let us begin by considering this case before discussing the general method.

Say one wishes to collapse the spin of a pure state |9〉 at site i along the n̂-axis. Define the
states |+〉 and |−〉 at site i such that n̂ · ESi |±〉 = ±

1
2 |±〉. Then the probability of finding the spin

at site i to be in the |+〉 state is p+ = 〈9|n̂ · ESi |9〉+ 1
2 and to be in the |−〉 state is p− = 1− p+.

After determining the new state for site i using a random number generator, the actual
collapse is enacted by the projection

|9〉 →

{
p−1/2

+ |+〉〈+|9〉 prob p+

p−1/2
− |−〉〈−|9〉 prob p−.

(25)

Finally, once this procedure is carried out for every site in the system, one obtains a CPS |9 ′〉
with probability |〈9 ′|9〉|2.

Now consider the more general case of a lattice system where the local Hilbert space at each
site i can be expanded in an orthonormal basis |m〉i with m = 1, . . . , di . We again emphasize
that this basis can be chosen arbitrarily for each site i and for each step of the algorithm.

Define Pi(m)= |m〉i〈m|i as the projection operator into the state |m〉i . Then the probability
of finding site i to be in the state |m〉i is just pm = 〈9|Pi(m)|9〉.

Having selected a particular state |m̃〉i according to this probability, one completes the
collapse by making the replacement

|9〉 → p−1/2
m̃ Pi(m̃)|9〉. (26)

Before discussing the detailed implementation of this method for MPS, let us conclude with
some explicit examples of projection operators. From the above discussion, we can immediately
identify the projectors for the S = 1/2 basis states |+〉 and |−〉 as

Pi(+) = 1
2 + n̂ · ESi ,

Pi(−)=
1
2 − n̂ · ESi . (27)

Or, if we consider an S = 1 system and take |m〉i with m = 1̄, 0, 1 to be the eigenstates of n̂ · ES,
the Pi(m) may be written explicitly as

Pi(1)= 1
2(n̂ ·
ESi)+ 1

2(n̂ ·
ESi)

2,

Pi(0)= 1− (n̂ · ESi)
2, (28)

Pi(1̄)= − 1
2(n̂ ·
ESi)+ 1

2(n̂ ·
ESi)

2.

2.3.2. Collapsing an MPS into a CPS. Having defined the CPS collapse algorithm in a general
setting, let us see how to apply it to a state |ψA〉 represented as an MPS. First, assume that the
orthogonality center of the MPS has been chosen to be the first site. In other words, assume that
the matrices As j such that j = 2, 3, . . . , N have been made right orthogonal as in equation (14).
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One begins the collapse by first computing the expectation values of the projectors P1(m).
As discussed in section 2.2, the existence of a well-defined orthogonality center allows us to
compute these expectation values in terms of the matrix As1 alone. Explicitly, one computes

〈ψA|P1(m)|ψA〉 =

∑
α1 s′1s1

(As′1)†α1
〈s ′1|P1(m)|s1〉A

s1
α1

=

∑
α1

[∑
s′1

(As′1)†α1
〈s ′1|m〉

][∑
s1

〈m|s1〉A
s1
α1

]
. (29)

Once the new state of site 1 is chosen to be |s1〉 = |m1〉, say, with probability
pm1 = 〈ψA|P1(m1)|ψA〉, the state could be collapsed by naively applying the projector P1(m1)

to it. However, while the action of a generic single-site operator would be followed by an SVD
to orthogonalize site 1 and turn site 2 into the center site, the fact that the CPS collapse operators
are projectors allows for an even more efficient algorithm.

Because the repeated action of single-site projectors on any state produces a product state
and a product state can be represented as an MPS with bond dimension 1, if the above step
of applying the projector P1(m1) to site 1 and left orthogonalizing As1 was performed, the
new bond index α′1 connecting As1 to As2 could be truncated such that it only takes on one
value. Anticipating this result, one can therefore directly replace As1 with the 1× 1 matrix
As1 = 〈s1|m1〉. Finally then, to ensure that P1(m1)|ψA〉 still describes the same state of the
remaining sites not acted on by the projector, one must replace As2 according to

As2
α1α2
→ As2

m1α2
= p−1/2

m1

∑
s1α1

〈m1|s1〉A
s1
α1

As2
α1α2
. (30)

That is, the label m1 plays the role of a new bond index that runs over just one value. In fact,
because it plays a trivial role, this label can be dropped with the result that the new state of
the system is a product of a single-site wavefunction for site 1 and an N − 1 site MPS for the
remaining sites. Having made this identification, the second site now lies on the boundary of an
MPS and can be collapsed in exactly the same way as the first.

