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Preface

Computational techniques in the realm of molecular sciences, covering much of those
parts of physics, chemistry and biology that deal with molecules, are well established in
terms of extremely powerful but highly specialized approaches such as band structure
calculation, quantum chemistry and biomolecular simulation. This is, for instance, nicely
demonstrated by the series of Winter Schools devoted over the years to several well-
defined and mature areas such as ”Quantum Chemistry” (2000),”Quantum Many-Body
Systems” (2002),”Soft Matter” (2004), and ”Nanoscience” (2006).

However, more and more problems are being tackled in experiments which have become
truly molecular in the sense of accessible length and time scales using scanning probe
techniques and femtosecond spectroscopy, to name but two prominent examples, which
require several aspects to be covered at the same time. In most cases, it is various length
scales and/or time scales covered by separate computational techniques that need to
be intimately connected, or at least traversed, in order to establish a fruitful crosslink
between research in the real laboratory and in the ”virtual lab”. This is precisely what
the Winter School aims to address in 2009 after having covered the state of the art in
many specialized areas as documented by the publication of several detailed volumes
of lecture notes in the NIC publication series (available free of charge for download at
www.fz-juelich.de/nic-series/).

In short, the Winter School 2009 deals with what we would liketo call ”eclecticism in
simulation”. The definition of eclecticism currently foundin Wikipedia, is ”a conceptual
approach that does not hold rigidly to a single paradigm or set of assumptions, but instead
draws upon multiple theories, styles, or ideas to gain complementary insights into a
subject, or applies different theories in particular cases” although not (yet) with reference
to the natural sciences but only to, for example, architecture, music and psychology,
perfectly describes the situation we encounter.

In particular, three topic areas will be covered focusing onhow to deal with hard matter,
soft matter, and bio matter where it is necessary to cope withdisparate length and time
scales. Aspects like coarse graining of molecular systems and solids, quantum/classical
hybrid methods, embedding and multiple time step techniques, creating reactive potentials,
multiscale magnetism, adaptive resolution ideas or hydrodynamic interactions will be
discussed in detail. In addition, another series of lectures will be devoted to the genuine
mathematical and the generic algorithmic aspects of multiscale approaches and their
parallel implementation on large, multiprocessor platforms including techniques such as
multigrid and wavelet transformations. Although this is beyond what can be achieved
in a very systematic fashion given the breadth of the topic, introductions will be given
to fundamental techniques such as molecular dynamics, Monte Carlo simulation, and
electronic structure (total energy) calculations in the flavour of both wavefunction-based
and density-based methods.



It is clear to the organizers that multiscale simulation is arapidly evolving and multifaceted
field that is far from being coherent and from becoming maturein the near future given the
unresolved challenges of connecting, in a conceptually sound and theoretically clear-cut
fashion, various length and time scales. Still, we think that the time has come to organize
a Winter School on this topic in order to provide at least a glimpse of what is going on to
the upcoming generation of scientists.

The scientific programme was drawn up by Johannes Grotendorst, Norbert Attig and
Stefan Blügel (Forschungszentrum Jülich) and Dominik Marx (Ruhr-Universität Bochum).

The school’s target audience is once again young scientists, especially PhD students and
young postdocs. Because of the limited resources for the computer labs the number of
participants is restricted to about 50. Applicants for the school were selected on the
basis of scientific background and excellence. In spite of these restrictions, we received
a wide national and international response, in most cases together with the submission
of a poster abstract. This reflects the attractiveness of theprogramme and demonstrates
the expectations of the participants that they will be able to play an active role in this
high-level scientific school. We are sure that the school is stimulating for both sides, for
students as well as lecturers.

Many individuals and institutions have made a significant contribution to the success of
the school. First of all, we are very grateful to the lecturers for preparing the extended
lecture notes in good time, in spite of the heavy work load they all have to bear. Without
their efforts such an excellent reference book on multiscale simulation methods would not
have been possible.

We would like to thank Forschungszentrum Jülich for financial support. We are greatly
indebted to the school’s secretaries Eva Mohr (handling of applications) and Erika Wittig
(registration and accommodation). Special thanks go to Monika Marx for her work in
compiling all the contributions and creating a high qualitybook from them.

Jülich and Bochum
March 2009

Johannes Grotendorst
Norbert Attig
Stefan Blügel
Dominik Marx
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Molecular Dynamics - Extending the Scale from
Microscopic to Mesoscopic

Godehard Sutmann

Institute for Advanced Simulation (IAS)
Jülich Supercomputing Centre (JSC)

Forschungszentrum Jülich, 52425 Jülich, Germany
E-mail: g.sutmann@fz-juelich.de

An introduction to classical molecular dynamics simulation is presented. In addition to some
historical notes, an overview is given over particle models, integrators and different ensemble
techniques. In the end, methods are presented for parallelisation of short range interaction
potentials. The efficiency and scalability of the algorithms on massively parallel computers is
discussed with an extended version of Amdahl’s law.

1 Introduction

Computer simulation methods have become a powerful tool to solve many-body problems
in statistical physics1, physical chemistry2 and biophysics3. Although both the theoretical
description of complex systems in the framework of statistical physics as well as the ex-
perimental techniques for detailed microscopic information are rather well developed it is
often only possible to study specific aspects of those systems in great detail via simulation.
On the other hand, simulations need specific input parameters that characterize the sys-
tem in question, and which come either from theoretical considerations or are provided by
experimental data. Having characterized a physical systemin terms of model parameters,
simulations are often used both to solve theoretical modelsbeyond certain approximations
and to provide a hint to experimentalists for further investigations. In the case of big exper-
imental facilities it is often even required to prove the potential outcome of an experiment
by computer simulations. In this sense it can be stated that the field of computer simula-
tions has developed into a very important branch of science,which on the one hand helps
theorists and experimentalists to go beyond theirinherent limitationsand on the other hand
is a scientific field on its own. Therefore, simulation science has often been called thethird
pillar of science, complementing theory and experiment.

The traditional simulation methods for many-body systems can be divided into two
classes, i.e. stochastic and deterministic simulations, which are largely represented by the
Monte Carlo (MC) method1, 4 and the molecular dynamics5, 6 (MD) method, respectively.
Monte Carlo simulations probe the configuration space by trial moves of particles. Within
the so-called Metropolis algorithm, the energy change fromstepn to n + 1 is used as
a trigger to accept or reject a new configuration. Paths towards lower energy are always
accepted, those to higher energy are accepted with a probability governed by Boltzmann
statistics. This algorithm ensures the correct limiting distribution and properties of a given
system can be calculated by averaging over all Monte Carlo moves within a given statistical
ensemble (where one move means that every degree of freedom is probed once on aver-
age). In contrast, MD methods are governed by the system Hamiltonian and consequently

1



Hamilton’s equations of motion7, 8

ṗi = −∂H
∂qi

, q̇i =
∂H
∂pi

(1)

are integrated to move particles to new positions and to assign new velocities at these new
positions. This is an advantage of MD simulations with respect to MC, since not only the
configuration space is probed but the whole phase space whichgives additional information
about the dynamics of the system. Both methods are complementary in nature but they
lead to the same averages of static quantities, given that the system under consideration is
ergodic and the same statistical ensemble is used.

In order to characterise a given system and to simulate its complex behavior, a model
for interactions between system constituents is required.This model has to be tested
against experimental results, i.e. it should reproduce or approximate experimental find-
ings like distribution functions or phase diagrams, and theoretical constraints, i.e. it should
obey certain fundamental or limiting laws like energy or momentum conservation.

Concerning MD simulations the ingredients for a program arebasically threefold:
(i) As already mentioned, a model for the interaction between system constituents (atoms,
molecules, surfaces etc.) is needed. Often, it is assumed that particles interact only pair-
wise, which is exact e.g. for particles with fixed partial charges. This assumption greatly
reduces the computational effort and the work to implement the model into the program.
(ii) An integrator is needed, which propagates particle positions and velocities from timet
to t + δt. It is a finite difference scheme which propagates trajectories discretely in time.
The time stepδt has properly to be chosen to guarantee stability of the integrator, i.e. there
should be no drift in the system’s energy.
(iii) A statistical ensemble has to be chosen, where thermodynamic quantities like pressure,
temperature or the number of particles are controlled. The natural choice of an ensemble
in MD simulations is the microcanonical ensemble (NVE), since the system’s Hamiltonian
without external potentials is a conserved quantity. Nevertheless, there are extensions to
the Hamiltonian which also allow to simulate different statistical ensembles.

These steps essentially form the essential framework an MD simulation. Having this
tool at hand, it is possible to obtainexactresults within numerical precision. Results are
only correct with respect to the model which enters into the simulation and they have to be
tested against theoretical predictions and experimental findings. If the simulation results
differ from real systemproperties or if they are incompatible withsolid theoretical mani-
festations, the model has to be refined. This procedure can beunderstood as an adaptive
refinement which leads in the end to an approximation of a model of the real worldat least
for certain properties. The model itself may be constructedfrom plausible considerations,
where parameters are chosen from neutron diffraction or NMRmeasurements. It may also
result from first principleab initio calculations. Although the electronic distribution of the
particles is calculated very accurately, this type of modelbuilding contains also some ap-
proximations, since many-body interactions are mostly neglected (this would increase the
parameter space in the model calculation enormously). However, it often provides a good
starting point for a realistic model.

An important issue of simulation studies is the accessible time- and length-scale which
can be covered by microscopic simulations. Fig.1 shows a schematic representation for
different types of simulations. It is clear that the more detailed a simulation technique
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Figure 1. Schematic of different time- and length-scales, occurring from microscopic to
macroscopic dimensions. Due to recent developments of techniques like Stochastic Ro-
tation Dynamics (SRD) or Lattice Boltzmann techniques, which are designed to simulate
the mesoscopic scales, there is the potential to combine different methods in a multiscale
approach to cover a broad spectrum of times and lengths.

operates, the smaller is the accessibility of long times andlarge length scales. Therefore
quantum simulations, where electronic fluctuations are taken into account, are located in
the part of the diagram of very short time and length scales which are typically of the or-
der of Å andps. Classical molecular dynamics approximates electronic distributions in
a rather coarse-grained fashion by putting either fixed partial charges on interaction sites
or by adding an approximate model for polarization effects.In both cases, the time scale
of the system is not dominated by the motion of electrons, butthe time of intermolecular
collision events, rotational motions or intramolecular vibrations, which are orders of mag-
nitude slower than those of electron motions. Consequently, the time step of integration is
larger and trajectory lengths are of orderns and accessible lengths of order10− 100 Å. If
one considers tracer particles in a solvent medium, where one is not interested in a detailed
description of the solvent, one can apply Brownian dynamics, where the effect of the sol-
vent is hidden in average quantities. Since collision timesbetween tracer particles is very
long, one may apply larger timesteps. Furthermore, since the solvent is not simulated ex-
plicitly, the lengthscales may be increased considerably.Finally, if one is interested not in
a microscopic picture of the simulated system but in macroscopic quantities, the concepts
of hydrodynamics may be applied, where the system properties are hidden in effective
numbers, e.g. density, viscosity or sound velocity.

It is clear that the performance of particle simulations strongly depends on the computer
facilities at hand. The first studies using MD simulation techniques were performed in 1957
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by B. J. Alder and T. E. Wainright9 who simulated the phase transition of a system of hard
spheres. The general method, however, was presented only two years later10. In these early
simulations, which were run on an IBM-704, up to 500 particles could be simulated, for
which 500 collisions per hour were calculated. Taking into account 200000 collisions for
a production run, these simulations lasted for more than twoweeks. Since the propagation
of hard spheres in a simulation is event driven, i.e. it is determined by the collision times
between two particles, the propagation is not based on an integration of the equations
of motion, but rather the calculation of the time of the next collision, which results in a
variable time step in the calculations.

The first MD simulation which was applied to atoms interacting via a continuous po-
tential was performed by A. Rahman in 1964. In this case, a model system for Argon was
simulated and not only binary collisions were taken into account but the interactions were
modeled by a Lennard-Jones potential and the equations of motion were integrated with
a finite difference scheme. This work may be considered as seminal for dynamical calcu-
lations. It was the first work where a numerical method was used to calculate dynamical
quantities like autocorrelation functions and transport coefficients like the diffusion coef-
ficient for a realistic system. In addition, more involved characteristic functions like the
dynamic van Hove function and non-Gaussian corrections to diffusion were evaluated. The
calculations were performed for 864 particles on a CDC 3600,where the propagation of
all particles for one time step took≈ 45 s. The calculation of50000 timesteps then took
more than three weeks!a

With the development of faster and bigger massively parallel architectures the accessi-
ble time and length scales are increasing for all-atom simulations. In the case of classical
MD simulations it is a kind of competition to break new world records by carrying out
demonstration runs of larger and larger particle systems11–14. In a recent publication, it was
reported by Germann and Kadau15 that a trillion-atom (1012 particles!) simulation was run
on an IBM BlueGene/L machine at Lawrence Livermore NationalLaboratory with 212992
PowerPC 440 processors with a total of 72 TB memory. This run was performed with the
memory optimised program SPaSM16, 17 (Scalable Parallel Short-range Molecular dynam-
ics) which, in single-precision mode, only used 44 Bytes/particle. With these conditions a
simulation of a Lennard-Jones system ofN = (10000)3 was simulated for 40 time steps,
where each time step used≈ 50secs wall clock time.

Concerning the accessible time scales of all-atom simulations, a numerical study, car-
ried out by Y. Duan and P. A. Kollman in 1998 still may be considered as a milestone in
simulation science. In this work the protein folding process of the subdomain HP-36 from
the villin headpiece18, 19 was simulated up to1 µs. The protein was modelled with a 596
interaction site model dissolved in a system of 3000 water molecules. Using a timestep of
integration of2× 10−15s, the program was run for5× 108 steps. In order to perform this
type of calculation, it was necessary to run the program several months on a CRAY T3D
and CRAY T3E with 256 processors. It is clear that such kind ofa simulation is excep-
tional due to the large amount of computer resources needed,but it was nonetheless a kind
of milestone pointing to future simulation practices, which are nowadays still not standard,
but nevertheless exceptionally applied20.

Classical molecular dynamics methods are nowadays appliedto a huge class of prob-

aOn a standard PC this calculation may be done within less thanone hour nowadays!
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lems, e.g. properties of liquids, defects in solids, fracture, surface properties, friction,
molecular clusters, polyelectrolytes and biomolecules. Due to the large area of applica-
bility, simulation codes for molecular dynamics were developed by many groups. On the
internet homepage of the Collaborative Computational Project No.5 (CCP5)21 a number
of computer codes are assembled for condensed phase dynamics. During the last years
several programs were designed for parallel computers. Among them, which are partly
available free of charge, are, e.g., Amber/Sander22, CHARMM23, NAMD24, NWCHEM25,
GROMACS26 and LAMMPS27.

Although, with the development of massively parallel architectures and highly scalable
molecular dynamics codes, it has become feasible to extend the time and length scales to
relativelylarge scales, a lot of processes are still beyond technical capabilities. In addition,
the time and effort for running these simulations is enormous and it is certainly still far
beyond of standard. A way out of this dilemma is the inventionof new simulation of
methodological approaches. A method which has attracted a lot of interest recently is
to coarse grain all-atom simulations and to approximate interactions between individual
atoms by interactions between whole groups of atoms, which leads to a smaller number
of degrees of freedom and at the same time to a smoother energysurface, which on the
one hand side increases the computation between particle interactions and on the other
hand side allows for a larger time step, which opens the way for simulations on larger
time and length scales of physical processes28. Using this approach, time scales of more
than1 µsecs can now be accessed in a fast way29, 30, although it has to be pointed out that
coarse grained force fields have a very much more limited range of application than all-
atom force fields. In principle, the coarse graining procedure has to be outlined for every
different thermodynamic state point, which is to be considered in a simulation and from
that point of view coarse grain potentials are not transferable in a straight forward way as
it is the case for a wide range of all-atom force field parameters.

2 Models for Particle Interactions

A system is completely determined through it’s HamiltonianH = H0 +H1, whereH0 is
the internalpart of the Hamiltonian, given as

H0 =

N∑

i=1

p2
i

2mi
+

N∑

i<j

u(ri, rj) +

N∑

i<j

u(3)(ri, rj , rk) + . . . (2)

wherep is the momentum,m the mass of the particles andu andu(3) are pair and three-
body interaction potentials.H1 is an external part, which can include time dependent
effects or external sources for a force. All simulated objects are defined within a model
description. Often a precise knowledge of the interaction between atoms, molecules or sur-
faces are not known and the model is constructed in order to describe the main features of
some observables. Besides boundary conditions, which are imposed, it is the model which
completely determines the system from the physical point ofview. In classical simulations
theobjectsare most often described by point-like centers which interact through pair- or
multibody interaction potentials. In that way the highly complex description of electron
dynamics is abandoned and an effective picture is adopted where the main features like the
hard core of a particle, electric multipoles or internal degrees of freedom of a molecules are
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modeled by a set of parameters and (most often) analytical functions which depend on the
mutual position of particles in the configuration. Since theparameters and functions give
a complete information of the system’s energy as well as the force acting on each parti-
cle throughF = −∇U , the combination of parameters and functions is also calleda force
field31. Different types of force field were developed during the last ten years. Among them
are e.g. MM332, MM433, Dreiding34, SHARP35, VALBON36, UFF37, CFF9538, AMBER39

CHARMM40, OPLS41 and MMFF42.
There are major differences to be noticed for the potential forms. The first distinction

is to be made between pair- and multibody potentials. In systems with no constraints, the
interaction is most often described by pair potentials, which is simple to implement into a
program. In the case where multibody potentials come into play, the counting of interaction
partners becomes increasingly more complex and dramatically slows down the execution
of the program. Only for the case where interaction partnersare known in advance, e.g.
in the case of torsional or bending motions of a molecule can the interaction be calculated
efficiently by using neighbor lists or by an intelligent way of indexing the molecular sites.

A second important difference between interactions is the spatial extent of the potential,
classifying it into short and long range interactions. If the potential drops down to zero
faster thanr−d, wherer is the separation between two particles andd the dimension of
the problem, it is called short ranged, otherwise it is long ranged. This becomes clear by
considering the integral

I =

∫
drd

rn
=

{
∞ : n ≤ d

finite : n > d
(3)

i.e. a particles’ potential energy gets contributions fromall particles of the universeif
n ≤ d, otherwise the interaction is bound to a certain region, which is often modeled
by a spherical interaction range. The long range nature of the interaction becomes most
important for potentials which only have potential parameters of the same sign, like the
gravitational potential where no screening can occur. For Coulomb energies, where posi-
tive and negative charges may compensate each other, long range effects may be of minor
importance in some systems like molten salts.

There may be different terms contributing to the interaction potential between particles,
i.e. there is no universal expression, as one can imagine forfirst principles calculations.
In fact, contributions to interactions depend on the model which is used and this is the re-
sult of collecting various contributions into different terms, coarse graining interactions or
imposing constraints, to name a few. Generally one can distinguish between bonded and
non-bonded terms, or intra- and inter-molecular terms. Thefirst class denotes all contribu-
tions originating between particles which are closely related to each other by constraints or
potentials which guaranty defined particles as close neighbors. The second class denotes
interactions between particles which canfreelymove, i.e. there are no defined neighbors,
but interactions simply depend on distances.

A typical form for a (so called) force field (e.g. AMBER22) looks as follows

U =
∑

bonds

Kr(r − req)
2 +

∑

angles

Kθ(θ − θeq)
2 +

∑

dihedrals

Vn

2
[1 + cos(nφ− γ)] (4)

+
∑

i<j

[

Aij

r12ij

− Bij

r6ij

]

+
∑

H−bonds

[

Cij

r12ij

− Dij

r10ij

]

+
∑

i<j

qiqj
rij
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In the following, short- and long-range interaction potentials and methods are briefly
described in order to show differences in their algorithmical treatment.

In the following two examples shall illustrate the different treatment of short- and long
range interactions.

2.1 Short Range Interactions

Short range interactions offer the possibility to take intoaccount only neighbored particles
up to a certain distance for the calculation of interactions. In that way a cutoff radius
is introduced beyond of which mutual interactions between particles are neglected. As
an approximation one may introducelong range correctionsto the potential in order to
compensate for the neglect of explicit calculations. The whole short range potential may
then be written as

U =

N∑

i<j

u(rij |rij < Rc) + Ulrc (5)

The long-range correction is thereby given as

Ulrc = 2πNρ0

∫ ∞

Rc

dr r2g(r)u(r) (6)

whereρ0 is the number density of the particles in the system andg(r) = ρ(r)/ρ0 is the
radial distribution function. For computational reasons,g(r) is most often only calculated
up toRc, so that in practice it is assumed thatg(r) = 1 for r > Rc, which makes it possible
for many types of potentials to calculateUlrc analytically.

Besides internal degrees of freedom of molecules, which maybe modeled with short
range interaction potentials, it is first of all the excludedvolume of a particle which is
of importance. A finite diameter of a particle may be represented by a steep repulsive
potential acting at short distances. This is either described by an exponential function or
an algebraic form,∝ r−n, wheren ≥ 9. Another source of short range interaction is the
van der Waals interaction. For neutral particles these are the London forces arising from
induced dipole interactions. Fluctuations of the electrondistribution of a particle give rise
to fluctuating dipole moments, which on average compensate to zero. But the instantaneous
created dipoles induce also dipoles on neighbored particles which attract each other∝ r−6.
Two common forms of the resulting interactions are the Buckingham potential

uB
αβ(rij) = Aαβe

−Bαβrij − Dαβ

r6ij
(7)

and the Lennard-Jones potential

uLJ
αβ (rij) = 4ǫαβ

((
σαβ

rij

)12

−
(
σαβ

rij

)6
)

(8)

which are compared in Fig.2. In Eqs.7,8 the indicesα, β indicate the species of the
particles, i.e. there are parametersA,B,D in Eq.7 andǫ, σ in Eq.8 for intra-species inter-
actions (α = β) and cross species interactions (α 6= β). For the Lennard-Jones potential
the parameters have a simple physical interpretation:ǫ is the minimum potential energy,
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Figure 2. Comparison between a Buckingham-, Lennard-Jones(12-6) and Lennard-Jones
(9-6) potential.

located atr = 21/6σ andσ is the diameter of the particle, since forr < σ the potential
becomes repulsive. Often the Lennard-Jones potential gives a reasonable approximation
of a true potential. However, from exact quantum ab initio calculations an exponential
type repulsive potential is often more appropriate. Especially for dense systems the too
steep repulsive part often leeds to an overestimation of thepressure in the system. Since
computationally the Lennard-Jones interaction is quite attractive the repulsive part is some-
times replaced by a weaker repulsive term, like∝ r−9. The Lennard-Jones potential has
another advantage over the Buckingham potential, since there are combining rules for the
parameters. A common choice are the Lorentz-Berelot combining rules

σαβ =
σαα + σββ

2
, ǫαβ =

√
ǫααǫββ (9)

This combining rule is, however, known to overestimate the well depth parameter. Two
other commonly known combining rules try to correct this effect, which are Kong43 rules

σαβ =






1

213

ǫαασ
12
αα

√

ǫαασ6
ααǫββσ6

ββ



1 +

(

ǫββσ
12
ββ

ǫαασ12
αα

)1/13




13





1/6

(10)

ǫαβ =

√

ǫαασ6
ααǫββσ6

ββ

σ6
αβ

(11)

and the Waldman-Kagler44 rule

σαβ =

(

σ6
αα + σ6

ββ

2

)1/6

, ǫαβ =

√

ǫαασ6
ααǫββσ6

ββ

σ6
αβ

(12)

In a recent study45 of Ar-Kr and Ar-Ne mixtures, these combining rules were tested and it
was found that the Kong rules give the best agreement betweensimulated and experimental
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pressure-density curves. An illustration of the differentcombining rules is shown in Fig.3
for the case of an Ar-Ne mixture.
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Figure 3. Resulting cross-terms of the Lennard-Jones potential for an Ar-Ne mixture.
Shown is the effect of different combining rules (Eqs.9-12). Parameters used areσAr =
3.406 Å, ǫAr = 119.4K andσNe = 2.75 Å, ǫNe = 35.7K.

Since there are only relatively few particles which have to be considered for the inter-
action with a tagged particle (i.e. those particles within the cutoff range), it would be a
computational bottleneck if in any time step all particle pairs would have to be checked
whether they lie inside or outside the interaction range. This becomes more and more a
problem as the number of particles increases. A way to overcome this bottleneck is to in-
troduce list techniques. The first implementation dates back to the early days of molecular
dynamics simulations. In 1967, Verlet introduced a list46, where at a given time step all
particle pairs were stored within a rangeRc + Rs, whereRs is called the skin radius and
which serves as a reservoir of particles, in order not to update the list in each time step
(which would make the list redundant). Therefore, in a forceroutine, not all particles have
to tested, whether they are in a rangerij < Rc, but only those particle pairs, stored in the
list. Since particles are moving during the simulation, it is necessary to update the list from
time to time. A criterion to update the list could be, e.g.

max
i
|ri(t)− ri(t0)| ≥

Rs

2
(13)

wheret0 is the time from the last list update. This ensures that particles cannot move
from the outside region into the cutoff sphere without beingrecognized. This technique,
though efficient, has still complexityO(N2), since at an update step,all particle pairs have
to be checked for their mutual distances. Another problem arises when simulating many
particles, since the memory requirements are relatively large (size of the list is4π(Rc +
Rs)

3ρN/3). There is, of course also the question, how large the skin radius should be
chosen. Often, it is chosen asRs = 1.5σ. In Ref.47 it was shown that an optimal choice
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Figure 4. Contour plots of the performance for the combination of linked-cell and Verlet list as a function
of the cell length and the size of the skin radius. Crosses mark the positions predicted from an optimization
procedure48. Test systems were composed of 4000 Lennard-Jones particles withRc = 2.5σ at temperature
T = 1.4 ǫ/kB . Left: ρ = 0.75/σ3 . Right: ρ = 2.0/σ3 .

strongly depends on the number of particles in the system andan optimization procedure
was outlined.

An alternative list technique, which scales linearly with the number of particles is the
linked-cell method49, 50. The linked-cell method starts with subdividing the whole system
into cubic cells and sorting all particles into these cells according to their position. The size
of the cells,Lc, is chosen to beLc ≤ LBox/floor(LBox/Rc), whereLBox is the length
of the simulation box. All particles are then sorted into a list array of lengthN . The list
is organized in a way that particles, belonging to the same cell are linked together, i.e. the
entry in the list referring to a particle points directly to the entry of a next particle inside
the same cell. A zero entry in the list stops the search in the cell and a next cell is checked
for entries. This technique not only has computational complexity of O(N), since the
sorting into the cells and into theN -dimensional array is ofO(N), but also has memory
requirements which only grow linearly with the number of particles. These features make
this technique very appealing. However, the technique is not well vectorizable and also
the addressing of next neighbors in the cells require indirect access (e.g.i=index(i)),
which may lead to cache misses. In order not to miss any particle pair in the interactions
every box has to have a neighbor region in each direction which extends toRc. In the
case, whereLc ≥ Rc, every cell is surrounded by 26 neighbor cells in three dimensional
systems. This gives rise to the fact that the method gives only efficiency gains ifLBox ≥
4Rc, i.e. subdividing each box direction into more than 3 cells.In order to approximate the
cutoff sphere in a better way by cubic cells, one may reduce the cell size and simultaneously
increasing the total number of cells. In an optimization procedure47, it was found that a
reduction of cell sizes toLc = Rc/2 or even smaller often gives very much better results.

It is, of course, possible to combine these list techniques,i.e. using the linked-cell
technique in the update step of the Verlet list. This reducesthe computational complexity
of the Verlet list toO(N) while fully preserving the efficiency of the list technique.It is
also possible to model the performance of this list combination and to optimize the length
of the cells and the size of the skin radius. Figure 4 shows theresult of a parameter study,
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where the performance of the list was measured as a function of (Lc, Rs). Also shown is
the prediction of parameters coming out of an optimization procedure48.

2.2 Long Range Interactions

Long range interactions essentially require to take all particle pairs into account for a proper
treatment of interactions. This may become a problem, if periodic boundary conditions
are imposed to the system, i.e. formally simulating an infinite number of particles (no
explicit boundaries imply infinite extend of the system). Therefore one has to devise special
techniques to treat this situation. On the other hand one also has to apply fast techniques
to overcome the inherentO(N2) complexity of the problem, since for large numbers of
particles this would imply an intractable computational bottleneck. In general one can
classify algorithms for long range interactions into the following system:

• Periodic boundary conditions

– Grid free algorithms, e.g. Ewald summation method51–53

– Grid based algorithms, e.g. Smoothed Particle Mesh Ewald54, 55, Particle-
Particle Particle-Mesh method56–58

• Open boundary conditions

– Grid free algorithms, e.g. Fast Multipole Method59–64 (FMM), Barnes-Hut Tree
method65, 66

– Grid based algorithms, e.g. Particle-Particle Particle-Multigrid method67

(P3Mg), Particle Mesh Wavelet method68 (PMW)

In the following two important members of these classes willbe described, the Ewald
summation method and the Fast Multipole Method.

2.2.1 Ewald Summation Method

The Ewald summation method originates from crystal physics, where the problem was to
determine the Madelung constant69, describing a factor for an effective electrostatic energy
in a perfect periodic crystal. Considering the electrostatic energy of a system ofN particles
in a cubic box and imposing periodic boundary conditions, leads to an equivalent problem.
At position ri of particle i, the electrostatic potential,φ(ri), can be written down as a
lattice sum

φ(ri) =
∑

n

†
N∑

j=1

qj
‖rij + nL‖ (14)

wheren = (nx, ny, nz), nα ∈ Z is a vector along cartesian coordinates andL is the length
of the simulation box. The sign ”†” means thati 6= j for ‖n‖ = 0.

Eq. (14) is conditionally convergent, i.e. the result of theoutcome depends on the order
of summation. Also the sum extends over infinite number of lattice vectors, which means
that one has to modify the procedure in order to get an absolute convergent sum and to get
it fast converging. The original method of Ewald consisted in introducing a convergence
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factore−ns, which makes the sum absolute convergent; then transforming it into different
fast converging terms and then puttings in the convergence factor to zero. The final result
of the calculation can be easier understood from a physical picture. If every charge in
the system is screened by a counter charge of opposite sign, which is smeared out, then
the potential of this composite charge distribution becomes short ranged (it is similar in
electrolytic solutions, where ionic charges are screened by counter charges - the result is
an exponentially decaying function, the Debye potential70). In order to compensate for
the added charge distribution it has to be subtracted again.The far field of a localized
charge distribution is, however, again a Coulomb potential. Therefore this term will be
long ranged. There would be nothing gained if one would simply sum up these different
terms. The efficiency gain shows up, when one calculates the short range interactions as
direct particle-particle contributions in real space, while summing up the long range part
of the smeared charge cloud in reciprocal Fourier space. Choosing as the smeared charge
distribution a Gaussian charge cloud of half width1/α the corresponding expression for
the energy becomes

φ(ri) =
∑

n

†
N∑

j=1

qj
erfc(α‖rij + nL‖)
‖rij + nL‖ (15)

+
4π

L3

∑

k 6=0

N∑

j=1

qj
‖k‖2 e

−‖k‖2/4α2

eikrij − qi
2α√
π

The last term corresponds to a self energy contribution which has to be subtracted, as it is
considered in the Fourier part. Eq. (15) is an exact equivalent of Eq. (14), with the differ-
ence that it is an absolute converging expression. Therefore nothing would be gained with-
out further approximation. Since the complimentary error function can be approximated
for large arguments by a Gaussian function and the k-space parts decreases like a Gaussian,
both terms can be approximated by stopping the sums at a certain lattice vectorn and a
maximalk-valuekmax. The choice of parameters depends on the error,ǫ = exp(−p2),
which one accepts to tolerate. Setting the error tolerancep and choosing the width of the
counter charge distribution, one gets

R2
c +

log(Rc)

α2
=

1

α2
(p2 − log(2)) (16)

k2
max + 8α2 log(kmax) = 4α2p2 + log

(
4π

L3

)

(17)

This can be solved iteratively or if one is only interested inan approximate estimate for the
error, i.e. neglecting logarithmic terms, one gets

Rc =
p

α
(18)

kmax = 2αp (19)

Using this error estimate and furthermore introducing execution times, spent for the real-
and reciprocal-space part, it is possible to show that parametersRc, α andkmax can be
chosen to get a complexity ofO(N3/2) for the Ewald sum71, 72. In this case, parameters
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are

Rc

L
≈
√

π

N1/3
, αL ≈ Lkmax

2π
=
√

πN1/3 (20)

Figure 5 shows the contributions of real- and reciprocal parts in Eq. (15), as a func-
tion of the spreading parameterα, where an upper limit in both the real- and reciprocal-
contributions was applied. In the real-space part usually one restricts the sum to|n| = 0
and applies a spherical cutoff radius,Rc. For fixed values ofRc andkmax there is a broad
plateau region, where the two terms add up to a constant value. Within this plateau region,
a value forα should be chosen. Often it is chosen according toα = 5/L. Also shown is
the potential energy of a particle, calculated with the Ewald sum. It is well observed that
due to the periodicity of the system the potential energy surface is not radial symmetric,
which may cause problems for small numbers of particles in the system.
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Figure 5. Left: Dependence of the calculated potential on the choice of the scaled inverse width,αL,
of the smeared counter charge distribution. Parameters forthis test wereN = 152, Rc = 0.5L and
kmaxL/2π = 6. Right: Surface plot and contours for the electrostatic potential of a charge, located in the
center of the simulation volume. Picture shows the xy-planefor z = L/2. Parameters wereRc = 0.25L,
αL = 12.2 andkmaxL/2π = 6.

The present form of the Ewald sum gives an exact representation of the potential energy
of point like charges in a system with periodic boundary conditions. Sometimes the charge
distribution in a molecule is approximated by a point dipoleor higher multipole moments.
A more general form of the Ewald sum, taking into account arbitrary point multipoles was
given in Ref.73. The case, where also electronic polarizabilities are considered is given in
Ref.74.

In certain systems, like in molten salts or electrolyte solutions, the interaction between
charged species may approximated by a screened Coulomb potential, which has a Yukawa-
like form

U =
1

2

N∑

i,j=1

qiqj
e−κ‖rij‖

‖rij‖
(21)

The parameterκ is the inverse Debye length, which gives a measure of screening strength
in the system. Ifκ < 1/L the potential is short ranged and usual cut-off methods may
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be used. Instead, ifκ > 1/L, or generally ifu(r = L/2) is larger than the prescribed
uncertainties in the energy, the minimum image convention in combination with truncation
methods fails and the potential must be treated in a more rigorous way, which was pro-
posed in Ref.75, where an extension of the Ewald sum for such Yukawa type potentials was
developed.

2.2.2 The Fast Multipole Method

In open geometries there is no lattice summation, but only the sum over all particle pairs
in the whole system. The electrostatic energy at a particle’s position is therefore simply
calculated as

φ(ri) =

N∑

j=1

qj
‖ri − rj‖

(22)

Without further approximation this is always anO(N2) algorithm since there areN(N −
1)/2 interactions to consider in the system (here Newton’s thirdlaw was taken into ac-
count). The idea of a multipole method is to group particles which are far away from a
tagged particle together and to consider an effective interaction of a particle with this par-
ticle group76–78. The physical space is therefore subdivided in a hierarchical way, where
the whole system is considered as level 0. Each further levelis constructed by dividing the
length in each direction by a factor of two. The whole system is therefore subdivided into a
hierarchy of boxes where eachparent boxcontains eightchildren boxes. This subdivision
is performed at maximum until the level, where each particleis located in an individual
box. Often it is enough to stop the subdivision already at a lower level.

In the following it is convenient to work in spherical coordinates. The main principle
of the method is that the interaction between two particles,located atr = r, θ, ϕ and
a = (a, α, β) can be written as a multipole expansion79

1

‖r− a‖ =

∞∑

l=0

l∑

m=−l

(l − |m|)!
(l + |m|)!

al

rl+1
Plm(cosα)Plm(cos θ) e−im(β−ϕ) (23)

wherePlm(x) are associated Legendre polynomials80. This expression requires thata/r <
1 and this gives a lower limit for the so calledwell separatedboxes. This makes it necessary
to have at least one box between a tagged box and the zone, where contributions can be
expanded into multipoles. Defining the operators

Olm(a) = al (l − |m|)!Plm(cosα) e−imβ (24)

Mlm(r) =
1

rl+1

1

(l + |m|)! Plm(cos θ) eimϕ (25)

with which Eq. (23) may simply be rewritten in a more compact way, it is possible to write
further three operators, which are needed, in a compact scheme, i.e.

1.) a translation operator, which relates the multipole expansion of a point located ata to a
multipole expansion of a point located ata + b

Olm(a + b) =
l∑

j=0

j
∑

k=−l

Alm
jk (b)Ojk(a) , Alm

jk (b) = Ol−j,m−k(b) (26)
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Figure 6. Schematic of different passes in the Fast Multipole Method. Upper left: Pass 1, evaluation
of multipole terms in finest subdivision and translating information upwards the tree. Upper right: Pass 2,
transforming multipole expansions in well separated boxesinto local Taylor expansions. Lower left: Pass 3,
transferring multipole expansions downwards the tree, thus collecting information of the whole system,
except nearest neighbor boxes. Lower right: Pass 5, direct calculation of particle-particle interactions in
local and nearest neighbor boxes.

2.) a transformation operator, which transforms a multipole expansion centered at the
origin into a Taylor expansion centered at locationb

Mlm(a− b) =

l∑

j=0

j
∑

k=−l

Blm
jk (b)Ojk(a) , Blm

jk (b) = Ml+j,m+k(b) (27)

3.) a translation operator, which translates a Taylor expansion of a pointr about the origin
into a Taylor expansion ofr about a pointb

Mlm(r− b) =

l∑

j=0

j
∑

k=−l

Clm
jk (b)Mjk(r) , Clm

jk (b) = Alm
jk (b) (28)
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The procedure to calculate interactions between particlesis then subdivided into five
passes. Figure 6 illustrates four of them. The first pass consists of calculating the multipole
expansions in the lowest level boxes (finest subdivision). Using the translation operator
Olm(a + b), the multipole expansions are translated into the center oftheir parent boxes
and summed up. This procedure is repeated then subsequentlyfor each level, until level 2
is reached, from where no further information is passed to a coarser level. In pass 2, using
operatorMlm(a−b), multipole expansions are translated into Taylor expansions in a box
from well separated boxes, whose parent boxes are nearest neighbor boxes. Well separated
means, that for all particles in a given box the multipole expansion in a separated box is
valid. Since the applicability of Eq. (23) impliesr > a, well separateness means on level
l that boxes should be separated by a distance2−l. This also explains, why there is no
need to transfer information higher than level 2, since fromthere on it is not possible to
have well separated boxes anymore, i.e. multipole expansions are not valid any more. In
pass 3, using the operatorMlm(a − b), this information is then translated downwards the
tree, so that finally on the finest level all multipole information is known in order to inter-
act individual particles with expansions, originating from all other particles in the system
which are located in well separated boxes of the finest level.In pass 4 this interaction be-
tween individual particles and multipoles is performed. Finally in pass 5, explicit pair-pair
interactions are calculated between particles in a lowest level box and those which are in
nearest neighbor boxes, i.e. those boxes which are not called well separated.

It can be shown61 that each of the steps performed in this algorithm is of orderO(N),
making it an optimal method. Also the error made by this method can be controlled rather
reliably64. A very conservative error estimate is thereby given as76, 61, 81

∣
∣
∣
∣
φ(r) − q

‖r− a‖

∣
∣
∣
∣
≤ |q|
r − a

(a

r

)p+1

(29)

At the current description the evaluation of multipole terms scales asO(l4max), whenlmax

is the largest value ofl in the multipole expansion, Eq.(23). A faster version whichscales
asO(l3max) and therefore strongly reducing the prefactor of the overall scheme, was pro-
posed in Ref.62, where multipoles are evaluated in a rotated coordinate frame, which makes
it possible to reduce calculations to Legendre polynomialsand not requiring associated
Legendre polynomials.

Also to mention is that there are approaches to extend the Fast Multipole Method to
periodic systems82, 83.

2.3 Coarse Grain Methods

The force field methods mentioned so far treat molecules on the atomic level, i.e. re-
solving heavy atoms, in most cases also hydrogens, explicitly. In the case, where flexible
molecular bonds, described e.g. by harmonic potentials, are considered the applied time
step is of the order ofδt ≈ 10−15 secs. Considering physical phenomena like self as-
sembling of lipid molecules84, 85, protein folding or structure formation in macromolecular
systems86–88, which take place on time scales of microseconds to seconds or even longer,
the number of timesteps would exceed the current computational capacities. Although
these phenomena all have an underlying microscopic background, the fast dynamics of
e.g. hydrogen vibrations are not directly reflected in the overall process. This lead to the
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idea to either freeze certain degrees of freedom, as it is done for e.g. rigid water mod-
els89–92, or to take several degrees of freedom only into account effectively via a pseudo
potential, which reflects the behavior of whole groups of atoms. It is the latter approach
which is now known as coarse graining28, 93, 94of molecular potentials and which opens the
accessibility of a larger time and length scale. Mapping groups of atoms to one pseudo
atom, or interaction site, leads already to an effective increase of the specific volume of
the degrees of freedom. Therefore, the same number of degrees of freedom of a coarse
grain model, compared with a conventional force field model,would directly lead to larger
spatial scale, due to the increase of volume of each degree offreedom. On the other hand,
comparing a conventional system before and after coarse graining, the coarse grained sys-
tem could cover time scales longer by a factor of 100-1000 or even longer compared with a
conventional force field all-atom model (the concrete factor certainly depends on the level
of coarse graining).

Methodologies for obtaining coarse grain models of a systemoften start from an atom-
istic all-atom model, which adequately describes phase diagrams or other physical proper-
ties of interest. On a next level, groups of atoms are collected and an effective non-bonded
interaction potential may be obtained by calculating potential energy surfaces of these
groups and to parametrize these potentials to obtain analytical descriptions. Therefore,
distribution functions of small atomic groups are taken into account (at least implicitly)
which in general depend on the thermodynamic state point. For bonded potentials be-
tween groups of atoms, a normal mode analysis may be performed in order to get the most
important contributions to vibrational-, bending- or torsional-modes.

In principle, one is interested in reducing the number of degrees of freedom by sepa-
rating the problem space into coordinates which areimportantand those which areunim-
portant. Formally, this may be expressed through a set of coordinates {r} ∈ R

ni and
{r̃} ∈ R

nu , whereni andnu are the number of degrees of important and unimportant
degrees of freedom, respectively. Consequently, the system Hamiltonian may be written
asH = H(r1, . . . , rni

, r̃1, . . . , r̃ni
). From these considerations one may define areduced

partition function, which results from integrating out allunimportant degrees of freedom

Z =

∫

dr1, . . . , drni
, dr̃1, . . . , dr̃ni

exp {−βH(r1, . . . , rni
, r̃1, . . . , r̃nu

)} (30)

=

∫

dr1, . . . , drni
, dr̃1, . . . , dr̃nu

exp
{
−βHCG(r1, . . . , rni

)
}

(31)

where a coarse grain Hamiltonian has been defined

HCG(r1, . . . , rni
) = − log

∫

r̃1, . . . , dr̃ni
exp {−βH(r1, . . . , rni

, r̃1, . . . , r̃nu
)} (32)

which corresponds to the potential of mean force and which isthe free energy of the non-
important degrees of freedom. Since the Hamiltonian describes only a subset of degrees
of freedom, thermodynamic properties, derived from this Hamiltonian will be different
than obtained from the full Hamiltonian description (e.g. pressure will correspond to the
osmotic pressure and not to the thermodynamic pressure). This has to be taken into ac-
count when simulating in different ensembles or if experimental thermodynamic properties
should be reproduced by simulation.

The coarse grained Hamiltonian is still a multi-body description of the system, which
is hard to obtain numerically. Therefore, it is often approximated by a pair-potential, which
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is considered to contribute the most important terms

HCG(r1, . . . , rni
) ≈

∑

i>j

Vij(rij) , rij = ‖ri − rj‖ (33)

According to the uniqueness theorem of Henderson95, in a liquid where particles in-
teract only through pair interactions, the pair distribution functiong(r) determines up to a
constant uniquely the pair interaction potentialVij . Therefore,Vij may be obtained point-
wise by reverting the radial pair distribution function96–98, e.g. by reverse Monte Carlo
techniques99 or dynamic iterative refinement100. This approach directly confirms what was
stated in Sec. 1 about the limited applicability of coarse grained potentials. It is clear that
for different temperatures, pressures or densities the radial distribution functions of e.g.
cation-cation, cation-anion and anion-anion distributions in electrolytic solutions will be
different. If one wants to simulate ions in an effective medium (continuum solvent), the
potential, which is applied in the simulation will depend onthe thermodynamic state point
and therefore has to be re-parametrized for every differentstate point.

3 The Integrator

The propagation of a classical particle system can be described by the temporal evolution
of the phase space variables(p,q), where the phase spaceΓ(p,q) ∈ R

6N contains all
possible combinations of momenta and coordinates of the system. The exact time evolution
of the system is thereby given by a flow map

Φδt,H : R
6N → R

6N (34)

which means

Φδt,H(p(t),q(t)) = (p(t) + δp,q(t) + δq) (35)

where

p + δp = p(t+ δt) , q + δq = q(t+ δt) (36)

For a nonlinear many-body system, the equations of motion cannot be integrated exactly
and one has to rely on numerical integration of a certain order. Propagating the coordinates
by a constant step sizeh, a number of different finite difference schemes may be used for
the integration. But there are a number of requirements, which have to be fulfilled in order
to be useful for molecular dynamics simulations. An integrator, suitable for many-body
simulations should fulfill the following requirements:

• Accuracy, i.e. the solution of an analytically solvable test problem should be as close
as possible to the numerical one.

• Stability, i.e. very long simulation runs should produce physically relevant trajecto-
ries, which are not governed by numerical artifacts

• Conservativity, there should be no drift or divergence in conserved quantities, like
energy, momentum or angular momentum
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• Reversibility, i.e. it should have the same temporal structure as the underlying equa-
tions

• Effectiveness, i.e. it should allow for large time steps without entering instability and
should require a minimum of force evaluations, which usually need about 95 % of
CPU time per time step

• Symplecticity, i.e. the geometrical structure of the phasespace should be conserved

It is obvious that the numerical flow,φδt,H, of a finite difference scheme will not be
fully equivalent toΦδt,H, but the system dynamics will be described correctly if the items
above will be fulfilled.

In the following the mentioned points will be discussed and anumber of different
integrators will be compared.

