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Velocity Autocorrelation Function 

Velocity autocorrelation function (VAC) 
For a system of N atoms, the velocity autocorrelation function is defined as 
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where �⃗�,(𝑡) is the velocity of the i-th atom at time t. The bracket denotes averages over atoms, i, and the 
time origin, t0. We have omitted the division by the number of atoms and that of time origins for the 
averaging, since they cancel out between the numerator and denominator. 

Note that Z(t) = 1 at time t = 0 by definition. For sufficiently large t, there will be no correlation 
between velocities and thus 
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since the average velocity is zero in thermal equilibrium without flow. In gas phase, ballistic motions of 
atoms are interrupted by collisions with other atoms. These collisions change the velocity of each atom 
and cause the loss of memory about its initial velocity. Accordingly, Z(t) exhibits an exponential decay 
characterized by the collision time 𝜏: 
 𝑍(𝑡) = exp(− 𝑡 𝜏⁄ ). (3) 
Figure 1 shows Z(t) for density 𝜌 = 0.1 and temperature T = 1.0 in the Lennard-Jones unit. The red curve 
is a molecular-dynamics (MD) simulation result, whereas the blue dashed curve is the best exponential fit 
with the estimated collision time of 𝜏 = 1.3985. 

 
Figure 1: Gas-phase velocity autocorrelation function for Lennard-Jones atoms with density 𝜌 = 0.1 and temperature T = 1.0. 

In solid phase, atoms are vibrating around an equilibrium position, and atomic vibrations are 
described by the dynamical matrix, which is the second derivative of the potential energy with respect to 
the atomic positions. Namely, atomic trajectories can be represented as a superposition of the eigenmodes 
(i.e., phonons) of the dynamical matrix. As a result, Z(t) is a superposition of sinusoidal curves with the 
eigenfrequencies. Figure 2 shows Z(t) for density 𝜌 = 1.0 and temperature T = 0.1 in the Lennard-Jones 
unit. 
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Figure 2: Solid-phase velocity autocorrelation function for Lennard-Jones atoms with density 𝜌 = 1.0 and temperature T = 0.1. 

Phonon Density of States (DOS) and Fourier transform 
We can find the phonon frequencies that constitute Z(t) by decomposing it into a sum of sinusoidal 

curves, namely by performing Fourier transform. To do so, first note that 
 𝑍(𝑡) ∝ ⟨�⃗�(𝑡) ⋅ �⃗�⟩ = ⟨�⃗� ⋅ �⃗�(−𝑡)⟩ = ⟨�⃗�(−𝑡) ⋅ �⃗�⟩ = 𝑍(−𝑡). (4) 
Namely, Z(t) is an even function of t. Here, the first equality arises from the time invariance (i.e., the 
statistical quantity should not change by shifting the time origin by t), and the second equality is obtained 
by the commutative property of the inner product. Using Eq. (4), the Fourier transform is calculated as 
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In practice, we only sample Z(t) for a finite time interval, [0, tmax] during MD simulation. We then 
calculate the spectral function as 
 𝑍4(𝜔) = 2∫ dt&max

1 𝑍(𝑡)exp@−(𝑡 𝜏damping⁄ )5Acos(𝜔𝑡). (6) 
Here, 𝜏6789:;< is a damping time to smoothen out the numerical artifact due to the finite-time truncation 
at t = tmax. Here, we use 𝜏6789:;< = tmax/√3. Figure 3 shows 𝑍4(𝜔) calculated from the solid-phase Z(t) in 
Fig. 2. 

 
Figure 3: Solid-phase phonon density of states for Lennard-Jones atoms with density 𝜌 = 1.0 and temperature T = 0.1.	