Although applying a local operator typically scales as m3d2 per site, the considerations
above show that the CPS collapse step of the pure state algorithm can be optimized even further.
The result is an algorithm that scales as m2d2 where the costliest step is the formation of the
new A matrix in equation (30).

2.3.3. Choosing the CPS basis for spin models. When collapsing a METTS into an CPS, one
has the freedom to choose the CPS basis arbitrarily for each METTS and at each site. We
would therefore like to exploit this freedom first of all to ensure ergodicity and also to minimize
correlations among the METTS.

One simple strategy for improving ergodicity is to pick a random quantization axis n̂
for each site at every step, and collapse the spins into the basis of n̂ · ES eigenstates. Then
if the Hamiltonian conserves a quantity such as the total ẑ magnetization Sz

tot, such random
measurements will generate CPS that explore many different Sz

tot sectors. Moreover, random
projections do not explicitly break rotational symmetry in the sense of favoring a particular axis
from the outset. We have found that in practice random projections work quite well and give a
short autocorrelation time as shown in figure 6.
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Figure 6. The energy of the L = 50, S = 1 Heisenberg chain at β = 1.0 found by
choosing a completely random CPS (like those produced in a β = 0 simulation)
and measuring the energy of an METTS produced after an given number of steps
of the pure state method. The symbols show the ensemble average of many such
runs each starting from a different CPS (the line is the quantum Monte Carlo
result, treated here as exact). Depending upon the basis chosen for the CPS
collapse, the number of steps needed for the effects of the initial CPS choice to be
removed varies widely. Measuring only along the z-axis produces the strongest
autocorrelation effects, while choosing random axes or mutually mixed bases
gives much better performance and an autocorrelation time of less than 4–5 steps.

In contrast, one could instead collapse every site along the same axis, say ẑ. This has a
number of advantages, including being simpler to code and making measurements of diagonal
operators easier to perform, as we will discuss below. One particularly nice feature of using a
ẑ-only basis is that, since all of the collapsed spins lie along the same axis, the resulting CPS
can be easily visualized and plotted.

For example, in figures 7 and 8, we show the CPS obtained after collapsing subsequent
METTS in simulations of the Heisenberg and AKLT models and mark points at which the spins
fail to follow the diluted Néel pattern that underlies the string order in the Haldane phase. It is
interesting to see the number of defects decrease as the temperature is lowered, and to observe
that for the AKLT case, they disappear entirely as T → 0.

A serious drawback to the ẑ-only approach, however, is that it leads to problems with
ergodicity. In practice, using the ẑ basis only tends to lengthen the autocorrelation time, reducing
the efficiency of the algorithm for calculating thermal averages. For example, one can clearly see
strong correlations in the positions of the defects plotted in figures 7(a) and 8(a). Correlations
in energy measurements can persist over many steps as shown in figure 6.

Since we would like to retain the advantages of the ẑ-only basis but cannot afford
to sacrifice ergodicity, one solution is to collapse METTS along the ẑ-axis only on even
numbered steps. If we then collapse along random axes after odd steps, we can maintain a
short autocorrelation time.

This compromise suggests an even better approach, however. Instead of switching to
random axis CPS collapses, we can use a basis that is maximally mixed relative to the Sz
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Figure 7. CPS produced by performing ẑ-only measurements of METTS for the
S = 1 Heisenberg antiferromagnet with N = 100. Shown are the middle 60 sites
for (a) β = 1.0, (b) β = 5.0 and (c) β = 20.0. The vertical red lines mark defects
in the diluted Néel order of the Haldane phase.

eigenstates. For example, in an S = 1/2 system, one would perform odd step collapses along
the x̂-axis. As Sx eigenstates are in an equal superposition of Sz eigenstates, the autocorrelation
time is expected to be minimal since any memory of the previous CPS will be completely erased.

Likewise, for S = 1 systems, one can perform odd step collapses in the maximally mixed
basis given by

|µ1〉 =
1
√

3
(ei2π/3

|1〉− |0〉− e−i2π/3
|1̄〉),

|µ2〉 =
1
√

3
(|1〉− |0〉− |1̄〉), (31)

|µ3〉 =
1
√

3
(e−i2π/3

|1〉− |0〉− ei2π/3
|1̄〉).
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Figure 8. CPS produced by performing ẑ-only measurements of METTS for the
S = 1 AKLT antiferromagnet with N = 100. The temperatures and symbols are
identical to those in figure 7.

As shown in figure 6, using this basis on odd steps reduces correlation effects even more effec-
tively than the random axis approach, for which the autocorrelation time is already quite short.

2.3.4. Diagonal measurements with product states. While the cost of computing expectation
values of quantities such as the energy or the magnetization is quite low for each METTS
produced, other measurements can be very costly.