3.1 Basic Methods

The most simple integration scheme is the Euler method, which may be constructed by a
first order difference approximation to the time derivativeof the phase space variables

pn+1 = pn − δt
∂

∂q
H(pn,qn) (37)

qn+1 = qn + δt
∂

∂p
H(pn,qn) (38)

whereδt is the step size of integration. This is equivalent to a Taylor expansion which is
truncated after the first derivative. Therefore, it is obvious that it is of first order. Knowing
all variables at stepn, this scheme has all relevant information to perform the integration.
Since only information from one time step is required to do the integration, this scheme
is called the one-step explicit Euler scheme. The basic scheme, Eqs. (37,38) may also be
written in different forms.

The implicit Euler method

pn+1 = pn − δt
∂

∂q
H(pn+1,qn+1) (39)

qn+1 = qn + δt
∂

∂p
H(pn+1,qn+1) (40)

can only be solved iteratively, since the derivative on the right-hand-side (rhs) is evaluated
at the coordinate positions on the left-hand-side (lhs).

An example for a so called partitioned Runge-Kutta method isthe velocity implicit
method

pn+1 = pn − δt
∂

∂q
H(pn+1,qn) (41)

qn+1 = qn + δt
∂

∂p
H(pn+1,qn) (42)

Since the Hamiltonian usually splits into kineticK and potentialU parts, which only de-
pend on one phase space variable, i.e.

H(p,q) =
1

2
pT M−1 p + U(q) (43)
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whereM−1 is the inverse of the diagonal mass matrix, this scheme may also be written as

pn+1 = pn − δt
∂

∂q
U(qn) (44)

qn+1 = qn +
δt

m
pn+1 (45)

showing that it is not necessary to solve it iteratively.
Obviously this may be written as aposition implicit method

pn+1 = pn − δt
∂

∂q
U(qn+1) (46)

qn+1 = qn +
δt

m
pn (47)

Applying first Eq. (47) and afterwards Eq. (46) also this variant does not require an iterative
procedure.

All of these schemes are first order accurate but have different properties, as will be
shown below. Before discussing these schemes it will be interesting to show a higher order
scheme, which is also based on a Taylor expansion. First write down expansions

q(t+ δt) = q(t) + δt q̇(t) +
1

2
δt2 q̈(t) +O(δt3) (48)

= q(t) +
δt

m
p(t) +

1

2m
δt2 ṗ(t) +O(δt3) (49)

p(t+ δt) = p(t) + δt ṗ(t) +
1

2
δt2 p̈(t) +O(δt3) (50)

= p(t) +
δt

2
(ṗ(t) + ṗ(t+ δt)) +O(δt3) (51)

where in Eq. (49), the relatioṅq = p/m was used and in Eq. (51) a first order Taylor
expansion forṗ was inserted. From these expansions a simple second order, one-step
splitting scheme may be written as

pn+1/2 = pn +
δt

2
F(qn) (52)

qn+1 = qn +
δt

m
pn+1/2 (53)

pn+1 = pn+1/2 +
δt

2
F(qn+1) (54)

where the relatioṅp = −∂H/∂q = F was used. This scheme is called theVelocity Verlet
scheme. In a pictorial way it is sometimes described as half-kick, drift, half-kick, since the
first step consists in applying forces for half a time step, second step consists in free flight
of a particle with momentumpn+1/2 and the last step applies again a force for half a time
step. In practice, forces only need to be evaluated once in each time step. After having
calculated the new positions,qn+1, forces are calculated for the last integration step. They
are, however, stored to be used in the first integration step as old forces in the next time
step of the simulation.
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This algorithm comes also in another flavor, called thePosition Verletscheme. It can
be expressed as

qn+1/2 = qn +
δt

2m
pn (55)

pn+1 = pn + δtF(qn+1/2) (56)

qn+1/2 = qn+1/2 +
δt

2m
pn+1 (57)

In analogy to the description above this is sometimes described as half-drift, kick, half-
drift. Using the relationp = q̇/m and expressing this as a first order expansion, it is
obvious thatF(qn+1/2) = F((qn + qn+1)/2) which corresponds to an implicit midpoint
rule.

3.2 Operator Splitting Methods

A more rigorous derivation, which in addition leads to the possibility of splitting the prop-
agator of the phase space trajectory into several time scales, is based on the phase space
description of a classical system. The time evolution of a point in the 6N dimensional
phase space is given by the Liouville equation

Γ(t) = eiLt Γ(0) (58)

where Γ = (q,p) is the 6N dimensional vector of generalized coordinates,q =
q1, . . . ,qN , and momenta,p = p1, . . . ,pN . The Liouville operator,L, is defined as

iL = {. . . ,H} =

N∑

j=1

(
∂qj

∂t

∂

∂qj
+
∂pj

∂t

∂

∂pj

)

(59)

In order to construct a discrete timestep integrator, the Liouville operator is split into two
parts,L = L1 + L2, and a Trotter expansion101 is performed

eiLδt = ei(L1+L2)δt (60)

= eiL1δt/2eiL2δteiL1δt/2 +O(δt3) (61)

The partial operators can be chosen to act only on positions and momenta. Assuming usual
cartesian coordinates for a system ofN free particles, this can be written as

iL1 =
N∑

j=1

Fj
∂

∂pj
(62)

iL2 =

N∑

j=1

vj
∂

∂rj
(63)

Applying Eq.60 to the phase space vectorΓ and using the propertyea∂/∂xf(x) = f(x+a)
for any functionf , wherea is independent of x, gives

vi(t+ δt/2) = v(t) +
Fi(t)

mi

δt

2
(64)

ri(t+ δt) = ri(t) + vi(t+ δt/2)δt (65)

vi(t+ δt) = vi(t+ δt/2) +
Fi(t+ δt)

mi

δt

2
(66)

21



which is the velocity Verlet algorithm, Eqs. 52-54. In the same spirit, another algorithm
may be derived by simply changing the definitions forL1 → L2 andL2 → L1. This gives
the so calledposition Verlet algorithm

ri(t+ δt/2) = ri(t) + v(t)
δt

2
(67)

vi(t+ δt) = v(t) +
Fi(t+ δt/2)

mi
(68)

ri(t+ δt) = ri(t+ δt/2) + (v(t) + vi(t+ δt))
δt

2
(69)

Here the forces are calculated at intermediate positionsri(t+δt/2). The equations of both
the velocity Verlet and the position Verlet algorithms havethe property of propagating
velocities or positions on half time steps. Since both schemes decouple into an applied
force term and afree flight term, the three steps are often calledhalf-kick/drift/half kick
for the velocity Verlet and correspondinglyhalf-drift/kick/half-drift for the position Verlet
algorithm.

Both algorithms, the velocity and the position Verlet method, are examples for sym-
plectic algorithms, which are characterized by a volume conservation in phase space.
This is equivalent to the fact that the Jacobian matrix of a transformx′ = f(x, p) and
p′ = g(x, p) satisfies

(
fx fp

gx gp

)(
0 I
−I 0

)(
fx fp

gx gp

)

=

(
0 I
−I 0

)

(70)

Any method which is based on the splitting of the Hamiltonian, is symplectic. This does
not yet, however, guarantee that the method is also time reversible, which may be also be
considered as a strong requirement for the integrator. Thisproperty is guaranteed by sym-
metric methods, which also provide a better numerical stability 102. Methods, which try
to enhance the accuracy by taking into account the particles’ history (multi-step methods)
tend to be incompatible with symplecticness103, 104, which makes symplectic schemes at-
tractive from the point of view of data storage requirements. Another strong argument for
symplectic schemes is the so calledbackward error analysis105–107. This means that the
trajectory produced by a discrete integration scheme, may be expressed as the solution of
a perturbed ordinary differential equation whoserhscan formally be expressed as a power
series inδt. It could be shown that the system, described by the ordinarydifferential equa-
tion is Hamiltonian, if the integrator is symplectic108, 109. In general, the power series inδt
diverges. However, if the series is truncated, the trajectory will differ only asO(δtp) of the
trajectory, generated by the symplectic integrator on timescalesO(1/δt)110.

3.3 Multiple Time Step Methods

It was already mentioned that the rigorous approach of the decomposition of the Liouville
operator offers the opportunity for a decomposition of timescales in the system. Supposing
that there are different time scales present in the system, e.g. fast intramolecular vibrations
and slow domain motions of molecules, then the factorization of Eq.60 may be written in

22



a more general way

eiL∆t = eiL(s)
1 ∆t/2eiL(f)

1 ∆t/2eiL2δteiL(f)
1 ∆t/2eiL(s)

1 ∆t/2 (71)

= eiL(s)
1 ∆t/2

{

eiL(f)
1 δt/2eiL2δteiL(f)

1 δt/2
}p

eiL(s)
1 ∆t/2 (72)

where the time increment is∆t = pδ. The decomposition of the Liouville operator may
be chosen in the convenient way

iL(s)
1 = F

(s)
i

∂

∂pi
, iL(f)

1 = F
(f)
i

∂

∂pi
, iL2 = vi

∂

∂qi
(73)

where the superscript(s) and (f) mean slow and fast contributions to the forces. The
idea behind this decomposition is simply to take into account contributions from slowly
varying components only everyp’th timestep with a large time interval. Therefore, the
force computation may be considerably speeded up in the thep − 1 intermediate force
computation steps. In general, the scheme may be extended toaccount for more time
scales. Examples for this may be found in Refs.111–113. One obvious problem, however,
is to separate the timescales in a proper way. The scheme of Eq.72 is exactif the time
scales decouple completely. This, however, is very rarely found and most often timescales
are coupled due to nonlinear effects. Nevertheless, for thecase where∆t is not very
much larger thanδt (p ≈ 10), the separation may be often justified and lead to stable
results. Another criteria for the separation is to distinguish between long range and short
range contributions to the force. Since the magnitude and the fluctuation frequency is very
much larger for the short range contributions this separation makes sense for speeding up
computations including long range interactions114.

The method has, however, its limitations115, 116. As described, a particle gets everyn’th
timestep akick due to the slow components. It was reported in literature that this may
excite a system’s resonance which will lead to strong artifacts or even instabilities117, 118.
Recently different schemes were proposed to overcome theseresonances by keeping the
property of symplecticness119–125.

3.4 Stability

Performing simulations of stable many-body systems for long times should produce con-
figurations which are in thermal equilibrium. This means that system properties, e.g. pres-
sure, internal energy, temperature etc. are fluctuating around constant values. To measure
these equilibrium properties it should not be relevant where to put the time origin from
where configurations are considered to calculate average quantities. This requires that the
integrator should propagate phase space variables in such away that small fluctuations do
not lead to a diverging behavior of a system property. This isa kind of minimal requirement
in order to simulate any physical system without a domination of numerical artifacts. It is
clear, however, that any integration scheme will have its own stability range depending on
the step sizeδt. This is a kind of sampling criterion, i.e. if the step size istoo large, in order
to resolve details of the energy landscape, an integration scheme may end in instability.

For linear systems it is straight forward to analyze the stability range of a given numer-
ical scheme. Consider e.g. the harmonic oscillator, for which the equations of motion may
be written asq̇(t) = p(t) andṗ(t) = −ω2q(t), whereω is the vibrational frequency and it
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is assumed that it oscillates around the origin. The exact solution of this problem may be
written as

(
ω q(t)
p(t)

)

=

(
cosωt sinωt
− sinωt cosωt

) (
ω q(0)
p(0)

)

(74)

For a numerical integrator the stepwise solution may be written as
(
ω qn+1

pn+1

)

= M(δt)

(
ω qn
pn

)

(75)

whereM(δt) is a propagator matrix. It is obvious that any stable numerical scheme re-
quires eigenvalues|λ(M)| ≤ 1. For|λ| > 1 the scheme will be unstable and divergent, for
|λ| < 1 it will be stable but will exhibit friction, i.e. will loose energy. Therefore, in view
of the conservativity of the scheme, it will be required that|λ(M)| = 1.

As an example the propagator matrices for the Implicit Euler(IE) and Position Verlet
(PV) algorithms are calculated as

MIE(δt) =
1

1 + ω2δt2

(
1 ωδt
−ωδt 1

)

(76)

MPV (δt) =






1− 1

2
ω2δt2 ωδt

(

1− 1

4
ω2δt2

)

−ωδt 1− 1

2
ω2δt2




 (77)

It is then straight forward to calculate the eigenvalues as roots of the characteristic polyno-
mials. The eigenvalues are then calculated as

λEE = 1± iωδt (78)

λIE =
1

1 + ω2δt2
(1 ± iωδt) (79)

λPV = λV V = λV IE = λPIE = 1− 1

2
ω2δt2

(

1±
√

1− 4

ω2δt2

)

(80)

This shows that the absolute values for the Explicit Euler (EE) and the Implicit Euler
methods never equals one forδt 6= 0, i.e. both methods do not produce stable trajectories.
This is different for the Position Verlet, the Velocity Verlet (VV), the Position Implicit
Euler (PIE) and the Velocity Implicit Euler (VIE), which allhave the same eigenvalues.
It is found that the range of stability for all of them is in therangeω2δt2 < 2. For
larger values ofδt the absolute values of the eigenvalues bifurcates, gettinglarger and
smaller values than one. In Figure 7 the absolute values are shown for all methods and
in in Figure 8 the imaginary versus real parts ofλ are shown. For EE it is clear that the
imaginary part diverges linearly with increase ofδt. The eigenvalues of the stable methods
are located on a circle untilω2δt2 = 2. From there one branch diverges to−∞, while the
other decreases to zero.

As a numerical example the phase space trajectories of the harmonic oscillator for
ω = 1 are shown for the different methods in Figure 9. For the stable methods, results
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Figure 7. Absolute value of the eigenvaluesλ as function of the time stepδt. Left: Explicit and implicit
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method. All methods have the eigenvalues.
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Figure 8. Imaginary versus real part of eigenvaluesλ of the propagator matrices. Left: Implicit and Explicit
Euler. Right: Velocity and Position Verlet as well as Velocity Implicit and Position implicit Euler method.

for a time step close to instability is shown. All different methods produce closed, stable
orbits, but it is seen on the other hand that they strongly deviate from the exact solution,
which is shown for reference. This demonstrates that stability is a necessary, but only a
weak criterion for correct results. Numerically correct results are only obtained for much
smaller time steps in the range ofδt ≈ 0.01. Also shown are the results for EE and IE.
Here a very much smaller time step,δt = 0.01 is chosen. It is seen that the phase space
trajectory of EE spirals out while the one of IE spirals in with time, showing the instable
or evanescent character of the methods.

Another issue related to stability is the effect of a trajectory perturbation. If initial
conditions are slightly perturbed, will a good integrator keep this trajectory close to the
reference trajectory? The answer is No and it is even found that the result is not that
strong dependent on the integrator. Even for integrators ofhigh order, trajectories will
not stay close to each other. The time evolution of the disturbance may be studied similar
to the system trajectory. Consider the time evolution forΓ + δΓ, whereΓ = (p,q) and
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Figure 9. Phase space trajectories for the one-dimensionalharmonic oscillator, integrated with the Velocity
Implicit Euler, Position Implicit Euler, Velocity Verlet,Position Verlet and integration step size ofδt = 1.8
(left) and the Implicit Euler and Explicit Euler and step size δt = 0.01 (right).

δΓ = (δp, δq) is a small disturbance. Then

dΓ

dt
= ∇ΓH(Γ) (81)

Similarly one can write for smallδΓ

d

dt
(Γ + δΓ) = ∇ΓH(Γ + δΓ) (82)

= ∇ΓH(Γ) +∇Γ(∇ΓH(Γ))δΓ (83)

where the second line is a truncated Taylor series. Comparing terms one simply gets as
equation of motion for a perturbation

dδΓ

dt
= ∇2

ΓH(Γ)δΓ (84)

It is found that the disturbance develops exponentially, with a characteristic, system depen-
dent exponent, which is the Ljapunov exponent126, 127.

Now consider the following situation where identical starting configurations are taken
for two simulations. They will be carried out by different yet exact algorithms, therefore
leading formally to the same result. Nevertheless it may happen that different orders of
floating-point operations are used in both algorithms. Due to round off errors, floating-
point arithmetic is not necessarily associative, i.e. in general

a
∧◦ (b

∧◦ c) 6= (a
∧◦ b) ∧◦ c (85)

where
∧◦ is a floating-point machine operation (+,−, /, ∗). Therefore, both simulations

will be different by round off errors. According to the abovediscussion, this may be
considered as the slightest disturbance of a system trajectory, δΓmin, and the question is,
what effect such a round off error will have. A different method to study difference in
system trajectories is the calculation of the difference

γx(t) =
1

3N

N∑

i=1

∑

α=x,y,z

(x(t)− x̃(t))2 (86)
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Figure 10. Divergent behavior of trajectories due to round off errors, induced by different summation order
in the force routine. From top to bottom: coordinates, velocities, forces. The insets show on a linear scale
the long time behavior of the trajectory differences, i.e. when the two systems get uncorrelated.
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whereN is the number of particles,x(t) a certain property, e.g. the coordinates or mo-
menta, and̃x the same property of a disturbed trajectory. In Figure 10 results are shown
for a system of Lennard-Jones particles, where the disturbance was induced by reversing
the order of summation in the force routine, thereby provoking round off errors in the first
time step. Shown are results for the coordinates, the velocities and the forces and it is seen
that all quantities diverge exponentially from machine accuracy up to a certain behavior at
long times, which is shown in the inset. To understand the long time behavior,γx(t) can
be written as average property

γx(t) = 〈(x(t) − x(0)− x̃(t) + x(0))2〉 (87)

= 〈|x(t)− x(0)|2〉+ 〈|x̃(t)− x(0)|2〉 (88)

−2〈x(t)x̃(t)〉 + 2〈x(0)x̃(t)〉 + 2〈x(t)x(0)〉 − 2〈x(0)2〉
In the second equation the first two terms are mean square displacements ofx in the two
systems (note that̃x(0) = x(0) since the same starting configurations are used), the next
term is a cross correlation between the systems. This will vanish if the systems become
independent of each other. The next two systems consist of auto-correlation functions ofx
in each system. For long times they will also decrease to zero. Finally, the last term gives
a constant offset which does not depend on time. Therefore the long time behavior will be
governed for coordinates, momenta and forces by

lim
t→∞

γq(t) = 2〈|q(t)− q(0)|2〉 = 12Dt (89)

lim
t→∞

γp(t) = 2〈p(t)2〉 = mkBT (90)

lim
t→∞

γf (t) = 2〈F(t)2〉 = 2(∇W)2 (91)

whereD is the diffusion coefficient,T the temperature andW the potential of mean force.
That the divergent behavior of neighbored trajectories is asystem dependent property

is shown in Figure 10 where results for Lennard-Jones systems at different temperatures
are shown.

In conclusion, the individual trajectories of a physical complex system will end up at
different places in phase space when introducing round off errors or small perturbations.
Round off errors cannot be avoided with simple floating-point arithmetic (only discrete
calculations are able to avoid round off errors; but then thephysical problem is transformed
into a different space). Since one cannot say anything abouta true summation order, the
location in phase space cannot have an absolute meaning. Therefore, the solution to come
out of this dilemma is to interpret the phase space location as a possibleand allowed
realization of the system, which makes it necessary, however, to average over a lot of
possible realizations.

3.5 Accuracy

For an integrator of orderp ≥ 1, the local error may be written as an upper bound8

‖Φδt,H − φδt‖ ≤Mδtp+1 (92)

whereM > 0 is a constant,Φδt,H is the exact andφδt the numerical flow of the system.
The global error, i.e. the accumulated error for larger times, is thereby bound for stable
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methods by8

‖Γ(tn)− Γn‖ ≤ K
(
eLtn − 1

)
δtp , tn = nδt (93)

whereK > 0 is a constant,L > 0 the Lipschitz constant,Γ(tn) = (p(tn),q(tn)) the exact
andΓn = (pn,qn) the numerically computed trajectory at timetn. This estimate gives of
course not too much information forLtn1 unlessδt is chosen very small. Nevertheless,
qualitatively this estimate shows a similar exponential divergent behavior of numerical and
exact solution for a numerical scheme, as was observed in Section 3.4.

A different approach to the error behavior of a numerical scheme is backward error
analysis, first mentioned in Ref.128 in the context of differential equations. The idea is
to consider the numerical solution of a given scheme as the exact solution of a modified
equation. The comparison of the original and the modified equation then gives qualitative
insight into the long time behavior of a given scheme.

It is assumed that the numerical scheme can be expressed as a series of the form

φδt(Γn) = Γn + δtf(Γ) + δt2g2(Γ) + δt3g3(Γ)± . . . (94)

where thegi are known coefficients and for consistency of the differential equation it must
hold

f(Γ) =

(
0 −1
1 0

)(
∇p

∇q

)

H(p,q) (95)

On the other hand it is assumed that there exists a modified differential equation of the
form

d

dt
Γ̃ = f(Γ̃) + δtf2(Γ̃) + δt2f3(Γ̃) + . . . (96)

whereΓ̃ will be equivalent to the numerically obtained solution. Inorder to construct the
modified equation, the solution of Eq. (96) is Taylor expanded, i.e.

Γ̃(t+ δt) = Γ̃(t) + δt
(

f(Γ̃) + δtf2(Γ̃) + δt2f3(Γ̃) + . . .
)

(97)

+
δt2

2!

(

f ′(Γ̃) + δtf ′
2(Γ̃) + . . .

)(
0 1
1 0

)(

f(Γ̃) + δtf2(Γ̃) + . . .
)

+
δt3

3!

{
(

f ′′(Γ̃) + δtf ′′
2 (Γ̃) + . . .

)((
0 1
1 0

)(

f(Γ̃) + δtf2(Γ̃) + . . .
))2

+
(

f ′(Γ̃) + δtf ′
2(Γ̃) + . . .

)((
0 1
1 0

)(

f ′(Γ̃) + δtf ′
2(Γ̃) + . . .

))

×
(

f(Γ̃) + δtf2(Γ̃) + . . .
)
}

+ . . .

The procedure to construct the unknown functionsfi proceeds in analogy to perturbation
theory, i.e. coefficients with same powers ofδt are collected which leads to a recursive
scheme to solve for all unknowns.

To give an example the Lennard-Jones oscillator is considered, i.e. a particle perform-
ing stable motions in negative part of a Lennard-Jones potential. As was observed already
for the harmonic oscillator, the Explicit Euler method willgain energy during the time,

29



0 5 10 15 20
q

-3

-2

-1

0

1

2

3

p

δt = 0.01

δt = 0.05

δt = 0.001"exact"

0 20 40 60 80 100

time
1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

|x
E

E
 -

 x
m

od
|

δt = 0.001

δt = 0.005

δt = 0.01

Figure 11. Phase space trajectories of the Lennard-Jones oscillator calculated with the Explicit Euler
scheme and different time steps of integration. Theexactsolution (numerical solution of a high order
composition scheme with small time step) is shown as a reference - it forms closed orbits. Superimposed
to the solutions are results, obtained with a Velocity Verlet scheme, applied to the modified equations,
Eqs. (98,99). The right figure shows the differences in coordinates between the calculation with Explicit
Euler scheme applied to Lennard-Jones oscillator and Velocity Verlet applied to the modified equation,
|qEE(t) − qmod(t)|.

i.e. the particle will increase kinetic energy which finallywill lead to an escape of the
Lennard-Jones potential well. Solving for the modified equation of the Explicit Euler, one
gets as a first correction

q̇ =
∂H
∂p

+
δt

2

∂H
∂q

(98)

ṗ = −∂H
∂q

+
δt

2
p
∂2H
∂p2

(99)

Figure 11 shows results for the integration of equations of motion with the Explicit Euler
scheme. Different time steps for integration were applied which show a faster escape from
a stable orbit with increasing time step. Also plotted in thesame figure is the solution of
the modified equations with a high order symplectic scheme, which can be considered as
exacton these time scales. It is found that the trajectories more or less coincide and cannot
be distinguished by eye. A more quantitative analysis (Figure 11) shows that for relatively
long times the solution is rather well approximated by the modified equation, although with
increasing time the differences between solutions become more pronounced. This means
that for longer times it would be necessary to include more terms of higher order inδt into
the modified equation. It should be mentioned that, in general, the series expansion of the
modified equation diverges.

4 Simulating in Different Ensembles

In MD simulations it is possible to realize different types of thermodynamic ensembles
which are characterized by the control of certain thermodynamic quantities. If one knows
how to calculate a thermodynamic quantity, e.g. the temperature or pressure, it is often pos-
sible to formulate an algorithm which fixes this property to adesired value. However, it is
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not always clear whether this algorithm describes the properties of a given thermodynamic
ensemble.

One can distinguish four different types of control mechanisms:

Differential control : the thermodynamic quantity is fixed to the prescribed valueand no
fluctuations around an average value occur.

Proportional control : the variables, coupled to the thermodynamic propertyf , are cor-
rected in each integration step through a coupling constanttowards the prescribed value of
f . The coupling constant determines the strength of the fluctuations around〈f〉.

Integral control : the system’s Hamiltonian is extended and variables are introduced which
represent the effect of an external system which fix the stateto the desired ensemble. The
time evolution of these variables is determined by the equations of motion derived from
the extended Hamiltonian.

Stochastic control: the values of the variables coupled to the thermodynamic property
f are propagated according to modified equations of motion, where certain degrees of
freedom are additionally modified stochastically in order to give the desired mean value of
f .

In the following, different statistical ensembles are presented and all methods will be
discussed via examples.

4.1 The Microcanonical Ensemble

The microcanonical ensemble (NVE) may be considered as thenatural ensemble for
molecular dynamics simulations (as it is the canonical ensemble (NVT) for Monte Carlo
simulations). If no time dependent external forces are considered, the system’s Hamilto-
nian is constant, implying that the system’s dynamics evolves on a constant energy surface.
The corresponding probability density in phase space is therefore given by

ρ(q,p) = δ(H(q,p)− E) (100)

In a computer simulation this theoretical condition is generally violated, due to limited
accuracy in integrating the equations of motion and due to roundoff errors resulting from
a limited precision of number representation. In Ref.129 a numerical experiment was per-
formed showing that tiny perturbations of the initial positions of a trajectory are doubled
about every picosecond. This would mean even for double precision arithmetic that after
about50 ps roundoff errors will be dominant117. This is, however, often not a too seri-
ous restriction, since most time correlation functions drop to zero on a much shorter time
scale. Only for the case where long time correlations are expected one does have to be very
careful in generating trajectories.

4.2 The Canonical Ensemble

The simplest extension to the microcanonical ensemble is the canonical one (N,V,T), where
the number of particles, the volume and the temperature are fixed to prescribed values. The
temperatureT is, in contrast toN andV , an intensive parameter. The extensive counterpart
would be the kinetic energy of the system. In the following, different control mechanisms,
introduced in Sec. 4 are described.

31



4.2.1 The Differential Thermostat

Different methods were proposed to fix the temperature to a fixed value during a simulation
without allowing fluctuations ofT . The first method was introduced by Woodcock130,
where the velocities were scaled according topi →

√

T0/Tpi, whereT0 is the reference
temperature andT the actual temperature, calculated from the velocity of theparticles.
This method leads to discontinuities in the momentum part ofthe phase space trajectory
due to the rescaling procedure.

An extension of this method implies a constraint of the equations of motion to keep
the temperature fixed131–133. The principle of least constraint by Gauss states that a force
added to restrict a particle motion on a constraint hypersurface should be normal to the
surface in a realistic dynamics. From this principle the equations of motion are derived

∂qi

∂t
= pi (101)

∂pi

∂t
= − ∂V

∂qi
− ζpi (102)

whereζ is a constraint force term, calculated as

ζ = −

N∑

i=1

pi

mi

∂V

∂qi

N∑

i=1

p2
i

mi

(103)

Since the principle of least constraint by Gauss is used, this algorithm is also calledGaus-
sian thermostat. It may be shown for this method that the configurational partof the phase
space density is of canonical form, i.e.

ρ(q,p) = δ(T − T0) e
−βU(q) (104)

4.2.2 The Proportional Thermostat

The proportional thermostat tries to correct deviations ofthe actual temperatureT form
the prescribed oneT0 by multiplying the velocities by a certain factorλ in order to move
the system dynamics towards one corresponding toT0. The difference with respect to the
differential control is that the method allows for fluctuations of the temperature, thereby not
fixing it to a constant value. In each integration step it is insured that theT is corrected to
a value more close toT0. A thermostat of this type was proposed by Berendsen et al.134, 135

who introducedweak coupling methods to an external bath. The weak coupling thermostat
was motivated by the minimization of local disturbances of astochastic thermostat while
keeping the global effects unchanged. This leads to a modification of the momentapi →
λpi, where

λ =

[

1 +
δt

τT

(
T0

T
− 1

)] 1
2

(105)

The constantτT , appearing in Eq.105, is a so called coupling time constant which deter-
mines the time scale on which the desired temperature is reached. It is easy to show that the
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proportional thermostat conserves a Maxwell distribution. However, the method cannot be
mapped onto a specific thermodynamic ensemble. In Ref.136 the phase space distribution
could be shown to be

ρ(q,p) = f(p) e−β(U(q)−αβδU(q)2/3N) (106)

whereα ≃ (1 − δE/δU) andδU, δE are the mean fluctuations of the potential and total
energy.f(p) is in general an unknown function of the momenta, so that the full density
cannot be determined. Forα = 0, which corresponds in Eq.105 toτT = δt, the fluctuations
in the kinetic energy vanish and Eq.106 reduces to Eq.104, i.e. it represents the canonical
distribution. The other extreme ofτT → ∞ corresponds to an isolated system and the
energy should be conserved, i.e.δE = δK + δU = 0 andα = 1. In this case, Eq.106
corresponds to the microcanonical distribution136. Eq.106 may therefore be understood as
an interpolation between the canonical and the microcanonical ensemble.

4.2.3 The Stochastic Thermostat

In the case of a stochastic thermostat, all or a subset of the degrees of freedom of the
system are subject to collisions withvirtual particles. This method can be motivated by a
Langevin stochastic differential equation which describes the motion of a particle due to
the thermal agitation of a heat bath

∂pi

∂t
= − ∂U

∂qi
− γpi + F+ (107)

whereγ is a friction constant andF+ a Gaussian random force. The amplitude ofF+ is
determined by the second fluctuation dissipation theorem

〈F+
i (t1)F

+
j (t2)〉 = 2γkBTδijδ(t1 − t2) (108)

A larger value forγ will increase thermal fluctuations, whileγ = 0 reduces to the mi-
crocanonicle ensemble. This method was applied to molecular dynamics in Ref.137. A
more direct way was followed in Refs.138, 139 where particles collide occasionally with
virtual particles from a Maxwell distribution corresponding to a temperatureT0 and after
collisions loose their memory completely, i.e. the motion is totally randomized and the mo-
menta become discontinuous. In order not to disturb the phase space trajectory too much,
the collision frequency has to be chosen not too high. Since alarge collision frequency will
lead to a strong loss of the particle’s memory, it will lead toa fast decay of dynamic corre-
lation functions140. The characteristic decay time of correlation functions should therefore
be a measure for the collision time. It was proved for the stochastic thermostat138 that it
leads to a canonical distribution function.

A slightly different method which is able to control the coupling to an external bath
was suggested in Refs.141, 142. In this approach the memory of the particle is not completely
destroyed but the new momenta are chosen to be

pi,n =
√

1− α2 pi,o + α pr (109)

wherepr is chosen a momentum, drawn from a Maxwell distribution corresponding toT0.
Similar to the proportional thermostat, the parameterα may be tuned to give distributions
ranging from the microcanonical to the canonical ensemble.
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4.2.4 The Integral Thermostat

The integral method is also often calledextended system methodas it introduces additional
degrees of freedom into the system’s Hamiltonian for which equations of motion can be
derived. They are integrated in line with the equations for the spatial coordinates and
momenta. The idea of the method invented by Nosé143, 144, is to reduce the effect of an
external system acting as heat reservoir to keep the temperature of the system constant, to
one additional degree of freedom. The thermal interactionsbetween a heat reservoir and
the system result in a change of the kinetic energy, i.e. the velocity of the particles in the
system. Formally it may therefore be expressed a scaling of the velocities. Nosé introduced
two sets of variables: real and so called virtual ones. The virtual variables are consistently
derived from a Sundman transformation145 dτ/dt = s, whereτ is a virtual time ands is
a resulting scaling factor, which is treated as dynamical variable. The transformation from
virtual to real variables is then performed as

pi = πis , qi = ρi (110)

The introduction of theeffective mass, Ms, connects also a momentum to the additional
degree of freedom,πs. The resulting Hamiltonian, expressed in virtual coordinates reads

H∗ =

N∑

i=1

π2
i

2mis2
+ U(ρ) +

π2
s

2Ms
+ gkBT ln s (111)

whereg = 3N + 1 is the number of degrees of freedom (system ofN free particles).
The Hamiltonian in Eq.111 was shown to lead to a probability density in phase space,
corresponding to the canonical ensemble.

The equations of motion drawn from this Hamiltonian are

∂ρi

∂τ
=

πi

s2
(112)

∂πi

∂τ
= −∂U(ρ)

∂ρi

(113)

∂s

∂τ
=

πs

Ms
(114)

∂πs

∂τ
=

1

s3

N∑

i=1

π2
i

mi
− gkBT

s
(115)

If one transforms these equations back into real variables,it is found146 that they can be
simplified by introducing the new variableζ = ∂s/∂t = sps/Ms (ps is real momentum
connected to the heat bath)

∂qi

∂t
=

pi

mi
(116)

∂pi

∂t
= −∂U(q)

∂qi
− ζpi (117)

∂ ln s

∂t
= ζ (118)

∂ζ

∂t
=

1

Ms

(
N∑

i=1

p2
i

mi
− gkBT

)

(119)
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These equations describe the so called Nosé-Hoover thermostat.

4.3 The Constant-Pressure Constant-Enthalpy Ensemble

In order to control the pressure in an MD simulation cell, it is necessary to allow for volume
variations. A simple picture for a constant pressure systemis a box the walls of which are
coupled to a piston which controls the pressure. In contrastto the case where the temper-
ature is controlled, no coupling to the dynamics of the particles (timescales) is performed
but the length scales of the system will be modified. In the following, different algorithms
are described for a constant pressure ensemble. The conserved quantity will not be the sys-
tem’s energy, since there will be an energy transfer to or from theexternalsystem (piston
etc.), but the enthalpyH will be constant. In line with the constant temperature methods
there are also differential, proportional, integral and stochastic methods to achieve a con-
stant pressure situation in simulations. The differentialmethod, however, is not discussed
here, since there are problems with that method related to thecorrect initial pressure147, 148.
A scheme for the calculation of the pressure in MD simulations for various model systems
is given in the appendix.

4.3.1 The Proportional Barostat

The proportional thermostat in Sec. 4.2.2 was introduced asan extension for the equa-
tion of the momentum, since it couples to the kinetics of the particles. Since the barostat
acts on a volume change, which may be expressed in a scaling ofparticles’ positions, a
phenomenological extension for the equation of motion of the coordinates may be formu-
lated134

∂qi

∂t
=

pi

mi
+ αqi (120)

while a change in volume is postulated as

V̇ = 3αV (121)

A change in pressure is related to the isothermal compressibility κT

Ṗ = − 1

κTV

∂V

∂t
= − 3α

κT
(122)

which is approximated as

(P0 − P )

τP
= − 3α

κT
(123)

and therefore Eq.120 can be written as

∂qi

∂t
=

pi

mi
− κT

3τP
(P0 − P ) (124)

which corresponds to a scaling of the boxlength and coordinatesq → sq andL → sL,
where

s = 1− κT δt

3τP
(P0 − P ) (125)
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The time constantτP was introduced into Eq.123 as a characteristic timescale onwhich
the system pressure will approach the desired pressureP0. It also controls the strength of
the coupling to the barostat and therefore the strength of the volume/pressure fluctuations.
If the isothermal compressibility,κT , is not known for the system, the constantτ ′P =
τP /κT may be considered as a phenomenological coupling time whichcan be adjusted to
the system under consideration. As for the proportional thermostat, a drawback for this
method is that the statistical ensemble is not known. In analog to the thermostat, it may
be assumed tointerpolatebetween the microcanonical and the constant-pressure/constant-
enthalpy ensemble, depending on the coupling constantτP .

4.3.2 The Integral Barostat

In line with the integral thermostat one can introduce a new degree freedom into the sys-
tems Hamiltonian which controls volume fluctuations. This method was first proposed
by Andersen138. The idea is to include the volume as an additional degree of freedom
and to write the Hamiltonian in a scaled form, where lengths are expressed in units of
the boxlengthL = V 1/3, i.e. qi = L ρi andpi = L πi. SinceL is also a dynamical
quantity, the momentum is not related to the simple time derivative of the coordinates but
∂tqi = L ∂tρi + ρi ∂tL. The extended system Hamiltonian is then written as

H∗ =
1

V 2/3

N∑

i=1

πi

2mi
+ U(V 1/3ρ) + PexV +

π2
V

2MV
(126)

wherePex is the prescribed external pressure andπV andMV are a momentum and a mass
associated with the fluctuations of the volume.

The equations of motion which are derived from this Hamiltonian are

∂ρi

∂t
=

1

V 2/3

πi

mi
(127)

∂πi

∂t
=
∂U(V 1/3ρ)

∂ρi

(128)

∂V

∂t
=

πV

MV
(129)

∂πV

∂t
=

1

3V

(

1

V 2/3

N∑

i=1

πi

mi
− V 1/3ρi

∂U(q)

∂qi

)

(130)

A transformation to real variables then gives

∂qi

∂t
=

pi

mi
+

1

3V

∂V

∂t
qi (131)

∂pi

∂t
= −∂U(q)

∂qi
− 1

3V

∂V

∂t
pi (132)

∂V

∂t
=

pV

MV
(133)

∂pV

∂t
=

1

3V

(
N∑

i=1

pi

mi
− qi

∂U(q)

∂qi

)

︸ ︷︷ ︸

P

−Pex (134)

36



1 2 4 8 16 32 64 128 256 512 1024 2048
1

2

4

8

16

32

64

128

256

512

1024

2048

1

2

4

8

16

32

64

128

256

512

1024

2048
 ideal
 w

p
 = 0.99

 w
p
 = 0.9

 w
p
 = 0.5

S
pe

ed
up

# PEs

Figure 12. The ideal speedup for parallel applications with50%, 90%, 99% and 100%
(ideal) parallel work as a function of the number of processors.

In the last equation the term in brackets corresponds to the pressure, calculated from the
virial theorem. The associated volume force, introducing fluctuations of the box volume
is therefore controlled by the internal pressure, originating from the particle dynamics and
the external pressure,Pex.

5 Parallel Molecular Dynamics

With the advent of massively parallel computers, where thousands of processors may work
on a single task, it has become possible to increase the size of the numerical problems
considerably. As has been already mentioned in Sec.1 it is inprinciple possible to treat
multi-billion particle systems. However, the whole success of parallel computing strongly
depends both on the underlying problem to be solved and the optimization of the computer
program. The former point is related to a principle problem which is manifested in the so
called Amdahl’s law149. If a problem has inherently certain parts which can be solved only
in serial, this will give an upper limit for the parallelization which is possible. The speedup
σ, which is a measure for the gain of using multiple processorswith respect to a single one,
is therefore bound

σ =
Np

wp +Npws
. (135)

Here,Np is the number of processors,wp andws is the amount of work, which can be
executed in parallel and in serial, i.e.wp + ws = 1. From Eq.135 it is obvious that
the maximum efficiency is obtained when the problem is completely parallelizable, i.e.
wp = 1 which gives anNp times faster execution of the program. In the other extreme,
whenws = 1 there is no gain in program execution at all andσ = 1, independent ofNp. In
Fig.12 this limitation is illustrated for several cases, where the relative amount for the serial
work was modified. If the parallel work is 50%, the maximum speedup is bound toσ = 2.
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If one aims to execute a program on a real massively parallel computer with hundreds or
thousands of processors, the problem at hand must be inherently parallel for 99.99...%.
Therefore, not only big parallel computers guarantee a fastexecution of programs, but the
problem itself has to be chosen properly.

Concerning MD programs there are only a few parts which have to be analysed for par-
allelization. As was shown, an MD program consists essentially of the force routine, which
costs usually more than 90% of the execution time. If one usesneighbor lists, these may
be also rather expensive while reducing the time for the force evaluation. Other important
tasks are the integration of motion, the parameter setup at the beginning of the simulation
and the file input/output (I/O). In the next chapter it will beshown how to parallelize the
force routine. The integrator may be naturally parallelized, since the loop overN particles
may be subdivided and performed on different processors. The parameter setup has either
to be done in serial so that every processor has information about relevant system parame-
ters, or it may be done in parallel and information is distributed from every processor via
a broadcast. The file I/O is a more complicated problem. The message passing interface
MPI I does not offer a parallel I/O operation. In this case, ifevery node writes some infor-
mation to the same file there is, depending on the configuration of the system, often only
one node for I/O, to which internally the data are sent from the other nodes. The same
applies for reading data. Since on this node the data from/for the nodes are written/read
sequentially, this is a serial process which limits the speedup of the execution. The new
MPI II standard offers parallel read/write operations, which lead to a considerable effi-
ciency gain with respect to MPI. However, the efficiency obtained depend strongly on the
implementation on different architectures. Besides MPI methods, there are other libraries,
which offer more efficient parallel I/O with respect to native programming. To name a
few, there are PnetCDF150, 151, an extension towards parallelism of the oldnetwork Com-
mon Data Form, netCDF-4152, 153, which is in direct line of netCDF development, which
now has parallel functionality and which is built on top of MPI-I/O, or SIONlib, a recently
developed high performance library for parallel I/O154.

Another serious point is the implementation into the computer code. A problem which
is inherently 100% parallel will not be solved with maximum speed if the program is
not 100% mapped onto this problem. Implementation details for parallel algorithms will
be discussed in the following sections. Independent of the implementation of the code,
Eq.135 gives only an upper theoretical limit which will onlybe reached in very rare cases.
For most problems it is necessary to communicate data from one processor to another or
even to all other processors in order to take into account data dependencies. This implies an
overhead which depends on the latency and the bandwidth of the interprocessor network,
which strongly depends on the hardware.

5.1 Domain Decomposition

The principle of spatial decomposition methods is to assigngeometrical domains to dif-
ferent processors. This implies that particles are no longer bound to a certain processor
but will be transfered from one PE to another, according to their spatial position. This
algorithm is especially designed for systems with short range interactions or to any other
algorithm where a certain cut-off in space may be applied. Since neighbored processors
contain all relevant data needed to compute forces on particles located on a given PE,
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this algorithm avoids the problem of global communications. Given that the range of in-
teraction between particles is a cut-off radius of sizeRc, the size,D of the domains is
preferentially chosen to beD > Rc, so that only the3d − 1 neighbored processors have
to communicate data (d is the dimension of the problem). Whether this can be fulfilled
depends on the interplay between size of the system and the numbers of processors. If a
small system is treated with a large number of processors, the domains will be small and
D < Rc. In this case not only the next but also the second or even higher order neighbor
PEs have to send their coordinates to a given PE. For simplicity we assume hereD > Rc.
Algorithms, which treat efficiently the general case were developed recently155–157.

The algorithm then works as follows. Particles are distributed in the beginning of the
simulation to a geometrical region. The domains are constructed to have a rather homo-
geneous distribution of particles on each processor, e.g. for homogeneous bulk liquids the
domains can be chosen as equally sized cuboids which fill the simulation box. In order
to calculate forces between particles on different processors, coordinates of the so called
boundary particles(those which are located in the outer region of sizeRb ≥ Rc of the
domains) have to be exchanged. Two types of lists are constructed for this purpose. The
one contains all particle indices, which have left the localdomain and which have conse-
quently to be transferred to the neighbored PE. The other onecontains all particle indices,
which lie in the outer region of sizeRb of a domain. The first list is used to update the
particles’address, i.e. all information like positions, velocities, forces etc. are sent to the
neighbored PE and are erased in the old domain. The second list is used to send temporar-
ily position coordinates which are only needed for the forcecomputation. The calculation
of forces then operates in two steps. First, the forces due tolocal particles are computed
using Newton’s 3rd law. In a next step, forces due to the boundary particles are calculated.
The latter forces are thus calculated twice: on the local PE and the neighbored PE. This
extra computation has the advantage that there is no communication step for forces. A
more elaborate scheme has nevertheless been proposed whichincludes also Newton’s 3rd
law for the boundary particles and thus the communication offorces158, 159. Having fin-
ished the evaluation of forces, the new positions and velocities are evaluated only for local
particles.

A naive method would require3d − 1 send/receive operations. However, this may
be reduced to2 logd(3

d − 1) operations with a similar tree-like method. The method is
described here for the case ofd = 2. It may be generalized rather easily. The 4 processors,
located directly at the edges of a given one are labeled as left/right and up/down. Then
in a first step, information is sent/received to/from the left and the right PE, i.e. each
processor now stores the coordinates of three PEs (including local information). The next
step proceeds in sending/receiving the data to the up and down PEs. This step finishes
already the whole communication process.

The updating process is not necessarily done in each time step. If the width of the
boundary region is chosen asRb = Rc + δr, it is possible to trigger the update automat-
ically via the criterion max(|x(t0 + t) − x(t0)|) ≤ δr, which is the maximum change in
distance of any particle in the system, measured from the last update.

A special feature of this algorithm is the fact that it shows atheoretical superlinear
speed-up if Verlet neighbor lists are used. The construction of the Verlet list requires
N ′(N ′ − 1)/2 + N ′δN operations, whereδN is the number of boundary particles and
N ′ is the number of particles on a PE. If the number of PEs is increased as twice as large,
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Figure 13. Communication pattern for the domain decomposition algorithm in 2 dimen-
sions.

there areN ′/2 particles on each processor which therefore requiresN ′/2(N ′/2− 1)/2 +

N ′/2δN operations. IfN ′ ≫ δN andN ′2 ≫ N ′ one gets a speed-up factor of≈ 4!

5.2 Performance Estimations

In order to estimate the performance of the different algorithms on a theoretical basis it is
useful to extend the ideal Amdahl’s law to a more realistic case. The ideal law only takes
into account the degree of parallel work. From that point of view all parallel algorithms
for a given problem should work in the same way. However the communication between
the processors is also a limiting factor in parallel applications and so it is natural to extend
Amdahl’s law in the following way

σ =
1

wp/Np + ws + c(Np)
(136)

wherec(Np) is a function of the number of processors which will characterize the different
parallel algorithms. The function will contain both communication work, which depends
on the bandwidth of the network and the effect of the latency time, i.e. how fast the
network responds to the communication instruction. The function c(Np) expresses the
relative portion of communication with respect to computation. Therefore it will depend
in general also on the number of particles which are simulated.

In the following a model analysis for the domain decomposition algorithm is presented.
It is assumed that the work is strictly parallel, i.e.wp = 1.