For example, we may want to measure real space spin correlations C(1)=
∑

i 〈
ESi · ESi+1〉.

One approach would be to create an MPO that encodes the sum over all pairs of spin operators
separated by 1. Or, we can work with MPOs for the individual spin operators and perform the
sum above for each METTS. In practice however, we have found that both approaches are very
costly because of both the time needed to construct the MPOs and to compute the expectation
values.
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But assuming we are studying a spin rotationally invariant system, only the 〈Sz
i Sz

j 〉

correlations are needed as the others are equal by symmetry. Since Sz
i Sz

j is diagonal in the
product basis of Sz eigenstates, we can take advantage of this fact to perform correlator
measurements using the CPS collapsed from each METTS instead of using the METTS
themselves. As long as the operator we wish to calculate is diagonal in the basis of the collapsed
CPS, we will still obtain the correct thermal average.

So, if one performs ẑ-only collapses as discussed in the previous section, the operator
content of measuring a diagonal observable such as C z(1)=

∑
i 〈S

z
i Sz

i+1〉 can be ignored
entirely. That is, if we collapse a METTS into an CPS |9〉 in the ẑ basis such that

|9〉 = |s1〉|s2〉|s3〉 . . . |sN 〉 , (32)

then we immediately have C z(1)=
∑

i si si+1.
One can make even better use of the resources expended in producing each METTS by

re-collapsing it multiple times and measuring each resulting CPS. This procedure also produces
the correct thermal average for diagonal observables and is much more efficient for large β than
collapsing each METTS only once. By using the pure state algorithm in this way, one explicitly
samples not only the thermal fluctuations, but the quantum fluctuations as well.

Finally, since the above method relies on performing CPS collapses along the ẑ-axis, it is
susceptible to the same ergodicity issues mentioned earlier. However, ergodicity can be restored
by alternating between the ẑ-axis collapses on even steps and random or maximally mixed
collapses on odd steps. For the S = 1/2 case, since the maximally mixed basis is just the x̂
basis, we can perform measurements of quantities like C(1) for rotationally invariant models
on every step by treating the x̂ basis as an effective ẑ′ basis.

3. Properties of METTS

While the pure state algorithm is effective for computing thermal averages, it also generates
an entire wavefunction at each step that may be thought of as a snapshot of the system. Every
METTS it produces can be used to simultaneously calculate many different observables and
look for characteristic fluctuations or short range order.

Studying the properties of METTS can also help us to understand why relatively few
METTS are needed to accurately estimate observables. By identifying the METTS ensemble
that maximizes this sampling efficiency for a simple model, we will discover that while the
entanglement entropy of such an ensemble is not always optimal, it may be minimal in a more
restricted sense.

3.1. Observing thermal fluctuations with METTS

Figures 9 and 10 each show the properties of a single METTS produced for the spin-one
Heisenberg and AKLT chains, respectively. The temperature is taken to be T = 0.1 in the units
of equation (6).

Throughout both chains, antiferromagnetic spin correlations are clearly visible but thermal
fluctuations are also apparent. For example, the AKLT chain in figure 10 shows longitudinal
fluctuations in the magnitude of 〈ES〉 around site 40. In the inset, one can see that the local bond
energy is also correspondingly higher at this point in the chain. This may be understood as a
fluctuation away from the spin liquid ground state in which 〈ES〉 = 0.
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Figure 9. Properties of a METTS produced for the 100 site S = 1 Heisenberg
chain at T = 0.1, central 80 sites. In the main plot, the solid lines (red, green
and black) show the three components of 〈ES〉, while the (blue) boxes show |〈ES〉|.
The entanglement entropy on each bond is shown in the top inset, while the
expectation value of each Hamiltonian bond term is shown in the bottom inset.
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Figure 10. Properties of a METTS produced for the 100 site S = 1 AKLT chain,
central 80 sites. The temperature and symbols are the same as those in figure 9.

A second type of thermal fluctuation that is visible is a twist in the staggered magnetization,
such as the one near site 30 of the Heisenberg chain of figure 9. Near this site, the spin length
is also shortened and the local bond energy is relatively low. After the twist, a second region of
correlated spins persists for a few correlation lengths until another twist occurs near site 70.

It is interesting to observe that since each METTS is a pure state, the von Neumann
entanglement entropy for bipartitions of the system about each bond is well defined, and we
normalize it here such that a spin-1/2 singlet has an entropy of 1. As figures 9 and 10 show,
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in the regions where the spins are more classical and the bond energy is relatively higher, the
entanglement entropy is lower, signifying weaker quantum fluctuations.