Spatial decomposition algorithm is based on local communication. As was described
in Sec.5.1, only six communication steps are required to distribute the data to neighbored
PEs. Therefore the latency time part is constant whereas theamount of data to be sent and
consequently the communication part is decreased with largerNp. The communication
function reads therefore

c(Np) = f(Np)

(

λ+
χ

N
2/3
p

)

, f(Np) =







0 Np = 1
2 Np = 2
4 Np = 4
6 Np ≤ 8

(137)
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Figure 14. Left: Estimation of realistic speedup curves if one includes the latency time and bandwidth of the pro-
cessor interconnect. It is assumed that the problem can potentially be parallelized 100%. Different parameter values
are compared for the latency timeλ and bandwidthχ for a local nearest neighbor communications. The ideal curve
neglects communication completely. Right: Realistic benchmark for a domain decomposition program, simulating
a system consisting of 3000 polymers with 250 monomers each.

Here the functionf(Np) was introduced to cover also the cases for small numbers of PEs,
where a data exchange is not necessary in each spatial direction. As seen from Fig.14 the
speedup curves are nearly linear with a slightly smaller slope than unity. However, for very
large numbers of PEs the curves will also flatten. Nevertheless, the local communication
model provides the best speedup behavior from all parallel algorithms and seems to be best
suited for large parallel architectures.

RemarkNote that the local communication model in its present form is only valid for short
range interaction potentials. If the potential is longer ranged than one spatial domain, the
functionf(Np) has to be modified. For long range interactions, all-to-all communications
are generally required. In that case the tree-method may be mostly preferred.

This theoretical analysis demonstrates the importance of afast interconnect between
processors for the case of molecular dynamics simulations.Not included in the communi-
cation functionc(Np) is the bandwidth function of the network. This, however, will only
slightly change Fig.14.

5.3 Comparison with Simulation

In order to verify the theoretical model, one may perform real MD simulations for model
systems, which are as large as the principal features, appearing in the analysis are fulfilled.
This includes that domains are large enough in order to restrict particle interactions to
neighbored domains and to have a nearly homogenous particledistribution, which avoids
unbalanced computational work on the processors.

In the current case, the program MP2C160 was used, which implements both a meso-
scopic solvent method, based on the Muli-Particle-Collision (MPC) dynamics and a molec-
ular dynamics part. The program is based on a domain decomposition approach and allows
to couple MD and MPC simulations or to decouple them, in orderto run either MD or MPC
in a simulation for e.g. all-atom force-field simulations without hydrodynamic coupling or
e.g. fluid dynamics without solvated particles, respectively. In the present case a simula-
tion of a polymer system, consisting of 3000 polymeric chains with 250 monomers each
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was simulated. The monomers were coupled within the chain bya harmonic bond potential
and the non-bonded part of the potential was set to the repulsive part of a Lennard-Jones
potential which was applied to all particle pairs which werenot coupled within bonds.

The program was run on an IBM BlueGene/P at Jülich Supercomputing Centre. Fig. 14
shows the scaling up toNp = 2048 processors, which is qualitatively comparable and
shows the same behavior as prescribed by the simple model. A better scaling is to be ex-
pected, when more particles are simulated, which moves the ratio of communication/com-
putation to smaller values, which reduces the relative overhead in the parallel execution.
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1 Introduction

In Computational Materials Science we have learned a lot from molecular dynamics (MD)
simulations that allows us to follow the dynamics of molecular processes in great detail.
In particular, the combination of MD simulations with density functional theory (DFT)
calculations of the electronic structure, as pioneered more than thirty years ago by the
work of R. Car and M. Parrinello1, has brought us a great step further: Since DFT enables
us to describe a wide class of chemical bonds with good accuracy, it has become possible
to model the microscopic dynamics behind many technological important processes in
materials processing or chemistry. It is important to realize that the knowledge we gain
by interpreting the outcome of a simulation can be only as reliable as the theory at its
basis that solves the quantum-mechanical problem of the system of electrons and nuclei
for us. Hence any simulation that aims at predictive power should start from the sub-
atomic scale of the electronic many-particle problem. However, for many questions of
scientific or technological relevance, the phenomena of interest take place on much larger
length and time scales. Moreover, temperature may play a crucial role, for example in
phase transitions. Problems of this type have been handled by Statistical Mechanics, and
special techniques such as Monte Carlo methods have been developed to be able to tackle
with complex many-particle systems2, 3. However, in the last decade it has been realized
that also for those problems that require statistics for a proper treatment, a ’solid basis’ is
indispensable, i.e. an understanding of the underlying molecular processes, as provided
by DFT or quantum-chemical methods. This has raised interest in techniques to combine
Monte Carlo methods with a realistic first-principles description of processes in condensed
matter.4

I’d like to illustrate these general remarks with examples from my own field of research,
the theory of epitaxial growth. The term epitaxy means that the crystalline substrate im-
poses its structure onto some deposited material, which mayform a smooth film or many
small islands, depending on growth conditions. Clearly, modeling the deposition requires
a sample area of at least mesoscopic size, say 1µm2, involving tens of thousands of atoms.
The time scale one would like to cover by the simulation should be of the same order as
the actual time used to deposit one atomic layer, i.e. of the order of seconds. However,
the microscopic, atomistic processes that govern the physics and chemistry of deposition,
adsorption, and diffusion operate in the length and time domains of 0.1 to 1 nm, and femto-
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Figure 1. Molecular modeling on the basis of first-principles electronic structure calculations requires to cover the
length and time scales from the electronic to the mesoscopicor even macroscopic regime. On the electronic level,
density functional theory (DFT) is frequently employed. Molecular dynamics (MD) simulations can be carried
out either in combination with DFT, or by using classical forces, which allow one to extend the simulations
to bigger length and time scales. The kinetic Monte Carlo method may reach out to very large scales (much
depending on the rate constants of the processes relevant toa specific problem), while being able to use input
from DFT or MD simulations.

to pico-seconds. Hence incorporating information about atomic processes into modeling
of film growth poses the challenge to cover huge length and time scales: from10−10m to
10−6m and from10−15s to100 s (cf. Fig. 1). While smaller length scales, comprising a
few hundred atoms, are typically sufficient to gain insight,e.g. about the atomic structure
of a step on a surface and its role for chemical reactions and atom diffusion, the gap be-
tween the atomic and the practically relevanttime scalesand the crucial role of Statistical
Mechanics constitute major obstacles for reliable molecular modeling.

An additional challenge arises due to the complexity of the phenomena to be investi-
gated: One of the fascinating features of epitaxy is theinterplay of various atomic pro-
cesses. For example, atoms deposited on an island may be ableto overcome the island
edge (’step down to the substrate’) for specific edge orientations. Thus, while the island
changes its shape (and thus the structure of its edges) during growth, this will enable (or
disable) material transport between the island top and the substrate, resulting in a transition
from two-dimensional to three-dimensional island growth (or vice versa). The possibility
that processes may ’trigger’ other processes during the evolution of structures can hardly be
foreseen or incorporateda priori in analytical modeling, but calls for computer simulations
using statistical methods.

In epitaxial growth, lattice methods exploiting the two-dimensional periodicity of the
substrate lattice are often – but not always – appropriate. Also in other fields of Solid State
Physics, mathematical models defined on lattices have been used for a long time. A well-
known example is the Ising model in the study of magnetism. Itdescribes the interaction
between magnetic moments (spins) sitting on a lattice that can take on two states only (’up’
or ’down’, represented by variablessi = ±1). The Hamiltonian of the Ising model is given
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by

H(s) = −Jq

∑

i

∑

j∈n(i)

sisj − µBB
∑

i

si (1)

wheren(i) denotes the set of spins interacting with spini, Jq is the strength of the interac-
tion between spins,q is the number of interacting neighbors (qJq = const = kBTc, where
the last equality is valid in the mean-field approximation),andB is an external magnetic
field .

In surface physics and epitaxy, a mathematically equivalent model is used under the
name ’lattice Hamiltonian’. It describes fixed sites on a lattice that can be either empty or
occupied by a particle (e.g., a deposited atom). The interactions between these particles are
assumed to have finite range. The lattice-gas interpretation of the Ising model is obtained
by the transformationsi = 2ci − 1, ci = 0, 1,

H = −4Jq

∑

i

∑

j∈n(i)

cicj + 2(qJq − µBB)
∑

i

ci −N(qJq − µBB) . (2)

For studies of epitaxy, one wishes to describe not only monolayers of atoms, but films
that are several atomic layers thick. These layers may not always be complete, and islands
and steps may occur on the growing surface. For a close-packed crystal structure, the
atoms at a step are chemically less coordinated, i.e., they have fewer partners to form a
chemical bond than atoms sitting in flat parts of the surface (= terraces), or atoms in the
bulk. Hence, it costs additional energy to create steps, or kinks in the steps. Inspired by
these considerations, one can define the so-called solid-on-solid (SOS) model, in which
each lattice site is associated with an integer variable, the local surface heighthi. In the
SOS model, an energy ’penalty’ must be paid whenever two neighbouring lattice sites
differ in surface height,

H = Kq

∑

i

∑

j∈n(i)

|hi − hj | . (3)

This reflects the energetic cost of creating steps and kinks.The SOS model allows for a
somewhat idealized, but still useful description of the morphology of a growing surface, in
which the surface can be described mathematically by a single-valued functionh defined
on a lattice, i.e., no voids or overhangs in the deposited material are allowed. In the fol-
lowing, we will sometimes refer to one of these three models to illustrate certain features
of Monte Carlo simulations. More details about these and other models of epitaxial growth
can be found in books emphasizing the statistical-mechanics aspects of epitaxy, e.g. in the
textbook by Stanley and Barabasi5.

In studies of epitaxial growth, model systems defined through a simple Hamiltonian,
such as the lattice-gas or the SOS model, have a long history,and numerous phenomena
could be described using kinetic Monte Carlo simulations based on these models, dating
back to early work by G. H. Gilmer6, later extended by D. D. Vvedensky7 and others.
For the reader interested in the wealth of structures observed in the evolution of surface
morphology, I recommend the book by T. Michely and J. Krug8. Despite the rich physics
that could be derived from simple models, research in the last decade has revealed that
such models are still too narrow a basis for the processes in epitaxial growth. Thanks to
more refined experimental techniques, in particular scanning tunneling microscopy9, but
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also thanks to atomistic insights provided by DFT calculations10, 11, we have learned in
the last ten years that the processes on the atomic scale are by no means simple. For
example, the numerous ways how atoms may attach to an island on the substrate display
a stunning complexity. However, kinetic Monte Carlo methods are flexible enough so that
the multitude of possible atomic processes can be coded in a simulation program easily,
and their macroscopic consequences can be explored.

Apart from simulations of epitaxial growth, thermodynamicas well as kinetic Monte
Carlo simulations are a valuable tool in many other areas of computational physics or
chemistry. In polymer physics, the ability of Monte Carlo methods to bridge time and
length scales makes them very attractive: For example, the scaling properties of polymer
dynamics on long time scales (often described by power laws)can be investigated by Monte
Carlo simulations.12 Another important field of applications is in surface chemistry and
catalysis13, 14: Here, Monte Carlo methods come with the bargain that they allow us to
study the interplay of a large number of chemical reactions more easily and reliably than
the traditional method of rate equations. Moreover, also inthis field, feeding information
about the individual molecular processes, as obtained e.g.from DFT calculations, into the
simulations is a modern trend pursued by a growing number of research groups15, 16.

2 Monte Carlo Methods in Statistical Physics

The term ’Monte Carlo’ (MC) is used for a wide variety of methods in theoretical physics,
chemistry, and engineering where random numbers play an essential role. Obviously, the
name alludes to the famous casino in Monte Carlo, where random numbers are generated
by the croupiers (for exclusively non-scientific purposes). In the computational sciences,
we generally refer to ’random’ numbers generated by a computer, so-called quasi-random
numbersa.

A widely known application of random numbers is the numerical evaluation of integrals
in a high-dimensional space. There, the integral is replaced by a sum over function evalua-
tions at discrete support points. These support points are drawn from a random distribution
in some compactd-dimensional supportC. If the central limit theorem of statistics is ap-
plicable, the sum converges, in the statistical sense, towards the value of the integral. The
error decreases proportional to the inverse square root of the number of support points,
independent of the number of space dimensions. Hence, MonteCarlo integration is an
attractive method in particular for integration in high-dimensional spaces.

In Statistical Physics, a central task is the evaluation of the partition function of the
canonical ensemble for an interacting system, described bya HamiltonianH . The con-
tribution of the kinetic energy toH is simple, since it is a sum over single-particle terms.
However, calculating the potential energy termU(x) for an interacting many-particle sys-
tem involves the evaluation of a high-dimensional integralof the type

Z =

∫

C
dx exp

(

−U(x)

kBT

)

. (4)

Here,x stands for a high-dimensional variable specifying the system configuration (e.g.,
position of all particles). Evaluating this integral by a Monte Carlo method requires special

aConcerning the question how a deterministic machine, such as a computer, could possibly generate ’random’
numbers, the reader is referred to the numerical mathematics literature, e.g. Ref.17.
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care: Only regions in space where the potentialU is small contribute strongly. Hence,
using auniformlydistributed set of support points would waste a lot of computer resources.
Instead, one employs a technique calledimportance sampling. We re-write the partition
function

Z =

∫

C
dµ(x) (5)

with the Gibbs measuredµ(x) = exp(−U(x)/(kBT )) dx. The expectation value for an
observable is evaluated as the sum overn sampling points in the limit of very dense sam-
pling,

〈O〉 =
1

Z

∫

C
O(x) dµ(x) = lim

n→∞

∑n
i=1O(xi)µ(xi)
∑n

i=1 µ(xi)
. (6)

When we generate then sampling points in configuration space according to their equi-
librium distribution,Peq(x) = 1

Z exp(−U(x)/(kBT )) ≈ µ(xi)/
∑n

i=1 µ(xi), we are in
position to calculate the thermodynamic average of any observable using

〈O〉 ≈ 1

n

n∑

i=1

O(xi) . (7)

The remaining challenge is to generate the support points according to the equilibrium
distribution. Instead of giving an explicit description ofthe equilibrium distribution, it is
often easier to think of a stochastic process that tells us how to build up the list of support
points for the Gibbs measure. If an algorithm can be judiciously designed in such a way as
to retrieve the equilibrium distribution as its limiting distribution, knowing this algorithm
(how to add support points) is as good as knowing the final outcome. This ’philosophy’ is
behind many applications of Monte Carlo methods, both in therealm of quantum physics
(Quantum Monte Carlo) and in classical Statistical Physics.

To be more precise, we have to introduce the notion of aMarkov process. Consider
that the system is in a generalized statexi at some timeti. (Here,xi could be a point in ad-
dimensional configuration space.) A specific evolution of the system may be characterized
by a probabilityPn(x1, t1; . . . ;xn, tn) to visit all the pointsxi at timesti. For example,
P1(x; t) is just the probability of finding the system in configurationx at timet. Moreover,
we need to introduce conditional probabilitiesp1|n(xn, tn|xn−1, tn−1; . . . ;x1, t1) The sig-
nificance of these quantities is the probability of finding the system at(xn, tn) provided
that it has visited already all the space-time coordinates(xn−1, tn−1) . . . (x1, t1). The
characteristic feature of a Markov process is the fact that transitions depend on theprevi-
ousstep in the chain of eventsonly. Hence it is sufficient to consider onlyoneconditional
probabilityp1|1 for transitions between subsequent points in time. The total probability
can then be calculated from the preceeding ones,

Pn(x1, t1; . . . ;xn, tn) = p1|1(xn, tn|xn−1, tn−1)Pn−1(x1, t1; . . . ;xn−1, tn−1) (8)

In discrete time, we call such a process a Markov chain. The conditional probabilities of
Markov processes obey theChapman-Kolmogorovequation

p1|1(x3, t3|x1, t1) =

∫

dx2 p1|1(x3, t3|x2, t2)p1|1(x2, t2|x1, t1) (9)
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If the Markov process isstationary, we can write for its two defining functions

P1(x, t) = Peq(x);

p1|1(x2, t2|x1, t1) = pt(x2|x1); t = t2 − t1 .

HerePeq is the distribution in thermal equilibrium, andpt denotes the transition probability
within the time intervalt from a statex1 to a statex2.

Using the Chapman-Kolmogorov equation forpt, we get

pt+t0(x3|x1) =

∫

dx2 pt0(x3|x2)pt(x2|x1) . (10)

When we consider a discrete probability space forxi, the time evolution of the probability
proceeds by matrix multiplication, thept being matrices transforming one discrete state
into another. We now want to derive the differential form of the Chapman-Kolmogorov
equation for stationary Markov processes. Therefore we consider the case of small time
intervalst0 and write the transition probability in the following way,

pt0(x3|x2) ≈ (1 − wtot(x2)t0)δ(x3 − x2) + t0w(x3|x2) + . . . , (11)

up to to terms that vanish faster than linear int0. This equation definesw(x3|x2) as the
transition rate (transition probability per unit time) to go fromx2 to x3. In the first term,
the factor(1 − wtot(x2)t0) signifies the probability to remain in statex2 up to timet0.
That means thatwtot(x2) is the total probability to leave the statex2, defined as

wtot(x2) =

∫

dx3 w(x3|x2). (12)

Inserting this into the Chapman-Kolmogorov equation results in

pt+t0(x3|x1) = (1− wtot(x3)t0)pt(x3|x1) + t0

∫

dx2 w(x3|x2)pt(x2|x1); (13)

and hence we obtain

pt+t0(x3|x1)− pt(x3|x1)

t0
=

∫

dx2 w(x3|x2)pt(x2|x1)−
∫

dx2w(x2|x3)pt(x3|x1),

(14)
in which we have used the definition ofwtot. In the limit t0 → 0 we arrive at themaster
equation, that is the differential version of the Chapman-Kolmogorov equation,

∂

∂t
pt(x3|x1) =

∫

dx2 w(x3|x2)pt(x2|x1)−
∫

dx2w(x2|x3)pt(x3|x1) . (15)

It is an integro-differential equation for the transition probabilities of a stationary Markov
process. In the following we do not assume stationarity and choose aP1(x1, t) 6= Peq(x),
but keep the assumption of time-homogeneity of the transition probabilities, i.e., it is as-
sumed that they only depend on time differences. Then, we canmultiply this equation by
P1(x1, t) and integrate overx1 to get a master equation for the probability density itself:

∂

∂t
P1(x3, t) =

∫

dx2 w(x3|x2)P1(x2, t)−
∫

dx2w(x2|x3)P1(x3, t) (16)
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One way to fulfill this equation is to requiredetailed balance, i.e., the net probability flux
between every pair of states in equilibrium is zero,

w(x|x′)
w(x′|x) =

Peq(x)

Peq(x′)
. (17)

For thermodynamic averages in the canonical ensemble we have Peq(x) =
1
Z exp(−H(x)/(kBT )), and hence

w(x|x′)
w(x′|x) = exp (−(H(x)−H(x′))/(kBT )) . (18)

When we use transition probabilities in our Monte Carlo simulation that fulfill detailed
balance with the desired equilibrium distribution, we are sure to have

P1(x, t→∞) = Peq(x) . (19)

Since the detailed balance condition can be fulfilled in manyways, the choice of transition
rates is therefore not unique. Common choices for these rates are

• theMetropolis rate

w(x′|x) = w0(x
′|x)min([1; exp (−(H(x′)−H(x))/(kBT ))]

• theGlauber rate

w(x′|x) = w0(x
′|x)1

2 {1− tanh [exp (−(H(x′)−H(x))/(kBT ))]}

Both choices obey the detailed balance condition. With either choice, we still have the
freedom to select a factorw0(x

′|x) = w0(x|x′). This can be interpreted as the probability
to choose a pair of statesx, x′ which are connected through the specified move. In an Ising
model simulation, each statex corresponds to one particular arrangement of all spins on
all the lattice sites. The statesx andx′ may, for instance, just differ in the spin orientation
on one lattice site. Then, the freedom inw0(x

′|x) corresponds to the freedom to select any
single spin (with a probability of our choice), and then to flip it (or not to flip it) according
to the prescription of the rate law.

Let’s illustrate the general considerations by an example.Suppose we want to calculate
the magnetization of an Ising spin model at a given temperature. Hence we have to simulate
the canonical ensemble using theMonte Carlo algorithm . The steps are:

• generate a starting configurations0,

• select a spin,si, at random,

• calculate the energy change upon spin reversal∆H ,

• calculate the probabilityw(↑, ↓) for this spin-flip to happen, using the chosen form of
transition probability (Metropolis or Glauber),

• generate a uniformly distributed random number,0 < ρ < 1; if w > ρ, flip the spin,
otherwise retain the old configuration.
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When the Metropolis rate law has been chosen, proposed spin flips are either accepted with
probabilityw, or discarded with probability1 − w. After some transient time, the system
will come close to thermodynamic equilibrium. Then we can start to record time averages
of some observableO we are interested in, e.g., the magnetization. Due to the in-built
properties of the rate law, this time average will converge,in the statistical sense, to the
thermodynamic ensemble average〈O〉 of the observableO.

The prescription for the Monte Carlo method given so far applies to non-conserved
observables (e.g., the magnetization). For a conserved quantity (e.g., the concentration of
particles), one usesKawasaki dynamics:

• choose a pair of (neighboring) spinsb

• exchange the spins subject to the Metropolis acceptance criterion

Since this algorithm guarantees particle number conservation, it recommends itself for the
lattice-gas interpretation of the Ising model. In simulations of epitaxial growth, one may
work with either conserved or non-conserved particle number, the latter case mimicking
desorption or adsorption events of particles.

Figure 2. Illustration of theN -fold way algorithm for a one-dimensional Ising chain of spins. A particular
configuration for one moment in time is shown. The local environments of all spins fall in one of six classes,
indicated by the numbers. Periodic boundary conditions areassumed.

Table 1. Classification on spins in a 6-fold way for a periodicIsing chain. The leftmost col-
umn gives the numberni of spins in each class for the particular configuration shownin
Fig. 2. The rates can be normalised to unity by settingw0 = {[n1 exp(−2µB/(kBT )) +
n4 exp(2µB/(kBT ))] exp(−4Jq/(kBT )) + n2 exp(−2µB/(kBT )) + n5 exp(2µB/(kBT )) +
[n3 exp(−2µB/(kBT )) + n6 exp(2µB/(kBT ))] exp(4Jq/(kBT ))}−1.

class central neighbors rate class
spin wi membersni

1 ↑ ↑, ↑ w0 exp
(
−(4Jq + 2µBB)/(kBT )

)
4

2 ↑ ↑, ↓ w0 exp
(
−2µBB/(kBT )

)
12

3 ↑ ↓, ↓ w0 exp
(
(4Jq − 2µBB)/(kBT )

)
1

4 ↓ ↓, ↓ w0 exp
(
−(4Jq − 2µBB)/(kBT )

)
1

5 ↓ ↑, ↓ w0 exp
(
2µBB/(kBT )

)
8

6 ↓ ↑, ↑ w0 exp
(
(4Jq + 2µBB)/(kBT )

)
3

bThis meansw0(s′|s) = 1/(2dn), i.e. we first choose a spin at random, and then a neighbor on ad-dimensional
simple cubic lattice withn sites at random.
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3 From MC to kMC: The N -Fold Way

The step forward from the Metropolis algorithm to the algorithms used for kinetic Monte
Carlo (kMC) simulations originally resulted from a proposed speed-up of MC simulations:
In the Metropolis algorithm, trial steps are sometimes discarded, in particular if the tem-
perature is low compared to typical interaction energies. For this case, Bortz, Kalos and
Lebowitz suggested in 1975 theN -fold way algorithm18 that avoids discarded attempts.
The basic idea is the following: In an Ising model or similar models, the interaction en-
ergy, and thus the rate of spin-flipping, only depends on the nearest-neighbor configuration
of each spin. Since the interaction is short-ranged, there is only a small number of local
environments (here: spin triples), each with a certain ratewi for flipping the ’central’ spin
of the triple. For example, in one dimension, i.e. in an Isingchain, an ’up’ spin may
have both neighbors pointing ’up’ as well, or both neighborspointing ’down’, or alternate
neighbors, one ’up’, one ’down’. An analogous classification holds if the selected (central)
spin points ’down’. All local environments fall into one of these six classes, and there are
six ’types’ of spin flipping with six different rate constants. For a given configuration of
a spin chain, one can enumerate how frequently each class of environment occurs, say,ni

times,i = 1, . . . 6. This is illustrated in Table 1 for the configuration shown inFig. 2. Now
theN-fold way algorithm works like this:

1. first select a classiwith a probability given byniwi/
∑

iwini using a random number
ρ1;

2. then, select one process (i.e., one spin to be flipped) of process typei, choosing with
equal probability among the representatives of that class,by using another random
numberρ2;

3. execute the process, i.e. flip the spin;

4. update the list ofni according to the new configuration.

The algorithm cycles through this loop many times, without having to discard any trials,
thereby reaching thermal equilibrium in the spin system. The prescription can easily be
generalized to more dimensions; e.g., to a two-dimensionalsquare lattice, where we have
ten process types.c

To go all the way from MC to kMC, what is still missing is the aspect oftemporal evo-
lution. In a MC simulation, we may count the simulation steps. However, the foundation
of the method lies inequilibriumstatistical physics. Once equilibrium is reached, time has
no physical meaning. Therefore no physical basis exists foridentifying simulation steps
with physical time steps in the conventional Monte Carlo methods. In order to address
kinetics, i.e. to make a statement how fast a system reaches equilibrium, we need to go
beyond that, and take into account for the role of time. Here,some basic remarks are in
place. In order to be able to interpret the outcome of our simulations, we have to refer to
some assumptions about theseparation of time scales: The shortest time scale in the prob-
lem is given by the time it takes for an elementary process (e.g., a spin flip) to proceed.
This time scale should be clearly separated from the time interval between two processes

cEach ’central’ spin has four neighbors, and the number of neighbors aligned with the ’central’ spin may vary
between 0 and 4. Taking into account that the central spin could be up or down, we end up with ten process types.
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taking place at the same spin, or within the local environment of one spin. This second
time scale is called the waiting time between two subsequentevents. If the condition of
time scale separation is not met, the remaining alternativeis a simulation using (possibly
accelerated) molecular dynamics (see Section 4.2). If timescale separation applies, one
of the basic requirements for carrying out a kMC simulation is fulfilled. The advantage is
that kMC simulations can be run to simulate much longer physical time intervals at even
lower computational cost than molecular dynamics simulations (see Fig. 1). Moreover,
one can show that the waiting time, under quite general assumptions, follows a Poissonian
distribution19. For the Ising chain, each process type has a different waiting timeτi = w−1

i

that is proportional to some power ofexp(J/(kBT )). For other applications of interest, the
waiting times of various process types may be vastly different. In epitaxial growth, for in-
stance, the time scale between two adsorption or desorptionevents is usually much longer
than the time scale for surface diffusion between two adjacent sites. For macromolecules
in the condensed phase, vibrational motion of a molecular side group may be fast, while
a rotation of the whole molecule in a densely packed environment may be very slow, due
to steric hindrance. In a kinetic simulation, we would like to take all these aspects into
account. We need a simulation method that allows us tobridge time scalesover several
orders of magnitude.

Following theN -fold way for the Ising model, it is easy to calculate thetotal rateR,
i.e., the probability that some event will occur in the wholesystem per unit time. It is the
sum of all rates of individual processes,R =

∑

i niwi. The average waiting time between
any two events occurring in the system as a whole is given byR−1. This allows us to
associate a time step of (on average)∆t = R−1 with one step in the simulation. Note that
the actual length of this time step may change (and in generaldoes so) during the simu-
lation, since the total rate of all processes accessible in acertain stage of the simulation
may change. Therefore, this variant of the kMC method is sometimes also called the ’vari-
able step size’ method in the literature. More realistically, the time step∆t should not be
identified with its average value, but should should be drawnfrom a Poissonian distribu-
tion. This is practically realised by using the expression∆t = −R−1 log ρ3 with a random
number0 < ρ3 < 1. For a two-dimensional problem (e.g., a lattice-gas Hamiltonian), the
N -fold way algorithm is explained in the flowchart of Fig. 4.

The distinction between MC and kMC simulations is best understood by considering
the following points: In kMC, the possible configurations ofthe system, i.e. the micro-
states contributing to the macro-state of a statistical ensemble, need to be enumerable, in
order to be able to build up a list of process types, as in Table1. In a MC simulation, on the
other hand, there is no limit on the number of micro-states – they even need not be known
to start the simulation. For this reason, the MC algorithm can be applied to problems with
a huge configuration space, e.g. to protein folding, where a kMC simulation would not
be feasible. In advantage over MC, a kMC simulation allows usto assign the meaning
of a physical time to the simulation steps. Of course, in order to make use of this advan-
tage, we need to provide as input the rates of all relevant individual processes. Obtaining
information about all these rates is a difficult task; this iswhy kMC simulations are less
common than MC simulations. The best way for getting values for the individual rates
is by performing molecular dynamics simulations, possiblywith first-principles electronic
structure methods such as DFT. This will be explained in moredetail in Section 4.2.
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Figure 3. Principle of process-type list algorithm. There are certain types of processes, indicated by colors in the
figure: diffusion on the substrate, diffusion along a step, detachment from a step, . . . (left scheme). Each type is
described by its specific rate constant, but processes of thesame type have the same rate constant. Hence, the
list of all processes can be built up as a nested sum, first summing over processes of a given type, then over the
various types. The selection of a process by a random number generator (right scheme) is realised in two steps,
as indicated by the thick horizontal arrows, where the second one selects among equal probabilities.

Figure 4. Flow chart for the process-type list algorithm.

Finally, we note that a kMC simulation provides a particularsolution of the master
equation in a stochastic sense; by averaging over many kMC runs we obtain probabilities
(for the system being in a specific micro-state) that evolve in time according to Eq. (15).
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3.1 Algorithms for kMC

In the kMC algorithm outlined above, the process list is ordered according to the process
type; therefore I refer to it as theprocess-type listalgorithm. In the practical imple-
mentation of kMC algorithms, there are two main concerns that affect the computational
efficiency: First, the selection of a suitable algorithm depends on the questionhow many
process types are typically active at each moment in time. The second concern is to find
an efficient scheme of representing and updating the data. For an efficient simulation, it is
essential to realise that the updating of the process list, step 4 of the algorithm described
in the previous Section, only modifies those entries that have changed due to the preceding
simulation step. A complete re-build of the list after each simulation step would be too
time-consuming. As the interactions are short-ranged, a local representation of the partial
rates associated with lattice sites is most efficient. On theother hand, the process-type list
groups together processes having the same local environment, disregarding where the rep-
resentatives of this class of processes (the spins or atoms)are actually located on the lattice.
Hence, updating the process list requires replacement of various entries that originate from
a small spatial region, but are scattered throughout the process list. To handle this task, a
subtle system of referencing the entries is required in the code. This is best realised in a
computer language such asC by means of pointers. An example of a kMC code treating
the SOS model is available from the author upon request.

The two-step selection of the next event, as illustrated in Fig. 3, makes the process-
type list advantageous for simulation with a moderate number (say,N < 100) of process
types. This situation is encountered in many simulations ofepitaxial crystal growth using
an SOS model6, but the process-list algorithm also works well for more refined models
of crystal growth20, 21. In the first selection step, we need to compare the random number
ρ1 to at mostN partial sums, namely the expressions

∑k
i niwi for k = 1, . . .N . The

second selection step chooses among equally probable alternatives, and requires no further
comparing of numbers. Thus, the total number of numerical comparisons needed for the
selection is at mostN , assuring that this selection scheme is computationally efficient.

In some applications, the kMC algorithm needs to cope with a vast number of different
process types. For example, such a situation is encounteredin epitaxy when the interaction
is fairly long-ranged22, or when rates depend on a continuous variable, such as the local
strain in an elastically deformed lattice. Having to chooseamong a huge number of process
types makes the selection based on the process-type list inefficient. Instead, one may prefer
to work directly with a local data representation, and to do the selection of a process in
real space. One may construct a suitable multi-step selection scheme by grouping the
processes in real space, as suggested by Maksym23. Then, one will first draw a random
numberρ1 to select a region in space, then use a second random numberρ2 to select a
particular processes that may take place in this region. Obviously, such a selection scheme
is independent of the number of process types, and hence can work efficiently even if a
huge number of process types is accessible. Moreover, it canbe generalized further: It is
always possible to select one event out ofN = 2k possibilities by makingk alternative
decisions. This comes with the additional effort of having to drawk random numbers
ρi, i = 1, . . . k, but has the advantage that one needs to compare tok = log2N partial
sums only. The most efficient way of doing the selection is to arrange the partial sums of
individual rates on abinary tree. This allows for a fast hierarchical update of the partial
sums associated with each branch point of the tree after a process has been executed.
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Finally, I’d like to introduce a third possible algorithm for kMC simulations that aban-
dons the idea of theN -fold way. Instead, it emphasizes the aspect that each individual
event, in as far as it is independent from the others, occurs after a random waiting time
according to a Poissonian distribution. I refer to that algorithm as thetime-ordered list
algorithm, but frequently it is also called the ’first reaction’ method24, 25. It proceeds as
follows:

1. At timet, assign a prospective execution timet+ ti to each individual event, drawing
the random waiting timeti from a Poissonian distribution;

2. sort all processes according to prospective execution time (This requires onlylog2N
comparisons, if done in a ’binary tree’);

3. always select thefirst process of the time-ordered list and execute it;

4. advance the clock to the execution time, and update the list according to the new
configuration.

This algorithm requires theti to be Poissonian random numbers, i.e. to be distributed
between0 and∞ according to an exponentially decaying distribution function. Hence it
may be advisable to use a specially designed random number generator that yields such
a distribution. The time-ordered-list algorithm differs from the two others in the fact that
the selection step is deterministic, as always the top entryis selected. Yet, its results are
completely equivalent to the two other algorithms, provided the common assumption of
Poissonian processes holds: In a Poissonian processes, thewaiting times are distributed
exponentially.19 In the time-ordered list algorithm, this is warranted explicitly for each
event by assigning its time of execution in advance. In the other algorithms, the clock, i.e.,
the ’global’ time for all events, advances according to a Poissonian process. The individual
events are picked at random from a list; however, it is known from probability theory that
drawing a low-probability event from a long list results in aPoissonian distribution of the
time until this event gets selected. Hence, not only the global time variable, but also the
waiting time for an individual event follows a Poissonian distribution, as it should be.

The time-ordered list algorithm appears to be the most general and straightforward
of the three algorithms discussed here. But again, careful coding is required: As for the
process-type list, updating the time-ordered list requires deletion or insertion of entries
scattered all over the list. Suggestions how this can be achieved, together with a useful
discussion of algorithmic efficiency and some more variantsof kMC algorithms can be
found in Ref.24.

In principle, kMC is an inherently serial algorithm, since in one cycle of the loop only
one process can be executed, no matter how large the simulation area is. Nonetheless,
there have been a number of attempts to designparallel kMC algorithms , with mixed
success. All these parallel versions are based on a partitioning, in one way or another, of
the total simulation area among parallel processors. However, the existence of a global
’clock’ in the kMC algorithm would prevent the parallel processors from working inde-
pendently. In practice, most parallel kMC algorithms let each processor run independently
for some time interval small on the scale of the whole simulation, but still long enough to
comprise of a large number of events. After each time interval the processors are synchro-
nised and exchange data about the actual configurations of their neighbours. Typically,
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this communication among processors must be done very frequently during program ex-
ecution. Hence the parallel efficiency strongly depends on latency and bandwidth of the
communication network. There are a number of problems to overcome in parallel kMC:
Like in any parallel simulation of discrete events, the ’time horizon’ of the processors may
proceed quite inhomogeneously, and processors with littlework to do may wait a long time
until other, more busy processors have caught up. Even a bigger problem may arise from
events near the boundary of processors: Such events may turnout to be impossible after
the synchronisation has been done, because the neighbour processor may have modified
the boundary region prior to the execution of the event in question. Knowing the actual
state of the neighbouring processor, the event should have occurred with a different rate, or
maybe not at all. In this case, a ’roll-back’ is required, i.e., the simulation must be set back
to the last valid event before the conflicting boundary eventoccurred, and the later simula-
tion steps must be discarded. While such roll-backs are manageable in principle, they may
lead to a dramatic decrease in the efficiency of a parallel kMCalgorithm. Yet, one may
hope that the problems can be kept under control by choosing asuitable synchronisation
interval. This is essentially the idea behind the ’optimistic’ synchronous relaxation algo-
rithm26, 27. Several variants have been suggested that sacrifice less efficiency, but pay the
price of a somewhat sloppy treatment of the basic simulationrules. In the semi-rigorous
synchronous sublattice algorithm28, the first, coarse partitioning of the simulation area is
further divided into sublattices, e.g. like the black and white fields on the checkerboard.
Then, in each time interval between synchronisations, events are alternately simulatedonly
within one of the sublattices (’black or ’white’). This introduces an arbitrary rule addition-
ally restricting the possible processes, and thus may compromise the validity of the results
obtained, but it allows one to minimise or even completely eliminate conflicting boundary
events. Consequently, ’roll backs’ that are detrimental tothe parallel efficiency can be re-
duced or avoided. However, even when playing such tricks, the scalability of parallel kMC
simulations for typical tasks is practically limited to four or eight parallel processors with
the currently available parallel algorithms.

4 From Molecular Dynamics to kMC: The Bottom-up Approach

So far, we have been considering model systems. In order to make the formalism developed
so far useful for chemistry or materials science, we need to describe how the relevant
processes and their rate constants can be determined in a sensible way for a certain system
or material. This implies bridging between the level of a molecular dynamics description,
where the system is described by the positions and momenta ofall particles, and the level
of symbolic dynamics characteristic of kMC. For a completely general case, this may be a
daunting task. For the special case of surface diffusion andepitaxial growth, it is typically
a complex, but manageable problem. On the atomistic level, the motion of an adatom on a
substrate is governed by the potential-energy surface (PES), which is the potential energy
experienced by the diffusing adatom

EPES(Xad, Yad) = min
Zad,{RI}

U(Xad, Yad, Zad, {RI}) . (20)

HereU(Xad, Yad, Zad, {RI}) is the potential energy of the atomic configuration specified
by the coordinates(Xad, Yad, Zad, {RI}). According to Eq. (20), the PES is the minimum
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of the potential energy with respect to both the adsorption height, denoted byZad, and
all coordinates of the substrate atoms, denoted by{RI}. The potential energyU can in
principle be calculated from any theory of the underlying microscopic physics. Presently,
calculations of the electronic structure using density functional theory (DFT) are the most
practical means of obtaining an accurate PES. Within DFT, the energyU in Eq. (20) is
referred to as the total energy (of the combined system of electrons and nuclei). The above
expression is valid at zero temperature. At realistic temperatures, the free energy should
be considered instead ofU . If we assume for the moment that the vibrational contributions
to the free energy do not change the topology of the PES significantly, the minima of the
PES represent the stable and metastable sites of the adatom.

Next, we need to distinguish between crystalline solids on the one hand, and amor-
phous solids or liquids on the other hand. For a crystalline substrate, one will frequently
(but not always) encounter the situation that the minima of the PES can be mapped in some
way onto (possibly a subset of) lattice sites. The lattice sites may fall into several different
classes, but it is crucial that all lattice sites belonging to one class are always connected in
the same way to neighbouring sites. Then the dynamics of the system can be considered
as a sequence of discrete transitions, starting and ending at lattice sites (lattice approxima-
tion). The sites belonging to one class all have the same number of connections, and each
connection, i.e. each possible transition, is associated with a rate constant. Methods for
amorphous materials going beyond this framework will be discussed later in Section 4.2.

Figure 5. Mapping of the diffusive Brownian motion of a particle on a substrate onto hopping between lattice
sites. The particle’s trajectory spends most of its time near the minima. In the blow-up of the small piece of the
trajectory that crosses a saddle point between two minima, the energy profile along the reaction path is shown.
Along the path, the saddle point appears as a maximum of the energy associated with the energy barrier∆E that
must be overcome by the hopping particle.

In surface diffusion, a widely used approximation for calculating the rate constants for
the transitions between lattice sites is the so-called Transition State Theory (TST). As this is
the ’workhorse’ of the field, we will describe it first. The more refined techniques presented
later can be divided into two classes: techniques allowing for additional complexity but
building on TST for the individual rates, and attempts to go beyond TST in the evaluation
of rate constants.
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4.1 Determining rate constants from microscopic physics

In order to go from a microscopic description (typical of a molecular dynamics simulation)
to a meso- or macroscopic description by kinetic theories, we start by dividing the phase
space of the system into a ’more important’ and a ’less important’ part. In the important
part, we’ll persist to follow the motion of individual degrees of freedom. One such degree
of freedom is the so-called ’reaction coordinate’ that connects the initial statex with a par-
ticular final statex′ (both minima of the PES) we are interested in. The reaction coordinate
may be a single atomic coordinate, a linear combination of atomic degrees of freedom,
or, most generally, even a curved path in configuration space. The degrees of freedom in
the ’less important’ part of the system are no more considered individually, but lumped
together in a ’heat bath’, a thermal ensemble characterisedby a temperature. In surface
diffusion, the mentioned division of the system into ’more important’ and ’less important’
parts could (but need not) coincide with the above distinction between the coordinates of
the adsorbate atom,(Xad, Yad, Zad), and the substrate atoms,{RI}. Here, as in most
cases, the distinction between the two parts is not unique; there is some arbitrariness, but
retaining a sufficiently large part whose dynamics is treated explicitly should yield results
that are independent of the exact way the division is made. Ofcourse, the two parts of the
system are still coupled: The motion along the reaction pathmay dissipate energy to the
heat bath, an effect that is usually described by a friction constantλ. Likewise, thermal
fluctuations in the heat bath give rise to a fluctuating force acting on the reaction coordi-
nate.d

Now we want to calculate the rate for the system to pass from the initial to the final
state, at a given temperature of the heat bath. For the case ofinterest, the two states are
separated by an energy barrier (or, at least, by a barrier in the free energy). For this reason,
the average waiting time for the transition is much longer than typical microscopic time
scales, e.g. the period of vibrational motion of a particle in a minimum of the potential.
In other words, the transition is an infrequent event; and trying to observe it in a molec-
ular dynamics simulation that treats the whole system wouldbe extremely cumbersome.
Therefore, we turn to rate theory to treat such rare events. Within the setting outlined so
far, there is still room for markedly different behaviour ofdifferent systems, depending
on the coupling between the system and the heat bath, expressed by the friction constant
λ, being ’strong’ or ’weak’. For a general discussion, the reader is referred to a review
article29. In the simplest case, if the value of the friction constant is within some upper and
lower bounds, one can show that the result for the rate is independent of the value ofλ.
This is the regime where Transition State Theory is valid30, 31. If the condition is met, one
can derive a form of the rate law

wi =
kBT

h
exp(−∆Fi/(kBT )) , (21)

for the ratewi of a molecular processi. Here,i is a shorthand notation for the pair of
statesx, x′, i.e., wi ≡ w(x′|x). In this expression,∆Fi is the difference in the free
energy between the maximum (saddle point) and the minimum (initial geometry) of the
potential-energy surface along the reaction path of the processi. T is the temperature,kB

dThe friction force and the fluctuations of the random thermalforce are interrelated, as required by the fluctuation-
dissipation theorem.
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the Boltzmann constant, andh the Planck constant. Somewhat oversimplifying, one can
understand the expression for the rate as consisting of two factors: The first factor describes
the inverse of the time it takes for a particle with thermal velocity to traverse the barrier
region. The second factor accounts for the (small) probability that a sufficient amount of
energy to overcome the barrier is present in the reaction coordinate, i.e., various portions
of energy usually scattered among the many degrees of freedom of the heat bath happen
by chance to be collected for a short moment in the motion along the reaction coordinate.
The probability for this (rather unlikely) distribution ofthe energy can be described by
the Boltzmann factor in Eq. (21). The assumptions for the applicability of TST imply
that the free energy barrier∆Fi should be considerably higher thankBT . Speaking in a
sloppy way, one could say that for such high barriers ’gathering the energy to overcome the
barrier’ and ’crossing the barrier’ are two independent things, reflected in the two factors
in the TST expression of the rate.

The free energy of activation∆Fi needed by the system to move from the initial posi-
tion to the saddle point may be expressed in two ways: Using the fact that the free energy
is the thermodynamic potential of the canonical ensemble,∆Fi may be expressed by the
ratio of partition functions,

∆Fi = kB log

(

Z
(0)
i

ZTS
i

)

. (22)

whereZ(0)
i is the partition function for them ’important’ degrees of freedom of the sys-

tem in its initial state, andZTS
i is the partition function for a system withm− 1 degrees of

freedom located at the transition state (saddle point). This partition function must be eval-
uated with the constraint that only motion in the hyperplaneperpendicular to the reaction
coordinate are permitted; hence the number of degrees of freedom is reduced by one.

Alternatively, one may use the decomposition

∆Fi = ∆Ei − T∆Svib
i . (23)

Here∆Ei is the difference of the internal energy (the (static) totalenergy and the vibra-
tional energy) of the system at the saddle point and at the minimum, and∆Svib

i is the
analogous difference in the vibrational entropy. The rate of the processi can be cast as
follows,

wi = w
(0)
i exp(−∆Ei/kBT ) , (24)

wherew(0)
i = (kBT/h) exp(∆Svib

i /kB) is called the attempt frequency.

The two basic quantities in Eq. (24),w(0)
i and∆Ei, can both be obtained from DFT

calculations. If we restrict ourselves to single-particlediffusion and neglect the contribu-
tion of thermal vibrational energy,∆Ei can be read off directly from the PES. To obtain
the value of the attempt frequency, one may perform molecular dynamics simulations of
the canonical ensemble, sampling the partition functionsZ

(0)
i andZTS

i . For a computa-
tionally simpler, but less accurate approach, one may expand the PES in a quadratic form
around the minimum and the saddle point. In this approximation, the partition functions
in Eq. (22), which then equal those of harmonic oscillators,may be evaluated analytically,
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and one arrives at the frequently used expression

w
(0)
i =

∏n
k=1 ω

(0)
k,i

∏n−1
k=1 ω

TS
k,i

. (25)

Hereω(0)
k,i andωTS

k,i are the frequencies of the normal modes at the initial minimum and at
the transition state of processi, respectively. Note that the attempt frequency, within the
harmonic approximation, is independent of temperature.