3.2. Energy measurements and the efficiency of METTS

Let us now turn our attention from the properties of individual METTS to ensembles of METTS.
An important concept will be that of a thermal decomposition, by which we mean a set of pure
states |φ(i)〉 and weights P(i) such that∑

i

P(i) |φ(i)〉〈φ(i)| = e−βH . (33)

In fact, all density matrices can be decomposed in this way and the |φ(i)〉 need not be
orthogonal, although they should be normalized. From equations (3) and (4), one sees that every
METTS ensemble corresponds to such a decomposition.

Implicit in equation (33) is a division of thermal effects into classical fluctuations quantified
by the weights P(i), and quantum fluctuations present within the states |φ(i)〉, although this
distinction is somewhat arbitrary as there exist many different thermal decompositions. But
because we are interested in sampling the |φ(i)〉 rather than calculating them all, our sampling
process will be especially efficient when most of the thermal effects can be captured within the
states themselves, rather than in their distribution.

To make this intuition more precise, let us consider the energy fluctuations within a given
thermal decomposition. Using the notation 〈A〉i = 〈φ(i)|A|φ(i)〉, we may write the specific
heat as

Cv =
β2

N

∑
i

P(i)

Z
〈H 2
〉i −

(∑
i

P(i)

Z
〈H〉i

)2
 . (34)

However, the fact that we are working with an ensemble of pure states also allows us to define
a ‘quantum specific heat’

C (q)
v =

β2

N

∑
i

P(i)

Z

[
〈H 2
〉i −〈H〉

2
i

]
(35)

that quantifies how much each state |φ(i)〉 contributes to the full specific heat on average.
Now it turns out that, up to a constant factor, the difference between the quantum specific

heat and the total specific heat is nothing but the variance of the expectation value of the energy
within the ensemble, that is,

Cv −C (q)
v =

β2

N
σ 2(H)

=
β2

N

∑
i

P(i)

Z
〈H〉2i −

(∑
i

P(i)

Z
〈H〉i

)2
 . (36)

So, the smaller this difference, the fewer the number of states that must be sampled to estimate
the energy to a given accuracy.

Now turning to a particular choice of a thermal decomposition, let us first consider the exact
energy eigenstates of the system, taking |φ(i)〉 = |εi〉 and P(i)= e−βεi . Since H is diagonal in

New Journal of Physics 12 (2010) 055026 (http://www.njp.org/)

http://www.njp.org/


23

0 0.5 1 1.5 2 2.5 3
Inverse Temperature β

0

0.1

0.2

0.3

0.4

0.5

Specific Heat [QMC]

Specific Heat [METTS]

Quantum Part of Specific Heat

Figure 11. The specific heat of the S = 1 Heisenberg chain with N = 100 sites
calculated using METTS with each CPS collapse performed along random axes.
Also shown is the quantum specific heat, that is, the average estimate of the
specific heat as calculated from a single METTS.

this basis, it follows that 〈H 2
〉i = 〈H〉2i . Therefore the quantum specific heat is precisely zero

and, as a result, the variance in the energy is maximal. So even if one could sample the exact
energy eigenstates of the system, they would make an exceedingly poor basis for the purpose of
estimating the average energy.

Next, consider a decomposition of the thermal ensemble in terms of METTS. From the
calculation of both the specific heat and the quantum specific heat shown in figure 11 for the
S = 1 Heisenberg chain, we can see that, even near the peak where the difference between
Cv and C (q)

v is greatest, the quantum specific heat is only smaller than the total by about
a factor of 0.8. This indicates that the METTS decomposition we sampled is quite close
to being optimal. Physically, we may attribute this efficiency to the fact that, for a given
temperature T , each METTS has a significant overlap with all of the energy eigenstates |εi〉 such
that εi . T .

Finally then, let us see what would happen if we use a decomposition of the thermal
ensemble in which this overlap with the energy eigenstates is maximal. Consider the
overcomplete, unnormalized basis of states

|2〉 =
∑

i

eiθi |εi〉 (37)

each parameterized by the set 2= {θi}. Then the normalized states given by

|φ(2)〉 =
1
√
Z

e−βH/2
|2〉 =

1
√
Z

∑
i

eiθi e−βεi/2|εi〉 (38)

form a decomposition of a thermal ensemble with uniform weights P(2)= const. If we now
imagine sampling even just one such state, the resulting estimate of the energy would be exact,
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since

〈φ(2)|H |φ(2)〉 =
1

Z

∑
i, j

ei(θ j−θi )e−β(ε j +εi )/2〈ε j |H |εi〉

=
1

Z

∑
i

e−β εi εi (39)

= 〈H〉.

In a similar manner, one may obtain the exact specific heat from just one of these states as well,
which implies that C (q)

v = Cv for this decomposition. Formally, then, this particular basis is the
most optimal one for sampling the average energy of the system. However, constructing even
one state |2〉 amounts to diagonalizing the entire Hamiltonian, which would render a sampling
approach irrelevant.

In the end, then, the METTS decomposition achieves both a remarkably high sampling
efficiency in practice, as quantified by Cv −Cq

v , while also being one of the least costly
decompositions to produce.

3.3. In what sense are METTS minimally entangled?

Consider a system consisting of just two spin-1/2 moments, A and B in a pure state |ψ〉. We
call |ψ〉 entangled if it cannot be factorized, that is, if it is not a CPS.

To compute the entanglement entropy S[ψ], one first forms the density matrix ρA

describing spin A alone by tracing out the states of B

ρA = TrB|ψ〉〈ψ |. (40)

One may define ρB likewise. In terms of these reduced density matrices, S[ψ] is then

S[ψ]=−Tr[ρA log2(ρA)]=−Tr[ρB log2(ρB)]. (41)

At finite temperature, however, A and B are not in a pure state |ψ〉, but in the mixed state
described by the density matrix ρ = 1

Z e−βH . While for a mixed state one can no longer define
an entanglement entropy in the same manner, one could choose a particular decomposition of ρ
as in equation (33) and compute its average entanglement entropy

Sφ[ρ]=
∑

i

P(i)

Z
S[φ(i)]. (42)

However, Sφ[ρ] turns out to depend upon which decomposition we choose.
A more meaningful measure of mixed state entanglement is the entanglement of formation

E[ρ] defined as the minimum value of Sφ[ρ] among all possible decompositions [9]

E[ρ]=minφ Sφ[ρ]. (43)

While such a minimization would be difficult to compute in general, an exact expression has
been found by Wootters for the case of a two-qubit system [10]. So, for this simple system at
least, we may unambiguously check whether the average entanglement entropy of the METTS
decomposition saturates the lower bound set by E[ρ]. In other words, we may explicitly check
if METTS are minimally entangled.
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Before we make this comparison, however, let us review Wootters’ method for computing
the entanglement of formation. First define the concurrence of a pure state |ψ〉 of two-
qubits as

C[ψ]= |〈ψ |ψ̃〉|, (44)

where |ψ̃〉 is the time reversal conjugate of |ψ〉. Concurrence is an alternative measure of
entanglement and may be used to compute the standard von Neumann entanglement entropy
equation (41) through the relation

S[ψ]= f

(
1 +

√
1− (C[ψ])2

2

)
, (45)

where f (x)=−x log2(x)− (1− x)log2(1− x).
Now for a general mixed state of two-qubits, it may be shown that there exists at least one

optimal decomposition of ρ which saturates the minimum in equation (43) and which consists
of pure states all having the same concurrence and hence the same entanglement entropy. This
minimal concurrence value is given by

C[ρ]=max{0, λ1− λ2− λ3− λ4}, (46)

where λi are the square roots of the eigenvalues of the matrix ρ (σy ⊗ σy)ρ
∗(σy ⊗ σy). It

therefore follows that the entanglement of formation of a two-qubit system is given by

E[ρ]= f

(
1 +

√
1− (C[ρ])2

2

)
. (47)

Equipped with this explicit formula for the entanglement of formation, let us now consider
a specific system, namely the two-site S = 1/2 Heisenberg model with the Hamiltonian

H = J ESA · ESB (48)

and take the antiferromagnetic J > 0 case.
As β→∞, the unique ground state |ψ0〉 of H is the singlet formed out of the spins A and

B, which has an entanglement entropy S[ψ0]= 1. So, the entanglement of formation must also
be E[ρ]= 1 at zero temperature. In the opposite limit as β tends to zero, E[ρ] must tend to
zero. As shown in figure 12, it actually reaches zero at a finite temperature of β J = ln(3). Thus
for any smaller value of β J , the density matrix is separable and may be decomposed entirely in
terms of CPS [11].

Now let us compute the average entanglement of a METTS decomposition of this system.
To do so, we must first choose the underlying CPS |i〉 to be used in producing our METTS. One
possible choice is to take the set |i〉 to be the complete basis of ẑ eigenstates. Because this yields
a decomposition consisting of only four METTS we can calculate them exactly. The resulting
average entanglement entropy of this ‘ZZ METTS’ ensemble is plotted in figure 12.

Note that we could have also used the pure state algorithm to sample this decomposition
by collapsing each METTS into the ẑ basis on every site and then the x̂ basis on every site on
alternate steps. The METTS produced after either type of collapse can then be used to measure
the entanglement since the system is rotationally invariant. Collapsing into the ẑ basis alone, on
the other hand, will not sample all four METTS since the Hamiltonian conserves total Sz.