Finally, we will briefly comment on the validity of TST for processes in epitax-
ial growth. For surface diffusion of single adatoms, it has been shown for the case of
Cu/Cu(111) that TST with thermodynamic sampling of the partition functions gives good
results (i.e. in agreement with molecular dynamics simulations) for the temperature regime
of interest in epitaxial growth experiments. The harmonic approximation is less satisfac-
tory, but still yields the correct order of magnitude of the surface hopping rate32. For
systems with low energy barriers (< 3kBT ), or for collective diffusion processes, it is
generally difficult to judge the validity of TST. In the latter case, even locating all saddle
points that can be reached from a given initial state is a challenge. For this task, algorithms
that allow for locating saddle points without prior knowledge of the final state have been
developed. The ’dimer’ method33 is an example for such a method. It is well suited for
being used together with DFT calculations, as it requires only first (spatial) derivatives of
the PES, and is robust against numerical errors in the forces.

4.2 Accelerated molecular dynamics

In this Section, I’ll briefly introduce methods that are suitable if the lattice approximation
cannot be made, or if one needs to go beyond transition state theory. These methods em-
ploy some refinement of molecular dynamics that allows one tospeed up the simulations,
such that so-called ’rare’ events can be observed during therun-time of a simulation. In
this context, ’rare’ event means an event whose rate is much smaller than the frequencies
of vibrational modes. Keeping the TST estimate of rate constants in mind, any process
that requires to overcome a barrier of severalkBT is a ’rare’ event. Still it could take
place millions of times on an experimental time scale, say, within one second. Therefore
’rare’ events could be very relevant for example for simulations of epitaxial growth. Ref.46

provides a more detailed overview of this field.
Obviously, running simulations in parallel is one possibleway to access longer time

scales. In theparallel replica method34, one initiates several parallel simulations of the
canonical ensemble starting in the same initial minimum of the PES, and observes if the
system makes a transition to any other minimum. Each replicaruns independently and
evolves differently due to different fluctuating forces. From the abundances of various
transitions observed during the parallel run, one can estimate the rate constants of these
transitions, and give upper bounds for the rates of possibleother transitions that did not
occur during the finite runtime. The method is computationally very heavy, but has the
advantage of being unbiased towards any (possibly wrong) expectations how the relevant
processes may look like.

Another suggestion to speed up MD simulations goes under theterm hyperdynam-
ics35. The ’rare event problem’ is overcome by adding an artificialpotential to the PES that

68



retains the barrier region(s) but modifies the minima so as tomake them shallower. The
presence of such a ’boost potential’ will allow the particleto escape from the minimum
more quickly, and hence the processes of interest (transitions to other minima) can be ob-
served within a shorter MD run. The method can be justified rigorously for simulations
where one is interested in thermodynamic equilibrium properties (e.g., partition function):
The effect of the boost potential can be corrected for by introducing a time-dependent
weighting factor in the sampling of time averages. It has been suggested to extend this
approach beyond thermal equilibrium to kinetical simulations: While the trajectory passes
the barrier region unaffected by the boost potential, the simulation time corresponds di-
rectly to physical time. While the particle stays near a minimum of the PES, and thus
under the influence of the boost potential, its effect must becorrected by making the phys-
ical time to advance faster than the simulation time. Ways toconstruct the boost potential
in such a way that the method yields unchanged thermal averages of observables have
been devised35. However, it has been argued that the speed-up of a simulation of epitaxy
achievable with such a global boost potential is only modestif the system, as usually the
case, consists of many particles36. This restriction can be overcome by using a local boost
potential37, 38 rather than a global one. In this case it is assumed that the transitions to be
’boosted’ are essentially single-particle hops. This, of course, curtails one strength of ac-
celerated MD methods, namely being unbiased towards the (possibly wrong) expectations
of the users what processes should be the important ones. Also, it is important to note
that the procedure for undoing the effect of the boost potential relies on assumptions of
the same type as TST. Therefore hyperdynamics cannot be usedto calculate rate constants
more accurately than TST.

To be able to observe more transitions and thus obtain betterstatistics within the (pre-
cious) runtime of an MD simulation, people have come up with the simple idea of in-
creasing the simulation temperature. This approach is particularly attractive if one wants
to simulate a physical situation where the temperature is low, e.g. low-temperature epi-
taxial growth of metals. By running at an artificially raisedtemperature (For solids, the
melting temperature is an upper bound), a speed-up by several orders of magnitude may be
achieved. Of course, the physics at high and low temperatures is different, thus invalidating
a direct interpretation of the results obtained in this way.However, combining the idea of
increased temperature MD with the principles used in kMC simulations provides us with
a powerful tool. It comes under the name oftemperature-accelerated MD39, abbreviated
as TAD: First, a bunch of MD simulations is performed, starting from the same initial state
(as in the parallel replica method), at a temperatureThigh higher than the physical temper-
ature. The transitions observed during these runs are used for estimating their individual
rates and for building up a process list. At this stage, TST inthe harmonic approximation
is used to ’downscale’ the rate constants from their high-temperature value obtained from
the MD simulation to their actual value at the lower physicaltemperatureTlow. If a process
is associated with an energy barrier∆Ei, its rate constant should be scaled with a factor
exp(∆Ei(T

−1
high−T−1

low)/kB). Having sampled many MD trajectories, it is also possible to
provide an upper bound for the probability that some possibly relevant transition has not
yet occurred in the available set of trajectories. In other words, in TAD simulations some
kind of ’safe-guarding’ can be applied not to overlook possibly important transitions. After
sufficiently many trajectories have been run, a pre-defined confidence level is reached that
the transitions observed so far are representative for the physical behaviour of the system in
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the given initial state, and can be used as a process list. Next, a kMC step is performed by
selecting randomly one of the processes with probability proportional to the (scaled) rates
in the process list. Then the selected process is executed, and the system’s configuration
changes to a new minimum. The loop is closed by going back to the first step and perform-
ing MD simulations for the system starting from this new minimum, and attempting new
transitions from there.

Some more comments may be helpful. First, we note that the scaling factor used for
downscaling the rates is different for different processes. Thus, the method accounts for
the fact that the relative importance of high-barrier processes and low-barrier processes
must be different at high and low temperatures, respectively. This requirement of a phys-
ically meaningful kinetical simulation would be violated by just naively running MD at a
higher temperature without applying any corrections, but TAD passes this important test.
Secondly, TAD may even provide us with information that goesbeyond TST. For instance,
if collective diffusion processes play a role, the relativeabundance with which they were
encountered in the MD runs gives us a direct estimate of the associated attempt frequency,
without having to invoke the (sometimes questionable) approximations of TST.e Third,
one can gain in computational efficiency by using the same ideas as in kMC: The process
list need not be build from scratch each time, but only those entries that changed since the
last step need to be updated.

Using this strategy, TAD has been applied to simulations of epitaxy40. In this context,
it should be noted that the need for starting MD simulations in each simulation step can be
reduced further: As mentioned above, kMC is based on the ideathat the local environment
of a particle, and thus the processes accessible for this particle, can be classified. Once
the TAD simulations have established the rates for all processes of a certain environmental
class (e.g. terrace diffusion), these rates can be re-used for all particles in this class (e.g.,
all single adatoms on a terrace). This reduces the computational workload considerably.

Finally, we mention that TAD has recently been combined withparallel kMC simula-
tions using the semi-rigorous synchronous sublattice algorithm41.

5 Tackling with Complexity

In the early literature of the field, kMC simulations are typically considered as a tool to
rationalize experimental findings. In this approach, one works with models that are as
simple as possible, i.e., comprise as few process types as possible, while still allowing for
reproducing the experimental data. The rates of these processes are then often treated as
parameters whose values are adjusted to fit the data. The aim is to find a description of the
experimental observations with a minimum number of parameters.

More recently, the focus has shifted to kMC simulations being perceived as a scale-
bridging simulation technique that enables researchers todescribe a specific material or
materials treatment as accurately as desired. The goal is toperform kMC simulations where
all relevantmicroscopic processes are considered, aiming at simulations with predictive
power. This could mean that all distinct processes derived from a given Hamiltonian,
e.g. an SOS model, should be included. However, for predictive simulations, a model

eThe assumption that TST can be used for downscaling is a milder one than assuming the applicability of TST
for the attempt frequency as such.
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Hamiltonian is often an already too narrow basis. The ultimate benchmark are (possibly
accelerated) MD simulations that allow for an unbiased assessment which processes are
relevant for a specific material, and then to match the kMC simulations to these findings.

Figure 6. Illustration of the local environments of a hopping particle (white circle, in its initial (full line) and
final (dashed line) state) in a model with nearest-neighbor interactions. The classification may depend on the
occupation of the sites adjacent to the initial or the final state. A particular occupation is indicated by the grey
circles. Since each of the ten relevant sites may be either occupied or empty, there can be up to210 environment
classes.

As explained in the preceding Section, the efficiency of kMC simulations rests on a
classification scheme for the local environments a particleencounters during the course of
a simulation: Wherever and whenever the particle is in the ’same’ environment, the same
process types and rate constants will be re-used over and over again. However, the number
of different process types to be considered may be rather big. For example, even for the
simple SOS model, the complete process list could have up to210 entries42 (as explained
below). This raises the issue of complexity: Apart from approximations for calculating
rate constants (such as TST), a kMC simulation may be more or less realistic depending
on whether the classification of local environments and processes is very fine-grained, or
whether a more coarse classification scheme is used.

On one end of the complexity scale, we find kMC simulations that do not rely on a
pre-defined process list. Instead, the accessible processes are re-determined after each
step, i.e., the process list is generated ’on the fly’ while the simulation proceeds. This
can be done for instance by temperature-accelerated molecular dynamics (see preceding
Section). If one is willing to accept TST as a valid approximation for the calculation of rate
constants, molecular dynamics is not necessarily required; instead, it is computationally
more efficient to perform asaddle point search, using a modified dynamics for climbing
’up-hill’ from a local minimum. An example for a saddle pointsearch algorithm that uses
such ’up-hill climbing’ is the ’dimer’ method36. The overall design of the kMC algorithm
employing the ’search on the fly’ is similar to TAD: Starting from an initial state, one
initiates a bunch of saddle point searches. For each saddle point encountered, TST is used
to calculate the associated rate constant. If repeated searches find the known saddle points
again and again with a similar relative frequency, one can beconfident that the transitions
found so far make up the complete process list for this particular initial state. Next, a kMC
step is carried out, leading to a new configuration; the saddle point search is continued
from there, etc.

List-free kMC has been used to study metal epitaxy. For aluminum, for instance, these
studies have revealed the importance of collective motion of groups of atoms for the surface
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mass transport43. We note that the lattice approximation is not essential forthis approach.
Thus, it could even be applied to investigate kinetics in amorphous systems. While the
saddle point search is considerably faster than MD, the method is, however, still orders of
magnitude more expensive than list-directed kMC, in particular if used in conjunction with
DFT to obtain the potential energy surface and the forces that enter the saddle point search.

The above method becomes computationally more affordable if the lattice approxima-
tion is imposed. The constraint that particles must sit on lattice sites reduces the possibility
of collective motions, and thus invoking the lattice approximation makes the method less
general. On the other hand, using a lattice makes it easier tore-use rate constants calculated
previously for processes taking place in the ’same’ local environment. A variant of kMC
called ’self-learning’44, 45also belongs into this context: Here, one starts with a pre-defined
process list, but the algorithm is equipped with the abilityto add new processes to this
list if it encounters during the simulation a local environment for which no processes have
been defined so far. In this case, additional saddle point searches have to be performed in
order to obtain the rate constants to be added to the list.

At a lower level of complexity, we find kMC simulations that employ, in addition to the
lattice approximation, a finite-range model for the interactions between particles. For the
local minima of the PES, this implies that the depths of the minima can be described by a
lattice Hamiltonian. For each minimum, there is an on-site energy term. If adjacent sites
are occupied, the energy will be modified by pair interactions, triple interactions, etc. In
materials science, this way of representing an observable in terms of the local environments
of the atoms is called cluster expansion method (see the contribution by S. Müller in this
book).

The usage of a lattice Hamiltonian or cluster expansion is inprinciple an attractive tool
for tackling with the complexity in a kMC simulation of crystalline materials. However,
for calculating rate constants, we need (in TST) the energydifferencesbetween the transi-
tion state and the initial minimum the particle is sitting in. This complicates the situation
considerably. To discuss the issue, let’s assume that the interactions between particles are
limited to nearest neighbors. Then, both the initial state and the final state of the particle
can be characterized completely by specifying which of their neighbors are occupied. On
a 2D square lattice, a particle moving from one site to a (free) neighboring site has a shell
of ten adjacent sites that could be either occupied or free (see Fig. 6). Thus, the move is
completely specified (within the nearest-neighbor model) by one out of210 possible local
environments42. f One way to specify the input for a kMC simulation is to specifya rate
constant for each of these210 process types. This is in principle possible if an automated
algorithm is used to determine the energy barrier and attempt frequency for each case. For
practical purposes, one may specify only a selected subset of the 210 rate constants, and
assume that the rest takes on one of these specified values. This is equivalent to assuming
that, at least for some environments, the occupation of someof the ten sites doesn’t matter.
This approach has been used by the author to describe the rateconstants for epitaxy on a
semiconductor surface, GaAs(001)20. A process list with about 30 entries was employed
to describe the most relevant process types.

Another way of tackling with the complexity is the assumption that∆E does not de-
pend on the occupation of sites, but only on theenergiesof the initial and final minima. The

fTo be precise, the actual number is somewhat smaller due to symmetry considerations.
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technical advantage of this approach lies in the fact that the energies of the minima may be
represented via a lattice Hamiltonian (or, equivalently, by the cluster expansion method).
Thus, these energies can be retrieved easily from the cluster expansion. However, there is
no rigorous foundation for such an assumption, and its application could introduce uncon-
trolled approximations. For a pair of initial and final states, i = (ini, fin), one could, for
example, assume that∆E = ∆E0 + 1

2 (Efin −Eini). This assumption has been employed
for diffusion of Ag adatoms on the Ag(111) surface in the presence of interactions22, and
test calculations using DFT for selected configurations of adatoms have confirmed its va-
lidity. Note that the dependence on the sum of the initial andfinal state energy assures that
the forward and backward rate fulfill detailed balance, Eq. (17), as required for a physically
meaningful simulation.

In a large part of the literature on kMC, an even simpler assumption is made, and the
rate constants are assumed to depend on the energy of the initial state only. In other word,
the transition states forall processes are assumed to be at the same absolute energy. This
assumption facilitates the simulations, but clearly is notvery realistic. At this point, we
have reached the opposite end on the scale of complexity, where the goal is no longer a
realistic modeling of materials, but a compact descriptionof experimental trends.

I would like to conclude this Section with a word of caution: In epitaxial growth,
fine details of the molecular processes may have drastic consequences on the results of
the simulations. Often, the details that make a difference are beyond the description by a
lattice Hamiltonian. One example is the mass transport between adjacent terraces by par-
ticles hopping across a surface step. In many metals, the energy barrier for this process is
somewhat higher than the barrier for conventional hopping diffusion on the terraces. This
so-called Schwöbel-Ehrlich effect is crucial for the smoothness or roughness of epitaxi-
ally grown films, but is not accounted for by the SOS model. Thus, the rate for hopping
across steps needs to be added ’by hand’ to the process list ofthe SOS model to obtain
sensible simulation results. Another example concerns theshape of epitaxial islands on
close-packed metal surfaces, for instance Al(111) and Pt(111). Here, either triangular or
hexagonal islands can be observed, depending on the temperature at which an experiment
of epitaxial growth is carried out. A detailed analysis shows that the occurrence of triangu-
lar islands is governed by the process of corner diffusion: An atom sitting at the corner of
a hexagonal island, having an island atom as its only neighbor, has different probabilities
for hopping to either of the two island edges10, 11. For this reason, there is a tendency to fill
up one particular edge of a hexagonal island, and the island gradually evolves to a triangu-
lar shape. Only at higher temperatures, the difference between the two rates becomes less
pronounced, and the hexagonal equilibrium shape of the islands evolves. Only with the
help of DFT calculations it has been possible to detect the difference of the energy barriers
for the two processes of corner diffusion. Simplified modelsbased on neighbor counting,
however, cannot detect such subtle differences, in particular if only the initial state is taken
into account. Therefore, kinetic Monte Carlo studies addressing morphological evolution
should always be preceded by careful investigations of the relevant microscopic processes
using high-level methods such as DFT for calculating the potential energy profiles.
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6 Summary

With this tutorial I intended to familiarise the readers with the various tools to carry out
scale-bridging simulations. These tools range from accelerated molecular dynamics sim-
ulations that extend the idea of Car-Parrinello molecular dynamics to longer time scales,
to abstract models such as the lattice-gas Hamiltonian. Thescientist interested in applying
one of these tools should decide whether she/he wants to trust her/his intuition and start
from an educated guess of a suitable kinetic model, such as SOS or similar. Else, she/he
may prefer to ’play it safe’, i.e. avoid as much as possible the risk of overlooking rare, but
possibly important events. In the latter case, kMC simulations in combination with saddle
point searches (that build up the rate list ’on the fly’) are a good choice. However, this
methods could be computationally too expensive if slow changes in a system very close
to equilibrium should be studied, or if vastly different processes play a role whose rates
span several orders of magnitude. In this case, considerations of numerical efficiency may
demand from the user to make a pre-selection of processes that will be important for the
evolution of the system towards the non-equilibrium structures one is interested in. Us-
ing theN -fold way kinetic Monte Carlo algorithm with a pre-defined list of process types
could be a viable solution for these requirements. In summary, Monte Carlo methods al-
low one to go in either direction, to be as accurate as desired(by including sufficiently
many many details in the simulation), or to find a descriptionof nature that is as simple as
possible.
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Hartree-Fock theory is the conceptually most basic electronic structure method and also the
starting point for almost all wavefunction based correlation methods. Technically, the Hartree-
Fock self-consistent field method is often also the startingpoint for the development of molec-
ular Kohn-Sham density functional theory codes. We will briefly review the main concepts
of Hartree-Fock theory and modern implementations of the Rothaan-Hall self-consistent field
equations with emphasis on the techniques used to make theseapproaches applicable to large
systems. The second part of the chapter will focus on wavefunction based correlation methods
for large molecules, in particular second order Møller-Plesset perturbation theory (MP2) and,
for calculations on excited states, the approximate coupled-cluster singles-and-doubles method
CC2, both treating the electron-electron interaction correct through second order. It is shown
how the computational costs (CPU time and storage requirements) can be reduced for these
methods by orders of magnitudes using the resolution-of-the-identity approximation for elec-
tron repulsion integrals. The demands for the auxiliary basis sets are discussed and it shown
how these approaches can parallelized for distributed memory architectures. Finally a few pro-
totypical applications are reviewed.

1 Introduction

Today, essentially all efficient electronic structure methods are based on the Born-
Oppenheimer approximation and molecular orbital theory. The Hartree-Fock method com-
bines these two concepts with the variation principle and the simplest possible wave func-
tion ansatz obeying the Pauli exclusion principle: a Slaterdeterminant or, for open-shell
systems in restricted Hartree-Fock theory, a configurationstate function. In spite of the
fact that Hartree-Fock is since decades a matured quantum-chemical method, its imple-
mentation for large scale application is still today an active field of research. The reason
for this is not that there is a large interest in the results from the Hartree-Fock calculations
themselves. The driving force behind these developments are today the technical similar-
ity between Hartree-Fock (HF) theory and Kohn-Sham densityfunctional theory (DFT),
in particular if hybrid functionals are used, and the fact that Hartree-Fock calculations are
the starting point for almost all wavefunction based correlation methods. The challenge for
HF and DFT implementations is today an efficient prescreening of the numerical important
contributions and the storage of sparse matrices in large scale parallel calculations.

During the last decade also many wavefunction based correlation methods have been
proposed for applications on extended molecular systems. Most of them are based on the
so-called local correlation approach1–9, and/or on an extensive screening of small but of-
ten long ranging contributions to the correlation energy4, 10, 11. Some approaches introduce
empirical parameters or rely on a balance between certain contributions which in prac-
tice might or might not be given12–15. For most of these approaches it is not yet clear to
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which extend they can be developed in the near future into competitive methods for ex-
tended systems. In particular, if the reduction of the computational costs (compared to
more traditional implementations of quantum chemical methods) relies on a screening in
the atomic orbital (AO) basis set, calculations on extendedsystems are often only possible
with rather small basis sets which cannot supply the accuracy expected from a correlated
ab initio method.a Even though usually only explored for electronic ground states, most
of these approaches could in principle also be generalized to excited states. But for larger
molecules, calculations for excited states employ often so-called response methods and the
parameterization of the excited state used in these methodshampers the application of the
local correlation and related approaches.16–18

We will in the following not go into the details of these approaches, but restrict our-
self to discussion of to the underlying electronic structure methods, which are usually
single-reference coupled-cluster (CC) and, in particular, for larger systems Møller-Plesset
perturbation theory through second order (MP2) or related methods for excited states. The
implementation of the latter methods has during the last decade improved dramatically by
combining them with the so-called resolution-of-the-identity (RI) approximation for the
four-index electron repulsion integrals (ERIs) with optimized auxiliary basis sets. Even
without any further approximations are these methods todayapplicable to systems with up
to 100 or more atoms. Since the RI approximation depends little on the electronic structure
of the investigated system it does not diminish the applicability of the underlying electronic
structure methods. It is also compatible and can be combinedwith the above mentioned
screening based approaches to reduce further the computational costs.19, 20 Thus, it can be
expected that these two aspects, the treatment of the electron correlation through second
order and the RI approximation for ERIs will remain important ingredients also in future
correlated wavefunction based methods for extended systems.

In the following the theory of wavefunction based ab initio methods that treat the
electron-electron interaction correctly through second order is briefly reviewed. The em-
phasis will be on methods for excited states which can be related to the approximate
coupled-cluster singles-and-doubles model CC2, an approximation to the coupled-cluster
singles-and-doubles method (CCSD). In Sec. 7 it is shown howthe computational costs
for these methods can be reduced drastically by using the RI approximation and disc space
bottlenecks for these methods can be resolved by an doubles amplitudes-direct implemen-
tation. A recent parallel implementation for distributed memory architectures is presented
in Sec. 8 and some example applications with RI-MP2 and RI-CC2 are reviewed in Secs.
9 and 10.

2 The Born-Oppenheimer Approximation and the Electronic
Schrödinger Equation

An important simplification in the quantum mechanical description of molecules, which
is ubiquitously applied in electronic structure calculations is the Born-Oppenheimer (BO)
approximation which leads to a separation of the electronicfrom the nuclear degrees of

aHere and in the following we use “ab initio” for electronic structure methods which are systematically improv-
able in the sense that they are members of a hierarchy which converges to the exact solution of the electronic
Schrödinger equations, i.e. the full configuration interaction (Full CI) limit.
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freedom. In the BO approximation the total Hamiltonian of molecular system is split in
the operator for the kinetic energŷTnuc of the nuclei and the remaining contributions which
are put into an electronic Hamiltonian̂Hel.

Ĥtot = T̂nuc + Ĥel (1)

In the non-relativistic case we have

T̂nuc = −
∑

A

1

2MA
∇̂2

A (2)

and the electronic Hamiltonian can be written in atomic units as

Ĥel(r,R) = −
∑

i

1

2
∇̂2

i −
∑

i,A

ZA

|RA − ri|
+
∑

i<j

1

|ri − rj |
+
∑

A<B

ZAZB

|RA −RB|
, (3)

where∇̂A and∇̂i are the gradients with respect to the coordinates of nucleusA and elec-
tron i, respectively,RA andri, andZA the charge of nucleusA.

The total wavefunction is approximated as product of an electronic and a nuclear wave-
function

Ψtot(r,R) ≈ Ψel(r,R)Ψnuc(R) . (4)

where the electronic wavefunction is determined as eigenfunction of the electronic Hamil-
tonian

Ĥel(r,R)Ψel(r,R) = Eel(R)Ψel(r,R) , (5)

and the nuclear wavefunction as solution of a nuclear Schrödinger equation
(

T̂nuc + Eel(R)
)

Ψnuc(r,R) = EtotΨnuc(r,R) , (6)

in which the eigenvalues of the electronic Hamiltonian,Eel(R), appear as potential for the
nuclear motion. It is therefore that we speak ofEel(R) as potential energy surfaces. Our
understanding of molecular structures as equilibrium positions on potential energy surfaces
are implicit results of the Born-Oppenheimer approximation.

One may ask, what are the errors of the BO approximation? Beside the simplified
wavefunction ansatz, Eq. (4), one neglects the so-called non-adiabatic coupling elementsb:

A(A)(~R) =

∫

Ψel(r,R)∗
(

∇̂AΨel(r,R)
)

dr (7)

B(A)(~R) =

∫

Ψel(r,R)∗
(

∇̂2
AΨel(r,R)

)

dr (8)

There appear if the total Hamiltonian is applied toΨtot,

ĤtotΨtot = ĤelΨel(r,R)Ψnuc(R) + Ψel(r,R)T̂nucΨnuc(R) (9)

−
∑

A

1

2MA

{

2
(

∇̂AΨel(r,R
)

·
(

∇̂AΨnuc(R)
)

+
(

∇̂2
AΨel(r,R

)

Ψnuc(R)
}

= EtotΨtot ,

bNote thatA(A)(~R) is a three-dimensional vector in the coordinate space of nucleusA, while B(A)(~R) is
scalar.
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after integration over the electronic degrees of freedom:

ĤtotΨnuc =
(

T̂nuc + Eel(~R)
)

Ψnuc (10)

−
∑

A

1

2MA

{

2A(A)(R) · ∇̂A +B(A)(R)
}

Ψnuc = EtotΨnuc

The nuclear Schrödinger equation in Eq. (6) is obtained by neglecting in the last equation
the non-adiabatic coupling elementsA(A)(R) andB(A)(R). The errors introduced by
the Born-Oppenheimer approximation are typically in the order of 0.1 kJ/mol and for the
majority of applications today completely negligible compared to other errors made in the
solution of the electronic and nuclear Schrödinger equations, Eqs. (5) and (6).

3 Slater Determinants

The Pauli principle requires that the electronic wavefunction Ψel is antisymmetric under
any permutation of two electronsi andj,

P̂ijΨel(r1, . . . , ri, . . . , rj , . . .) = Ψel(r1, . . . , rj , . . . , ri, . . .) (11)

= −Ψel(r1, . . . , ri, . . . , rj , . . .) .

The simplest ansatz fulfilling this condition are Slater determinants, antisymmetrized prod-
ucts of one-electron wavefunctions (orbitals):

ΨSD = 1√
n
Âψ1(r1) . . . ψn(rn) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

ψ1(r1) ψ1(r2) . . . ψ1(rn)
ψ2(r1) ψ2(r2) . . . ψ2(rn)

...
...

. . .
...

ψn(r1) ψn(r2) . . . ψn(rn)

∣
∣
∣
∣
∣
∣
∣
∣
∣

(12)

The non-symmetrized orbital products are also known as Hartree products and will in the
following be denoted byΘ.

ΨSD = 1√
n
ÂΘ with Θ(r1, . . . , rn) = ψ1(r1) . . . ψn(rn) (13)

The antisymmetrizer̂A is defined as

Â =

n!∑

m=1

sign(Pm)P̂m (14)

whereP̂m is an operator which performs one of then! possible permutations of then
electrons andsign(Pm) the parity of this permutation. The group permutation opera-
tors has the property that if the whole set of alln! possible permutations ofn elements
{P̂1, P̂2, . . . , P̂n!} is multiplied with some permutation̂Pk the same set of operators is
recovered, just in a different orderc:

{P̂kP̂1, P̂kP̂2, . . . , P̂kP̂n!} = {P̂1, P̂2, . . . , P̂n!} . (15)

Furthermore, the permutation operatorsP̂m are unitary

P̂ †
m = P̂−1

m (16)

cThis relation is in group theory known as rearrangement theorem.
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whereP̂−1
m is the operator which performs the inverse permutation which has the same

parity asPm, i.e.sign(Pm) = sign(P−1
m ) and

{P̂−1
1 , P̂−1

2 , . . . , P̂−1
n! } = {P̂1, P̂2, . . . , P̂n!} . (17)

From these relations it follows that the antisymmetrizerÂ is an hermitian operator

Â† =
∑

m

sign(Pm)P̂ †
m =

∑

m

sign(P−1
m )P̂−1

m = Â , (18)

and

Â2 = n!Â . (19)

Both relations are useful for evaluating matrix elements (integrals) for slater determinants.
In the following we skip for convenience the indexel for the electronic Hamiltonian and
write it as

Ĥ = Enuc +
∑

i

ĥi +
∑

i<j

1

rij
(20)

with the nuclear repulsion energy and the one-electron hamiltonian defined as

Enuc =
∑

A<B

ZAZB

|RA −RB|
, (21)

and

ĥi = −1

2
∇̂2

i −
∑

A

ZA

|RA − ri|
, (22)

and the interelectronic distancesrij = |ri − rj |. Note that, because the summations are
over all electrons or electron pairs, the antisymmetrizerÂ commutes separately with the
one- and two-electron contributions to the HamiltonianĤ :

∑

i

ĥiÂ = Â
∑

i

ĥi and
∑

i<j

1

rij
Â = Â

∑

i<j

1

rij
(23)

For operators of this form we can rewrite the matrix elementsfor Slater determinants as
〈
ΨSD,I

∣
∣Ô|ΨSD,J

〉
=
〈

1√
n!
ÂΘI

∣
∣Ô
∣
∣ 1√

n!
ÂΘJ

〉
= 1

n!

〈
ÂΘI

∣
∣ÂÔ

∣
∣ΘJ

〉
(24)

= 1
n!

〈
Â2ΘI

∣
∣Ô
∣
∣ΘJ

〉
=
〈
ÂΘI

∣
∣Ô
∣
∣ΘJ

〉

The results have, however, only a simple form if the orbitalsψi are orthogonal to each
other. We will therefore in the following without loss of generality assume thatΘI andΘJ

are build from a common set of orthonormal orbitals

〈ψi|ψj〉 = δij (25)

and that the orbitals are ordered in the Hartree products according to increasing indices:

ΘI = ψI1 (r1)ψI2 (r2) . . . ψIn
(rn) with I1 < I2 < . . . < In (26)
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Overlap integrals then become

〈
ÂΘI

∣
∣ΘJ

〉
=

n!∑

m=1

sign(Pm)

n∏

k=1

〈ψIPm(k)
|ψJk
〉 =

n!∑

m=1

sign(Pm)

n∏

k=1

δIPm(k),Jk
(27)

wherePm(k) is the result at positionk after applying the permutationPm because of Eq.
(26) only the identity permutation can contribute to the result which is nonzero only if in
both Hartree products exactly the same orbitals are occupied. We thus find that

〈
ΨSD,I

∣
∣ΨSD,J

〉
=
〈
ÂΘI

∣
∣ΘJ

〉
= δI,J (28)

Similarly, one obtains for the matrix elements of one-electron operators:

〈
ÂΘI

∣
∣
∑

i

ĥi

∣
∣ΘJ

〉
=

n!∑

m=1

sign(Pm)

n∑

i=1

〈ψIPm(i)
|ĥi|ψJi

〉
n∏

k=1
k 6=i

〈ψIPm(k)
|ψJk
〉 . (29)

For an orthonormal orbital basis the matrix elements between two Slater determinants thus
become:

〈
ΨSD,I

∣
∣
∑

i

ĥi

∣
∣ΨSD,J

〉
=







n∑

k=1

〈ψIk
|ĥk|ψIk

〉 for I = J

〈ψk|ĥ|ψl〉 if ΨSD,I ,ΨSD,J differ only in ψk, ψl

0 otherwise
(30)

Nonvanishing matrix elements are obtained if the two Slaterdeterminants are identical or
differ at most in one orbital. The matrix elements for the two-electron operators become:

〈
ΨSD,I

∣
∣
∑

i<j

1
rij

∣
∣ΨSD,J

〉
=
〈
ÂΘI

∣
∣
∑

i<j

1
rij

∣
∣ΘJ

〉
(31)

=

n!∑

m=1

sign(Pm)

n∑

i<j

〈ψIPm(i)
ψIPm(j)

| 1
rij
|ψJi

ψJj
〉

×
n∏

k=1
k 6=i,j

〈ψIPm(k)
|ψJk
〉 ,

which reduces for orthonormal orbitals to:

〈
ΨSD,I

∣
∣
∑

i<j

1
rij

∣
∣ΨSD,J

〉
=







n∑

k<l

〈ψIk
ψIl
||ψIk

ψIl
〉 for I = J

∑

m

〈ψkψIm
||ψlψIm

〉 if ΨSD,I ,ΨSD,J differ
only inψk, ψl

〈ψiψj ||ψkψl〉
if ΨSD,I ,ΨSD,J differ
in ψi, ψk andψj , ψm

0 otherwise

(32)
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For two-electron operators non-vanishing matrix elementsare obtained for Slater determi-
nants which differ in up to two orbitals. The antisymmetrized integrals introduced on right
side of Eq. (32) are defined as:

〈ψiψj ||ψkψl〉 = (ψiψk|ψjψl)− (ψiψl|ψjψk) , (33)

with the two-electron integrals in the Mulliken notation given by

(ψiψj |ψkψl) =

∫

R3

∫

R3

ψ∗
i (r1)ψj(r1)

1

r12
ψ∗

k(r2)ψ
∗
l (r2) dr1 dr2 . (34)

The expectation value of the total electronic Hamiltonian for a Slater determinant with the
orthonormal occupied orbitalsψ1, . . . , ψn is thus given by:

〈
ΨSD

∣
∣Ĥ
∣
∣ΨSD

〉
= Enuc +

∑

i

〈
ψi

∣
∣ĥ
∣
∣ψi

〉
+

1

2

∑

ij

〈
ψiψj

∣
∣
∣
∣ψiψj

〉
. (35)

4 Hartree-Fock Theory and the Roothaan-Hall Equations

The basic idea behind Hartree-Fock theory is to take the simplest meaningful ansatz for
the electronic wavefunction, a Slater determinant, and to determine the occupied orbitals
by the variation principle, i.e. such that energy expectation value is minimized. For general
molecular or extended systems this scheme is usually combined with a basis set expansion
of the molecular orbitals.

ψi(1) =

N∑

ν=1

χν(r1)Cνi ·
{

α(1)

β(1)
, (36)

where{χν} is a basis set withN spatial functions andα undβ are spin function for, re-
spectively, the “spin up” and “spin down” states. For extended systems often plane wave
basis sets is used, but for molecular systems local atom centered basis sets (linear combi-
nation of atomic orbitals, LCAO) are more common.

To minimize the Hartree-Fock energy with respect to the MO coefficientscνi under the
constraint that theψi are orthonormal we introduce the Lagrange function,

LHF = Enuc +
∑

i

〈
i
∣
∣ĥ
∣
∣i
〉

+
1

2

∑

ij

〈
ij
∣
∣
∣
∣ij
〉

+
∑

ij

ǫji

(
δij −

〈
i
∣
∣j
〉)
. (37)

Here and in the following we skip for notational conveniencethe functionsψ andχ in the
brackets and give only there indices with the convention that i, j, . . . denote occupied MOs
and greek indices AOs. The Lagrange functionLHF is now required to be stationary with
respect to arbitrary variations of the MO coefficientsd:

dLHF

dC∗
νi

=
〈
ν
∣
∣ĥ
∣
∣i
〉

+
∑

k

〈
νk
∣
∣
∣
∣ik
〉
−
∑

j

ǫji

〈
ν
∣
∣j
〉

= 0 . (38)

dRequiring the derivativesdLHF/dCνi to vanish leads to equivalent complex conjugated equations.

83



We now introduce the Fock and overlap matrices in atomic orbital basis{χν} as:

Fµν =
〈
µ
∣
∣ĥ
∣
∣ν
〉

+
∑

k

〈
µk
∣
∣
∣
∣νk
〉

(39)

=
〈
µ
∣
∣ĥ
∣
∣ν
〉

+
∑

κλ

Dκλ

{(
µν
∣
∣κλ
)
−
(
µλ
∣
∣κν
)}

, (40)

and

Sµν =
〈
µ
∣
∣ν
〉
, (41)

with AO density matrixD defined as:

Dκλ =
∑

k

C∗
κkCλk . (42)

Note that the Hartree-Fock energy can be calculated from theFock and densities matrices
and the matrix of elements of the one-electron hamiltonianhµν = 〈µ|ĥ|ν〉 as

EHF =
1

2

∑

µν

Dµν

(

Fµν + hµν

)

. (43)

With these intermediates Eq. (38) can be rewritten in a compact matrix form:

FC = SCǫ . (44)

The last equation is known under the name “Roothaan-Hall equation”. Its meaning be-
comes more clear if it is transformed to an orthonormal basisset

χ̃µ =
∑

ν

χν [S−1/2]νµ with S−1/2S−1/2 = S−1 , (45)

where[S−1/2]µν denotesethe elementµ, ν of the matrixS−1/2. In this basis the Roothaan-
Hall equations become
∑

ν

F̃µνC̃νi =
∑

j

C̃µjǫji with F̃ = S−1/2FS−1/2 and C̃ = S1/2C . (46)

The result of the Fock matrix applied any occupied orbital isa linear combination of only
occupied orbitals. This condition determines the occupiedmolecular orbitals only up to a
unitary transformation of these orbitals among themselves, which leaves the Slater deter-
minant, i.e. the Hartree-Fock wavefunction, unchanged.

The so-called canonical orbitals are obtained by choosing this unitary transformation
such that the matrix with the lagrangian multipliersǫji becomes diagonal. Usually, the
equation is then augmented by a similar condition for the complementary space of un-
occupied or “virtual” orbitals. The Roothaan-Hall equations become then a generalized
nonlinear eigenvalue problem—nonlinear since the Fock matrix F depends through the
density matrixD on the solution of the equations. The standard algorithm to solve these
equations is the self-consistent field procedure which can be sketched as follows:

1. Initially a start density matrix is guessed (or constructed from some start orbitals, e.g.
from an extended Hückel calculation)

eNote that[S−1/2]µν 6= 1/
p

Sµν .
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2. The Fock matrixF and the total energy for the approximate density matrix are calcu-
lated using Eqs. (39) and (43).

3. The generalized eigenvalue problem Eq. (44) is solved to obtain a new set of MOs.

4. An improved density matrix is guessed from the present approximation for the MOs
and the previous density matrices using some convergence acceleration procedure.

5. If the total energy, the MOs and the density are converged (i.e. self-consistent) the
procedure is stopped, else one continuous with step 2.

The number of iterations needed to converge the self-consistent field procedure depends on
the molecular system (in particular its HOMO-LUMO gap), thequality of the start guess
and a lot on the method used to update the density matrix in step 4. A common choice is
the direct inversion of iterative subspaced (DIIS) technique of Pulay21, 22.

5 Direct SCF, Integral Screening and Integral Approximations

Apart from the technique used to solve the Roothaan-Hall equations, i.e. to update the
density matrix, a second technically demanding aspect is the construction of the Fock
matrix. A naive implementation of Eq. (39) would require thecalculation of≈ 1

8N
4 two-

electron integral, whereN is the dimension of our basis set in Eq. (36). To achieve a
useful accuracy, typically 10–30 basis functions are needed per atom. For many systems
of interest in computational chemistry today with 100 and more atoms the number of two-
electron integrals will even today exceed standard disc space capacities. Furthermore, a
brute force summation over all integrals would be unnecessary costly in terms of CPU
time: for local atom-center basis sets many of the two-electron integrals and, depending on
the HOMO-LUMO gap, also of the density matrix are numerically negligible; in extended
systems the number of numerically significant two-electroncoulomb integrals will only
grow withO(N 2), whereN is a measure of the system size. A solution to these problems
is offered by the integral-direct SCF scheme in combinationwith integral prescreening:

• The two-electron integrals are not stored once on stored on file, but instead
(re)calculated when needed and immediately contracted with the elements of the den-
sity matrix to increments of the Fock matrix. By exploiting the eightfold permuta-
tional symmetry

(µν|κλ) = (νµ|κλ) = (µν|λκ) = (νµ|λκ) = (47)

(κλ|µν) = (κλ|νµ) = (λκ|µν) = (λκ|νµ) (48)

of the two-electron integrals, one can restrict the loop over the AO indices toµ < ν,
andκ < λ with (µ, ν) < (κ, λ) and add for each two-electron integral the following
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6 increments to the Fock matrix:

Fµν ← Fµν + 2Dκλ(µν|κλ) (49)

Fκλ ← Fκλ + 2Dµν(µν|κλ) (50)

Fµλ ← Fµλ −Dνκ(µν|κλ) (51)

Fνλ ← Fνλ −Dµκ(µν|κλ) (52)

Fµκ ← Fµκ −Dνλ(µν|κλ) (53)

Fνκ ← Fνκ −Dµλ(µν|κλ) (54)

(Where we assumed for simplicity that all four AO indices aredifferent, else the
redundant increments have to be skipped.)

• To estimate whether a specific integral might be large enoughto make a significant
contribution to the Fock matrix one exploits e.g. the Schwarz conditionf:

|(µν|κλ)| ≤ QµνQκλ with Qµν =
√

(µν|µν) . (55)

For a given index quadruple the integral(µν|κλ) needs only to be calculated if

QµνQκλDmax ≥ τ (56)

where

Dmax = max{2|Dµν|, 2|Dκλ|, |Dνκ|, |Dµκ|, |Dνλ|, |Dµλ|} , (57)

andτ is a user-defined threshold that determines the numerical accuracy of the calcu-
lation. Only if the inequality is fulfilled any of the contributions to the Fock matrix in
Eqs. (49) – (54) can become larger than the thresholdτ . This technique is today stan-
dard in essentially all direct Hartree-Fock codes and also in molecular DFT codes for
so-called Hybrid functional with an Hartree-Fock-like “exact exchange” contribution.

For large systems the integral-screening reduces the computational costs for the Fock ma-
trix construction fromO(N 4) to O(N 2). If we split the two-electron part of the Fock
matrix into separate Coulomb and exchange contributions,

Fµν = hµν + Jµν −Kµν , (58)

with

Jµν =
∑

κλ

Dκλ(µν|κλ) , and Kµν =
∑

κλ

Dκλ(µλ|κν) , (59)

the remainingO(N 2) scaling is caused by the Coulomb contribution while for the ex-
change part the integral screening reduces the number of requires contributions asymptot-
ically toO(N ) if the HOMO-LUMO gap does not vanish and the density matrix becomes
sparse. This becomes more clear if the parameterDmax for the Coulomb and exchange
contributions to the Fock matrix are calculated separately:

Coulomb: Dmax,C = max{2|Dµν|, 2|Dκλ|} (60)

exchange: Dmax,X = max{|Dνκ|, |Dµκ|, |Dνλ|, |Dµλ|} (61)

fThe Schwarz condition for two-electron integrals is a special case of a Cauchy-Schwarz inequality for scalar
products in vector space:|〈x, y〉| ≤ ||x|| · ||y|| with ||x|| =

p

〈x, x〉.
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The size of the absolute values of the density matrix elementsDµν and of the quantities
Qµν are correlated with the overlap of the basis functionsχµ andχν . Thus,Dmax,C

becomes usually only small if also the integral|(µν|κλ)| ≤ Qµν · Qκλ is small, while in
the exchange case the density matrix elements contributingto Dmax,X have indices then
theQ’s and criterionQµνQκλDmax,X will only be fulfilled if all four basis functionsµ,
ν, κ, andλ are close in space.

Also, for medium sized molecules or with basis sets which contain diffuse functions
only modest computational savings obtained with this technique and the large costs for
the individual two-electron integrals can hamper the applicability of Hartree-Fock self-
consistent field calculations. An approximation which leads to a significant reduction of
the computational costs for the Coulomb contribution to theFock matrix construction is
the resolution-of-the-identity approximation for the two-electron integrals which is also
known as density fitting:

(µν|κλ) ≈ (µν|Q) [V−1]QP (P |κλ) , (62)

where(µν|Q) andVPQ are, respectively, three- and two-center two-electron integrals:

(µν|Q) =

∫

R3

∫

R3

χ∗
µ(r1)χν(r2)

1

r12
Q(r2) dr1dr2 , (63)

VPQ = (Q|P ) =

∫

R3

∫

R3

P (r1)
1

r12
Q(r2) dr1dr2 . (64)

Within this approximation the Coulomb matrixJµν can be calculated as:

γP =
∑

κλ

(P |κλ)Dκλ (65)

∑

Q

VPQcQ = γP (66)

Jµν ≈
∑

Q

(µν|Q)cQ (67)

Where Eq. (66) is linear equation system forcQ. In combination with an integral screening
based on the Schwarz inequality these three equations can also be implemented with an
asymptotic scaling ofO(N 2), but a significant lower prefactor than the original method,
since there are fewer two- and three-center two-electron integrals and the computational
costs for them are lower than for the four-center two-electron integrals(µν|κλ). We opti-
mized auxiliary basis sets{Q}, which are today available for several standard basis sets,
the errors introduced by the RI approximation are insignificant compared to the basis in-
completeness error of the LCAO expansion in Eq. (36).

6 Second Order Methods for Ground and Excited States

Second order Møller-Plesset perturbation theory is a conceptually simple and technically
the most simplest ab initio correlation method. It can be derived by expanding the solution
of the electronic Schrödinger equation as a Taylor series in the fluctuation potential (vide
infra). This can be done either in the framework of configuration interaction theory or
using the single-reference coupled-cluster ansatz for thewavefunction.23 We will take here
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the latter starting point to have a close connection to coupled-cluster response and related
methods for excited states. In the coupled-cluster ansatz the wavefunction is parameterized
as

|CC〉 = exp(T̂ )|HF〉 (68)

with the cluster operator defined as

T̂ = T̂1 + T̂2 + T̂3 + . . . (69)

where

T̂1 =
∑

µ1

tµ1 τ̂µ1 =
∑

ai

tiaτ̂
i
a , T̂2 =

∑

µ2

tµ2 τ̂µ2 =
∑

aibj

tijabτ̂
ij
ab , . . . (70)

The coefficientstµi
are called cluster amplitudes and the excitation operatorsτ̂µi

gener-
ate all possible single, double, and higher excited determinants if applied on the ground
state Hartree-Fock (HF) determinant|HF〉. Here and in the following, we use the conven-
tion that indicesi, j, . . . denote occupied,a, b, . . . virtual, andp, q, . . . arbitrary molecular
orbitals (MOs).

Inserting the ansatz (68) into the electronic Schrödingerequation and multiplying from
the left withexp(−T̂ ) one gets

exp(−T̂ )Ĥ exp(T̂ )|HF〉 = E|HF〉 . (71)

Projecting the above form of the Schrödinger equation ontothe HF determinant and a
projection manifold of (suitable linear combinations of) excited determinants one obtains
an expression for the ground state energy

E = 〈HF| exp(−T̂ )Ĥ exp(T̂ )|HF〉 = 〈HF|Ĥ exp(T̂ )|HF〉 , (72)

and the cluster equations

0 = 〈µi| exp(−T̂ )Ĥ exp(T̂ )|HF〉 , (73)

which determine the amplitudestµi
. Since we have not yet made any approximation, the

above equations still give the exact ground state solution of the electronic Schrödinger
equation. Truncating the cluster operator (69) after the single (T̂1) and double (̂T2) excita-
tions gives the coupled-cluster singles-and-doubles (CCSD) method, truncating it after̂T3

the CCSDT method, and so on.g

Expressions for Møller-Plesset perturbation theory are found by splitting the Hamilto-
nian into the Fock operator̂F as zeroth-order and the electron-electron fluctuation potential
as first-order contribution to the Hamiltonian

Ĥ(0) = F̂ , Ĥ(1) = Φ̂ = Ĥ − F̂ , (74)

and expanding Eqs. (72) and (73) in orders of the fluctuation potential. If the Brillouin-
Theorem is fulfilled and〈ia|Ĥ|HF〉 = 0, i.e. for a closed-shell or an unrestricted open-shell
Hartree-Fock (UHF) reference, the MP2 energy is obtained as

EMP2 = 〈HF|Φ̂T̂ (1)
2 |HF〉 =

∑

aibj

tijab〈HF|Φ̂|ab
ij 〉 (75)

gSimilar as in configuration interaction theory, a truncation after single excitations (CCS) does not give a useful
method for the calculation of ground state energies. As follows from the Brillouin theorem〈ia|Ĥ|HF〉 = 0,
the cluster equations have then for a closed-shell or an unrestricted open-shell reference determinant the trivial
solutiontia = 0 and the CCS energy becomes equal the HF energy.
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with

0 = 〈ab
ij |[F̂ , T̂ (1)

2 ] + Φ̂|HF〉 ⇔ tijab =
〈ab
ij |Φ̂|HF〉

ǫi − ǫa + ǫj − ǫb
(76)

where we assumed canonical molecular orbitals andǫp are the orbital energies.
Møller-Plesset perturbation theory can not straightforwardly be applied to excited

states, since wavefunctions for excited states usually require a multi-reference treatment.
For reviews on multi-reference many-body perturbation theory and its application on elec-
tronically excited states see e.g. Refs. 24,25. Correlatedsecond order methods for the cal-
culation of excitation energies based on a single-reference treatment for electronic ground
states can, however, be derived within the framework of coupled-cluster response theory.
The idea behind response theory is to study a system exposed to time-dependent exter-
nal (e.g. electric) fields and to derive from the response of the wavefunction or density
the frequency-dependent properties of the system—for example polarizabilities and hyper-
polarizabilities. The latter properties have singularities whenever a frequency of a field
becomes equal to the excitation energy of an allowed transition in the system. Thus, from
the poles of frequency-dependent properties one can identify the excitation energies.

Consider a quantum mechanical system described in the unperturbed limit by the time-
independent Hamiltonianh Ĥ(0) which is perturbed by a time-dependent potential:

Ĥ(t, ǫ) = Ĥ(0) + V̂ (t, ǫ) . (77)

We assume that the perturbationV̂ can be expanded as a sum over monochromatic Fourier
components

V̂ (t, ǫ) =
∑

j

V̂jǫje
−iωjt , (78)

whereV̂j are hermitian, time-independent one-electron operators (e.g. for an electric field
the dipole operator),t the time andǫj are the amplitudes of the associated field strengths.
Then the full time-dependent wavefunction of the system, i.e. the solution to the time-
dependent Schrödinger equation, can be expanded as a powerseries in the field strengths
as

Ψ(t) =
[

Ψ(0) +
∑

j

Ψ
(1)
j (ωj)ǫje

−iωjt + . . .
]

︸ ︷︷ ︸

phase-isolated wavefunctioñΨ

e
−i

R

t

t0
dt′〈Ψ̃(t)|Ĥ(t′,ǫ)−i ∂

∂t′
|Ψ̃(t)〉

, (79)

and an expectation value for an operatorµ̂ as

〈µ〉(t) = 〈Ψ̃(t)|µ̂|Ψ̃(t)〉 = µ(0) +
∑

j

〈〈µ;Vj〉〉ωj
ǫje

−iωjt + . . . (80)

For detailed reviews of modern response theory and its implementation for approximate
wavefunction methods the interested reader is referred to Refs. 26–31. The important point
for the calculation excitation energies is that the poles inthe response functions〈〈µ;V 〉〉ω
occur whenω becomes equal to an eigenvalue of the stability matrix of theemployed

hNote thatĤ(0) includes here the fluctuation potential in difference to Eq.(74), where the fluctuation potential
Φ̂ has been the perturbation.
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electronic structure method for the unperturbed system. The stability matrix contains the
derivatives of the residua of the equations which determinethe wavefunction parameters
with respect to these parameters. For Hartree-Fock, multi-configurational self-consistent
field (MCSCF), density functional theory (DFT), configuration interaction (CI) or other
methods which are variational in the sense that the wavefunction parameters are deter-
mined by minimization of the energy, the stability matrix isthe so-called electronic Hesse
matrix—the matrix of the second derivatives of the energy with respect to the wavefunc-
tion parameters. For coupled-cluster methods the cluster amplitudes are determined by the
cluster equations (73). Arranging the residua in a vector function

Ωµi
(tνi

) = 〈µi| exp(−T̂ )Ĥ exp(T̂ )|HF〉 , (81)

the stability matrix is given by the Jacoby matrix

Aµiνj
=
dΩµi

dtνj

∣
∣
∣
∣
ǫ=0

= 〈µi| exp(−T̂ )[Ĥ, τ̂νj
] exp(T̂ )|HF〉 , (82)

where|ǫ=0 indicates that the derivatives are taken for the unperturbed system, i.e. at zero
field strengths. In configuration interaction theory the stability matrix becomes the matrix
representation of the reduced HamiltonianĤ−E0 (whereE0 is the ground state energy) in
the space orthogonal to the electronic ground state.i In coupled-cluster theory this matrix
representation is obtained in a similarity transformed basis.j

In this way excitation energies can in principle be derived for any electronic structure
method. However, to obtain physical meaningful and accurate results, the method has to
fulfill certain requirements. For example from the equations for the amplitudes in MP2,
Eq. (76), one obtains a Jacoby matrix which gives only excitation energies corresponding
to double excitations and these would be equal to the orbitalenergy differences in the de-
nominator of the amplitudes. The two most important requirements are firstly, that there
must be a one-to-one correspondence between the parametersof the wavefunction and
at least the investigated part of the spectrum of the Hamiltonian. This requires methods
which determine the time-dependent variables by a single set of equations, as e.g. time-
dependent Hartree-Fock (HF-SCF), density functional theory (DFT) or multi-configuration
self-consistent field (MCSCF, CASSCF, or RASSCF), but not a time-dependent configu-
ration interaction (CI) treatment on top of a time-dependent HF-SCF calculation. For this
reason the coefficients of the Hartree-Fock orbitals are also above in Eqs. (81) and (82)
not considered as parameters of the time-dependent wavefunction, since this second set of
variables in the time-dependent problem would lead to a second set of eigenvalues corre-
sponding to single excited states, additionally to the one obtained from the parameteriza-
tion through the singles cluster amplitudes. Instead, the time-dependent wavefunction is in
coupled-cluster response theory usually constructed using the (time-independent) orbitals
of the unperturbed system with time-dependent cluster amplitudes. Secondly, to obtain
accurate results the stability matrix must also provide an accurate approximation of the
those blocks of the Hamiltonian which are most important forthe investigated states. For
single excitations these are the singles-singles blockAµ1ν1 and the off-diagonal blocks

i In connection with CI and propagator methods (approximate)matrix representations of̂H − E0 are often also
referred to as secular matrix.
j〈µi| exp(−T̂ ) for the bra andexp(T̂ )|µj〉 for the ket states, where|µj〉 = τ̂µj |HF〉; for further details see
e.g. Ref. 23
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Aµ2ν1 and Aµ1ν2 next to it. With the usual single-reference coupled-cluster methods
these blocks are described most accurately and therefore the excitation energies for single
excitation dominated transitions are obtained with the highest accuracy, while excitation
energies for double and higher excitations are usually considerably less accurate.

Already at the coupled-cluster singles (CCS) level (which for excitation energies is—
in contrast to ground state calculations—not equivalent toHartree-Fock, but to configura-
tion interaction singles (CIS)), excitation energies for states dominated by single replace-
ments of one spin-orbital in the Hartree-Fock reference determinant are obtained correctly
through first order in the electron-electron interaction.

A second order method for excited states which accounts for the above requirements
and takes over the accuracy of MP2 to excited states dominated by single excitations can be
derived by approximating the cluster equations to lowest order in the fluctuation potential.
But in difference to the derivation of MP2 in Eqs. (74) – (76) we allow in the Hamiltonian
for an additional one-electron perturbation

Ĥ(t) = F̂ + Φ̂ + V̂ (t) , (83)

which can induce transitions to single excitations and has,as necessary in CC response
theory, not been included in the Hartree-Fock calculation.Because of the latter, single
excitation amplitudes contribute now to the cluster operator already in zeroth order in the
fluctuation potential,̂Φ, and in first orderT̂1 and T̂2 both contribute to the wavefunc-
tion. Approximating the equations that determine these amplitudes to second (singles) and
first order (doubles) one obtains the equations for the approximate coupled-cluster model
CC232, 33:

0 = 〈ai |[ ˆ̃H, T̂2] +
ˆ̃H |HF〉 , (84)

0 = 〈ab
ij |[F̂ , T̂2] +

ˆ̃H |HF〉 , (85)

where a similarity transformed Hamiltoniañ̂H = exp(−T̂1)Ĥ exp(T̂1) has been intro-
duced to obtain a compact notation. In difference to MP2 the equations for CC2 have to
be solved iteratively because of the coupling introduced byT̂1. The ground state energy
obtained from CC2

ECC2 = 〈HF|Φ̂(T̂2 + 1
2 T̂1T̂1)|HF〉 , (86)

is, as for MP2, (only) correct through second order in the fluctuation potentialk, but it
leads to a Jacoby matrix with the singles-singles blockAµ1ν1 correct through second order
and the off-diagonal blocksAµ1ν2 andAµ2ν1 correct through first-order in the fluctua-
tion potential, while the doubles-doublesAµ2ν2 block is approximated by the zeroth-order
term:

ACC2 =

(

〈ai |[( ˆ̃H + [ ˆ̃H, T̂2]), τ̂
c
k |HF〉 〈ai |[ ˆ̃H, τ̂cd

kl ]|HF〉
〈ab
ij |[ ˆ̃H, τ̂c

k ]|HF〉 〈ab
ij |[F̂ , τ̂cd

kl ]|HF〉

)

. (87)

CC2 is the computational simplest iterative coupled-cluster model which gives single exci-
tation energies which are correct through second order. Through the similarity transformed

kTherefore, CC2 does in general not describe ground state energies, structures, or properties more accurately
than MP2. Its advantage upon MP2 is that, combined with coupled-cluster response theory, it can (in contrast to
the latter) applied successfully to excited states.
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Hamiltonian ˆ̃H = exp(−T̂1)Ĥ exp(T̂1) the Jacoby matrix in Eq. (87) includes, however,
also some higher-order terms, since for the unperturbed system the single excitation ampli-
tudestµ1 contribute only in second- and higher orders to the ground state wavefunction.l

Excluding these terms and replacing the doubles amplitudesby the first-order amplitudes,
Eq. (76), from which the MP2 energy in calculated, one obtains the Jacoby matrix of
the CIS(D∞) approximation37, an iterative variant of the perturbative doubles correction38

CIS(D) to CIS (or CCS):

ACIS(D∞) =

(
〈ai |[(Ĥ + [Ĥ, T̂2]), τ̂

c
k |HF〉 〈ai |[Ĥ, τ̂cd

kl ]|HF〉
〈ab
ij |[Ĥ, τ̂c

k ]|HF〉 〈ab
ij |[F̂ , τ̂cd

kl ]|HF〉

)

. (88)

This Jacobian contains the minimal number of terms requiredto obtain the excitation ener-
gies for single replacement dominated transitions correctthrough second order. However,
it is not possible to construct a coupled-cluster model which leads exactly to such a Jacoby
matrix.

The computational savings of CIS(D∞) compared to CC2 are rather limited37 and CC2
has, as a member of the hierarchy of coupled-cluster methodsCCS, CC2, CCSD, CC3,
CCSDT,. . . certain conceptual advantages. The Jacoby matrix of the CIS(D∞) approxi-
mation may, however, used as starting point to derive the perturbative doubles correction
CIS(D) to the CIS (or CCS) excitation energies37:

ω(D) =
∑

µ1ν1

ECIS
µ1

[

ACIS(D∞)
µ1ν1

−ACIS
µ1ν1

+
∑

κ2

A
CIS(D∞)
µ1κ2 A

CIS(D∞)
κ2ν1

ωCIS − ǫκ2

]

ECIS
ν1

(89)

or

ωCIS(D) = ωCIS + ω(D) =
∑

µ1ν1

ECIS
µ1

[

ACIS(D∞)
µ1ν1

+
∑

κ2

A
CIS(D∞)
µ1κ2 A

CIS(D∞)
κ2ν1

ωCIS − ǫκ2

]

ECIS
ν1

(90)
whereǫκ2 contains the orbital energy difference for a double excitation, ǫijab = ǫa − ǫi +
ǫb − ǫj .

Another second order method for excited states which is related to CC2 and CIS(D) is
the so-called algebraic diagrammatic construction through second order, ADC(2).39, 40 The
secular matrix of ADC(2) is just the symmetric part ofACIS(D∞):

AADC(2) = 1
2A

CIS(D∞) + 1
2

(

ACIS(D∞)
)†
, (91)

which leads to some conceptual and also computational simplifications e.g. in the calcula-
tion of derivatives (gradients!) since the left and right eigenvectors of a symmetric matrix
are identical, while for the non-symmetric Jacoby matricesof CC2 and CIS(D∞) left and
right eigenvectors differ. Both eigenvectors are needed for the calculation of derivatives.
Other second order methods for excited states are the secondorder polarization propa-
gator approach,41, 42 SOPPA and the perturbative doubles correction,43 RPA(D), to time-
dependent Hartree-Fock, which for excitation energies is also known as the random phase

lWe assume here that the Brillouin theorem is fulfilled and thus the occupied/virtual block of the Fock matrix
vanishes. This holds for closed-shell and unrestricted open-shell Hartree-Fock reference states. For a discussion
of additional terms that need to be accounted for in restricted open-shell SCF based calculations we refer e.g. to
Refs.34–36.
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approximation (RPA). The latter method can also be understood as a non-iterative approx-
imation to SOPPA, similar as CIS(D) is a non-iterative approximation to CIS(D∞). The
relation of RPA(D) and SOPPA to the single-reference coupled-cluster response methods
is somewhat more difficult, since these methods are members of a different hierarchy of
methods (with RPA (TDHF) as first-order model) which is related to the so-called orbital-
optimized coupled-cluster (OCC) methods44, 45. Therefore, these methods will not be dis-
cussed in detail in the following, but we note that the same concepts (doubles amplitude-
direct formulation and RI-approximation) can by applied toreduce also for these the com-
putational costs to the same extend as for CC2, ADC(2), CIS(D∞), and CIS(D).

6.1 Doubles amplitude-direct formulation of second order methods

An important feature of second order methods or approximatedoubles methods, as one
might also call them, is that an explicit storage (in RAM or ondisk) of complete sets of
double excitation amplitudes can be avoided similar as the storage of triples amplitudes is
avoided in the approximate triples methods CCSD(T), CCSDT-1, CCSDR(3), or CC3.46–49

This is important for applications on large molecules sincesimilar as for the approximate
triples methods the storage of the amplitudes would prohibit large-scale applications sim-
ply by a storage space or I/O bottleneck.

For example, the MP2 energy can be calculated without storing the double excitation
amplitudes using the following schemem:

do i = 1, nocc
do j = i, nocc
do a = 1, nvirt
do b = b, nvirt
tijab = (ia|jb)/(ǫi − ǫa + ǫj − ǫb)
EMP2 = EMP2 + (2− δij){2(ia|jb)− (ia|jb)}tijab

end do
end do

end do
end do

In a similar way also the equations for the doubles amplitudes in CC2 can—for
given singles amplitudestia—immediately be inverted to

tijab = ˜(ai|bj)/(ǫi − ǫa + ǫj − ǫb) (92)

where the similarity transformation withexp(T̂1) has been included in the AO-to-MO
transformation for the modified two-electron integrals

˜(ai|bj) =
∑

α

Λp
αa

∑

β

Λh
βi

∑

γ

Λp
γb

∑

δ

Λh
δj (αβ|γδ) (93)

with Λp
αa = Cαa −

∑

k Cαkt
k
a andΛh

αi = Cαi +
∑

c Cαct
i
c. Inserting Eq. (92) into the

equation for the singles amplitudes, Eq. (84), gives a set ofeffective equations for the CC2

mThe explicit formulas given here and below are for a closed-shell restricted Hartree-Fock reference determinant.
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singles amplitudes, which reference the doubles amplitudes tijab only as intermediates,
which can be calculated and contracted with one- and two-electron integrals “on-the-fly”
without storing a complete set of these amplitudes on disk:

do i = 1, nocc
do j = 1, nocc
do a = 1, nvirt
do b = 1, nvirt

tijab = ˜(ai|bj)/(ǫi − ǫa + ǫj − ǫb)

Ωci = Ωci +
∑

abj(2t
ij
ab − t

ij
ba) ˜(jb|ca)

Ωak = Ωak −
∑

bij(2t
ij
ab − t

ij
ba) ˜(jb|ik)

...
end do

end do
end do

end do

To avoid the storage of doubles amplitudes is even more important for excited states, since
in this case else doubles contributions to eigen- or trial vectors would have to be stored
for several simultaneously solved eigenvalues and a numberof iterations. An explicit
reference to the doubles part of eigen- or trial vectors during the solution of the eigen
problem can for the approximate doubles methods be removed by exploiting the particular
structure of the Jacoby or secular matrices of these methods, in which the doubles-doubles
block is in the canonical orbital basis diagonal with the diagonal elements equal to SCF
orbital energy differences:

(
Aµ1ν1 Aµ1ν2

Aµ2ν1 δµ2ν2ǫν2

)(
Eν1

Eν2

)

= ω

(
Eν1

Eν2

)

. (94)

The doubles part of the eigenvectors is thus related to the singles part and the eigenvalue
through the equation

Eµ2 =

∑

ν1
Aµ2ν1Eν1

ω − ǫµ2

. (95)

which allows to partition the linear eigenvalue problem in the space of singles and doubles
replacements as an effective eigenvalue problem in the space of only the single excitations:

∑

ν1

[

Aµ1ν1 +
∑

κ2

Aµ1κ2Aκ2ν1

ω − ǫκ2

]

Eν1 =
∑

ν1

Aeff
µ1ν1

(ω)Eν1 = ωEµ1 . (96)

The last equation is, however, in difference to Eq. (94) a nonlinear eigenvalue problem
because the effective Jacoby matrixAeff

µ1ν1
(ω) depends on the eigenvalueω, which is itself

first known when the equation has been solved. But with iterative techniques this eigen-
value problem can be solved almost as efficiently as the original linear eigenvalue problem
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and the elimination of the need to store the doubles part of solution or trial vectors more
than compensates this complication.50

To apply these iterative techniques for the solution of large-scale eigenvalue problems
one needs to implement matrix vector products of the form

σµ1(ω, bν1) =
∑

ν1

Aeff
µ1ν1

(ω)bν1 =
∑

ν1

Aµ1ν1bν1 +
∑

κ2

Aµ1κ2

∑

ν1
Aκ2ν1bν1

ω − ǫκ2

. (97)

Note the similarity of the quotient in the last term with the expression in Eq. (95). For CC2
this term becomes

bijab =
1

ǫiajb

∑

ck

Aiajb,kcb
k
c =

∑

ck〈ab
ij |[ ˆ̃H, τ̂k

c ]|HF〉bkc
ǫi − ǫa + ǫj − ǫb + ω

=
2 ¯(ai|bj)− ¯(bi|aj)

ǫi − ǫa + ǫj − ǫb + ω
, (98)

with the modified MO electron repulsion integrals

¯(ai|bj) = P̂ ij
ab

∑

αβ

(

Λ̄p
αaΛh

βi + Λp
αaΛ̄h

βi

)∑

γδ

Λp
γbΛ

h
δj (αβ|γδ) , (99)

where Λ̄p
αa = −∑k Cαkb

k
a, Λ̄h

αi = +
∑

c Cαcb
i
c and P̂ ij

ab a symmetrization operator
defined throughP̂ ij

abfia,jb = fia,jb + fjb,ia. The linear transformation in Eq. (97) can
thus be calculated using a similar algorithm as for the residuum of the ground state cluster
equations without storing any doubles vectors:

do i = 1, nocc
do j = 1, nocc
do a = 1, nvirt
do b = 1, nvirt
bijab = ¯(ai|bj)/(ǫi − ǫa + ǫj − ǫb + ω)

σci = σci +
∑

abj(2b
ij
ab − b

ij
ba) ˜(jb|ca)

...
tijab = ˜(ai|bj)/(ǫi − ǫa + ǫj − ǫb)
σai = σai +

∑

bj(2t
ij
ab − t

ij
ba)
∑

ck[2(jb|kc)− (jc|kb] bck

end do
end do

end do
end do

The fact that the doubles amplitudes of CC2 are determined bythe singles ampli-
tudes through Eqs. (92) and (93) and reduce fortµ1 → t

(1)
µ1 = 0 to the first-order

amplitudes of MP2, opens a simple possibility to implement CIS(D∞) and CIS(D) as
approximations to CC2. Considering the effective Jacoby matrix, Eq. (96), as a functional
of the singles amplitudesAeff (tµ1 , ω) one obtains the connection:
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CC2 :
∑

ν1
Aeff

µ1ν1
(tCC2

κ1
, ω)Eν1 = ωEµ1

CIS(D∞) :
∑

ν1
Aeff

µ1ν1
(t

(1)
κ1 , ω)Eν1 = ωEµ1

CIS(D) : ωCIS(D) =
∑

µ1ν1
ECIS

µ1
Aeff

µ1ν1
(t

(1)
κ1 , ω)ECIS

ν1

The attentive reader has probably observed that the partitioned, doubles amplitude-direct
formulation for second order methods—although it removes the need to store complete
sets of any doubles amplitudes—does alone not reduce much the storage requirements of
these methods: the calculation of the doubles amplitudes requires the electron repulsion
integrals (ERIs) in the (modified) MO basis, which are obtained through four-index trans-
formations from the AO integrals, as e.g. in Eqs. (93) and (99). Efficient implementations
of such transformations require the storage of an array withhalf-transformed integrals of
the size of12O

2N2, whereO is the number of occupied andN the number of atomic or-
bitals, which is even slightly more than needed for the doubles amplitudes. For CC2 and
also for the other second order methods for excited states and in the calculation of gradi-
ents for the MP2 energies, the doubles amplitudes need to be contracted in addition with
two-electron integrals with three occupied or virtual indices,(ai|jk) and(ai|bc), which
within the schemes sketched above would give rise to even larger storage requirements.
The problem can be solved with the resolution-of-the-identity approximation for electron
repulsion integrals.

7 The Resolution-of-the-Identity Approximation for ERIs

The main idea behind the resolution-of-the-identity approximation51–58 for electron repul-
sion integrals can be sketched as follows: With increasing atomic orbital basis sets the
products of AOs appearing for the electrons 1 and 2 in the expression for the four-index
two-electron integrals,

(αβ|γδ) =

∫

R3

∫

R3

χα(~r1)χβ(~r1)
1

r12
χγ(~r2)χδ(~r2)dτ1dτ2 , (100)

will soon become (numerically) highly linear dependent andthus it should be possible to
expand these products which good accuracy in a basis set of auxiliary functionsQ,

χα(~r1)χβ(~r1) ≈
∑

Q

Q(~r1)cQ,αβ (101)

with a dimension much smaller then that of the original product space,N(N + 1)/2, as
illustrated in Fig. 1 for an atom with onlys-type functions. The coefficientscQ,αβ can be
determined through a least square procedure. Defining the remaining error in the expansion
of an orbital pair

Rαβ(~r1) = χα(~r1)χβ(~r1)−
∑

Q

Q(~r1)cQ,αβ , (102)

the quadratic error in the coulomb repulsion integrals(αβ|γδ) can be written as

(Rαβ |Rγδ) =

∫

R3

∫

R3

Rαβ(~r1)
1

r12
Rγδ(~r2)dτ1dτ2 (103)

96



0.1

1

10

100

1000

AOsχµ productsχµχν auxiliary fcts.Q

G
T

O
ex

p
o

n
en

t

Figure 1. The left column shows exponentsαµ of an even-tempered (13s) atomic Gaussian type orbital (GTO)
basisχµ(r) = exp(−r2αµ) and the column in the middle the exponents of all 169 overlap Gaussian functions
resulting on the same atom from the productsχµχν . The right column shows the exponents of an even-tempered
(25s) auxiliary basisQ(r) = exp(−r2αQ) set which could be used to expand these products.

and fulfill the Schwartz inequality

(Rαβ |Rγδ) ≤
√

(Rαβ |Rαβ)
√

(Rγδ|Rγδ) . (104)

Minimization of (Rαβ |Rαβ) with respect to the expansion coefficientsc leads to the linear
equation:

d

dcQ,αβ
(Rαβ |Rαβ) = 0 ⇔ (Rαβ |Q) = 0 ⇔ (αβ|Q) −

∑

P

cP,αβ(P |Q) = 0

(105)
with

(P |Q) =

∫

R3

∫

R3

P (~r1)
1

r12
Q(~r2)dτ1dτ2 , (106)

(αβ|Q) =

∫

R3

∫

R3

χα(~r1)χβ(~r1)
1

r12
Q(~r2)dτ1dτ2 . (107)

Arranging the two-center integrals in a matrixVPQ = (P |Q) the expansion coefficients
can be expressed as

cQ,αβ =
∑

P

(αβ|P )[V −1]PQ , (108)
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and one obtains for the four-index coulomb integrals the approximation

(αβ|γδ) ≈
∑

QP

(αβ|Q)[V −1]QP (P |γδ) . (109)

We have above derived Eq. (109) as result of a least square fitting procedure for the over-
lap densitiesχα(~r)χβ(~r), which is why this approximation is also known as “density fit-
ting”19, 20. Eq. (109) can be compared with the expression for an (approximate) resolution
of the identity for square integrable functions in three-dimensional space,

1 ≈
∑

QP

|Q〉[S−1]QP 〈P | with SPQ =

∫

R3

Q(~r)P (~r)dτ , (110)

applied to four-center overlap integrals
∫

R3

χα(~r)χβ(~r)χγ(~r)χδ(~r)dτ = 〈αβ|δγ〉 ≈
∑

QP

〈αβ|Q〉[S−1]QP 〈P |δγ〉 . (111)

We see that Eq. (109) can alternatively be viewed as an (approximate) resolution of the
identity in a Hilbert space where the coulomb operator1/r12 is used to define the scalar
product as in Eqs. (100) and (103). This approximation has thus all properties expected
from a resolution-of-the-identity or basis set approximation as e.g. that the norm of the
error in the expansion||Rαβ || = (Rαβ |Rαβ) will always decrease with an extension of
the auxiliary basis and that the approximation becomes exact in the limit of a complete
auxiliary basis set{Q}.

It is important to note that the resolution-of-the-identity approximation does not—or at
least not in general—reduce the computational costs for thecalculation of AO four-index
electron repulsion integrals, since the right hand side of Eq. (109) is more complicated to
evaluate than the left hand side. A reduction of the computational costs is only achieved if
the decomposition of the four-index integrals into three- and two-index intermediates, pro-
vided by this approximation, can be exploited to simplify contractions of the AO coulomb
integrals with other intermediates.

A common bottleneck of all second order correlation methods(for ground and excited
states) is the four-index transformation of the AO ERIs(αβ|γδ) to ERIs in a molecular
orbital basis (possibly modified as in Eq. (93) or (99)) with two occupied and two virtual
indices:

(ai|bj) =
∑

α

Cαa

∑

γ

Cγb

∑

β

Cβi

∑

δ

Cδj (αβ|γδ) . (112)

Efficient algorithms for this transformation require a number of floating point multipli-
cations that scales for the individual partial transformations with 1

2ON
4 + 1

2O
2N3 +

1
2O

2V N2 + 1
2O

2V 2N (ignoring possible sparsities in the integrals or coefficients) and,
as already pointed out above, disc space in the order of1

2O
2N2.

Using the resolution-of-the-identity approximation, thefour-index integrals in the MO
basis can be obtained as

(ai|bj) ≈
∑

P

BP,aiBP,bj (113)
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Table 1. Comparison of elapsed wall-clock timings for RI-MP2 vs. conventional integral-direct MP2 energy
calculations (# fcts. is the number of basis functions and #e− the number of correlated electrons,TMP2 timings
obtained with thempgrad code of the TURBOMOLE package61).

molecule basis # fcts. #e− TMP2 TRI−MP2

benzenea QZVPP 522 30 28 min 24 sec
benzenea aug-cc-pVTZ 756 30 3.8 h 1.2 min
Fe(CO)5a QZVPP 670 66 11.3 h 8.7 min

Fe(C5H5)2a QZVPP 970 66 843 h 45 min
C60

a,b cc-pVTZ 1800 240 112 h 171 min
Calix[4]areneb,c cc-pVTZ 1528 184 39.3 h 5.6 h

a RI-MP2 timings forricc2 code of the TURBOMOLE package61; b from Ref. 62;
c RI-MP2 timings forrimp2 code of the TURBOMOLE package61;

with

BP,ai =
∑

Q

[V −1/2]PQ

∑

α

Cαa

∑

β

Cβi(Q|αβ) (114)

which requires onlyON2Nx + OV NNx + OV N2
x + 1

2O
2V 2Nx floating point multi-

plications and memory or disc space in the orderONNx. With auxiliary basis sets opti-
mized56, 59, 60for the application in second order methodsNx is typically 2–4×Nx. As-
suming thatO ≪ V ≈ N (usually given in correlated calculations), one finds that the
number of floating point operations is by the RI approximation reduced by a factor of
≈ (N/O + 3)N/Nx. With doubly polarized or correlation-consistent triple-ζ basis sets
(e.g. TZVPP or cc-pVTZ) as often used with MP2 or CC2, the RI approximation typi-
cally reduces the CPU time for the calculation of the(ai|bj) integrals by more than an
order of magnitude. Some typical examples for MP2 calculations for the ground state cor-
relation energy are given in Table 1. These also demonstratehow the reduction in CPU
time obtained with the RI approximation increases with the size of the orbital basis set.
An important point for calculations on weakly bonded (i.e. hydrogen-bridged or van der
Waals) systems is that the efficiency of the integral prescreening, which is important for
the performance of conventional implementations using 4-index AO ERIs, diminishes if
diffuse functions are included in the basis set. For weakly bonded complexes such diffuse
functions are, however, needed for an accurate descriptionof the long range electrostatic,
exchange-correlation, and dispersion interactions. As seen at the calculations for benzene
with the QZVPP and the aug-cc-pVQZ basis, RI-MP2 calculations are much less sensitive
to such effects: while the CPU time for the conventional MP2 calculation increases from
QZVPP to aug-cc-pVQZ by more than a factor of 8, the CPU time needed for the RI-MP2
calculation increases only by a factor of 3.

However, for large scale applications at least as importantis that the scaling of the
storage requirements in the calculation of the integrals(ai|bj) with the system size
is reduced toO(ONNx). In combination with the doubles amplitude-direct formu-
lation outlined in the previous subsection, the RI approximation completely removes
the need to store any intermediates larger thanO(ONNx) on disc or in memory. For
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example the MP2 ground state energy can now be calculated using the following algorithm:

precomputeBQ,ai

do i = 1, nocc
do j = i, nocc

Iij
ab =

∑

QBQ,aiBQ,bj ∀ a, b (matrix-matrix multiply)

do a = 1, nvirt
do b = 1, nvirt

tijab = Iij
ab/(ǫi − ǫa + ǫj − ǫb)

EMP2 = EMP2 + (2− δij){2Iij
ab − I

ij
ba}t

ij
ab

end do
end do

end do
end do

The reductions are even larger for CC2 and other second ordermethods for excited
states and for theO(N 5)-scaling steps in the calculation of MP2 gradients. It turnsout
that all contractions which involve other four-index integrals in the MO basis than those of
(ia|jb)-type, needed in second order methods, can with the decomposition given by Eq.
(109) reformulated such that an explicit calculation of thefour-index MO integrals can be
avoided.

Together with the reduction in the CPU time the elemination of the storage bottleneck
opened the possibility to apply MP2 and CC2 to much larger systems as was feasible with
conventional implementations based on four-index AO ERIs.Since the steep increase of
the computational costs with the basis set size is reduced bythe RI approximation from
O(N4) toO(N2Nx) it is also easier than before to carry out such calculations with accu-
rate basis sets, as needed to exploit fully the accuracy of MP2, CC2 or the other second
order methods.

At this point it becomes neccessary to ask what are the errorsintroduced by the RI
approximation? As is obvious from the above discussion, theaccuracy (but also the ef-
ficiency) of the RI approximation depends on the choice of theauxiliary basis sets. For
a balanced treatment the auxiliary basis set should be optimized for the particular orbital
basis used in the calculation. Firstly, because the orbitalproducts that need to be well rep-
resented depend strongly on the orbital basis and, secondly, because the accuracy of the
approximation should increase with increasing accuracy ofthe orbital basis to make sure
that eventually a correct basis set limit will be obtained. To fully exploit the potential of the
approximation it is advantageous to further “tune” the auxiliary basis set for the integrals
most important in the employed electronic structure method. For second order methods
these are, as shown above,(ai|bj)-type integrals. The auxiliary basis functions are thus
used to expand products of occupied with virtual molecular orbitals:

φa(~r)φi(~r) ≈
∑

Q

Q(~r)cQ,ai . (115)

If we consider an atom, all products will be linear combinations of Gaussian type func-
tions centered at the atom with angular momenta up tolaux = lorb + locc, wherelorb is
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Figure 2. Exponents of the primitive GTOs in the cc-pVTZ orbital63 (on the left) and auxiliary59,60 (on the right)
basis sets for the neon atom.

the highest angular momentum included in the orbital basis set andlocc the highest angular
momentum of an occupied orbital. Also the range of exponentsthat should be covered
by the auxiliary basis can be deducted from similar considerations, but it should be taken
into account that the importance of the orbital productsφaφi for electron correlation varies
over orders of magnitudes. E.g., the contributions of core orbitals and similar those over
very high lying tight virtual orbitals (sometimes referredto as “anti core” orbitals) is small
because of large orbital energy denominators in the expression for the amplitudes. This
limits the importance of tight functions in the auxiliary basis, in particular if a frozen core
approximation is used and the core orbitals cannot at all contribute to the correlation treat-
ment. In the other direction, the most diffuse exponent needed in the auxiliary basis set
is bound by the exponent of any atomic orbital contributing significantly to an occupied
orbital, irrespectively how diffuse functions are included in the basis set. A typical compo-
sition of an orbital basis and a respective auxiliary basis set of correlated calculations with
a second order method is shown in Fig. 2 at the example of the cc-pVTZ basis sets for the
neon atom.

It turns out that the above arguments, although strictly only valid for atoms, apply in
practice usually also well to moleculesn. Therefore, the auxiliary basis sets can be opti-
mized once at the atoms for each orbital basis and then storedin a basis set library. On
the TURBOMOLE web page61 optimized auxiliary basis sets for correlated calculations
with second order methods are available for several orbitalbasis sets including SVP64,
TZVP65, TZVPP56, and QZVPP66 and most of the correlation-consistent basis sets63, 67–72

(cc-pVXZ, aug-cc-pVXZ, cc-pwCVXZ, etc.). These have been optimized56, 59, 60such
that the RI error, i.e. the additional error introduced by the RI approximation, is for the

nAn exception are the atoms with onlys orbitals occupied in the ground state configuration, in particular H and
Li, which in chemical bonds are often strongly polarized. For these atoms the auxiliary basis sets contain usually
functions up tolorb + 1 (instead of onlylorb) and are often optimized on small molecules.
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Figure 3. On the left: one-electron basis set errors in the MP2 valence correlation energy (in % of the estimated
limiting value) shown as normalized Gaussian distributions determined from̄∆ and∆std for a test set of 72
small and medium sized molecules with row 1 (B–Ne) and row 2 (Al–Ar) atoms59,60. On the right: error in the
MP2 valence correlation energies due to the resolution-of-the-identity approximation for ERIs for the same test
set59,60. Note that the scales on the abscissa differ by about three orders of magnitude!

ground state correlation energies (MP2 or CC2) about 2–3 orders of magnitudes smaller
than the one-electron (orbital) basis set error of the respective orbital basis set. The
correlation-consistent basis sets cc-pVXZ with X = D, T, Q, . . . and the series SVP,
TZVPP, QZVPP, . . . constitute hierarchies that converge to the (valence) basis set limit
and are thus a good example to demonstrate how orbital and auxiliary basis sets converge
in parallel. Fig. 3 shows the results of an error analysis forthe MP2 valence correlation
energies for 72 molecules containing first and second row atoms (H, He, B–Ne, Al–Ar).
The RI errors are somewhat larger for other properties than for ground state correlation
energies, for which they have been optimized. In particularin response calculations for
excited states the diffuse functions and also some other integral types become more im-
portant than they are for ground state calculations. But, still the RI error remains between
one and two orders of magnitudes smaller than the orbital basis set error as is shown in
Fig. 4 by an error analysis for RI-CC2 calculations on excited states with the aug-cc-pVTZ
basis sets. Since the RI approximation is a basis set expansion approach the RI error is a
smooth and usually extremely flat function of the coordinates. Therefore most of the error
cancels out in the calculation of energy differences, as e.g. reaction enthalpies, and the
errors in geometries are very small—typically a few10−3 pm and, thus, usually below the
convergence thresholds applied in geometry optimizations.

In summary, the major advantages of the resolution-of-the-identity approximation for
the electron repulsion integrals for correlated second order methods are
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Figure 4. Mean and maximum of the one-electron orbital and the RI errors in RI-CC2 calculations for excited
states with the aug-cc-pVTZ basis sets63,69,59. On the left: errors in excitation energies for 132 states. In the
middle: errors in the oscillator strengths for 32 states. Onthe right: errors in the dipole moments of 52 excited
states. For the test sets used and the technical details see Ref.73, from where the data has been taken.

• It allows efficient doubles amplitude-direct implementations and eliminates the need
to store anyO(N 4) arrays in memory or on disc.

• The CPU time for the correlation treatment is reduced by about an order of magnitude
and more.

• It is applicable in response calculations for excited states since it does not depend on
the locality of any intermediates.

Another important point related to the elimination of the huge storage demands forO(N 4)
scaling intermediates (i.e. two-electron integrals or amplitudes) is that the parallelizability
of these methods is improved since less data needs to be communicated between computer
nodes participating in a parallel calculation. We will comeback to this point in the next
section.

8 Parallel Implementation of RI-MP2 and RI-CC2 for Distribu ted
Memory Architectures

As discussed above, the time-determining steps in RI-MP2 and other second order methods
implemented with the RI approximation are the computation of the electron repulsion in-
tegrals in the MO basis(ia|jb) and/or the double excitation amplitudestijab and their con-
traction with integrals or other amplitudes to new intermediates, as for example

YQ,ai =
∑

bj

tijabBQ,bj . (116)
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Also for this step the computational costs increase asO(O2V 2Nx). As described in Refs.
55, 73–76,YQ,ai and all other intermediates calculated fromtijab can efficiently be calcu-
lated in a loop over two indices for occupied orbitals withO(N 2) memory demands. The
time-determining steps of RI-MP2 can thus efficiently parallelized over pairs of indices
for occupied orbitals since these are common to all steps scaling with O(O2V 2Nx) or
O(O2V 3). An alternative could be pairs of virtual orbitals, but thiswould result in short
loop lengths and diminished efficiency for medium sized molecules. A parallelization over
auxiliary basis functions would require the communicationof 4-index MO integrals be-
tween computer nodes, which would require high-performance networks. Such a solution
would restrict the applicability of the program to high-endsupercomputer architectures.
TURBOMOLE, however, has been designed for low-cost PC clusters with standard net-
works (e.g. Fast Ethernet or Gigabit). Therefore we choose for thericc2 code a paral-
lelization over pairs of occupied orbitals and accepted that this results in an implementation
which will not be suited for massively parallel systems, since a good load balance between
the participating CPUs will only be achieved forO ≫ nCPU (vide infra).

A key problem for the parallelization of RI-MP2 and RI-CC2 iswith this strategy the
distribution of pairs of occupied orbitals(ij) over distributed memory nodes such that

a) the symmetry of(ia|jb) with respect to permutation ofia↔ jb can still be exploited

b) the demands on the individual computer nodes for accessing and/or storing the three-
index intermediatesBQ,ai andYQ,ai are as low as possible.

To achieve this, we partition the occupied orbitals intonCPU batchesIm of (as much
as possible) equal size, wherenCPU is the number of computer nodes. The pairs of
batches(Im, Im′) with m ≤ m′ can be ordered either on the upper triangle of a sym-
metric matrix or on block diagonal stripes as shown in Fig. 5.Now, each computer node
gets assigned in a suitable way one block from of each diagonal, such that each node needs
only access a minimal number of batchesIm of BQ,ai andYQ,ai. The minimal number
of batches a node needs to access—in the following denoted asnblk—increases approxi-
mately with

√
nCPU . The calculation of these three-index ERIsBQ,ai would require about

O(N2NX) + O(ON2NX) × nblk/nCPU floating point multiplications. Similar compu-
tational costs arise for some steps that involveYQ,ai and other intermediates that follow
theO(O2N2Nx)-scaling construction of this intermediate. Thus, a conflict between min-
imization of the operation count and communication arises:

• If the three-index intermediatesBQ,ai andYQ,ai are communicated between the nodes
to avoid multiple integral evaluations, the communicationdemands per node become
relatively large,∼ NNx ×O/

√
nCPU .

• If the communication of three-index intermediates is avoided by evaluating on each
node all integrals needed, the operation count for the stepswhich are in RI-MP2 and
RI-CC2 the next expensive ones after theO(O2V 2NX) steps decreases only with
1/
√
nCPU .

The first option requires a high bandwidth for communicationwhile the second option can
also realized with a low bandwidth, but on the expense of a less efficient parallelization.
For both ways a prerequisite for a satisfactory efficiency isthat the total computational
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Figure 5. Arrangement of the pairs of batchesm ≤ m′ with active occupied orbitals on the upper triangle of a
symmetric matrix or on block diagonal stripes.

costs are dominated by those for theO(N 5) steps such that the time needed for multiple
calculations (O(N 4)) or communication (O(N 3)) of three-index intermediates is a negli-
gible fraction of the total time for the calculation. Both options have been realized in our
parallel implementation of thericc2 code and shall in the following be denoted as modes
for “slow communication” and “fast communication”.

To implement the blocked distribution of occupied orbital indices and index pairs
sketched above we define at the beginning of the calculation the following index sets:

• Im: a block of occupied orbitalsi assigned to nodem

• Jm: merged set of thenblk blocksIn for which nodem needs the three-index ERIs
BQ,ai or calculates a contribution toYQ,ai

• Sm: the set of all columns in the blocked distribution to which nodem calculates
contributions.

• Rm(n): the indices of the rows in columnn assigned in this distribution to nodem

With this concept one obtains an efficient parallelization of most program parts that involve
at least one occupied index. These parts use only three- and two-index AO integrals and
include all steps that scale withO(N 4) or O(N 5) in RI-MP2 single point calculations
for energies or RI-CC2 calculations for excitation energies and spectra. For a discussion
of additional demanding steps in the computation of analytic derivatives (gradients) the
interested reader is referred to Refs. 55,75–77. Here, we only sketch how the computation
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of the intermediateYQ,ai can be implemented without any MPI communication once each
computer node has calculated or received all integral intermediatesBQ,ai needed there:

loopn ∈ Sm, loopI (whereI ⊆ In)

readBQ,ai for all i ∈ I
loopn′ ∈ Rm(n), loopj ∈ In′ with j ≤ i
∗ readBQ,bj

∗ tijab ← BQ,aiBQ,bj/
{

ǫi − ǫa + ǫj − ǫb
}

∗ YP,ai ← (2tijab− t
ij
ba) BP,bj and forj 6= i alsoYP,bj ← (2tijab− t

ij
ba) BP,ai

end loopj, loopn′

storeYP,ai andYP,bj on disk (distributed)

end loopI, loopn

If only the RI-MP2 energy is needed, it can be evaluated directly after the calculation of the
integrals(ia|jb) and amplitudestijab as described in Sec. 6.1 and the calculation ofYQ,ai

can be skipped. If the latter intermediates are needed, the contributions to theYQ,ai inter-
mediate can be added and redistributed (after the loop overn has been closed) such that
each node has the complete results forYP,ai for all i ∈ Jm (requiring the communication
of ≈ 2OV Nx/

√
nCPU floating point numbers per node).

8.1 Performance for parallel RI-MP2 energy calculations

To benchmark the calculation of MP2 energies we used four typical test systems with
structures as shown in Fig. 6:

• A calicheamicine model taken from Ref. 78, which has also no point group symmetry.
These calculations have been done in the cc-pVTZ basis sets63, 67, 68with 934 orbital
and 2429 auxiliary functions and 124 electrons have been correlated.

• The fullerene C60, which has Ih symmetry, but the calculations reported here ex-
ploited only the Abelian subgroupD2h. The cc-pVTZ basis set has been used, which
in this case comprises 1800 orbital and 4860 auxiliary basisfunctions and the 240
valence electrons were correlated.

• A chlorophyll derivative which has also no point group symmetry. The cc-pVDZ
basis with in total 918 orbital and 3436 auxiliary functionshave been used and 264
electrons have been correlated.

• A cluster of 40 water molecules as an example for a system where integral pre-
screening leads to large reductions in the costs in conventional MP2 calculations.
The basis sets are 6-31G∗ for the orbital79 and cc-pVDZ for the auxiliary59 basis
with, respectively, 760 and 3840 functions; the point groupis C1 and the 320 valence
electrons have been correlated.
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Figure 6. Structures of the four test examples used to benchmark the performance of parallel RI-MP2 calcula-
tions. For the details of the basis sets and the number of correlated electrons see text.