We may also choose CPS bases other than the Sz eigenstates and thereby find METTS
decompositions with even lower average entanglement. Consider the XZ METTS derived from
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Figure 12. The average entanglement of the ZZ and XZ METTS density matrix
decompositions for the two-site S = 1/2 Heisenberg antiferromagnet. The XZ
METTS form the optimal METTS decomposition of the system, but their
average entropy exceeds the entanglement of formation E[ρ]. Also shown is
the average entanglement of the energy eigenstate decomposition.

the orthonormal CPS basis {|↑→〉, | ↑←〉, | ↓→〉, | ↓←〉}, where up and down arrows denote
Sz eigenstates and left and right arrows denote Sx eigenstates. As shown in figure 12, the average
entanglement of these METTS is uniformly lower than the ZZ METTS.

What is more, the variance of both energy and entropy is exactly zero for the XZ METTS
ensemble. This follows from the fact that any XZ METTS can be transformed into any other by
global spin rotations that commute with H . Therefore we can conclude that the XZ METTS are
the optimal METTS decomposition for this system, at least up to a global spin rotation. Note
that one may also sample the XZ METTS with the pure state method by collapsing them into
the x̂ and ẑ bases on alternating steps and on alternating sites.

Regardless of the basis we choose, however, one can see from figure 12 that the average
entanglement of each METTS decomposition tents to zero smoothly as β→ 0 and always
exceeds E[ρ]. Therefore, because even the optimal METTS decomposition is greater than E[ρ]
for any finite temperature, we can conclude that METTS are not minimally entangled.

However, we may ask if the optimal METTS decomposition is instead minimally entangled
in a more limited sense. For this purpose it will be helpful to look at a special class of
thermal density matrix decompositions. Beginning with a decomposition at some particular
temperature β0

ρ0 =
e−β0 H

Z0
=

∑
i

pi |ψi〉〈ψi |, (49)

one can generate a decomposition for ρ at a different temperature β by making use of the
relation

ρ =
e−βH

Z
=
Z0

Z
e−(β−β0)H/2 ρ0 e−(β−β0)H/2

=

∑
i

piZ0

Z
Q(i) |ψi(β)〉〈ψi(β)|, (50)
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Figure 13. The average entanglement entropy of extended decompositions of the
two-site S = 1/2 Heisenberg antiferromagnet. Each optimal extension reaches
the minimum allowed entanglement at some temperature β0, but still exceeds
the entanglement of the optimal X Z METTS at high enough temperatures. Also
shown are the entanglements of the Z Z METTS decomposition and the energy
eigenstate decomposition.

where the pure states defining the new decomposition are given by

|ψi(β)〉 = e−(β−β0)H/2|ψi〉/Q(i)1/2,

Q(i)= 〈ψi |e−(β−β0)H |ψi〉.
(51)

We may consider this new decomposition the extension of the decomposition of equation (49),
or an extended decomposition for short. Note that the entanglement of an extended
decomposition is always an analytic function of β. For our two-qubit system then, this
implies that no extended decomposition can have an entanglement equal to E[ρ] at all
temperatures.

In fact, we would like to conjucture that no extended decomposition can even have an
entanglement below the optimal METTS decomposition at all temperatures. To see why this
may be the case, let us attempt to construct a counterexample for the two-qubit system. At
any temperature β0, we can construct an optimal decomposition, following Wootters, such that
the entropy of each state |ψi〉 is equal to the entanglement of formation. Then, because the
extensions of these decompositions will have the least possible entanglement at β0, we expect
that they will also have low entanglement at other temperatures.

Now, there can be multiple optimal decompositions for each starting temperature β0.
However, we have found that there is always one whose extension is less entangled than
the others and has zero entropy variance for all temperatures, not just β0. As shown in
figure 13, while such optimal extensions have less entanglement than the optimal METTS at
low temperatures, they eventually exceed the optimal METTS as the temperature is increased.
Moreover, the less entangled these extensions become at high temperature, the more they
resemble the optimal METTS ensemble itself.
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Figure 14. The average entanglement entropy of extended decompositions of the
two-site S = 1/2 Heisenberg antiferromagnet with an applied field h = 1.5 J. In
the presence of the field, the optimal METTS decomposition is given by the
XY METTS. Also shown are the entanglement of the X Z and Z Z METTS
decompositions and the energy eigenstate decomposition.

To check that this behavior is general, we can also study the two-qubit system in a field
with the Hamiltonian

H = J ESA · ESB − h (Sz
A + Sz

B). (52)

Here we focus on the case J > 0 and h > 0. For small fields, the temperature dependence of
the entanglement of formation E[ρ] remains similar to the zero field case. Then at h = J , the
system undergoes a first-order quantum phase transition such that the ground state is no longer
a maximally entangled singlet, but the fully polarized CPS with zero entanglement. Once h
is greater than J , the entanglement of formation no longer behaves as a monotonic function
of temperature. Regardless of the value of h, however, E[ρ] is strictly zero for β J 6 ln(3),
indicating that ρ becomes separable above this temperature.