The maximum amount of core memory used by the program was in all calculations limited
to 750 Mb. The calculations were run on two different Linux cluster: one cluster with
ca. 100 Xeon Dual 2.8 GHz nodes connected through a cascaded Gigabit network and a
second cluster with ca. 64 Athlon 1800MP MHz nodes connectedthrough a 100 MBit fast
Ethernet network. Due to a much larger load on the first cluster and its network the transfer
rates reached in the benchmark calculations varied betweenca. 80–200 MBit/sec per node.
On the Athlon Cluster with the 100 MBit network we reached transfer rates of ca. 20–50
MBit/sec per node.

Fig. 7 shows timings for the calculation of MP2 energies for the C60 fullerene. On
both architectures in sequential runs about 55% of the time are spend in the matrix mul-
tiplication for theN 5 step. With increasing number of nodes this ratio slowly decreases.
In case of the “slow communication” mode because the costs for the integral evaluation
take an increasing fraction of the total wall time; in the “fast communication” mode (and
here in particular on the cluster with the slower network) because of the increasing fraction
of time spent in the communication of the 3-index MO integralintermediateBQ,ai. Not
parallelized steps—as e.g. the evaluation of the matrixVPQ of 2-index ERIs, its Cholesky
decomposition and formation of the inverse— take only a marginal fraction of the total
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Figure 7. Timings for the most important steps in parallel RI-MP2 energy calculations for C60 in the cc-pVTZ
basis (240 electrons correlated). For technical details ofthe machines used see text. At the abscissa we indicated
the number of CPUs used for the calculations. For the clusterwith a 100 MBit Network letters ”a” and ”b” are
added, respectively, for calculations in the “fast” and “slow” communication modes. On the other cluster only
the former program mode has been tested. The fraction denoted “overhead” includes most non-parallel steps, as
the calculation of the Coulomb metricV and the inverse of its Cholesky decomposition, I/O and communication
of MO coefficients, etc. With “AO 3-idx.-integ” we denoted the time spend for the calculation of the AO 3-index
integrals(P |µν) and with “transformation” and “I/O & comm. for B” the fractions spend in the three-index
transformations for the intermediatesBi

Qa and for saving these intermediates on disk and/or distributing them to

other computer nodes. “N̂5 step” and “I/O for N̂5 step” are the fractions spend, respectively, in theN 5-scaling
matrix multiplication and the I/O ofB intermediates during the calculation of two-electron MO integrals. For
parallel calculations idle times caused by non-perfect load-balance are included under the point “I/O for N5̂
step”.

wall time and the fraction of the time spend in the I/O stays approximately constant with
the number of nodes used for the calculation. Another important message from Fig. 7 is,
that even with a relatively slow network it is advantageous to communicate the 3-index in-
termediates, although on the cluster with the slower network the difference in performance
between the two modes is not large. We note, however, that this depends also on the size
of the system and the basis sets.

Because of the symmetry of the molecule, an RI-MP2 energy calculation for C60 is
today not really a large scale application. The same holds for the other three test exam-
ples. Nevertheless, already for these (for parallel calculations) small examples the speed
ups obtained with the present implementation are reasonable as Fig. 8 shows. The speed
up obtained increases with the system size as the computational costs become dominated
by theN 5-scaling matrix multiplication in the construction of the MO 4-index ERIs and
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Figure 8. Speed up obtained for parallel RI-MP2 energy calculations on the Linux cluster with Gigabit network
with four test examples. The number of nodes is given on the abscissa and the speed up (defined as wall time of
parallel calculation dived by the wall time of the sequential run) is indicated on the ordinate.

the less good parallelizing calculation and/or communication of the 3-index MO integrals
becomes unimportant for the total wall time.

9 RI-MP2 Calculations for the Fullerenes C60 and C240

An important aspect of the parallel implementation of RI-MP2 is that it allows to com-
bine the fast RI-MP2 approach withparallel Hartree-Fock self-consistent field (HF-SCF)
calculations, available today in many program packages forelectronic structure calcula-
tions, to optimize geometries for relatively large molecules at the MP2 level. An example
for such a calculation is the determination of the MP2 basis set limit for the ground state
equilibrium structure of C60. The structure of C60 has been studied before at the MP2
level by Häser and Almlöf81 in 1991, but due to the large computational costs of MP2 the
calculations had to be limited to a singly polarized TZP basis set ([5s3p1d], 1140 basis
functions), which is known to cover only about 75% of the correlation energy. With the
parallel implementation of RI-MP2 it was now possible repeat this calculation using cc-
pVTZ basis ([4s3p2d1f], 1800 basis functions), which givestypically correlation energies
almost within 90% of the basis set limit, and the cc-pVQZ basis ([5s4p3d2f1g], 3300 basis
functions), which usually cuts the remaining basis set errors again into half. The results for
the bond lengths and the total energies are summarized in Table 2 together with the results
from Ref. 81 and the available experimental data. As anticipated from the quality of the
basis sets, the result for the correlation energy increasesby about 15% from the MP2/TZP
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Table 2. Equilibrium bond distances of C60 ; dC−C denotes the distance between adjacent C atoms in a five-ring
anddC=C the distance between to the C-C bond shared between to six-rings. The bond distances are given in
Ångstrøm (̊A) and the total energies in Hartrees (H).

Method dC−C/Å dC=C/Å Energy/hartree

SCF/DZPa 1.450 1.375 -2272.10290

SCF/TZPa 1.448 1.370 -2272.33262

MP2/DZPb 1.451 1.412 -2279.73496

MP2/TZPb 1.446 1.406 -2280.41073

MP2/cc-pVTZc 1.443 1.404 -2281.65632

MP2/cc-pVQZc 1.441 1.402 −2282.34442

exp.d 1.458(6) 1.401(10)

exp.e 1.45 1.40

exp.f 1.432(9) 1.388(5)

a from Ref. 80;b from Ref. 81;c from Ref. 76, at the MP2/cc-pVTZ optimized structure
the SCF energy is -2272.40406 hartree;d gas phase electron diffraction, Ref. 82;e solid
state NMR, Ref. 83;f X-ray of C60(OsO4)(4-tert-butylpyridine)2, Ref. 84;

to the MP2/cc-pVTZ calculation and again by about 6% from thecc-pVTZ to the cc-pVQZ
basis. Also the changes in the bond lengths from the MP2/TZP to the MP2/cc-pVQZ level
are with 0.004–0.005̊A of the same magnitudes as between the MP2/DZP and MP2/TZP
calculations. But the difference between the two C–C distances remains almost unchanged,
and also the comparison with the experimental data is not effected, since the error bars of
the latter are with about±1 pm of the same order of magnitude as the basis set effects.
The inclusion of core correlation effects would lead to a further slight contraction of the
bond lengths, but the largest uncertainty comes from higher-order correlation effects which
would probably increase the bond lengths in this system, butlikely not more than 0.005̊A.
Therefore, it is estimated that the MP2/cc-pVQZ results forthe equilibrium bond distances
(re) of the buckminster fullerene C60 are accurate within± 0.005Å. This is slightly less
than the uncertainty of the presently available experimental data. Within their uncertainties
the ab initio calculations and the experiments are thus in good agreement.

Another example demonstrating which system sizes can be handled with the parallel
implementation of RI-MP2 is the next larger icosahedral homologue of the Buckminster
fullerene C60: the C240 molecule.The correlation consistent triple-ζ basis cc-pVTZ com-
prises for this molecules 7200 basis functions and, if the 1s core orbitals are kept frozen,
960 electrons have to be correlated. This calculation has been run on a Linux cluster with
Dual Xeon 2.8 GHz nodes connected by a Gigabit network. Because the memory demands
of implementation increase for non-Abelian point groups with the square of the dimension
of the irreducible representations the calculation was carried out in the D2h subgroup of
the molecular point group Ih. On 19 CPUs the RI-MP2 calculation was completed after 16
hours and 6 minutes. About 12.5% of the time was spend in the evaluation and distribution
of the two- and three-index integrals and 85% in theO(O2V 2Nx) scaling construction of
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Figure 9. Structure of the icosahedral fullerene C240 .

the four-index integrals in the MO basis(ia|jb). In D2h symmetry about6 × 1011 four-
index MO integrals (≈ 4.8 TByte) had to be evaluated to calculate the MP2 energy. This
shows that such a calculation would with a conventional (non-RI) MP2 require either an
enormous amount of disc space or many costly re-evaluationsof the four-index AO two-
electron integrals and would thus even on a massively parallel architecture difficult to carry
out. To the best of our knowledge this is the largest canonical MP2 calculation done until
today. With the parallel implementation of the RI-MP2 approach calculations of this size
can now be carried out on PC clusters build with standard (andthus low cost) hardware
and are expected to become soon routine applications.

The total energy of C240 obtained with MP2/cc-pVTZ at the BP8685–87/SVP64, 58 op-
timized structure88 is −9128.832558 H. For the buckminster fullerene C60 a single point
MP2/cc-pVTZ calculation at the BP86/SVP optimized geometry gives a total energy of
−2281.645107 H. Neglecting differential zero-point energyeffects, which in this case are
expected to be small, we obtain from our calculations an estimate for the reaction enthalpy
of 4 × C60 → C240 of −2.25 H, i.e. a change in the enthalpy of formation per carbon
atom of−9.4 mH or−25 kJ/mol. This can be compared with the experimental result89 for
∆fH

0 of C60 relative to graphite of 39.25±0.25 kJ/mol. Thus, the present calculations
predict that the strain energy per carbon atom in C240 is with≈ 15 kJ/mol only about 35%
of the respective value in C60.
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87 8'5'56 N R1 234CN
Figure 10. Enumeration of the atoms in NMC6 (R = methyl) and NTC6 (R =tertbutyl). For DMABN R = methyl
and aliphatic six-ring is replaced by a (second) methyl group at the N-atom.

10 Geometry Optimizations for Excited States with RI-CC2: The
Intramolecular Charge Transfer States in Aminobenzonitrile
Derivatives

An example for the optimization of excited state equilibrium structures with RI-CC2 are re-
cent investigations90, 91on N-alkyl-substituted aminobenzonitriles (see Fig. 10).A problem
discussed for this class of molecules in the literature since several decades in many pub-
lications has been the structure of a so-called intramolecular charge-transfer (ICT) state
which is observed in fluorescence and femtosecond spectroscopic experiments close to a
so-called locally excited (LE) state.92–96 The two states belong to the two lowest singlet
hypersurfaces S1 and S2, which are connected through a conical intersection seam. Exper-
imental and theoretical results97–101 indicate that the reaction coordinate which connects
the minima on the two surfaces through the conical intersection involves a Kekulé-like
distortion of the phenyl ring and a twist of the amino group, which for the N,N-dimethyl-
aminobenzonitrile (DMABN) is known to be in the ground statealmost coplanar with the
phenyl ring. That the twisting coordinate is involved probably explains distinct effects
of different aliphatic substituents at the amino group on the fluorescence properties (vide
infra) which are intensively discussed in the literature. In 1-tert-butyl-6-cyano-1,2,3,4-
tetrahydroquinoline (NTC6) and 1-metyl-6-cyano-1,2,3,4-tetrahydroquinoline (NMC6) a
twist of the amino group is restricted by the aliphatic ring to a certain range of torsion
angles, but on the other side the sterically demanding bulkytert-butyl substituent in NTC6
disfavors a coplanar orientation. CC2/TZVPP calculations91 predict for the ground state of
NMC6 an almost coplanar orientation of the phenyl and amino moieties, but for NTC6 a
tilted geometry with a twist angle of about 28◦ (cmp. Table 3).

Table 4 gives an overview on the CC2/TZVPP results for some spectroscopic prop-
erties of DMABN, NMC6 and NTC6, e.g. the absorption and emission energies and the
dipole moments in comparison with the available experimental data. For the ICT states we
found for NMC6 and NTC6 three conformations. Table 5 summarizes the results for the
energetically lowest-lying structures and the ones with the highest dipole moments denoted
as, respectively, ICT-1 and ICT-2, in comparison with the structure of the single conformer
in the ICT state of DMABN. In all three molecules the ICT equilibrium geometries display
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Table 3. Calculated bond lengths (pm) and angles (◦) of the ground states of DMABN, NMC6, and NTC6 in
comparison (from Ref. 91, for the enumeration of the atoms see Fig. 10).

DMABN NMC6 NTC6

d(CPh-N1)a 137.7 138.1 139.0

d(C8C8′ ) 141.4 141.2 141.2
d(C8′C5′ ) 141.4 141.9 141.1
d(C7C8) 138.7 138.7 138.9
d(C5C5′ ) 138.7 138.9 138.6
d(C6C7) 140.2 140.0 139.9
d(C5C6) 140.2 140.2 140.3

d(C6CCN) 142.7 142.6 142.6
d(CN) 118.2 118.1 118.1
τb 0 0.1 27.9
φ1

c 23 24.8 18.9
φ2

d < 1 1 1.5
a bond distance between phenyl ring and amino group.b torsion angle, defined as dihe-
dral angle of the normals defined by the planes C8-C8′ -C5′ and C2-N1-CR and the bond
C8′ -N1. c out-of-plane angle of the bond C8′ -N1 with respect to the plane C2-N1-CR

(“wagging” angle). d out-of-plane angle of the bond C8′ -N1 with respect to the plane
C8-C8′ -C5.

marked quinoid distortions of the aromatic ring system. An important finding, which was
not anticipated from the experimental data that has been available in the literature, is that
the aromatic ring is no longer confined to planarity in the excited state. Rather, the carbon
atom labeled 8’ in Fig. 10 is pyramidalized. Therefore the aliphatic six-ring can accommo-
date twist angles of the amino group of up to 60–70◦, as illustrated in Fig. 11, and in this
way energetically low-lying twisted ICT states can be realized even in NTC6 and NMC6.
In the literature it was before assumed that the aliphatic six-ring, which connects the amino
group with the phenyl ring restricts these molecules to “planarized” structures and makes
such a twist impossible.

The transition to the ICT state is at the ground state geometry dominated by the one-
electron HOMO→LUMO excitation in these molecules. Both orbitals are of Ph-N anti-
binding character, but the orbital energy of the LUMO decreases slightly faster with in-
creasing twisting angle than the energy of the HOMO and already such a simple model
predicts for the ICT state close to the ground state geometrya gradient directed to a twisted
structure. With increasing twisting angle the transition assumes an increasing contribution
from the HOMO-2→LUMO excitation. The HOMO-2 is the Ph-N binding counterpartof
the HOMO and increases in energy with the twisting angle and mixes with the HOMO.
As the angle approaches 90◦ one of the two orbitals becomes the lone-pair at the amino
N-atom while the other is localized in the aromatic system and the transition to the ICT
state is dominated by then → π⋆ excitation. In a many electron picture this change in
the character of the excitation corresponds to an avoided crossing of S2 with another, at
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Table 4. Calculated absorption and emission energies and dipole moments for DMABN, NMC6 and NTC6 in
comparison with experimental data. The CC2 results for absorption and emission energies are vertical electronic
transition energies; the dipole moments were calculated asanalytic derivatives of the CC2 total energies.

DMABN NMC6 NTC6

CC2a exp. CC2a exp. CC2a exp.

absorption (S1) [eV] 4.41b 4.25c 4.31d 4.33d

absorption (S2) [eV] 4.77b 4.56c 4.58d 4.32e 4.43d 4.14e

osc. strengths (S1) 0.03bf 0.03f 0.03f

osc. strengths (S2) 0.62bf 0.49f 0.51f

Te (LE) [eV] 4.14 4.07 3.91
emission (LE) [eV] 3.78g 3.76h 3.67g 3.67e 3.34g 3.50e

Te (ICT) [eV] 4.06–4.16i 4.18 3.71
emission (ICT) [eV] 2.49–3.27ig 2.8–3.2j 2.53gk 2.51gk 2.8l–3.3e

dipole (GS) [D] 7.4 6.6j 7.5 6.8m 7.7 6.8m

dipole (LE) [D] 10.1 9.7j 10.4 10.6m 12.6
dipole (ICT) [D] 13.3–15.1i 17±1j 12.7k 13.5k 17–19m

a Unless otherwise indicated the CC2 results for DMABN are taken from Ref. 90 and
those for NMC6 and NTC6 from Ref. 91.b CC2/TZVPP (Ref.102). c EELS band max-
imum (Ref. 103).d Vertical excitation energy to the La (or S2) state which has a sig-
nificantly larger oscillator strength.e Experimental band maximum inn-hexane (Ref.
94). f Oscillator strength for vertical electronic transition calculated at the CC2/TZVPP
level in length gauge.g Vertical energy separation from ground state at the excitedstate
equilibrium structure.h Maximum of dispersed emission from jet-cooled DMABN
(Ref. 104).i The first value is the result for the gas phase equilibrium structure and the
second value is obtained at the C2v symmetric saddle point (Ref. 90).j Emission en-
ergy from ICT state from maxima of fluorescence bands; groundstate dipole moment
derived from the dielectric constant and refractive index in dioxane and the excited state
dipole moments from time-resolved microwave conductivitymeasurements in dioxane
(Ref. 105).k Value refers to the ICT-2 conformer.l Experimental band maximum in
methanol (Ref. 94).m Derived from solvatochromic shift of fluorescence maximum
(Ref. 94).

the ground state structure energetically higher lying, charge-transfer state—in DMABN
according to DFT/SCI calculation in Ref. 106 the S5 state. The avoided crossing with
this state is the main driving force for the formation of the TICT structures (twisting and
pyramidilization at the C8′ atom) in DMABN, NTC6, NMC6 and other alkyl-substituted
amino-benzonitrils. It leads to a pronounced stabilization of the ICT state at large twisting
angles and enhances the charge-transfer character, as it isapparent from the expectation
values for the dipole moment (see Table 4). For all three molecules, DMABN, NMC6, and
NTC6, one finds a similar change in the electronic character from the vertical excitation in
the Franck-Condon region to the equilibrium geometries of the ICT states. This is in line
with the interpretation of recent measurements of the short-time dynamics in DMABN
derivatives after excitation to S2.97, 107–110
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Figure 11. Equilibrium structures of the ICT states in DMABN, NMC6, and NTC6.

For NTC6 the increase in the twist angle from the ground to theexcited ICT states
reduces the steric strain of thetert-butyl group und thus compensates for the hindrance of
the twist by the aliphatic bridge. We obtain at the CC2/TZVPPlevel that for NTC6 and
DMABN the ICT states are energetically slightly below the LEstate, which is reached
by an one-electron transition from the PH-N antibinding HOMO to a Ph-N non-binding
orbital. For NMC6, however, the inhibition of a 90◦ twist is not compensated by the
release of a similar strain since the methyl substituent is sterically much less demanding.
Thus, in difference to DMABN and NTC6 the LE→ICT reaction for NMC6 is predicted
by the RI-CC2 calculations to be slightly endotherm. This explains why NMC6 is not dual
fluorescent, in contrast to DMABN and NTC6.

11 Summary

The computational costs of wavefunction based correlated ab initio methods that treat the
electron–electron interaction correctly through second order (so-called second order or
approximate doubles methods) have in conventional implementations been dominated by
the huge operation counts for the calculation of the four-index electron repulsion integrals
in the AO basis and their transformation to the MO basis. The costs for these steps increase
rapidly with the size of the system studied and the basis setsused. In addition, also the huge
storage demands for the four-index transformation hindered applications on large systems.

With the resolution-of-the-identity approximation for the electron repulsion integrals
the CPU time for the calculation of the MO integrals needed insecond order methods is
reduced by about an order of magnitude (and sometimes even much more) and the scaling
of the storage demands is reduced fromO(O2N2) to O(OV Nx). If optimized auxiliary
basis sets are used, as they today are available for many orbital basis sets, the errors due to
RI approximation are insignificant compared to the errors due to the incompleteness of the
orbital basis sets.

In combination with a new parallel implementation in TURBOMOLE for distributed
memory architectures (e.g. PC clusters) it became now possible to carry out RI-MP2 cal-
culations for energies and structures with several thousands of basis functions and several
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Table 5. Calculated bond lengths (pm) and angles (◦) and weights of the two most important one-electron excita-
tions (%) for the intramolecular charge-transfer states ofDMABN, NMC6, and NTC6 in comparison (from Ref.
91, for the enumeration of the atoms see Fig. 10).

DMABN NMC6 NTC6

ICT ICT-1 ICT-2 ICT-1 ICT-2

d(CPh-N1)a 144.3 146.8 145.0 146.8 145.7
d(C8C8′ ) 144.6 143.5 144.8 142.9 144.9
d(C8′C5′ ) 144.6 146.2 144.5 146.0 143.6
d(C7C8) 137.2 137.2 137.7 137.3 137.8
d(C5C5′ ) 137.2 138.0 136.9 137.9 137.1
d(C6C7) 142.9 143.4 142.4 143.8 142.4
d(C5C6) 142.9 141.8 143.7 141.9 144.0

d(C6CCN) 140.9 141.2 140.9 141.1 140.8
d(CN) 118.9 118.8 118.9 118.8 118.9
τb 90 54.3 66.6 58.5 65.0
φ1

b 0 24.1 14.7 20.7 5.2
φ2

b 41 43.9 44.6 36.4 43.4
HOMO→LUMO 65 62 69 64

HOMO-2→LUMO 15 17 25 16
a bond distance between phenyl ring and amino group.b for the definition of the torsion
and the out-of-plane angles see Table 3.

hundreds of correlated electrons. This extends the applicability of MP2 to systems which
else can only be treated with SCF or DFT methods. Calculations on excited states using
e.g. the approximate coupled-cluster singles and doubles method CC2 or the perturbative
doubles correction to configuration interaction singles, CIS(D), are somewhat more in-
volved and structure optimizations for excited states are (because of weakly avoided cross-
ings or conical intersections) much less straightforward than for ground states. With the
parallel implementation of RI-CC2 they become still feasible for molecules with more than
30 atoms and many hundred basis functions even if the molecular structure has no point
group symmetry.
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64. A. Schäfer, H. Horn, and R. Ahlrichs.J. Chem. Phys., 97(4):2571–2577, 1992.
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81. M. Häser, J. Almlöf, and G. E. Scuseria.Chem. Phys. Lett., 181:497–500, 1991.
82. K. Hedberg, L. Hedberg, D. S. Bethune, C. A. Brown, H. C. Dorn, R. D. Johnson, and

M. De Vries. Science, 254:410–412, 1991.
83. C. S. Yannoni, P. P. Bernier, D. S. Bethune, G. Meijer, andJ. R. Salem.J. Am. Chem.

Soc., 113:3190, 1991.
84. J. M. Hawkins, A. Meyer, T. A. Lewis, S. Lorin, and F. J. Hollander.Science, 252:312,

1991.
85. J. P. Perdew.Phys. Rev. B, 33(12):8822–8824, 1986.
86. J. P. Perdew.Phys. Rev. B, 34:7046, 1986.
87. A. D. Becke.Phys. Rev. A, 38(6):3098–3100, 1988.
88. F. Furche, 2005. Private communication.
89. B. V. Lebedev, L. Y. Tsvetkova, and K. B. Zhogova.Thermochimica Acta, 299:127–

131, 1997.
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The basic concepts of density functional theory and of linear-scaling techniques to solve the
density functional equations are introduced. The Hohenberg-Kohn theorem, the one-to-one
mapping to an auxiliary non-interacting electron system toobtain the single-particle Kohn-
Sham equations, and the construction of approximations forthe exchange-correlation func-
tional are explained. The principle of nearsightedness of electronic matter and its importance
to achieve linear scaling are discussed. Finally, a recently in Jülich developed linear-scaling
algorithm for metallic systems is presented and its suitability for large supercell calculations is
illustrated.

1 Introduction

In the last decades density functional theory has emerged asa powerful tool for the quan-
tum mechanical description of chemical and physical properties of materials. Density
functional theory is an approach to treat the many-electronproblem by single-particle
equations. Instead of the many-electron wavefunction, which depends on3N electronic
space coordinates andN spin variables (hereN is the number of electrons in the consid-
ered system), the basic quantity in density functional theory is the electron densityn(r),
which depends on only three space coordinates. This obviously represents a considerable
simplification for calculating, understanding and predicting material properties. The idea
to use the density instead of the many-electron wavefunction was proposed by Thomas1

and Fermi2 already in 1927. The idea was fundamentally justified by the theorem of Ho-
henberg and Kohn3 in 1964, which states that the ground-state energy of the many-electron
system is uniquely determined by the ground-state densityn0(r). Modern density func-
tional theory has motivated an enormous number of applications primarily in the electron
theory of atoms, molecules and solids, but density functional theory can be used also in the
physics of liquids4 and in nuclear physics5.

However, although density functional theory accomplishesa considerable simplifica-
tion, calculations for systems with many atoms still represent a serious computational chal-
lenge even after decades of effort to develop and improve computational techniques for the
solution of the density functional equations. Systems withup to a few hundred atoms
can be treated routinely today, but systems with thousands of atoms require overwhelming
computing effort, because the computing time increases cubically with system size. In the
last decade considerable work has been done to reduce the computational effort and linear
scaling techniques have emerged as an approach to treat large systems with almost similar
accuracy as available in standard techniques with cubic scaling.

The plan of this lecture is to introduce the concepts of density functional theory, to
explain the reasons why linear scaling should be possible, to present the ideas used in
several linear scaling techniques and finally to present an algorithm for metallic systems
which was recently developed in our institute.
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2 Density Functional Theory

To simplify the discussiona the consideration will be restricted here to a non-relativistic,
non-spin-polarized, time-independent many-electron system moving in a potential pro-
vided by the electrostatic Coulomb interaction with atomicnuclei assumed at fixed posi-
tions. For this system the Hamilton operatorĤ is given by a sum of the kinetic energy and
the electron-electron, electron-nuclear and nuclear-nuclear interaction terms. Under the as-
sumption that the nuclei are fixed the many-electron Schrödinger equation forN electrons
is given by

ĤΨ =



− ~
2

2m

N∑

i

∇2
i +

N∑∑

i<j

U(ri, rj) +
N∑

i

vext(ri)



Ψ = EΨ, (1)

whereU(r, r′) = e2|r − r′|−1 is the electron-electron interaction andvext(r) the external
potential, which contains the static potential arising from the interaction of the electrons
with the nuclei and a constant term arising from the nuclear-nuclear interaction. Exten-
sions of density functional theory to non-degenerate ground states, to spin-polarized and
relativistic systems, to excited states and finite temperatures, to time-dependent and to
superconducting situations are possible and can be found inthe literature. Here, due to
limited space, a discussion of these extensions is not possible.

2.1 Hohenberg-Kohn Theorem

The formal solution of the many-electron Schrödinger equation (1) defines a mapping from
the external potential to the many-electron wavefunctionsand thus also a mapping from ex-
ternal potential to the ground state wavefunctionΨ0 and to the ground-state densityn0(r).
The first part of the Hohenberg-Kohn theorem states that the mapping can be inverted so
that the external potential is uniquely determined by the ground-state density except for a
trivial additive constant shift of the external potential.Because of the mapping from the
ground-state density to the external potential and of the mapping from the external potential
to the many-electron wavefunctions, there is also a mappingfrom the ground-state density
to the many-electron wavefunctions and to every expectation value〈Ψ|Ô|Ψ〉, which means

that every quantum mechanical observable is uniquely determined as a functionalb of the
ground-state density. The second part of the Hohenberg-Kohn theorem states that the total
energy functionalE[n(r)] is minimal, if n(r) is the ground-state densityn0(r), and that
the minimumE0 = E[n0(r)] is the ground-state energy.

The proof of the Hohenberg-Kohn theorem for non-degenerateground states proceeds
by reductio ad absurdum and requires two steps. First it is shown that two potentialsvext

andv′ext, which differ by more than a trivial constantvext 6= v′ext + const, cannot lead
to the same ground-state wavefunctionΨ0 and then it is shown that two different ground-
state wavefunctionsΨ0 andΨ′

0 (arising from two different potentialsvext 6= v′ext + const)
cannot lead to the same ground-state densityn0(r).

aThis discussion is partly based on a previous article published in Lecture Manuscripts of the37th Spring School
of the Institute of Solid State Research6.
bCompared to a functionf(x), which is defined as a mapping from a variablex to a numberf , a functional
F [f(x)] is defined as a mapping from a functionf(x) to a numberF .
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If one assumes that two potentialsvext andv′ext, which differ by more than a con-
stant, lead to the same ground-state wavefunctionΨ0, the subtraction of the Schrödinger
equations forvext andv′ext gives

(vext − v′ext)|Ψ0〉 = (E − E′)|Ψ0〉 . (2)

In regions withΨ0 6= 0 the constant valueE − E′ implies that the two potentialsvext and
v′ext can differ only by a constant. Thus the assumption thatvext andv′ext differ by more
than a constant can only be satisfied in regions whereΨ0 vanishes. However, regions (with
nonzero measure), whereΨ0 vanishes, cannot exist because the unique continuation theo-
rem7, 8 states thatΨ0 vanishes everywhere ifΨ0 vanishes in a region of nonzero measure.
Thus the assumption that two potentialsvext andv′ext, which differ by more than a con-
stant, lead to the same ground-state wavefunction requiresthat this wavefunction vanishes
everywhere which is clearly impossible.

If one assumes that two different (apart from a trivial phasefactor) ground-state wave-
functionsΨ0 andΨ′

0 for the different potentialsvext andv′ext lead to the same ground-state
densityn0(r), one obtains (see appendix)

〈Ψ′
0|vext − v′ext|Ψ′

0〉 =

∫

n0(r)[vext(r)− v′ext(r)]dr (3)

and

〈Ψ0|v′ext − vext|Ψ0〉 =
∫

n0(r)[v
′
ext(r)− vext(r)]dr . (4)

From〈Ψ0|Ĥv′ |Ψ0〉 > 〈Ψ′
0|Ĥv′ |Ψ′

0〉 = E′
0, where the strict larger sign arises becauseΨ′

0

is the ground-state wavefunction for the HamiltonianĤv′ which leads to the the ground-
state energyE0

′, whereasΨ0, which differs fromΨ′
0 by more than a trivial phase factor

leads to a larger energy, and from〈Ψ′
0|Ĥv|Ψ′

0〉 > 〈Ψ0|Ĥv|Ψ0〉 = E0, where the strict
larger sign arises using similar arguments, one obtains

〈Ψ0|Ĥv′ |Ψ0〉+ 〈Ψ0
′|Ĥv|Ψ0

′〉 > E′
0 + E0 . (5)

Here the substitution̂Hv′ = Ĥv +v′ext−vext in the first term and̂Hv = Ĥv′ +vext−v′ext

in the second term and the use of〈Ψ0|Ĥv|Ψ0〉 = E0 and〈Ψ0
′|Ĥv′ |Ψ0

′〉 = E′
0 leads to

E0 + 〈Ψ0|v′ext − vext|Ψ0〉+ E0
′ + 〈Ψ0

′|vext − v′ext|Ψ0
′〉 > E0

′ + E0 (6)

By inserting (3) and (4), which are valid because of the assumption that the two different
ground-state wavefunctionsΨ0 andΨ′

0 lead to the same ground-state densityn0(r), one
obtainsE0 +E0

′ > E0
′ +E0, which is clearly a contradiction, and the assumption cannot

be true. Consequently, two external potentialsvext 6= v′ext +const cannot lead to the same
ground-state density. Therefore, the ground-state density uniquely determines the exter-
nal potential up to a trivial constant and thus via the many-electron Schrödinger equation
uniquely the many-electron wavefunctions of the system. This means that all stationary
observables of the many-electron system are uniquely determined by the ground-state den-
sity. Unfortunately, for most physical properties it is notknown how they can be calculated
directly from the ground-state density without using the many-electron Schrödinger equa-
tion so that the unique determination is not often of practical use.
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To calculate the ground-state energyE0 the unique energy functionalE[n(r)] can be
defined10 by

E[n(r)] = min
Ψ→n(r)

〈Ψ|T̂ + Û + vext|Ψ〉 = F [n(r)] +

∫

n(r)vext(r)dr , (7)

where the minimum is over all wavefunctions, which give the densityn(r). The functional

F [n(r)] = min
Ψ→n(r)

〈Ψ|T̂ + Û |Ψ〉 (8)

does not depend on the external potentialvext and but only onT̂ andÛ and is universal in
the sense that it is same for all systems described by the Schrödinger equation (1). From
(7) one obtains the inequality

E[n(r)] ≤ 〈Ψ|T̂ + Û + vext|Ψ〉 (9)

for all wavefunctionsΨ, which give the densityn(r). For the ground-state wavefunction
Ψ0 with the ground-state densityn0(r) this meansE[n0(r)] ≤ 〈Ψ0|T̂ + Û + vext|Ψ0〉 =
E0. Since〈Ψ|T̂+Û+vext|Ψ〉 ≥ E0 is valid for all wavefunctions because of the Rayleigh-
Ritz minimum principle, this inequality is also valid for the wavefunction which leads to
the minimum in (7). This meansE[n(r)] ≥ E0 is valid for all densities, in particular for
the ground-state density:E[n0(r)] ≥ E0. Together withE[n0(r)] ≤ E0 this showsE0 =
E[n0(r)] which proves the second part of the Hohenberg-Kohn theorem:the minimum of
E[n(r)] is obtained for the ground-state density and this minimum gives the ground-state
energy

E0 = min
n
E[n(r)] . (10)

Here the minimization is over all densities which arise fromantisymmetric wavefunctions
forN electrons.

2.2 Kohn-Sham Equations

The theory discussed above has transformed the problem of finding the minimum of
〈Ψ|Ĥ |Ψ〉 for many-electron trial wavefunctionsΨ into the seemingly much more simple
problem of finding the minimum ofE[n(r)] for trial densitiesn(r) which depend on only
three space variables. However, since the explicit form of the functionalF [n(r)] is not
known, the theory is rather abstract. Here, the idea of Kohn and Sham9, the introduction
of a fictitious auxiliary non-interacting electron system with the same ground-state density
is of extraordinary importance. Because the Hohenberg-Kohn theorem is valid for all in-
teraction strengths (that is for all values ofe2), it is also valid for the choicee2 = 0 which
according to (1) describes a non-interacting system withU(r, r′) = 0. By the Hohenberg-
Kohn theorem the ground-state density uniquely determinesthe external potential in the
non-interacting system. This potential is usually called the effective potentialveff (r). For
the non-interacting system the total energy functional (7)can be written as

E[n(r)] = Ts[n(r)] +

∫

n(r)veff (r)dr (11)

because the functionalF [n(r)] (for e2 = 0) reduces to the kinetic energy functional
Ts[n(r)] of non-interacting electrons. For the non-interacting system with potential
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veff (r) the ground-state densityn0(r) and the ground-state kinetic energyTs[n0(r)] can
be calculated exactly by

n0(r) =
∑

i

|ϕi(r)|2 and Ts[n0(r)] =
∑

i

∫

ϕ⋆
i (r)(−

~
2

2m
∇2

r)ϕi(r)dr , (12)

whereϕi(r) are the Kohn-Sham wavefunctions (orbitals), which are obtained by solving a
single-particle Schrödinger equation

Ĥsϕi(r) =

[

− ~
2

2m
∇2

r + veff (r)

]

ϕi(r) = ǫiϕi(r) . (13)

The sums in (12) are over theN wavefunctions with lowest values ofǫi. To apply this
scheme, a useful expression for the effective potentialveff (r) must be found. The impor-
tant achievement of Kohn and Sham was the suggestion to separate the unknown functional
F [n(r)] in (7) into a sum of known terms and into an unknown, hopefullymuch smaller
rest which must be approximated. The energy functional is written as

E[n(r)] = Ts[n(r)] +

∫

n(r)vext(r)dr +
e2

2

∫∫
n(r)n(r′)
|r − r′| drdr′ + Exc[n(r)] , (14)

where the term which contains density products describes the classical electron-electron
interaction (Hartree interaction) and the last term is the exchange-correlation energy func-
tional defined as

Exc[n(r)] = F [n(r)]− Ts[n(r)]− e2

2

∫∫
n(r)n(r′)

|r − r′| drdr′ . (15)

For the ground-state density comparison of (11) and (14) shows that
∫

n(r)veff (r)dr =

∫

n(r)vext(r)dr +
e2

2

∫∫
n(r)n(r′)
|r − r′| drdr′ + Exc[n(r)] . (16)

is valid except for an unimportant trivial constant. The functional derivative of (16) with
respect ton(r) is given by

veff (r) = vext(r) + e2
∫

n(r′)
|r − r′|dr

′ + vxc[n(r)](r) , (17)

where the exchange-correlation potential

vxc[n(r)](r) =
δExc[n(r)]

δn(r)
(18)

is defined for every pointr as a functional of the density. Equations (12) and (13) are
technically single-particle equations with a local effective potentialveff (r). This local po-
tential makes density functional calculations simpler than Hartree-Fock calculations where
the potential is non-local acting as

∫
VHF (r, r′)ϕi(r

′)dr′.
The effective potential (17) depends on the density, which in turn depends on the effec-

tive potential according to (12) and (13). These equations must be solved self-consistently,
which can be achieved by iteration: starting with a reasonable trial density the effective
potential is calculated by (17). Then (12) and (13) are solved to determine a new density
which is used again in (17). This process is repeated until input and output density of an
iteration agree within the required accuracy. The straightforward iteration usually leads
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to oscillations with increasing amplitude. The oscillation can be damped by input-output
mixing or by more sophisticated schemes11. From the behaviour of the eigenvalues of the
functional derivativef(r, r′) = δE[n(r)]/δn(r′) it can be concluded12 that the mixing
process always converges to a stable solution if small enough mixing parameters are used,
but many iterations may be needed.

The single-particle statesϕi and the single-particle energiesǫi obtained by solving
(13) are properties of thenon-interacting auxiliarysystem. In the interacting system they
have no physical meaning and their interpretation as measurable quantities is not justified,
although this interpretation is often adequate. A particular problem connected with the
energiesǫi is that the eigenvalue gap between unoccupied and unoccupied states can differ
considerably from the fundamental physical gap∆ in insulators and semiconductors. This
gap is defined as∆ = [E(N + 1) − E(N)] − [E(N) − E(N − 1)] as the difference of
the energies required for adding and removing one electron.HereE(N), E(N + 1) and
E(N − 1) are the ground-state total energies of the system withN , N + 1 andN − 1
electrons.

2.3 Approximations for the Exchange-Correlation Energy Functional

In principle, density functional theory is exact, but sinceall complications of the many-
particle problem are hidden in the functionalExc[n(r)], which is not known explicitly, the
success of density functional calculations depends on whether reasonable approximations
for this functional can be found. A rather simple and remarkably good approximation is
the replacement of the exact functionalExc by

ELDA
xc [n(r)] =

∫

n(r) ǫLDA
xc (n(r)) dr , (19)

the so-called local density approximation (LDA), whereǫLDA
xc (n) is a function (not a func-

tional) of the density. For a homogeneous interacting electron system with constant density,
the local density approximation is exact andǫLDA

xc (n) can be determined as function ofn
by quantum mechanical many-body calculations. The exchange partǫLDA

x (n) of ǫLDA
xc (n)

is simple and given by

ǫLDA
x (n) = −3e2

4

(
3

π

)1/3

n1/3 , (20)

whereas the correlation partǫLDA
c (n) is more difficult to calculate. Accurate results

for ǫLDA
c (n) have been obtained by the quantum Monte Carlo method13 and reliable

parametrizations14, 15for these results are available.
For systems with more inhomogeneous densities, the integrand in (19) can be general-

ized by using the gradient∇n(r) of the density, for instance in the form,

EGGA
xc [n(r)] =

∫

f(n(r),∇n(r)) dr . (21)

While the inputǫLDA
xc in (19) is unique, the functionf in (21) is not and different forms

have been suggested incorporating a number of known properties of the exact functional,
for instance scaling and limit behaviours, or empirical parameters. A well tested numerical
approximation is the generalized gradient approximation (GGA)16–18, which for instance,
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improves the cohesive energies and lattice constants of the3d transition metals. So-called
meta-GGA functionals19, 20 were also proposed, where besides the local density and its
gradient also other variables are introduced, for instancethe kinetic energy density of the
Kohn-Sham orbitals

Emeta−GGA
xc [n(r)] =

∫

f (n(r),∇n(r), τ(r)) dr with τ(r) =
∑

i

|∇ϕi(r)|2 . (22)

By the additional flexibility in (22) it has been possible to improve the accuracy compared
to (21) for some physical properties without worsening the results for others.

Probably the most serious shortcoming of the exchange-correlation functionals pre-
sented above is that they do not provide a cancellation of theself-interaction arising from
the classical Hartree term which is used in (14). This shortcoming is particularly problem-
atic in systems with localized and strongly interacting electrons as transition metal oxides
and rare earth elements and compounds. Several techniques have been suggested to deal
with self-interaction problem. Perdew and Zunger15 suggested to use a self-interaction cor-
rected (SIC) functional, where the self-interaction is removed explicitly for each orbital. In
the LDA+U method21 explicit on-site Coulomb interaction terms are added. Another way
to treat the problem is to use the so-called exact exchange expression

EKS
x [n(r)] = −

∑

ij

∫∫
ϕ⋆

i (r
′)ϕi(r)ϕ

⋆
j (r)ϕj(r

′)

|r − r′| drdr′ (23)

as part of energy functional. Note thatEKS
x [n(r)] as well asTs[n(r)] given in (12) and

τ(r) given in (22) are defined by the Kohn-Sham orbitalsϕi(r). Nevertheless, they are still
density functionals, since by (13) the orbitals are determined by the effective potential and
thus by the density because of the Hohenberg-Kohn theorem. One problem22 with the use
of exact exchange is to treat correlation in a way which is compatible with the exchange
(23). In chemistry hybrid functionals, for instance

Ehyb
xc = aEKS

x + (1 − a)EGGA
x + EGGA

c (24)

as suggested by Becke23, 24, are rather popular, where the constanta ≈ 0.28 is an empirical
parameter. Another, even more popular example is the B3LYP (Becke24, three-parameter,
Lee-Yang-Parr25) exchange-correlation functional

EB3LY P
xc = ELDA

xc +a0(E
KS
x −ELDA

x )+ax(EGGA
x −ELDA

x )+ac(E
GGA
c −ELDA

c ) (25)

which combines the exchangeEKS
x with exchange and correlation functionals of LDA

and GGA type with three empirically fitted parameters. Technically, self-consistent calcu-
lations withEKS

x are rather involved because the exchange potentialvKS
x defined as the

functional derivative ofEKS
x [n(r)] with respect ton(r) is difficult to calculate22.

2.4 Solution methods

Although in density functional theory only single-particle equations with a local poten-
tial must be solved, the required computations can be a challenging task, in particular for
complex and large systems. Thus it cannot be considered as a surprise that the Nobel
Prize in Chemistry 1998 was not only awarded to Walter Kohn “for his development of
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the density functional theory”, but also to John A. Pople “for his development of compu-
tational methods in quantum chemistry”. Standard solutionmethods for the Kohn-Sham
equation (13) usually apply an expansion of the single-particle wavefunctions in a set of
basis functions and use the Rayleigh-Ritz variational principle to determine the expansion
coefficients.

Historically, solution methods can be classified into threecategories using plane waves,
localized atomic(-like) orbitals or the atomic sphere concept. Plane waves are simple and
a natural basis for periodic systems, but inadequate to represent the large variations of
the low lying atomic core states so that plane waves usually require to replace the strong
potential near the nuclei by a much weaker pseudopotential.Localized orbitals, for in-
stance Gaussian, Slater or numerically constructed orbitals, are well suited to describe
atomic-like features in molecules and solids and are widelyused, in particular in chem-
istry. In atomic sphere methods different representationsfor the wavefunctions are used in
the spheres around the atomic centers, where the wavefunctions rapidly vary particularly
near the nuclei, and in the interstitial region between the spheres, where the wavefunctions
behave smoothly. In the original atomic sphere methods, in Slater’s augmented plane wave
(APW) method and in the Korringa-Kohn-Rostoker (KKR) method this separation resulted
in a complicated non-linear energy dependence. Here Andersen’s development26 of the lin-
ear augmented plane wave (LAPW) and the linear muffin-tin orbital (LMTO) method by
linearizing the energy dependence was a real breakthrough for the use of atomic sphere
methods.

A disadvantage of basis set methods is that, although the basis set (chosen by physi-
cal motivation) often yields acceptable results for a smallnumber of basis functions, pre-
cise calculations can be rather costly because they may require a large number of basis
functions. Due to these limitations, in recent years purelynumerical methods have been
developed to solve the Kohn-Sham (Schrödinger) equation,for instance by using finite
differences,27 finite elements,28 multigrid28–30or wavelet31, 32methods.

3 Linear Scaling

Although over the last decades the computational efficiencyto solve the density functional
equations has increased significantly, the system size which can be studied is still rather
limited. Systems with a few hundred atoms can be treated routinely today, but larger sys-
tems with thousands of atoms require enormous computer resources, if standard techniques
are used to solve the density functional equations. The mainbottleneck is that the com-
puting time in standard calculations increases with the third power of the number of atoms
(electrons) in the system. Although the computing power hasincreased by a factor of ten
every four years (Moore’s law) in the past and one can expect asimilar increase in the next
years, one has to wait for more than a decade until a ten times larger system can be treated
if standard density functional methods with theirO(N3) behaviour of the computing time
are used.

Since about ten years considerable effort has been spent to remove theO(N3) bottle-
neck in most or all parts of the computer codes for density functional calculations. Most of
this work is based on a locality principle, the nearsightedness of electronic matter, which
has been formulated in a series of papers by Kohn33, 34. Another possibility is to exploit the
inherentO(N) capability of multigrid35 and multiresolution36 (wavelet) methods.
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The nearsightedness principle means that in systems without long range electric fields
(and for fixed chemical potential) the density change at a point r0, which is caused by a
potential change in a finite region far away (outside a spherewith radiusR aroundr0), is
small and decays to zero ifR increases to infinity. Thus the charge density in a region (for
instance in the central region shown in Fig. 1) can be calculated from the potential in this
region and from the potential in a surrounding buffer region, whereas the potential outside
the buffer region can be neglected. This concept is directlyexploited in divide and conquer
techniques (see below).

Figure 1. Schematic view of the central and the surrounding buffer region (in gray). The atomic positions are
denoted by small circles.

A possibility to avoid the calculation of eigenstates whichextend over the entire system
is to work with the density matrix. For non-interacting particles the density matrix can
be written in terms of the Kohn-Sham orbitalsϕi (the eigenstates of the non-interacting
auxiliary system) for zero temperature as

ρ(r, r′) =
∑

i

ϕ⋆
i (r)ϕi(r

′) (26)

and for non-zero temperature as

ρ(r, r′) =
∑

i

fiϕ
⋆
i (r)ϕi(r

′) , (27)

where the occupation numbers are given byfi = f((ǫi − EF )/kT ). For T = 0 the
sum is restricted to the occupied eigenstates, whereas forT 6= 0 all eigenstates are used.
However, due to the decay of the Fermi-Dirac functionf(x) = (1 + exp(x))−1 only low
lying unoccupied states give appreciable contributions. In terms of the density matrix the
density and kinetic energy given in (12) can be written as

n(r) = ρ(r, r) and Ts[n(r)] =

∫

lim
r→r′

[

− ~
2

2m
∇2

rρ(r, r
′)

]

dr′ (28)

which shows that the effective potential (17) and all parts of the energy functional (14) can
be calculated ifρ(r, r′) is known. According to the nearsightedness principle the density
matrix decays to zero for|r − r′| → ∞. In insulators and semiconductors the decay is
exponential for large distance37–39

ρ(r, r′) ∼ exp(−γ|r − r′|) , (29)
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whereas in metallic systems (at zero temperature) the decays is only algebraical

ρ(r, r′) ∼ cos(kF |r − r′|)
|r − r′|2 , (30)

whereγ increases with the size of the band gap andkF =
√

2mEF /~ denotes the Fermi
wavevector.

3.1 Divide and Conquer Technique

A straightforward way to exploit the nearsightedness principle is to divide the system into
overlapping subsystems and to solve the Kohn-Sham equations separately in each subsys-
tem by standard methods taking into account an atom or a groupof atoms in a central
region surrounded by a buffer region. The density of the central regions is used and the
density of the buffer regions is neglected. Examples of thisapproach are the divide and
conquer technique proposed Yang40 and the locally self-consistent multiple-scattering41

(LSMS) or locally self-consistent Green function42, 43(LSGF) methods which are based on
KKR or LMTO calculations. Since each local interaction zoneconsisting of the central
and its surrounding buffer region is treated independently, the effort in this approach scales
linearly with system size and is parallelized easily over atoms or groups of atoms. A disad-
vantage is the limited accuracy44 which can be achieved with a computationally affordable
number of atoms in the local interaction zone since the effort increases cubically with this
number.

3.2 Fermi Operator Expansion

The Kohn-Sham orbitals in (27) are eigenfunctions of the Hamilton operatorĤs according
to (13). FromĤsϕi = ǫiϕi one obtainsf((Ĥs − EF )/kT )ϕi = fiϕi and (27) can be
written as

ρ(r, r′) = F (Ĥs)
∑

i

ϕ⋆
i (r)ϕi(r

′) (31)

with F (Ĥs) = f((Ĥs − EF )/kT ). Since the sum in (31) is over all orbitals an arbitrary
unitary transformationφi =

∑

j Uijϕj with
∑

i U
⋆
ikUij = δkj can be used to rewrite (31)

as

ρ(r, r′) = F (Ĥs)
∑

i

φ⋆
i (r)φi(r

′) (32)

This means that any complete set of basis functions can be used to evaluate the density ma-
trix without the need to calculate explicitly the Kohn-Shamwavefunctions provided that
one knows how to calculateF (Ĥs)φi(r

′). In the Fermi operator method39, 45 the Fermi
function is expanded into Chebyshev polynomials so thatF (Ĥs) is a polynomial inĤs. Its
action on the basis functionφi(r

′) is calculated according to the recursion relations of the
Chebyshev polynomials by subsequent applications ofĤs. Linear scaling is obtained by
neglecting the small elements ofF (Ĥs)φi(r

′) which appear due to the exponential decay
of the density matrix. Note that the use of Chebyshev polynomials requires that the eigen-
values of the Hamilton operator are in the interval[−1, 1] which can be achieved by shifting
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and scaling. Similar in spirit to the Fermi operator expansion, which forT → 0 corre-
sponds to a polynomial expansion of a step function, is the kernel polynomial method46

which uses a polynomial expansion of theδ function with factors designed to reduce the
Gibbs oscillations arising from polynomial expansions of step or delta functions.

3.3 Recursion Method

The recursive application of a Hamilton operator to a basis set is also the essence of the
recursion method47, 48 which is based on the Lanczos algorithm. The recursion method
gives a continued fraction expansion for the density of states and for diagonal elements
of the resolventE − Ĥs. It is used together with with divide and conquer approach, for
instance, in the OpenMX program49 based on a Krylov-subspace method50, 51.

3.4 Density Matrix Minimization

In the density matrix minimization approach52–54a direct minimization of the total energy
with respect to the density matrix is performed. Here two constraints must be satisfied.
The trial density matrix must give the correct number of electrons,N =

∫
n(r)dr =

∫
ρ(r, r)dr, and it must be idempotent̂ρ2 = ρ̂ which means that

∫

ρ(r, r′′)ρ(r′′, r′)dr′′ = ρ(r, r′) (33)

must be satisfied. This equation is equivalent to the requirement that all eigenvalues of the
density matrix operator̂ρ are equal to one or zero. The constraintN =

∫
ρ(r, r)dr can be

treated by a Lagrange parameter which amounts to replacing the minimization of the total
energy by minimization of the grand potential. The constraint of idempotency is taken into
account by the “McWeeny purification”55 which means to expresŝρ by ρ̂ = 3σ̂2 − 2σ̂3

with an auxiliary trial density matrix operator̂σ. Provided that the trial operator̂σ has
eigenvalues between -1/2 and 3/2, the eigenvalues ofρ̂ are between 0 and 1 and the min-
imization process becomes a stable algorithm which drives the density matrix towards
idempotency52. In the last years programs as CONQUEST56 and ONETEP57 have ap-
peared which achieve linear-scaling by utilizing the decayof the density matrix58–60.

3.5 Local Orbital Method

In the local orbital method61–63 the Kohn-Sham energy functional is generalized by replac-
ing (12) with

n(r) =
∑

ij

Aijφ
⋆
i (r)φj(r) and Ts[n(r)] =

∑

ij

Aij

∫

φ⋆
i (r)(−

~
2

2m
∇2

r)φj(r)dr ,

(34)
whereφi are non-orthogonal local orbitals. ForAij = δij this generalized functional
agrees with the original Kohn-Sham functional and forAij = S−1

ij , whereSij = 〈φi|φj〉
is the overlap matrix, one obtains the correct functional for non-orthogonal orbitals. The
problem with the choiceA = S−1 is that, whereas the overlap matrix is sparse for local
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orbitals, its inverse is not sparse. To avoid the calculation of S−1 the local orbital method
uses61, 63

A =

n∑

k=0

(1− S)k (35)

or the special choice62 n = 1 which leads toA = 2 − S. During minimization the
generalized functional approaches the correct one, but orthogonalization or calculation of
the inverse of the overlap matrix, both requiringO(N3) operations, are avoided. Linear
scaling with in the local orbital method is achieved by utilizing the decay of the density
matrix64, for instance within the SIESTA65 program.

4 A Linear Scaling Algorithm for Metallic Systems

Since the density matrix decay in metals is only algebraical, an obvious idea is to make
the decay faster by using a non-zero temperature. ForT 6= 0 the density matrix in metals
behaves for large distance as36, 37

ρ(r, r′, T ) ∼ cos(kF |r − r′|)
|r − r′|2 exp(−γ|r − r′|) , (36)

but it is not clear whether the decay constantγ, which is proportional to temperature, is
large enough for reasonable temperatures so that linear scaling techniques developed for
insulating systems can be applied also for metallic systems. Another difficulty for density
matrix based techniques is that in metals no gap exists between occupied and unoccupied
states so that an unambiguous choice of the states contributing to the density matrix is
nontrivial. Nevertheless, some success has already been achieved for metallic systems51, 60.

Recently a linear scaling algorithm suitable for metals hasbeen proposed in our in-
stitute66, 67. This algorithm is based on the tight-binding (TB) version of the KKR Green
function method68, 69and on the electronic nearsightedness by exploiting a relation between
finite-temperature density matrix and Green function. The principle of nearsightedness has
been applied in KKR and LMTO calculations already for years,for instance for the em-
bedding of impurities70–72, where the fact is used that local potential perturbations lead
to negligible density changes at large distance, and in the LSMS and LSGF methods dis-
cussed above. Compared to the LSMS and LSGF methods our algorithm seems to be more
advantageous since in addition to the nearsightedness principle it also exploits the sparsity
of the TB-KKR matrix. This sparsity alone leads already to anO(N2) behaviour of the
computing time if the KKR matrix equations are solved by iteration.

4.1 Basic KKR Green Function Equations

Compared to wavefunction methods, where the density is calculated according to (12), the
KKR Green function method obtains the density by

n(r) = − 2

π
Im

∫ EF

−∞
G(r, r;E)dE (37)
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as an energy integral over the independent-particle Kohn-Sham Green functionG(r, r;E)
which is defined as the solution of

[

− ~
2

2m
∇2

r + veff (r)− E
]

G(r, r′;E) = −δ(r − r′) (38)

with the boundary conditionG(r, r′;E) → 0 for |r − r′| → ∞. For the calculation of
G(r, r′;E) it is convenient to transform the differential equation (38) into an equivalent
integral equation69

G(r, r′;E) = Gr(r, r′;E)+

∫

Gr(r, r′′;E) [veff (r′′)− vr(r′′)]G(r′′, r′;E)dr′′ , (39)

wherevr is the potential of a reference system, for which the Green functionGr is assumed
to be known. This integral over all space is then divided intointegrals over non-overlapping
space-filling cells around the atomic positionsRn. In each cell the multiple-scattering
representation69

G(r +Rn, r′ +Rn′

;E) = δnn′

Gn
s (r, r′;E) +

∑

LL′

Rn
L(r;E)Gnn′

LL′(E)Rn′

L′(r′;E) (40)

of the Green function is used, whereL stands for the angular-momentum indicesl andm
andr andr′ are cell-centred coordinates. With this representation the integral equation
(39) can be solved by a matrix equation69, 73

Gnn′

LL′(E) = Gr,nn′

LL′ (E) +
∑

n′′L′′L′′′

Gr,nn′′

LL′′ (E)∆tn
′′

L′′L′′′(E)Gn′′n′

L′′′L′(E) . (41)

Here the matrices have the dimensionNat(lmax + 1)2, whereNat is the number of atoms
andlmax is the highest angular momentuml used (usuallylmax = 3 is sufficient). In (41)
the Green function matrix elementsGnn′

LL′(E) are the ones of the system andGr,nn′

LL′ (E)
are the ones of the reference system. These matrix elements are the only quantities in
the KKR Green-function method which couple different atomic cells, whereas the single-
scattering Green functionsGn

s (r, r′;E) and wavefunctionsRn
L(r;E) depend only on the

potentialveff (r) inside celln and the single-scatteringt-matrix differences∆tnLL′(E)
only on the differenceveff (r) − vr(r) of the potential and the reference potential inside
cell n. All these single-scattering quantities can be calculatedindependently for each cell
as described in69, 74 with a computational effort which naturally scales with thenumber of
atoms. This means that for large systems the solution of (41)with its O(N3) computing
effort requires by far the largest part of the computer resources, if the standard KKR Green
function method is used, where due to free space as referencesystem the matrices in (41)
are dense matrices.

Here the question is whether a reference system can be found,where the Green function
matrixGr,nn′

LL′ (E) is sparse, and whether the matrix equation (41) can be solvedby iterative
methods. This would reduce the computing effort fromO(N3) toO(N2). Actually, only
O(N) elements ofGnn′

LL′(E) with n = n′ are used for the density calculation, but in three-
dimensional space the calculation of then = n′ elements without the knowledge all other
elementsGnn′

LL′(E) seems to be impossible. In one-dimensional situations (e. g. for layered
systems with two-dimensional periodicity) linear scalingalgorithms to obtain the diagonal
(n = n′) elements are known. Note that in one dimension the sparsitypattern of the Green
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function matrix corresponds to a banded matrix with a bandwidth independent of the size
of the system.

4.2 Repulsive Reference System

The standard reference system in the KKR method is free space. Here the Green function
matrix elementsG0,nn′

LL′ (E) are analytically known, but decay rather slowly with distance
between siten andn′. A reference system with exponentially decaying matrix elements
can be obtained by using a repulsive potential. A useful reference system68, where the
matrix elementsGr,nn′

LL′ (E) can be calculated with moderate effort and without spoiling
the rapid angular momentum convergence (l ≤ lmax = 3), consists of an infinite array
of repulsive potentials confined to nonoverlapping muffin-tin spheres around the sitesRn

as it is schematically shown in Fig. 2. The matrix elements ofthis reference system, also
called screened structure constants, can be calculated in real space by solving

Gr,nn′

LL′ (E) = G0,nn′

LL′ (E) +
∑

n′′L′′L′′′

G0,nn′′

LL′′ (E)tr,n
′′

L′′L′′′(E)Gr,n′′n′

L′′′L′ (E) (42)

with referencet matricestr,n
′′

L′′L′′′(E) which for each celln′′ are determined by the repul-

sive reference potential in this cell. Due to the rapid decayof Gr,n′′n′

L′′′L′ (E) with distance

|Rn′′−Rn′ |, only a finite numberNcl of sitesn′′ contribute appreciably to the sum overn′′

in (42). The neglect of more distant sites in (42) leads to a matrix equation of dimension
Ncl(lmax + 1)2 which for each siten′ can be solved independently. Setting exponen-

tially small elements ofGr,nn′′

LL′′ (E) to zero makes this matrix sparse with a sparsity degree
Ncl/Nat and reduces the computational effort to solve (41). The effort is then proportional
toNitNclN

2
at instead ofN3

at provided that (41) can be solved iteratively inNit iterations.

4.3 Complex Energy Integration

One difficulty for the iterative solution of (41) is that iterations cannot converge at or near
energiesE, where the Green functionG(r, r′;E) has singularities. Such singularities ap-
pear on the real energy axis as poles (bound states) resembling the atomic core states and
branch cuts (continuous eigenstates) resembling the valence and conduction bands. The
difficulty is avoided if complex energiesE with ImE 6= 0 are used, which is straightfor-
ward in the KKR Green function method since the equations (38–42) are also valid for
complexE. Moreover, since the Green function is an analytic functionofE for ImE 6= 0,
the density (37) can be calculated by contour integration inthe complex energy plane75.
The necessarily real energyEF at the end point of the contour is avoided by using the
finite-temperature density functional formalism76, where (37) is replaced by69, 77

n(r) = − 2

π
Im

∫ ∞

−∞
f(E − EF , T )G(r, r;E)dE . (43)

This integral can be calculated by a contour as shown in Fig. 2, where a typical set of
integration mesh points is represented by crosses. The meshpoints vertically aboveEF

correspond to singularities of the Fermi function (the so-called Matsubara energies)Ej =
EF + (2j − 1)iπkT with j = 1, 2, .... The other points are Gaussian integration points
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constructed as described in Ref. 67. The contour starts on the negative real energy axis in
the energy gap above the core and below the valence states. From there the contour goes
parallel to the imaginary axis up to a chosen distance and then to infinity parallel to the real
axis. The distance from the real axis is chosen as2JπkT , whereJ denotes the number of
Matsubara energies at which the residues must be taken into account. Note that on the part
of the contour, which is parallel to the real axis, the Fermi function is real as on the real
axis due to its periodicity with period2iπkT and that practically no point withReE > EF

exists because of the rapid decay off(E−EF , T ) for ReE > EF . The thick line in Fig. 2
along the real axis denotes the original integration of pathof (37). The contour integration
includes only contributions of valence states and the contributions of core states must be
added separately.

Figure 2. Integration contour in the complex energy plane with mesh points indicated by crosses (left picture)
and a schematic view (in two dimensions) of a repulsive reference system with muffin-tin potentials of constant
height (right picture).

4.4 Iterative Solution

Another difficulty for the iterative solution of (41) is thatstraightforward iteration, for
instance in the form

Gi+1(E) = Gr(E) +Gr(E)∆t(E)Gi(E) , (44)

which corresponds to the Born iterations in scattering theory, usually diverges. We found
that convergent iterations can be obtained by Anderson mixing11, 78, which is used also
sometimes to accelerate the density functional self-consistency. Anderson mixing com-
bines input and output information of all previous iterations to prepare an optimal input for
the next iteration. A disadvantage of Anderson mixing is that all this information must be
kept which leads to large storage requirements. Alternatively, (41) can be solved iteratively
by use of standard techniques which have been developed for systems of linear equations.
With the TB-KKR matrixM(E) = 1 − Gr(E)∆t(E), which for complexE is a com-
plex non-Hermitian matrix, equation (41) can be written as asystem of linear equations
M(E)G(E) = Gr(E). We found that the quasi-minimal-residual (QMR) method79, 80 in
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its transpose free version is suitable to solve (41). The QMRmethod requires to store in-
formation from a few iterations and was better suited for thelarge supercells considered
below than Anderson mixing.

An important feature of iterative solution is that each atomn′ and each angular mo-
mentum componentL′ in (41) can be treated independently so that iterative solution is
ideally suited for massively parallel computing. The independent treatment of each atom
is in the spirit of the divide and conquer approach discussedabove, however, whereas the
divide and conquer approach usually implies an approximation, in our method the inde-
pendent treatment is exact. For all systems studied so far, we could make the total-energy
deviation compared to direct solution of (41) as small as we wanted, always smaller than 1
µeV using enough iterations.

4.5 Green Function Truncation

In order to arrive at anO(N) algorithm the nearsightedness of electronic matter33, 34, which
is the basis of most other linear-scaling methods, can be used in the following manner.
From the relation

ρ(r, r′, T ) = − 2

π
Im

∫ ∞

−∞
f(E − EF , T )G(r, r′;E)dE (45)

between the finite-temperature density matrixρ(r, r′, T ) and the Green function
G(r, r′;E) and from the property that the Green function decays faster for energiesE
with larger imaginary part, it can be concluded (via the complex energy contour integra-
tion discussed above) that the decay ofρ(r, r′, T ) is mainly determined by the decay of
G(r, r′;EF + iπkT ) at the first Matsubara energy. Thus a neglect of the Green function
for large distances|r− r′| corresponds to a neglect of the finite-temperature density matrix
for similar distances.

Since the single-scattering wavefunctions in (40) are onlymultiplicative factors, a trun-
cation of the Green function directly corresponds to a neglect of Green function matrix
elementsGnn′

LL′ beyond a chosen distancedcut, which means that in (41) onlyO(NtrNat)

elementsGnn′

LL′ are non-zero instead ofO(N2
at). This reduces the computational effort by

a factorNtr/Nat if multiplication with zero elements is avoided by appropriate storage
techniques. HereNtr is the number of atoms which are included in the truncation region
defined by|Rn − Rn′ | < dcut. The total effort is then proportional toNitNclNtrNat.
This increases linearly withN since the number of atomsNat increases as the number of
electronsN and sinceNcl andNtr are fixed numbers and sinceNit approaches a constant
value for large systems (see next section).

4.6 Iteration Behaviour and Total Energy Results

To illustrate how the calculated total energy is affected bythe Green function truncation
and how the number of iterations depends on the truncation region, results calculated with
our algorithm for a large Ni supercell are shown in Fig. 3. Thesupercell was constructed
by repeating a simple cubic unit cell with four atoms 32 timesin all three space directions
resulting in a supercell with4×323 = 131072 atoms. The lattice constanta was chosen as
11.276 nm, which is 32 times the experimental lattice constant of Ni. The repulsive muffin-
tin potentials in the reference system had a height of 8 Ryd and cluster withNcl = 13 atoms

136



0 10000 20000 30000
Atoms in truncation region

-2

-1

0

1

T
ot

al
 e

ne
rg

y 
er

ro
r 

(m
eV

)

Ni

0 10000 20000 30000
Atoms in truncation region

0

500

1000

1500

N
um

be
r 

of
 it

er
at

io
ns

Figure 3. Left picture: Total energy error per atom as function of the number of atoms contained in the truncation
region. Solid and open squares are forT = 800 K and 1600 K, diamonds forT = 400 K. The lines, which connect
the results forT = 800 K, serve as guide for the eye. Right picture: NumberNit of iterations (matrix-vector
multiplications averaged over the 16 angular momentum components) as function of the numberNtr of atoms
contained in the truncation region. The lines are fitted to anexponential behaviour as described in the text. Solid
(open) symbols denote results for the majority (minority) spin direction. The squares are forT = 800 K and the
diamonds forT = 1600 K.

(central atom and its 12 nearest neighbours) were chosen to calculate the Green function
matrix elements (42) of the reference system. A single pointk = (1/4, 1/4, 1/4)× 2π/a
was used in the irreducible part of the Brillouin zone of the supercell. Since all atoms in the
supercell are equivalent, the iterative solution of (41) was needed for only one value ofn′.
This represented an enormous reduction of the computational effort in the present model
study compared to realistic systems with inequivalent atoms. Note that forNat = 131072
andlmax = 3 the dimension of the matrices in (41) isNat(lmax +1)2 = 2097152 and that
the matrixGr has a sparsity degree of13/131072 ≈ 0.01%.

To study the truncation effect on the total energy one needs to know the total energy
of Ni supercell calculated without truncation. Since only the density within one cell is
required (all cells have the same density), such a calculation is possible with our present
computer code. However, without truncation already about 7Gigabyte are needed to store
the non-zero elements ofGr and the self-consistent determination of the effective potential
and the total energy would be rather expensive. Here the use of equivalentk point meshes81

for the supercell and the simple cubic unit cell is of great help. If appropriatek points are
used in the Brillouin zones, the calculated on-site Green function matrix elements for the
supercell with equivalent atoms and for the simple cubic cell agree exactly. Thus the self-
consistent potential and the correct total energy for the large Ni supercell with the single
k point could be obtained inexpensively by self-consistent calculations for a simple cubic
unit cell with 5984k points.

The truncation regions were constructed by using more and more neighbour shells
around the central atom so that always one more shell in the close-packed (110) direction
was included. The smallest truncation region with 55 atoms included two neighbours in
that direction and the largest truncation region with 34251atoms included 18 neighbours in
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that direction. The calculated total energy error is shown in Table 1 for small and in Fig. 3
for large truncation regions for three different temperatures. Whereas for small truncation
regions the error can be as large as 0.1 eV, Fig. 3 shows that the error can be made smaller
than 2 meV if truncation regions with a few thousand atoms areused. Since one is usually
not interested in absolute total energies, but in total energy differences or derivatives (for
instance forces, which can be calculated in the KKR method ina straightforward man-
ner69, 82), it can be expected that due to cancellation effects truncation regions with about a
few hundred atoms are sufficient for the calculation of energy changes and forces with our
linear scaling algorithm.

Ntr ∆E400 ∆E800 ∆E1600

55 121.9 135.6 123.2
177 87.3 105.8 125.6
381 33.6 31.0 26.4
767 -9.5 -7.9 -4.0

1289 -11.0 -9.8 -7.1
2093 -1.4 -1.9 -1.0

Table 1. Total energy error (in meV) as function of the numberof atoms in the truncation region for three tem-
peraturesT = 400, 800, and 1600 K.

An important issue for our algorithm is how fast the iterations converge. The main
computational work consists in matrix-vector multiplications, which were repeated inde-
pendently for each angular-momentum componentL′ until the prescribed precision (spec-
ified by the residual norm||r|| = 10−6 in the QMR method) were obtained. Fig. 3 shows
the number of iterations (averaged over the(lmax + 1)2 = 16 angular-momentum com-
ponents) at the first Matsubara energyEF + iπkT where the slowest convergence exists.
The number of iterations increases with increasing truncation region and can be fitted to an
exponential behaviour of the form66, 67

Nit(Ntr) = N∞
it − α exp(γN

1/3
tr ) (46)

with three temperature dependent parametersN∞
it , α andγ, which indicates thatNit ap-

proaches a constant value for large truncation regions. Whereas temperature has a pro-
nounced effect on the computing time (viaNit), it seems that higher temperature does not
much reduce the truncation error for the total energy, only for regions with more than 10000
atoms a reduction is seen. This probably means that the zero-temperature algebraical de-
cay of the Green function (and density matrix) dominates theadditional exponential decay
caused by temperature up to truncation distances of approximately 10 times the Ni lattice
constant.

Appendix

The expectation values〈Ψ|vext|Ψ〉 and〈Ψ|Û |Ψ〉 can be expressed in terms of the density
n(r) and the pair densityn2(r, r

′). The density is given by the expectation value of the
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density operator̂n as

n(r) = 〈Ψ|n̂|Ψ〉 =
∫

· · ·
∫

|Ψ(r1, ..., rN )|2
N∑

i

δ(r − ri)dr1...drN . (47)

Multiplication with vext(r) and integration leads to

∫

n(r)vext(r)dr =

∫

· · ·
∫

|Ψ(r1, ..., rN )|2
N∑

i

δ(r − ri)vext(ri)dr1...drNdr

=

∫

· · ·
∫

|Ψ(r1, ..., rN )|2
N∑

i

vext(ri)dr1...drN (48)

= 〈Ψ|vext|Ψ〉 .
Here the first line arises by changing the argument invext from r into ri, which is possible
because ofδ(r− ri), and the second line arises by integration over theδ function. The pair
density is given by the expectation value of the two-particle density operator̂n2 as

n2(r, r
′) = 〈Ψ|n̂2|Ψ〉 =

∫

· · ·
∫

|Ψ(r1, ..., rN )|2
N∑∑

i6=j

δ(r − ri)δ(r
′ − rj)

dr1...drN . (49)

Proceeding similarly as above leads to
∫

n2(r, r
′)U(r, r′)drdr′ =

∫

· · ·
∫

|Ψ(r1, ..., rN )|2
N∑∑

i6=j

δ(r − ri)δ(r
′ − rj)

×U(ri, rj)dr1...drNdrdr′ (50)

=

∫

· · ·
∫

|Ψ(r1, ..., rN )|2
N∑∑

i6=j

U(ri, rj)dr1...drN

= 2

∫

· · ·
∫

|Ψ(r1, ..., rN )|2
N∑∑

i<j

U(ri, rj)dr1...drN

= 2〈Ψ|Û |Ψ〉 ,
where the double sum overi 6= j has been has replaced by twice the double sum over
i < j. Note that the approximationn2(r, r

′) = n(r)n(r′) leads to the expression of
the electron-electron interaction used in (14) and the pairdensity must be distinguished
one-particle density matrix defined as

ρ(r, r′) = N

∫

· · ·
∫

Ψ⋆(r, r′2, ..., rN )Ψ(r′, r′2, ..., rN )dr2...drN . (51)
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1 What is Tight Binding?

“Tight binding” has existed for many years as a convenient and transparent model for the
description of electronic structure in molecules and solids. It often provides the basis for
construction of many body theories such as the Hubbard modeland the Anderson impurity
model. Slater and Koster call it the tight binding or “Bloch”method and their historic
paper provides the systematic procedure for formulating a tight binding model.1 In their
paper you will find the famous “Slater–Koster” table that is used to build a tight binding
hamiltonian. This can also be found reproduced as table 20–1in Harrison’s book and
this reference is probably the best starting point for learning the tight binding method.2

Building a tight binding hamiltonian yourself, by hand, as in Harrison’s sections 3–C and
19–C is certainly the surest way to learn and understand the method. The rewards are very
great, as I shall attempt to persuade you now. More recent books are the ones by Sutton,3

Pettifor4 and Finnis.5 In my development here I will most closely follow Finnis. This is
because whereas in the earlier literature tight binding wasregarded as a simple empirical
scheme for the construction of hamiltonians by placing “atomic-like orbitals” at atomic
sites and allowing electrons to hop between these through the mediation of “hopping inte-
grals,” it was later realised that the tight binding approximation may be directly deduced as
a rigorous approximation to the density functional theory.This latter discovery has come
about largely through the work of Suttonet al.6 and Foulkes;7 and it is this approach that
is adopted in Finnis’ book from the outset.

In the context of atomistic simulation, it can be helpful to distinguish schemes for the
calculation of interatomic forces as “quantum mechanical,” and “non quantum mechani-
cal.” In the former falls clearly the local density approximation (LDA) to density functional
theory and nowadays it is indeed possible to make molecular dynamics calculations for
small numbers of atoms and a few picoseconds of time using theLDA. At the other end of
the scale, classical potentials may be used to simulate millions of atoms for some nanosec-
onds or more. I like to argue that tight binding is the simplest scheme that is genuinely
quantum mechanical. Although you will read claims that the “embedded atom method”
and other schemes are LDA-based, tight binding differs fromthese in that an explicit cal-
culation of the electronkinetic energyis attempted either by diagonalising a hamiltonian,
which is the subject of this lecture; or by finding its Green function matrix elements which
is the subject of the lecture by Ralf Drautz.8 The enormous advantage of the latter is that
calculations scale in the computer linearly with the numberof atoms, while diagonalisa-
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tion isO(N3). At all events, tight binding is really the cheapest and simplest model that
can capture the subtleties in bonding that are consequencesof the quantum mechanical
nature of the chemical bond. Some well-known examples of these quantum mechanical
features are magnetism, negative Cauchy pressures, chargetransfer and ionic bonding; and
of course bond breaking itself which is not allowed by simplemolecular mechanics mod-
els. At the same time tight binding will reveal detailed insight into the nature of the bonds
and origin of interatomic forces in the system you are studying.

1.1 The two centre approximation

In density functional calculations, the hamiltonian is constructed after making a choice of
functions used to represent the wavefunctions, charge density and potential. If these are
atom centred, for example gaussians, “fire balls” or Slater type orbitals rather than plane
waves, then matrix elements of the hamiltonian may become spatial integrals of three such
functions. An explicit formula taken from the LMTO method isdisplayed in equation (26)
in section 3.2 below. This can be the most time consuming partof a bandstructure calcula-
tion, compared to the subsequent diagonalisation. In the tight binding approximation, we
side step this procedure and construct the hamiltonian froma parameterised look up table.
But the underlying theory has the same structure. Each hamiltonian matrix element is con-
ceived as a integral of three functions, one potential and two orbitals centred at three sites.
(We have made theAnsatzthat the effective potential may be written as a sum of atom cen-
tred potentials.) If all are on the same site, this is a one centre, oron-sitematrix element; if
the orbitals are on different sites and are “neighbours” while the potential is on one of these
sites we have a two centre matrix element, or “hopping integral.” All other possibilities,
namely three centre terms and overlap of orbitals on distantsites are neglected. This forms
a central tenet of the tight binding approximation—the nearest neighbour, two centre ap-
proximation. The canonical band theory9 allows us to isolate these terms explicitly and to
predict under what circumstances these are indeed small (see section 3.2). The two centre
approximation is more than just a convenient rejection of certain terms; it is implicit in
the Slater–Koster table and in the calculation of interatomic force that the hamiltonian can
be written in parameterised two centre form. This allows oneto express the dependence
of hopping integrals upon distance analytically. It is a feature of the quantum mechanical
method that whereas the hamiltonian comprises short rangedtwo centre quantities only,
the solution of the Schrödinger equation using this simplehamiltonian results in a density
matrix that is possibly long ranged and includes many-atom interactions. Indeed the bond
order potential exposes this many-atom expansion of the total energy explicitly.8

1.2 O(N3) and O(N) implementations

The obvious way to tackle the tight binding electronic structure problem is the same as
in density functional theory, namely by direct diagonalisation of the hamiltonian to obtain
eigenvalues and eigenfunctions in the tight binding representation, section 2.1 below. This
scales in the computer as the third power of the number of orbitals in the molecule or in
the unit cell. In the solid state case one employs the Bloch theorem.10 This means that one
retains only the number of atoms in the primitive unit cell (rather than an infinite number)
at the expense of having to diagonalise the hamiltonian at aninfinite number ofk-points.
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Luckily there is a well known and sophisticated number of ways to reduce this to a small
number of points within the irreducible Brillouin zone.11, 12 The Bloch transform of a real
space matrixHRLR′L′ (in the notation described at equation (3) below) is

HRL R′L′(k) =
∑

T

H(R+T)L R′L′ eik·T,

whereR andR′ run only over atoms in the primitive unit cell, whileT are all the trans-
lation vectors of the lattice. As long as the matrixH(R+T)L R′L′ is short ranged this can
be done easily; for long ranged matrices such as the bare structure constants of (30) below,
this must be done using the Ewald method. If you like you candefinea two centre matrix as
one for which the Bloch transformation can be reversed (using allNk points in the whole
Brillouin zone)

H(R+T)L R′L′ =
1

Nk

∑

k

HRL R′L′(k) e−ik·T.

Indeed this is a way to extract a two centre tight binding hamiltonian from an LDA band-
structure calculation;13 an alternative approach is described in section 3.2 below.

In this lecture, I will concentrate solely on the method of direct diagonalisation, but
an alternative and potentially much more powerful approachis to abandonk-space, even
for a periodic solid, and employ the recursion method to calculate not the eigenvalues and
eigenfunctions of the hamiltonianH , but its greenian or Green function; formally for a
complex variablez

Ĝ(z) = (z −H)−1.

Throwing awayk-space will lead to a huge computational benefit, namely thatthe cal-
culation scaleslinearly with the number of orbitals, but there is a heavy price to pay—
interatomic forces converge more slowly than the energy since they require off-diagonal
greenian matrix elements and the sum rule derived in equation (16) below is not auto-
matically guaranteed.14, 15 This can play havoc with a molecular dynamics simulation.
The problem has been solved by thebond order potentialwhich leads to aconvergentex-
pansion of the tight binding total energy in one-atom, two-atom, three-atom. . . terms—a
many-atom expansion. This is the subject of the lecture by Ralf Drautz in this workshop.8

2 Traditional Non Self Consistent Tight Binding Theory

2.1 Density operator and density matrix

The traditional non self consistent tight binding theory, as described, say, by Harrison,2 is
explained here by following Horsfieldet al.16, 17 We useH0 to denote the hamiltonian to
indicate that this is the non self consistent approximationto density functional theory as it
appears in the Harris–Foulkes functional5—the first two lines in equation (37) below. (We
follow the usual practice of suppressing the “hat” on the hamiltonian operator.) Hence,
H0 is the sum of non interacting kinetic energy and the effective potential generated by
someinput, superposition of atom centred, spherical charge densities.5 The hamiltonian
possesses a complete set of orthogonal eigenfunctions by virtue of the time independent
Schrödinger equation,

H0ψn = εnψn,
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which we will write using Dirac’s bra-ket notation as

H0 |n〉 = εn |n〉 . (1)

εn are the eigenvalues of the hamiltonian and these are used to construct theband energy,
Eband, thus

Eband =
∑

n

fn εn. (2)

Here,fn areoccupation numbers. In an insulator or molecule assuming spin degeneracy
these are either zero or two depending on whetherεn is greater than or less than the Fermi
energy. In a metal or molecule having a degenerate highest occupied level these are set
equal to twice the Fermi function or some other smooth function having a similar shape.12

As with any electronic structure scheme, if this is implemented as abandstructureprogram
and hence the hamiltonian is Bloch-transformed intok-space, then the eigenstates are la-
belled by their band index and wave vector so that in what follows, the indexn is to be
replaced by a composite indexnk. (At the same time matrices become complex and you
may assume that what follows until the end of this subsectionapplies separately at each
k-point.)

Central to the tight binding approximation is the expansionof the eigenstates ofH0 in
a linear combination of atomic(-like) orbitals(LCAO). This means that we decorate each
atomic site, which we denoteR to label its position vector with respect to some origin,
with orbitals having angular momentumL = ℓm. In this way,ℓ labels the orbitals ass, p
or d character, while theL label runs ass, x, y, z, xy and so on. These orbitals may be
written in bra-ket notation as

|RL〉 = |i〉 (3)

so that we can abbreviate the orbital site and quantum numbers into a single indexi or
j, k, l. In this way we have

|n〉 =
∑

i

cni |i〉 = cni |i〉 (4)

and we use the famous Einstein summation convention, for brevity, whereby a summation
over the indicesi, j, k, l is understood if they appear repeated in a product. (Conversely we
usen andm to label eigenstates ofH0 in equation (1) and these are not summed implicitly.)
The expansion coefficientscni are the eigenvectors ofH0 in the LCAO representation. The
parameters of the tight binding model are the matrix elements of the hamiltonian in the
LCAO basis which we write

H0
ij = 〈i|H0 |j〉 .

We mayassumethat our chosen orbitals are orthogonal to each other, but tobe more
general there will a matrix of overlap integrals that may also comprise a part of our tight
binding model. These are

Sij = 〈i|j〉 .
It then follows from (4) that (summing overj, remember)

〈i|n〉 = Sijc
n
j and 〈n|i〉 = c̄nj Sji (5)
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in which a “bar” indicates a complex conjugate. The Schrödinger equation (1) becomes a
linear eigenproblem,

(
H0

ij − εnSij

)
cni = 0. (6)

In the case of anorthogonaltight binding model, we haveSij = δij , otherwise we need
to solve a generalised eigenproblem which is done by a Löwdin transformation. Denoting
H0

ij andSij in bold by matrices, we insertS− 1
2 S

1
2 after the right parenthesis in (6) and

multiply left and right byS− 1
2 :

0 =
(

S− 1
2 H0S− 1

2 − εn1
)(

S
1
2 cS− 1

2

)

=
(

H̃− εn1
)

z,

which can be solved as an orthogonal eigenproblem, and recover c from z by back-
substitution using the previously obtained Cholesky decomposition ofS. Now we have
our eigenvectorscni from which we construct a density matrix, which is central tothe
electronic structure problem. The density matrix providesus with the band energy, local
“Mulliken” charges, bond charges (in the non orthogonal case)5, bond orders,4 interatomic
forces, and in the case of time dependent tight binding the bond currents via its imaginary
part.18 The density operator̂ρ needs to have the following properties.

Property 1. Idempotency, meaninĝρ2 = ρ̂,

Property 2. Tr ρ̂ = N , the number of electrons,

Property 3. Tr ρ̂H0 =
∑

n fn εn = Eband, the band energy,

Property 4. Tr ρ̂ ∂
∂λH

0 = ∂
∂λEband, the Hellmann-Feynman theorem.

We know from quantum mechanics19, 20 that the one particle density operator isdefinedas

ρ̂ =
∑

n

fn |n〉 〈n| .

To find its representation in the LCAO basis, we first define a unit operator,

1̂ = |i〉S−1
ij 〈j| . (7)

To show that itis the unit operator, write

〈n|n〉 = 1 = 〈n|i〉S−1
ij 〈j|n〉

= c̄nkSkiS
−1
ij Sjlc

n
l

= c̄ni Sijc
n
j

(after using (5) and swapping indices) which is consistent with (4). More generally we
have

〈n|m〉 = δnm = c̄ni Sijc
m
j . (8)

Now using our unit vector, we write the density operator in our, possibly non orthogonal,
LCAO basis,

ρ̂ =
∑

n

fn |n〉 〈n| =
∑

n

fn 1̂ |n〉 〈n| 1̂

=
∑

n

fn |i〉 cni c̄nj 〈j| . (9)
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A matrix element of the density operator is

ρkl =
∑

n

fn 〈k|i〉 cni c̄nj 〈j|l〉

=
∑

n

fn Skic
n
i c̄

n
j Sjl (10)

and in an orthogonal basis this reduces to the familiar density matrix

ρij =
∑

n

fn c
n
i c̄

n
j .

If you are familiar with general relativity or non cubic crystallography then you may wish
to view the matrixSij as the metric tensor that “raises” and “lowers” indices of covari-
ant and contravariant vectors.6, 15, 21 Finnis5 makes this point by distinguishing between
“expansion coefficients” and “matrix elements” of the density operator. In this way the
expansion coefficients of the density operator in the LCAO basis are

∑

n fn c
n
i c̄

n
j , while to

obtain density matrix elements their indices are “raised” by elements of the metric tensor
as in (10); in the orthogonal case (Sij = δij) this distinction vanishes.

Now we can demonstrate thatρ̂ has the properties 1–4 above. The following is really
included here for completeness as the student may not find it elsewhere in the literature.
However, on a first reading you may skip to section 2.3 after looking at equations (11),
(12), (13), (16) and (17).

Property 1. Idempotency follows immediately from (9).

Property 2. Tr ρ̂ = N. We must take the trace in the eigenstate basis, hence

Tr ρ̂ =
∑

m

∑

n

fn 〈m|i〉 cni c̄nj 〈j|m〉

=
∑

m

∑

n

fn c̄
m
k Skic

n
i c̄

n
j Sjlc

m
l

=
∑

m

∑

n

fn δmnδnm =
∑

n

fn = N.

After the second line we have used (8). We can make partial, “Mulliken” chargesqi
which amount to the occupancy of orbitali,

N =
∑

i

qi =
∑

n

fn c̄
n
i Sijc

n
j ,

using (8). Because of its importance in tight binding, we will write the Mulliken
charge associated with orbitali explicitly,

qi =
∑

n

fn

∑

j

c̄ni Sijc
n
j (11)

in which the sum overi implied by the summation convention is, in this instance,
suppressed. This is aweighted decomposition of the norm. Note that in this and the
following you can easily extract the simpler expressions for the more usual orthogonal
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tight binding by replacingSij with the Kroneckerδij in the implicit sums, in which
case

qi =
∑

n

fn |cni |2 .

It is worthwhile to note that in an orthogonal tight binding model the total charge can
be decomposed into individual atom centred contributions;on the other hand non or-
thogonality introducesbond charge4 so that as seen in (11) there is a summation over
both atom centred and bond charges. You may prefer the latterpicture: we all know
that in a density functional picture the covalent bond arises from the accumulation of
charge in between the atoms; in an orthogonal tight binding model one might ask how
is this accumulation described? The answer is that it is captured in thebond order.4, 8

Property 3. Tr ρ̂H0 =
∑

n fn εn = Eband.

Tr ρ̂H0 =
∑

m

∑

n

fn 〈m|i〉 cni c̄nj 〈j|H0 |m〉

=
∑

m

∑

n

fn c̄
m
k Skic

n
i c̄

j
nSjlc

m
l εm

=
∑

m

∑

n

fn δmnδnmεm =
∑

n

fn εn = Eband

using (1). One may wish to construct partial band energies,Ei, in an equivalent way
as

Eband =
∑

i

Ei =
∑

n

fn c̄
n
i Hijc

n
j .

The corresponding decomposition of thebond energy(18) in section 2.3 is the starting
point of the many-atom expansion in the bond order potential.8

Property 4. The Hellmann–Feynman theorem tells us that

∂

∂λ

(
Tr ρ̂H0

)
= Tr ρ̂

∂

∂λ
H0

because solution of the eigenproblem (6), through the Rayleigh–Ritz procedure leads
us to a density matrix that is variational with respect to anyparameterλ which may
be, for example, a component of the position vector of an atomR. Hence to calculate
the interatomic force we need to find

Tr ρ̂
∂

∂λ
H0 =

∑

m

∑

n

fn 〈m|i〉 cni c̄nj 〈j|
∂

∂λ
H0 |m〉

=
∑

n

fn c̄
n
i c

n
j 〈i|

∂

∂λ
H0 |j〉 .

Now our tight binding model furnishes us with hopping integrals,H0
ij , and by em-

ploying a suitable scaling law, for example equation (23) below, the two centre ap-
proximation and the Slater–Koster table we will know how these depend on bond
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lengths and angles; so while we don’t actually know〈i| ∂
∂λH

0 |j〉, the derivatives that
wedoknow are

∂

∂λ
H0

ij =
∂

∂λ
〈i|H0 |j〉 = 〈 ∂

∂λ
i|H0 |j〉+ 〈i|H0| ∂

∂λ
j〉+ 〈i| ∂

∂λ
H0 |j〉 .

So

Tr ρ̂
∂

∂λ
H0 =

∑

n

fn c̄
n
i c

n
j

[
∂

∂λ
H0

ij − 〈
∂

∂λ
i|H0 |j〉 − 〈i|H0| ∂

∂λ
j〉
]

.

Now, to deal with the unknown last two terms, using (4)

∑

n

fn c̄
n
i c

n
j

[

〈 ∂
∂λ
i|H0 |j〉+ 〈i|H0| ∂

∂λ
j〉
]

=
∑

n

fn

[

c̄ni 〈
∂

∂λ
i|n〉εn + εn〈n|

∂

∂λ
j〉cnj

]

=
∑

n

fn εn

[

c̄ni c
n
j 〈

∂

∂λ
i|j〉+ c̄ni c

n
j 〈i|

∂

∂λ
j〉
]

=
∑

n

fn εnc̄
n
i c

n
j

∂

∂λ
Sij

since

∂

∂λ
Sij =

∂

∂λ
〈i|j〉 = 〈 ∂

∂λ
i|j〉+ 〈i| ∂

∂λ
j〉.

Finally we arrive at

Tr ρ̂
∂

∂λ
H0 =

∑

n

fn c̄
n
i c

n
j

[
∂

∂λ
H0

ij − εn
∂

∂λ
Sij

]

. (12)

2.2 Density of states and bond order

Thedensity of statesis central to electronic structure theory and is defined to be22

n(ε) =
∑

n

δ(ε− εn). (13)

We can define a partial orlocal density of states,ni(ε), which is the density of states
projected onto the orbitali. We write

n(ε) =
∑

n

〈n| δ(ε−H0) |n〉

=
∑

n

∑

m

〈n|i〉S−1
ij 〈j|m〉 〈m| δ(ε−H0) |n〉

=
∑

n

∑

m

c̄nj SjiS
−1
ij Sjkc

m
k 〈m| δ(ε−H0) |n〉

=
∑

n

c̄nj Sjkc
n
k 〈n| δ(ε−H0) |n〉 .

The first line follows from the Schrödinger equation (1) andin the second line we have
inserted our unit operator (7) and a further unit operator,

∑

m |m〉 〈m|. The fourth
line follows because of the orthogonality of the eigenvectors, |n〉 which means we have
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〈m| δ(ε−H0) |n〉 = 〈n| δ(ε−H0) |n〉 δmn. Remember that in the fourth linej andk are
dummy orbital indices to be summed over. We can replace thesewith i andj for neatness
and this leads to

n(ε) =
∑

n

c̄ni Sijc
n
j δ(ε− εn) =

∑

i

ni(ε). (14)

Writing the summation overj explicitly we see that the local density of states is

ni(ε) =
∑

n

∑

j

c̄ni Sijc
n
j δ(ε− εn), (15)

with no summation overi, and that this is aweighteddensity of states;17 the weight in an
orthogonal basis is simply|cni |2—compare this with the Mulliken decomposition (11).

An example is shown in figure 1. This is a self consistentmagnetictight binding
calculation of the electronic structure of a Cr impurity in Fe, modelled as a dilute, ordered
Fe15Cr alloy.23 Very briefly magnetic tight binding is achieved by includinga spin index,
|i〉 = |RLσ〉, (now the occupation numbers vary between zero andone, not two) and
adding an exchange potential to the self consistent hamiltonian to allow these to split. In
addition to the Hubbard-U (see section 4) one includes a “StonerI” parameter. We cannot
go into details here, but it’s gratifying that the simple tight binding modelquantitatively
reproduces the LSDA result, even to the extent of predictingthe “virtual bound state” on
the Cr impurity.24, 25

The density of states can be used to find the band energy, sinceby the properties of the
Dirac delta function,

∑

n

fn

∫

δ(ε− εn) ε dε =
∑

n

fn εn = Eband.