In figure 14, we have taken a particular value of the field h > J and plotted the entropies
of various optimal extensions. As before, each extension either exceeds the optimal METTS
entanglement over a significant temperature range or else approaches the optimal METTS
decomposition ever more closely as this range is reduced. Also, it is interesting to note
that in the presence of a field it is the XY METTS (generated from Sx and Sy eigenstates) that
now form the optimal METTS decomposition, at least up to a rotation about the ẑ-axis. This is
because the X Z METTS are no longer required to be physically identical by the symmetries of
the Hamiltonian and will exhibit a finite entropy variance.

Going forward, it will be interesting to explore the extent to which the observations made
here hold for larger systems and more complex models. It would be especially useful to know
if an optimal METTS decomposition with ideal sampling efficiency always exists and whether
it can be efficiently computed.

Although the average entanglement entropy of a METTS decomposition is not an
entanglement measure in a strict sense (for instance, it is not zero when ρ is separable) [12],
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it is conceivable that its scaling behavior could reveal nontrivial information about a system.
Whether or not one must find an optimal METTS decomposition to access such information
remains to be seen. But because the METTS pure state algorithm is efficient enough to simulate
moderately large 2D systems, the entanglement properties of METTS could turn out to be a
useful tool for characterizing exotic phases or critical points.
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Appendix. Working with MPSs and MPOs

An MPS is a scheme for representing a wavefunction, either exactly or approximately, by
writing its amplitudes in some particular basis as a product of matrices. A general MPS may be
written as

|ψA〉 =

∑
{s}

As1 As2 · · · AsN |s1〉|s2〉 . . . |sN 〉 (A.1)

where the site labels si take on values si = 1, 2, . . . , d labeling the local basis.
For an adjacent pair of matrices Asi

µν Asi+1
νλ , if the index ν summed between the matrices takes

on values 1, 2, . . . ,m one says that the bond between matrices i and i + 1 has bond dimension
m. Although m can vary from bond to bond, in the following discussion we assume that it has
a fixed value for a given MPS. While in the presence of periodic boundary conditions one must
trace over the above product of matrices in order to reduce it to a scalar amplitude, in what
follows we work exclusively with open boundary conditions such that As1 and As N are just
1×m and m× 1 matrices, respectively.

An MPO is defined similarly to an MPS except that the decomposition is over a basis of
local operators. A general MPO may therefore be written as

Ŵ =
∑
{t,s}

W t1s1 · · ·W tN sN |t1〉 . . . |tN 〉〈s1| . . . 〈sN | (A.2)

where for open boundary conditions the dimensions of the first and the last matrix are again
1×m and m× 1.

A.1. Creating MPOs

The simplest MPOs to create are those describing products of local operators, that is,
Ŵ =5 jÔ j . In particular, one can represent a single site operator Ôi this way by taking
Ô j = 1 for all j 6= i . If the operator Ŵ is such a site-factorized product, its MPO representation
has a simple product structure as well. Each W t i si is actually just a 1× 1 matrix defined by
W ti si = 〈ti |Ôi |si〉.
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Another simple class of MPOs is those describing translationally invariant sums of
operators in one dimension in which case the matrices W can be taken to be identical (except
at the boundaries) and of lower triangular form. For example, the MPO of the operator
Sz

tot =
∑N

i=1 Sz
i may be represented in terms of the bulk matrices

W ti si =

[
δti si 0
(Sz

i )
ti si δti si

]
together with the boundary matrices W t1s1 = [0 δt1s1] and W t N s N = [δt N s N 0]T. Translationally
invariant 1D Hamiltonians can likewise be represented by translationally invariant lower
triangular MPOs of bond dimension 3 and higher [14].

However, there may not always be such a simple, explicit prescription for operators of
interest, in particular Hamiltonians of 2D systems. For use in such cases, we present below
general algorithms for the addition and multiplication of arbitrary MPOs.

Equipped with these algorithms, the MPO representation of any Hamiltonian that is a sum
of local terms may be found by first obtaining the MPOs for each term as described above
and then summing them together. The MPO multiplication algorithm is then useful for forming
other important operators such as H 2 for specific heat measurements or e−τH for imaginary time
evolution.

A.2. Adding MPS and MPOs

First consider adding two MPS |ψA〉 and |ψB〉 with bond dimensions m A and m B . If
|ψC〉 = |ψA〉+ |ψB〉, then

C si = Asi ⊕ Bsi , (A.3)

which in block form is

C si =

[
Asi 0
0 Bsi

]
. (A.4)

More formally, one may write this definition of C si as

C si
χi−1χi
=

∑
αi−1,αi ,βi−1,βi

δχi−1αi−1 Asi
αi−1αi

δαiχi + δχi−1(βi−1+m A)B
si
βi−1βi

δ(βi +m A)χi , (A.5)

where the χ indices run over values 1, 2, . . . , (m A + m B).
After constructing the C matrices as above, the addition has been carried out exactly.

However, one usually wants to work with an MPS for |ψC〉 that has a bond dimension
comparable to m A or m B , not m A + m B . One therefore usually truncates the MPS representation
for |ψC〉 as follows.

Treating C1 = C s1
χ1

as a matrix Cs1χ1 , compute its SVD

Cs1χ1 =Us1χ
′

1
3χ ′1

V †
χ ′1χ1

. (A.6)

During this step, only mC singular values are kept such that χ ′1 = 1, 2, . . . ,mC . Finally, replace
C1 with C s1

χ ′1
=Us1χ ′1 and replace C2 with C s2

χ ′1χ2
=3χ ′1 V †

χ ′1χ1
C s2
χ1χ2

.
The next bond in the truncated MPS for |ψC〉 is now found by treating the new C2 as a

matrix C(s2χ ′1)χ2 and computing its SVD. The matrix C2 is then set to U2 and C3 is multiplied
by 32V †

2 just as C2 was in the first step. This truncation process may then be likewise repeated
for every remaining C matrix.
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The addition of MPOs proceeds in complete analogy to the addition of MPS. To compute
the MPO Ẑ such that Ẑ = Ŵ + X̂ , one defines the matrices Z as

Z si ti =W si ti ⊕ X si ti , (A.7)

where the only difference from the MPS case is that there are now d2 matrices to be added
instead of d. Thinking of the pair of indices si and ti as a fat index (si ti), one may likewise
truncate the matrices Z by performing sequential SVDs as above.

The MPS addition algorithm above has a computational cost of Nm3d2 for m A = m B =

mC = m. Similarly, the addition of MPOs scales as Nk3d4, where k is the MPO bond dimension.

A.3. Multiplying MPOs

Consider the task of multiplying two MPOs Ŵ and X̂ with the goal of producing a product
MPO Ẑ=Ŵ X̂ . Let these MPOs be written as products of W , X and Z matrices with bond
dimension k.

This multiplication may be carried out one site at a time in a process analogous to the
zip-up algorithm discussed above. Therefore, the first step is to map each MPO to an MPS by
combining its t and s (or primed and unprimed) indices at each site into a fat index. These
MPS should then be transformed such that their orthogonality center is at the first site and then
mapped back into MPOs. In doing so, one ensures that in the truncation step below, the basis
of states surrounding the local tensor is not overly ill-conditioned. However, because this basis
will not be orthonormal, it is important to use a truncation error cutoff instead of a fixed k to
determine the final MPO bond dimension.

Now, to carry out the multiplication beginning with the first site, define the tensor R1 as

Rs1t1
ω1ξ1
=

∑
u1

W t1u1
ω1

X u1s1
ξ1
. (A.8)

Thinking of R1 as a matrix R(s1t1)(ω1ξ1), compute its SVD to obtain

R(s1t1)(ω1ξ1) =U(s1t1)ζ13ζ1 V †
ζ1(ω1ξ1)

, (A.9)

where the singular values are truncated such that only the k largest are kept. The first matrix of
Ẑ may now be defined as Z s1t1

ζ 1
=U(s1t1)ζ 1 .

The remaining Z matrices may now be found by proceeding recursively. Define R2 in terms
of R1 as

Rs2t2
ζ1ω2ξ2
=

∑
s1t1

U †
ζ1(s1t1)

[∑
ξ1u2

[∑
ω1

Rs1t1
ω1ξ1

W t2u2
ω1ω2

]
X u2s2
ξ1ξ2

]
. (A.10)

Again, R2 may be thought of as a matrix and its SVD computed as

R(s2t2ζ1)(ω2ξ2) =U(s2t2ζ1)ζ23ζ2 V †
ζ2(ω2ξ2)

. (A.11)

The second matrix of Ẑ may now be defined as Z s2t2
ζ 1ζ 2
=U(s2t2ζ 1)ζ 2 and the algorithm continued

by defining R3 analogously to R2 above in terms of U2, R2, W3 and X3.
If the contractions in equation (A.10) are carried out in the order indicated, this algorithm

for multiplying MPOs scales as Nk4d3 with the most expensive step being the construction of
the R tensors.
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