If we allow the occupation numbers to be represented by the spin degenerate Fermi–Dirac
distribution,2f(ε), then we find, using (13) and our property 3, above,

Eband = 2

∫

f(ε) ε n(ε) dε = Tr ρ̂H0 (16)

which is an important identity in tight binding theory and one which bears heavily on the
convergence of the many atom expansion in the bond order potential.26

Finally in this section we should mention that thebond orderwhich is central to the
bond order potential8 is obtained directly from the density matrix elements. We define

Θij =
1

2
(ρij + ρji)

as thepartial order of the bondas contributed by orbitalsi andj, it being understood that
these are on different atomic sites. The bond order between sitesR andR′ is obtained by
summing the partial bond order over all the orbitals on each atom in question,

ΘRR′ =
∑

LL′

ΘRL R′L′ . (17)
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Figure 1. Example of a local density of states.23 This is an ordered alloy, Fe15Cr on a body centred cubic (bcc)
lattice. On the left is the local spin density functional result and on the right a simple, non orthogonal magnetic
tight binding approximation. As is conventional, the spin up and down densities are shown as upright and upside
down functions respectively. The Fe atom shown is the one closest to the Cr impurity and the density is projected
onto thed-manifolds. Apart from the accurate description provided by the tight binding model, the most striking
feature is the virtual bound state24,25 seen as sharp peak in the local Cr density of states. It’s notable that the
occupied, spin up state hast2g symmetry while its unoccupied partner belongs largely to the eg manifold.

2.3 The tight binding bond model

Just as in density functional theory, the sum of occupied eigenvalues of the one electron
hamiltonian is not the total energy. In the traditional tight binding approximation, begin-
ning probably with the papers of Jim Chadi,27 one writes simply

Etot = Eband + Epair

for the total energy in theband modelandEpair is a pairwise repulsive energy whose func-
tional form and parameters constitute ingredients of the tight binding model; it is intended
to represent the double counting and ion–ion contributionsto the density functional total
energy.27 “Double counting” is a term given to the electron–electron interaction energy
in density functional theory. Because the theory is cast into a one electron form through
the Kohn–Sham equations, the band energy, by summing over the eigenvalues, counts the
electron–electron interaction twice. The interaction between, say, electrons in occupied
states 1 and 2 is counted first when eigenvalue 1 is added in andagain when eigenvalue 2 is
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added. One cannot simply divide by two becauseEband also contains kinetic and electron–
ion energies which are not double counted. Hence one recalculates the electron–electron
interaction energy and subtracts it, calling this the “double counting” correction.

Pursuing an argument that goes back as far as the sixties,28, 29Pettifor30 formulates the
total energy in terms of thebondenergy,Ebond, rather than the band energy. The tight
binding bond model6 (TBBM) is the starting point for both self consistent tight binding
which is described below in section 4 and for the modern bond order potentials.8 Therefore
we will pursue only the bond model further here. The essential point is that one arrives at
thecovalent bond energy3, 6 by removing the diagonal elements ofEband = Tr ρ̂H0. We
recall that orbital indicesi andj are a composite of site labels and quantum numbers, and
write

Ebond =
1

2

∑

ij

R′ 6=R

2ρijH
0
ji =

1

2

∑

RL R′L′

R′ 6=R

2 ρRLR′L′ H0
R′L′ RL. (18)

Here all terms are excluded from the double sum if orbitalsi andj are on the same site
R. Note how by dividing and multiplying by two we can expose this as a sum of bond
energies which is then divided by two to prevent each bond being double counted in the
same way as a pair potential is usually written.

In the TBBM, the remaining diagonal terms inEband are grouped with the correspond-
ing quantities in the free atom. In the non self consistent tight binding approximation, the
on-site matrix elements ofH0 are simply the free atom orbital energies (eigenvalues of the
atomic hamiltonian)

H0
RL RL′ = εRℓ δLL′

and in addition to the hopping integrals, these are parameters of the tight binding model,
εs, εp andεd. Furthermore, we assume certain orbital occupancies in thefree atom, say,
NRℓ, whereas after diagonalisation of the tight binding hamiltonian one finds these orbitals
have occupancy given by the diagonal matrix elements of the density matrix. Hence there
is a change in energy in going from the free atom limit to the condensed matter which is

Eprom =
∑

RL

(
ρRLRL H

0
RL RL −NRℓ εRℓ

)

=
∑

RL

(ρRLRL −NRℓ) εRℓ

=
∑

RL

∆qRL εRℓ. (19)

We have assumed for now that on-site elements ofH0 are strictly diagonal and we recog-
nise the first term in the first line as the difference betweenEband andEbond. Eprom is
called thepromotion energysince it is the energy cost in promoting electrons that is very
familiar, say, in thes–p promotion in covalent semiconductors in “preparing” the atoms in
readiness to form thesp3 hybrids in the diamond structure or thesp2 hybrids in graphite.
Thus in the tight binding bond model thebinding energyis written as the total energy take
away the energy of the free atoms,

EB = Ebond + Eprom + Epair. (20)
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The interatomic forceis minus the gradient of the pairwiseEpair which is trivial, minus
Tr ρrH0 which can be computed using equation (12) assuming thaton-sitehamiltonian
matrix elements remain constant; this is the fullynon self consistent tight binding ap-
proximation. And in fact at this level of approximation the band and bond models are
indistinguishable. The first order variation ofEB with respect to atom cartesian coordinate
Rα is

∂

∂Rα
EB =

∑

RL R′L′

R′ 6=R

2ρRLR′L′

∂

∂Rα
H0

R′L′ RL +
∂

∂Rα
Eprom +

∂

∂Rα
Epair. (21)

This is written for the orthogonal case, since this approximation forms a tenet of the
TBBM. However, it’s easy enough to add in the term from (12) containing the overlap
and of course the diagonal elementsSii are constant and do not contribute to the force.
Note that the half in front of (18) has vanished—in the calculation of the force one sums
over all bonds emanating from the atom atR, not just half of them!

Now comes a rather subtle point. Unlike the band model, the bond model is properly
consistent with the force theorem.31 This states that there is no contribution to the force
from self consistent redistribution of charge as a result ofthe virtual displacement of an
atom. If a self consistent electronic system is perturbed tofirst order then that change in
the bandstructure energy due to electron–electron interaction is exactly cancelled by the
change in the double counting. This remarkable result meansthat by making a first order
perturbation one cannot distinguish between an interacting and a non interacting electron
system.32 Indeed to calculate the interatomic force it is sufficient tofind the change in
band energy while making the perturbation—in this case the virtual displacement of an
atom—in the frozen potential of the unperturbed system. In the band model there will be
a first order change in the band energy upon moving an atom which oughtto be cancelled
by an appropriate change in the double counting, butis notbecause this is represented by
the pair potential. Now we can discuss∂Eprom/∂Rα. In the band model there is no con-
tribution to the force fromEprom (19); because of the variational principleεRLδqRL = 0,
andqRLδεRL = 0 because theεRL are constants. However the Mulliken charge transfers
are not necessarily zero and the force theorem does require any electrostatic contributions
due to charge transfer to be included in the interatomic force;33, 34 neglect of these leads
to the inconsistency of the band model. In the TBBM the most limited self consistency is
imposed, namely theAnsatzof local charge neutrality so that electrostatic charge transfer
terms vanish. This requires that for each site thetotal Mulliken charge difference between
free atoms and condensed phase summed over all orbitals is zero. This is achieved iter-
atively by adjusting the on-site orbital energies. Here is the simplest example of a self
consistent tight binding theory. It only affects the diagonal, on-site hamiltonian matrix
elements and hence onlyEprom is changed. Suppose we now write the hamiltonian as

H = H0 +H ′ (22)

whereH ′ has only diagonal elements which we may call∆εRL. Then

ETBBM
prom =

∑

RL

(ρRL RL −NRℓ)HRL RL

=
∑

RL

∆qRL (εRℓ + ∆εRℓ) .
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In a sense this isn’t really “promotion energy” anymore because we have applied the on-site
energy shift to the free atoms also, but it is consistent withthe formulation of the TBBM.6

There will now be a contribution to the force on atomR from the new term
∑

L ∆qL∆εℓ.
If the self consistency is achieved in such a way that all orbital energies are shifted by the
same amount at each site, then this contribution vanishes because∆εℓ is independent ofL,
moves to the front of the summation sign and

∑

L ∆qL = 0 by the local charge neutrality
condition. Further and complete discussion of the TBBM can be found in the original
paper6 and in Finnis’ book.5

3 How to Find Parameters

Now we turn to the question that is probably the most controversial. Many people dislike
the tight binding approximation because whereas on the one hand we claim it to be close
to theab initio local density approximation solution, on the other we are reduced to finding
parameters empirically just as if this were another classical potential. My own view is
that if the tight binding approximation contains enough of the physics of the system we
are studying then any reasonably chosen set of parameters will provide us with a useful
model. From this point of view we would also demand that only avery small number
of parameters is actually employed in the model. Furthermore it should be possible to
choose these by intelligent guesswork and refinement starting from some well established
set of rules; for example Harrison’s solid state table,2 or the prescription of Spanjaard and
Desjonquères for the transition metals.35 For example, the latter prescription has furnished
us with useful tight binding models23, 36 for Mo, Re, Nb and Fe each with some five to ten
adjustable parameters. Alternatively a 53-parameter model for Mo was produced by very
careful fitting to a huge database of properties.37 There doesn’t appear to exist a particular
advantage of one approach over the other and both types of model have turned out to be
predictive of electronic and structural properties of the transition metals.

We need to distinguish between hamiltonian parameters—on-site orbital energiesεRℓ

and hopping integralsH0
RLR′L′—and the parameters of the pair potential. Additional com-

plications arise as described later in section 3.3 in the case of environmentally dependent
parameters.37

I wish to illustrate the problem by reference to some examples from the literature.

3.1 Parameters by “adjustment”—example of ZrO2

The tight binding model for zirconia,38 ZrO2, was designed to provide a description of the
structural properties of this industrially important ceramic material. ZrO2 suffers a num-
ber of structural phase transitions as a function of temperature. This is exploited in an
extraordinary phenomenon called transformation toughening.39 Its low temperature phase
is monoclinic, at intermediate temperatures it is tetragonal and the high temperature mod-
ification is cubic. An open question was whether the tetragonal to cubic transition is of
first or second order thermodynamically, order–disorder ordisplacive. Additionally, it is
known that the cubic structure is stabilised at low temperature by doping with aliovalent
cations (Y, Ca, Mgetc) while the mechanism for this was unknown. The tight binding
model turned out to be capable of addressing both these issues and the order of the transi-
tion was discovered40 as well as the mechanism of stabilisation of the cubic phase.41 The

157



+ +

+

+

+

+

+

+++

+ +

+

+

+

+

+

+

+

−

−

−

−−
−

−
−

−

−−

−
−

−

−
−

+ + −
+

+

+

+

− −

−

−

++

− −ppπ

ddσ
ddπ

ssσ spσ

ppσ

sdσ

pdπpdσ

ddδ

Figure 2. Bond integrals, after Majewski and Vogl.42 This shows the well known atomic orbitals of the various
s, p or d types joined along a bond. Radial symmetry along the bond is assumed leading to the designation of the
bond asσ, π or δ. To construct a tight binding hamiltonian requires these fundamental bond integrals assembled
through the Slater–Koster table using the direction cosines of the bond in a global cartesian system (these bond
integrals are given with respect to az-axis directed along the bond). This is illustrated in figure6.5 in ref [3].

strategy of finding tight binding parameters was quite simple. Since the eigenvalues of
the hamiltonian describe the energy bands it is sensible to adjust the on-site energies and
hopping integrals to the LDA bandstructure, and then find a simple pair potential whose
parameters are chosen to obtain, say, the equilibrium lattice constant and bulk modulus. In
this case the smallest number of adjustable parameters was chosen to replicate the cubic
phase in the hope that the model will thenpredict the ordering in energy of the competing
phases. The steps are these.

1. Choose aminimal tight binding basis set. In this cased-orbitals were placed on the
Zr atoms ands andp on the oxygen. We should mention that being an ionic crystal
the TBBM is inadequate and this is in fact aself consistenttight binding model using
polarisable ions. This is explained later in section 4. The hopping matrix elements are
linear combinations of the fundamental bond integrals thatare illustrated in figure 2.
The particular linear combination depends on the bond anglegeometry and is encap-
sulated in the Slater–Koster table.1 This is illustrated in figure 6.5 in ref [3]. We only
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Figure 3. Energy bands of ZrO2 using both LDA and a tight binding model in both fluorite and rutile crystal
modifications. The model parameters were adjusted to the fluorite bands and the rutile bands are therefore a
prediction. We should note that a number of features such as the splitting in thed-manifold intot2 andeg sub-
bands and the crystal field widening of thep-derived ligand band in rutile are consequences of using theself
consistent polarisable ion model, and this will be described later in section 4. But we can note in anticipation
that it is the new∆ parameters that permit the ordering (t2 > eg) in the cubic crystal field andvice versain the
octahedral field to be reproduced automatically.

need to find the relevant fundamental bond integrals betweenneighbouring atoms.
Zr–O first neighbour bonds require us to knowsdσ, pdσ andpdπ and we choose also
to include second neighbour O–O bonds to be made byssσ, spσ, ppσ andppπ bond
integrals. We have to choose both their value and the way in which they depend on
bond length. There is a “canonical band theory,” that is really appropriate for met-
als9, 43, 44but whichfaux de mieuxwe can apply more generally. This provides us with
guidance on how the bond integrals decay with distance and also with certain ratios,
namelyppσ:ppπ andddσ:ddπ:ddδ, see equation (30) below. The required hopping
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Figure 4. Total energy versus volume in four competing crystal structures of ZrO2.38 At each volume, the energy
is minimised simultaneously with respect to all the remaining degrees of freedom. (a) LDA calculations of the
absolute binding energy (energy with respect to spin polarised free atoms); (b) tight binding results referred to
the equilibrium energy of the monoclinic phase. (c) and (d) show the axial ratioq and distortion parameterδ in
the tetragonal modification as a function of volume.

integrals are initially taken from Harrison’s solid state table and adjusted visually to
obtain agreement with the shapes, and especially the widthsof the LDA bands. One
can also adjust to either the LDA or to experimental band gaps. Also the scaling of the
bond integrals can be adjusted to the volume dependence of the LDA bandwidths.a

The result is shown in figure 3.

We should give more detail of how the bond integrals depend onbond length,r. A
very useful function is that of Goodwin, Skinner and Pettifor46 (GSP)

(ℓℓ′m) = V0

(
d

r

)n

exp

{

n

[

−
(
r

rc

)nc

+

(
d

rc

)nc
]}

. (23)

aIt is very useful to have a computer program that can calculate energy bands, density of states, total energy using
both LDA in some form and in the tight binding approximation,preferably all using the same input file. Luckily
such a program exists.45 Students may contact the author if they wish to learn how to use this.
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Most important are the prefactorV0 which is the value at the equilibrium bond length,
d, and the exponentn which determines the slope of the function at equilibrium, since
whenr = d the argument of the exponential vanishes. The role ofnc andrc is to give
a rapid decay to the function at aroundr = rc.

2. A pair potential needs to be chosen. The GSP function can beused but in the ZrO2
model a very simple Born–Mayer form was used between first neighbour Zr–O bonds
only. The Born–Mayer functionϕ(r) = A e−br has only two parameters which were
fitted to the lattice constant and bulk modulus of cubic ZrO2.

Figure 4 shows energy volume curves for the competing crystal structures comparing
the tight binding model to LDA. Also shown are the order parameters that describe the
tetragonal to cubic phase transition as functions of volume.

It is rather clear that the tight binding model for ZrO2 gives a really excellent set of
predictions, having been fitted (or adjusted, rather) only to the cubic structure. In particu-
lar the rutile structure is found to be much higher in energy than its competitors—a feature
that cannot be reproduced in purely classical models. The vanishing of the order parame-
ters with pressure is well reproduced qualitatively. This and the example shown in figure 1
where simple models, rather insensitive to the choice of parameters, reveal useful and pre-
dictive physics gives one confidence the tight binding approximation is indeed a valuable
and reliable theory.

3.2 Parameters taken from first principles tight binding—example of Mo

Students who are not particularly interested in the detailsof an LMTO calculation, may
skip this section after looking at figure 5 and subsequent comments. However section 3.3
is important. It makes sense to obtain the hamiltonian matrix elements fromab initio band-
structures. Probably the most transparent LDA bandstructure theory is the one provided
by the linear muffin-tin orbitals (LMTO) method. In the atomic spheres approximation
(ASA) the entire bandstructure problem is reduced to knowing four “potential parameters”
in eachRℓ site and angular momentum channel. Moreover these parameters have a clear
interpretation in terms of the bandstructure.C is the centre of the band;∆ is the bandwidth
parameter;γ is a distortion parameter describing the deviation from canonical bands and
finally p is a small parameter allowing the eigenvalues to be correct up to third order in
their deviation from some chosen energy calledεν . An LMTO is a composite orbital-like
basis function. A sphere is inscribed about each atom with radius such that the sum of all
sphere volumes equals the total volume; in a simple monatomic crystal this is the Wigner–
Seitz radius. Within the sphere the radial Schrödinger equation is solved at the energy
εν in the current potential and this solution and its energy derivative are matched to solid
Hankel and Bessel functions between the spheres. This matching condition is enough to
provide the potential parameters which are functions of thelogarithmic derivatives of the
radial Schrödinger equation solutionsφL(r) = φℓ(r)YL(r). Each LMTO envelope may
be expanded about a given atomic site using the property thata Hankel function at one
site may be written as a linear combination of Bessel functions at some other site. This
property means that all the Hankel functions in the solid canbe expressed as a “one cen-
tre” expansion about any one atomic sphere. The expansion coefficients are called “κ = 0
structure constants” and they transform under rotations according to the Slater–Koster table
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and hence may be identified asℓℓ′m hopping integrals.47, 48 However conventional struc-
ture constants are very long ranged. To make contact with tight binding theory Andersen
and Jepsen showed that one can make similarity transformations between sets of solid state
LMTO’s;49 each basis set being equivalent to another since they give identical bandstruc-
tures. In particular Andersen demonstrated that one can defined a “most localised” and an
“orthogonal” set of LMTOs. The transformation works like this. In the ASA an LMTO
at siteR is made up of a linear combination of a radial solutionφ(r − R) (the “head”)
and energy derivative functionṡφ(r − R′) (dφ/dε evaluated atεν) at all other sites (the
“tails”). These are assembled into a one centre expansion using the structure constants. So
an LMTO looks like this,

χRL(r−R) = φRL(r−R) +
∑

R′L′

φ̇R′L′(r−R′) hR′L′ RL.

By a choice of normalisation, one can choose theφ̇(r−R′) to be those that areorthogonal
to the radial solutions in each sphere. This particular set of energy derivative functions is
given a superscriptγ and one is said to be using the “γ-representation.” More generally
one can vary the normalisation by mixing in some radial solutions with theφ̇(r −R′) to
make up the tails of the LMTO. To do this we write

φ̇RL(r−R) = φ̇γ
RL(r−R) + φRL(r−R) oRL, (24)

so that in theγ-representation, the potential parameteroRL is zero. It’s calledo for overlap
but has units of energy−1. To construct the overlap matrix in the ASA one has to expand
out〈χ|χ〉; and similarly

〈
χ
∣
∣−∇2 + Veff

∣
∣χ
〉

for the hamiltonian. If we write thathR′L′ RL

is an element of a matrixh andoRL andpRL are elements of diagonal potential parameter
matrices,o andp, then Andersen finds for the overlap matrix48

S = 1 + oh + ho+ hph. (25)

As we mentionedp is a small potential parameter. So in theγ-representationo = 0 and to
second order the overlap is unity and we have an orthogonal basis. The hamiltonian matrix
turns out to be48

H = εν + h + hoεν + ενoh + h (o+ pεν)h. (26)

Again, in theγ-representation, neglecting third order terms the hamiltonian is justH =
εν + h. So if one calculates structure constants and self consistent potential parameters
using an LMTO code then one can build an orthogonal tight binding model by explicitly
building H in theγ-representation. By construction, to second order it will reproduce the
LDA energy bands.

Unfortunately there is no guarantee that this hamiltonian is short ranged. Andersen
made a particular choice of the potential parameteroRL by defining “screening constants”
αRL in this way: ref [9], eq (91),

1

oRL
= CRL − εν,RL −

∆RL

γRL − αRL
. (27)

They are called screening constants because the effect of adding radial solutions to thėφγ

in (24) is to match the Schrödinger equation solutions in the sphere to Hankel functions
KL(r−R) that have been screened by additional Hankel functions at surrounding atomic
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sites. There is an electrostatic analogy. The solid Hankel function represents the elec-
trostatic potential due to a2ℓ multipole. This can be screened by surrounding the sphere
with further grounded metal spheres, whose contribution tothe potential is then provided
by these further Hankel functions at the surrounding spheres. If one chooses the screen-
ing constantsαRL to equal the band distortion parametersγRL then one arrives at the
γ-representation since we getoRL = 0 in (27). All other representations are specified by
choices of screening constants. The choiceαRL = 0 corresponds to the so called “first
generation” LMTO which employs the standardκ = 0 KKR structure constantsb

BR′L′ RL = −8π
∑

L′′

(−1)ℓ (2ℓ′′ − 1)!!

(2ℓ− 1)!!(2ℓ′ − 1)!!
CL′LL′′ KL′′(R−R′) (28)

where

KL(r) = r−ℓ−1 YL(r),

is the solid Hankel function,

CL′′L′L =

∫∫

dΩ YL′′ YL′ YL (29)

are Gaunt coefficients andYL are real spherical harmonics (see Appendix). The whole
Slater–Koster table is encapsulated in this formula; the Gaunt coefficients provide selection
rules that pick out certain powers ofr and angular dependencies. By pointing a bond along
thez-axis one can see how the canonical scaling and ratios come about since these structure
constants are simply,48

Bssσ = −2/d

Bspσ = 2
√

3/d2

Bpp{σ,π} = 6{2,−1}/d3

Bsdσ = −2
√

5/d3

Bpd{σ,π} = 6
√

5{−
√

3, 1}/d4

Bdd{σ,π,δ} = 10{−6, 4,−1}/d5 (30)

in whichd is a dimensionless bond lengthr/s, wheres is conventionally chosen to be the
Wigner–Seitz radius of the lattice. These can be compared with the cartoons in figure 2
in which the overlapping of two positive lobes leads to a negative bond integral andvice
versa. This is because the orbitals are interacting with an attractive, negative, potential
(section 1.1). Note how the factor(−1)ℓ in (28) neatly takes care of the cases likepsσ =
−spσ. You have to be careful of these if you program the Slater–Koster table by hand.5

Transformations from the “first generation” to “second generation” LMTO basis sets
are quite easily done. Having chosen screening constants one transforms the structure
constants thus,c

Bα = B + BαBα (31)

bAndersen uses the symbolS for structure constants but we’ve already used it for the overlap, which is standard
tight binding usage. Here we useB for Andersen’s which differ by a prefactor2/[(2ℓ − 1)!!(2ℓ′ − 1)!!] and a
minus sign from the KKR structure constants.50

cClearlyBR′L′ RL has two centre form, section 1.1, as it depends only on the connecting vectorR − R′ (28).
It’s less obvious thatBα is a two centre matrix because of the three centre terms introduced by the second term
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which is a Dyson equation, andα is a diagonal matrix. Then one transforms the potential
parameters by defining a vector (we suppress theRL subscripts)

ξ = 1 + (C − εν)
α

∆

after which (ref [9], p. 88)

c = εν + (C − εν) ξ ; d = ξ2∆

wherec andd are the band parametersC and∆ in the new representation. The overlap
parametero is transformed according to (27).

Andersen and Jepsen49 determined empirically a set of screening constants, namelyd

αs = 0.3485 αp = 0.05304 αd = 0.010714, (32)

which lead to the “most localised” or most tight binding LMTObasis. Now one can con-
struct hamiltonians and overlaps according to (26) and (25)by noting that thefirst order
hamiltonian is constructed from potential parameters and structure constants9, 48

hRL R′L′ = (cRL − εν,RL) δRLR′L′ +
√

dRL B
α
RL R′L′

√

dR′L′ .

Now we want our tight binding hamiltonian to have two centre form and it is easy to
identify which are the three centre terms in the LMTO hamiltonian and overlap matrices—
they are contained in the terms bilinear inh, the last terms in (26) and (25). These terms
(as do the linear terms) also contain two and one centre terms, of course, arising from the
diagonal terms ofh. We can dispose of three centre terms in two ways.

1. We can work tofirst order, in which case, in bothα- andγ-representations

H(1) = εν + h (33)

and sinceoh terms are of second order, both these are orthogonal models with overlap
being unity.

2. We can work to second order by retainingoh terms but neglecting the small potential
parameterpγ in theγ-representation. In this representation (o = 0) this is no differ-
ent from the first order hamiltonian, and the overlap is unity. In theα-representation
this introduces some additional two centre contributions to the matrix elements of the
hamiltonian and overlap, and we are careful to extract one and two centre contribu-
tions from the last term in (26).

All this is illustrated in figure 5 for the bcc transition metal Mo. The screening constants
from (32) are used. Here are some noteworthy points.

1. Clearly the two representations deliver different sets of hopping integrals.You cannot
expect density functional theory to furnish you with THE tight binding model.On
the other hand they show a proper decay with increasing bond length. The decay is

in (31). Nonetheless because the transformation is done in real space it is also a two centre matrix by virtue again
of its dependence only uponR−R′. On the other hand it possesses additional “environmental dependence,” see
section 3.3.
dAn alternative is to defineαRℓ = (2ℓ + 1)(rRℓ/s)

2ℓ+1 by choosing site andℓ-dependent “hard core radii”
rRℓ.51 This is consistent with “third generation LMTO.”52
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Figure 5. Hopping integralsℓℓ′m in the body centred cubic transition metal Mo, calculated using LMTO theory.
The three integralsddσ, ddπ, andddδ are found by rotating thez axis to first and then to second neighbour
bonds and doing this at three different atomic volumes;53 hence for each integral six values ofℓℓ′m are shown
as a function of bond length. Three model LMTO hamiltonians are used. The crosses refer to the two centre
γ-representation; the circles to thefirst orderα-representation and the pluses to thesecond order, two centre
Hα. In the lower panel are shown the diagonal matrix elements and their, rather strong, volume dependence.

more rapid in the tight binding,α-representation as expected, furthermore the first
order tight binding representation is strictly orthogonal; not shown in figure 5 are the
overlap matrix elements in the second order tight binding representation, but indeed
these are very small—no greater than 0.025 in magnitude. Note that the tight binding
bond integrals respect the signs and roughly the canonical ratios of the bare structure
constants (30) while in theγ-representationddδ and the second neighbourddπ have
the “wrong” signs. Furthermore we would find that while the tight binding bond
integrals shown reproduce the LDA bands using just first and second neighbour matrix
elements, this is not the case for theγ-representation. Note that the first and second
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order tight binding matrix elements are essentially the same; the additional second
order terms may be safely neglected and the first order orthogonal hamiltonian (33) is
clearly the proper one to use for this case.

2. If you have the patience, then you can do this exercise by hand in the case of the first
order hamiltonian.48 However the scheme has been automated and is implemented in
our LMTO suite.45

3. Unfortunately the on-site energies shown in the lower panel of figure 5 are far from
independent of volume. This is a remaining unsolved question for the construction
of tight binding models in which the on-site energies are invariably constant (except
of course for the adjustments in self consistent models to account for electrostatic
shifts due to charge transfer, see (44) below). Andersen48 points out that the Dyson
equation (31) provides guidance on how to account for this volume dependence in
terms of the local neighbour environment. Whereas on-site matrix elements of the
bare structure constants,B are zero, we have from (31)

Bα
RLRL =

∑

R′′ 6=R

∑

L′′

BRL R′′L′′ αR′′ℓ′′ B
α
R′′L′′ RL

and the on-site matrix element of (33) is51

εRL = cRL + dRLB
α
RL RL.

However the band centre parameterc and bandwidth parameterd are also strongly
volume dependent.9, 44 An important contrast with the ASA is that in tight binding,
the on-site parameters are constant—the scaling law has to take care of both the bond
length dependence at constant volumeandthe volume dependence itself.54

3.3 Environmentally dependent tight binding matrix elements

Possibly the most striking feature displayed in figure 5 is a discontinuity, most notably in
theddπ andddδ bond integrals, between first and second neighbours. This isof particular
importance to structures like bcc which have first and secondneighbours rather similar in
bond length. It means that onecannotfind a simple scaling law, such as the GSP (23)
that can connect all the points in the graph. This effect was noticed in the case of thessσ
bond integral in Mo by Haaset al.37 and they proposed a very significant development in
tight binding theory, namely the use ofenvironmentally dependentbond integrals.55 The
discontinuities in thedd bond integrals were noticed by Nguyen-Manhet al.53 who offered
the physical explanation in terms of “screening.” The basicidea is that the bond between
two atoms isweakenedby the presence of a third atom. Therefore the scaling of a bond
integral, say by the GSP function (23) is modified by multiplying it by (1 − Sℓℓ′m) where
the “screening function,”Sℓℓ′m, is the hyperbolic tangent of a function37

ξRR′

ℓℓ′m = Aℓℓ′m

∑

R′′

R′′ 6=R,R′

exp

[

−λℓℓ′m

( |R−R′′|+ |R′ −R′′|
|R−R′|

)ηℓℓ′m
]

, (34)

in whichA, λ andη are parameters to be fitted. This complicated expression canbe simply
explained.37, 53 As a third atom,R′′ approaches theR − R′ bond the term in parenthe-
ses becomes small, and approaches one in the limit that atomR′′ sits inside theR −R′
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bond. This increases the value of the exponential and the tanh function smoothly reduces
the R − R′ bond integral. Whereas Tanget al.55 introduced this function empirically,
Nguyen-Manhet al.53 were able to derive its form using the theory of bond order poten-
tials, and explainwhyddσ is not strongly screened whileddπ andddδ are. Modern tight
binding models51, 56, 57for transition metals are now fitted to curves such as those infigure 5
using (34). Indeed in these new schemes a repulsive energy isalso fitted to an environmen-
tally dependent function similar to (34). This is intended to make a better description of
the valence–core overlap44, 58between atoms which is short ranged but not pairwise and is
otherwise not properly captured in the tight binding bond model. So nowadays one finds
instead of (20)

EB = Ebond + Eprom + Eenv + Epair (35)

in the TBBM, andEenv is the new environmentally dependent repulsive energy; it being
understood thatEbond may be constructed using environmentally dependent hopping in-
tegrals too.Eprom is sometimes omitted,56, 57 in the instance that only one orbital angular
momentum is included in the hamiltonian, for example if one employs ad-band model for
transition metals.

4 Self Consistent Tight Binding

We described a tight binding model for ZrO2 in section 3.1. The local charge neutrality
of the TBBM is clearly inadequate to describe an ionic crystal for which a dominant part
of the total energy is the Madelung sum of electrostatic pairterms.10 A way to deal with
this in tight binding was proposed by Majewski and Vogl42, 59 based on a Hubbard-like
hamiltonian of Kittler and Falicov.60 In this scheme the total charge transfer at each site,
∆qR, from (11) and (19) are taken as point charges. The hamiltonian is again

H = H0 +H ′ (36)

as in (22). Two terms make upH ′, the Madelung energy of the lattice of point charges and
a positive energy that is quadratic in∆qR, namelyUR∆q2R; employing the well-known
“HubbardU ” that acts to resist the accumulation of charge. This problem is solved self
consistently. An extension of this scheme to allow the charge to be expressed as multipoles,
not just monopoles, was proposed independently by Schelling et al.61 and Finniset al.38

In the latter paper, the connection was made to density functional theory and the TBBM,
so we will pursue the same argument here. As noticed by Elstner et al.62 the Hohenberg–
Kohn total energy in DFT can be expanded about some referenceelectron density,ρ0(r).
If H0 is the hamiltonian with effective potential generated by the reference density, and
just as in section 2.1 its eigenfunctions are|n〉 then the total energy correct to second order
is63 (e is the electron charge)
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E(2) =
∑

n

fn

〈
n
∣
∣H0

∣
∣n
〉

−
∫

ρ0(r)V 0
xc(r)dr − E0

H + E0
xc + EZZ

+
1

2

∫

dr

∫

dr′
{

e2
δρ(r)δρ(r′)
|r− r′|

+ δρ(r)
δ2Exc

δρ(r)δρ(r′)
δρ(r′)

}

. (37)

E0
H is the Hartree energy andE0

xc andV 0
xc the exchange–correlation energy and potential

belonging to the reference density,ρ0(r). The first two lines make up the Harris–Foulkes
first order functional; we recognise the first line as the band energy, infact the sum of
occupied eigenvalues of the non self consistentinput hamiltonian, and the second as the
interaction term (double counting) plus the ion–ion pair potential,EZZ. In theself consis-
tent polarisable ion tight binding model38 (SCTB) we approximate the last two lines by a
generalised Madelung energy and a Hubbard energy, which adds asecond orderenergy5

to (35)

E2 =
1

2
e2
∑

RLR′L′

QR′L′ B̃R′L′ RL QRL +
1

2

∑

R

UR∆q2R. (38)

These two terms represent the electron–electron interactions. All the exchange and cor-
relation complexities are rolled into a single parameter, the HubbardU . The first term
in (38) is a classical interaction energy between point multipoles. The monopole term
is just a straight forward sum of Coulomb energies,1

2e
2 ∆qR∆qR′/ |R−R′|, while the

generalised Madelung matrix is just the LMTO bare structureconstant matrix (28), or to be
preciseBR′L′ RL = −(1/2π)(2ℓ+1)(2ℓ′+1)B̃R′L′ RL. In generalQRL is the multipole
moment of angular momentumL at siteR. If we knew the charge density, which we don’t
in tight binding, then we could define the moment

QRL =

∫

dr ρ(r) rℓ YL(r) (39)

for ℓ > 0; while for ℓ = 0 we’ll have

QR0 = ∆qRY0 =

√

1

4π
∆qR.

Although we don’t know the charge density in tight binding, we know the eigenvectors of
the hamiltonian and we can construct multipole moments fromthese. The monopole is of
course proportional to the Mulliken charge transfer. Although in tight binding we don’t
even specify what the basis functions (3) are, we can take it that they comprise a radial part
times an angular, spherical harmonic part, that is

〈r|RL〉 = fRℓ (|r−R|)YL(r−R). (40)

Then in terms of the eigenvector expansion coefficients (4),for ℓ > 0 we may define

QRL =
∑

L′L′′

∑

n

fn c̄
n
RL′cnRL′′

〈

RL′
∣
∣
∣Q̂RL

∣
∣
∣RL′′

〉

(41)
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in which the multipole moment operator is64

Q̂RL = r̂ℓ YL(r̂), (42)

which follows as a consequence of (39). If we expand out the matrix element ofQ̂RL

using (40) and (42) we have
〈

RL′
∣
∣
∣Q̂RL

∣
∣
∣RL′′

〉

=

∫

r2dr fRℓ′ fRℓ′′ r
ℓ

∫∫

dΩ YL′′ YL′ YL

= ∆ℓ′ℓ′′ℓ CL′L′′L,

which introduces new tight binding parameters,∆ℓ′ℓ′′ℓ. Selection rules which are policed
by the Gaunt coefficients (29) demand that there are only seven new parameters, or two if
one has a basis of onlys andp orbitals. These parameters are

∆011 = ∆101 = ∆spp

∆112 = ∆ppd

∆022 = ∆202 = ∆sdd

∆121 = ∆211 = ∆pdp

∆222 = ∆ddd

∆123 = ∆213 = ∆pdf

∆224 = ∆ddg.

In fact these parameters are not entirely new, but are recognisable as the elements of crystal
field theory—in the caseℓ′ = ℓ′′ they are the quantities〈rℓ〉.65, 66 So it’s perhaps not
surprising that these new parameters introducecrystal field terms into the hamiltonian.
These are off-diagonal, on-site terms that we have up to now taken to be zero. However
they are crucial in describing the bands of, for example, thetransition metal oxides as in
figure 3. The generalised Madelung energy in (38) implies that the electrons are seeing an
electrostatic potential due to the multipole moments at allthe atomic sites. Indeed, if the
electrostatic potential in the neighbourhood of the atom atsiteR is expanded into spherical
waves, we could write,

VR(r) =
∑

L

VRL r
ℓ YL(r) (43)

and using standard electrostatics theRL coefficient in this expansion is

VRL =
∑

R′L′

B̃RLR′L′ QR′L′ .

Now in the same way that we arrived at (41), using (43) we can find the matrix elements
of H ′, namely

H ′
RL′ RL′′ = UR ∆qR δL′L′′ + e2

∑

L

VRL ∆ℓ′ℓ′′ℓ CL′L′′L. (44)

Now all the ingredients of the self consistent tight bindingscheme are assembled.H0 is
given by its matrix elements, determined as in non self consistent tight binding, described
in section 3. After solving the orthogonal, or non orthogonal eigenproblem and finding
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the eigenvector expansion coefficients, you build the multipole moments and using struc-
ture constants find the components,VRL, of the potential. Having also chosen the∆ and
HubbardU parameters, elements ofH ′ are assembled and the eigenproblem is solved for
H0 +H ′. This continues until self consistency.

One or two extensions have been omitted here.

1. Onlyon-sitematrix elements ofH ′ are non zero in this self consistent scheme. In fact
in the case of a non orthogonal basis, due to the explicit appearance of bond charge
(see equation (11) and subsequent remarks) also intersite matrix elements ofH ′ are
introduced. This is important because it allows the hoppingintegrals themselves to be
affected by the redistribution of charge, as might be intuitively expected.6, 67 Details
are to be found elsewhere.5, 23

2. This scheme can be extended to admit spin polarisation in imitation of the local spin
density approximation. Thismagnetic tight binding(figure 1) has also been described
elsewhere and is omitted from these notes for brevity.23

Finally we should remark that the interatomic force is easily obtained in self consistent
tight binding. Only thefirst andthird terms in the TBBM (21) survive; in particular one
still requires the derivatives of the matrix elements ofH0. The only additional contribution
to the force comes from thefirst termin (38); there is no contribution from the second term
(or from the Stoner term in magnetic tight binding68) because of the variational principle.
Hence one requires only the classical electrostatic force on atomR,

Fes
R = −

∑

L

QRLrVRL

which is consistent with the force theorem,31–34 and repairs the inconsistency of the band
model mentioned in section 2.3.

We illustrated the self consistent polarisable ion tight binding model (SCTB) in the
study of phase transitions in ZrO2 in section 3.1. It turns out that the extension of the
point charge model to include polarisability introduces new physics that is essential in
describing these phenomena. In particular the dipole polarisation of the anions drives the
cubic to tetragonal transition. Furthermore, as seen in figure 3 the crystal field splitting
of the cationd-bands is achieved naturally and the correct ordering is reproduced in cubic
and octahedral crystal fields. Crystal field splitting is also largely responsible for the ligand
bandwidth in the low symmetry rutile structure.

4.1 Application to small molecules

Now we will turn to a second example, the application to smallmolecules. The self consis-
tent point charge model in this context and in the study of biological molecules has enjoyed
enormous success thanks in particular to the work of Frauenheim, Elstner and colleagues.69

Here we demonstrate the SCTB model applied to the question ofthe polarisability
of two small molecules, azulene and para-nitroaniline (pNA). Hopping parameters were
taken from Horsfieldet al.70 and HubbardU and∆ parameters chosen to to reproduce the
ground state dipole moments predicted by the local density approximation. For azulene it is
found that the self consistent point charge model is sufficient, but pNA cannot be described
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Figure 6. Dipole moment as a function of applied electric field calculated using LSDA, solid lines, and SCTB,
dotted lines.71 LSDA calculations were made using a molecule LMTO program.72,73 The left hand figure shows
the molecule azulene and the upper set of lines refer to the ground state and lower set to the so calledS1 ex-
cited state. The right hand figure shows p-nitroaniline; thelower set are the ground state and the upper set the
“zwitterionic” first excited state

properly without dipole polarisability.71 Figure 6 shows that the SCTB model provides a
very accurate rendering of the dipole response to an appliedelectric field compared to
LSDA calculations. We discuss now the two molecules in turn.

1. Azulene is a very interesting molecule having the same chemical formula as naptha-
lene but comprising a five and seven membered ring instead of two six membered
rings. According to Hückel’s “4n + 2 rule,” a ring molecule is especially stable if it
hasN π-electrons andN = 4n+ 2, wheren is an integer. This is because this leads
to a closed shell ofπ-electrons.74 Hence benzene is stable, havingn = 1. By a sim-
ilar argument a seven membered ring has an unpaired electronwhich can be used to
occupy an unpaired hole in a five membered ring. Hence the ground state of azulene
possesses a large dipole moment. An excited state is createdif the electron is returned
to the seven membered ring. As shown to the left of figure 6 the ground state dipole
moment is positive (the positive axis pointing to the right)while its sign is reversed in
the first excited state. Here we use a device which is not quitelegitimate, namely in
both LSDA and SCTB an electron–hole pair is created and self consistency arrived at
under this constraint. While a very crude approximation to an excited state75 (given
that LSDA is a ground state theory) this does provide a usefultest of the validity of the
SCTB model. Indeed it is quite remarkable how the SCTB faithfully reproduces the
LSDA even to the extent of accurately reproducing the polarisability of both ground
and excited states. (The polarisability is the linear response of the dipole moment to
an applied electric field, namely the slope in these figures.)

2. pNA is the archetypal “push–pull” chromophore.76 In the ground state the dipole
moment is small, but the first excited state is thought to be “zwitterionic,” meaning
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Figure 7. Charge transfer and bond current as a function of time in the relaxation of theS2 excited state in
azulene. The upper panels show the excess charge on a “bridge” atom and on the rightmost atom in the seven
membered ring (lower curve). The lower panels show theπ–bond current in the “bridge” bond.

that an electron transfers from the amine group on the right to the NO2 group at the
left increasing the dipole moment as shown on the right hand side of figure 6. Transfer
of the electron through theπ-system is called a push–pull process. Again the SCTB
faithfully reproduces the LSDA with quantitative accuracy. We should mention again
that it did not seem possible to obtain this result using a point charge self consistent
tight binding model.

4.2 Ring currents in azulene

The SCTB model provides a simple scheme for the study of electron transfer as in the
push–pull process. This is done by solving the time dependent Schrödinger equation using
the hamiltonianH including electron–electron interactions. Indeed this isprobably the
simplest quantum mechanical model that goes beyond non interacting electrons. We have
applied this approach to the relaxation of theS2 excited state in azulene with some quite
spectacular results.77
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In terms of the density operator, the time dependent Schrödinger equation is

d

dt
ρ̂ = (i~)−1 [H, ρ̂]− Γ (ρ̂− ρ̂0) .

We have added a damping term with time constantΓ−1. This allows us to prepare the
molecule in an excited state and relax it into the ground state whose density operator iŝρ0.
The equation of motion is solved numerically using a simple leapfrog algorithm. While
at the outset, the density matrix is real, during the dynamics it acquires complex matrix
elements whose imaginary parts describebond currents,18

jRR′ =
2e

~

∑

LL′

HR′L′ RL Im ρRL R′L′

which is the total current flowing from atomR to atomR′. By selecting certainL-channels
we can extract orbital contributions toj; in the present case of push–pull transfer we are
interested in the current carried by theπ-system of electrons.

Figure 7 shows results of such a simulation in azulene, usinga time constantΓ−1 =
500 fs. Examine first the lower curve in the upper left panel. Thisis the excess total
charge on the rightmost atom in the seven membered ring (see the inset in the top left
panel). In the excited state, the dipole moment points to theleft, that is, there is excess
charge on this atom which transfers through theπ-system to the left as the molecule relaxes
into the ground state for which the dipole moment has opposite sign. The curve clearly
show a smooth transfer of charge away from this site. Howeversuperimposed upon this
is a series of oscillatory excursions in charge transfer, shown in a narrow time window
by the lower curve in the upper right panel. Accompanying these oscillations are much
larger fluctuations in the charge on the upper atom belongingto the “bridge” bond which
is shared by both the five and seven membered rings. This excess charge is plotted in
the upper curves of the upper left and right hand panels. As the upper and lower left
hand panels show these oscillations die away, but analysis shows a quite characteristic
frequency as seen in the right hand panels. The lower two panels show theπ-bond current
in the “bridge” bond. What is happening here is the setting upof ring currents in both
rings whose directions are alternating with a period of a fewfemtoseconds. The ring
currents at any one time are travelling in opposite senses inthe two rings. This phenomena
is a consequence of the electron–electron interaction, as we can verify by repeating the
calculations using the non interacting hamiltonian,H0. Because two bonds enter each
bridge atom but only one leaves, the opposing sense of the currents means that charge will
accumulate on one of these atoms to the point at which the Coulomb repulsion (described
by the HubbardU ) resists further current flow and indeed reverses its direction. Note that
each current reversal (lower right panel) is mirrored by thealternating charge transfer on
the bridge atoms (upper right panel). It is not yet understood what fixes the frequency at
which the reversal happens or what it is that makes the molecule particularly susceptible
to this instability. We note that these ring currents require a long lead-in time, on the order
of the time constant, to become established and this is probably because the symmetry
breaking comes about through numerical round-off in the computer. In a more detailed
simulation coupling the electrons to the molecular vibrations,78 this symmetry breaking
will derive from the coupling. We can confirm that the great majority of the current is
indeed carried by theπ-electron system.
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5 Last Word

The intention here has been to provide a practical introduction to the tight binding method
and to motivate students to try it for themselves. While thisis a long article it is mostly
conspicuous for what is missing, rather than what is included. This is not surprising in
view of the vast literature and considerable age of the tightbinding approximation, but
I’ve tried to bring out issues that are less widely discussedelsewhere. Regrettably no
connection has been made to the semi empirical approaches inquantum chemistry that bear
a close resemblance. This reflects the fact that physicists and chemists frequently discover
the same science independently and often without much awareness of each other’s work.
I hope that some of the most glaring omissions will be coveredby other authors in this
volume.8, 79

Appendix

Real spherical harmonics are described in ref [64]. One takes the conventional, complex
spherical harmonics80 and makes linear combinations to get the real and imaginary parts.81

Instead ofm running from−ℓ to ℓ, m now runs from0 to ℓ but for eachm > 0, there
are two real functions:Y c

ℓm which is(−1)m
√

2 times the real part ofYℓm ; andY s
ℓm which

is (−1)m
√

2 times the imaginary part ofYℓm. Form = 0, Yℓm is anyway real, so we
throw awayY s

ℓ0. We end up with the same number of functions, properly orthonormal.
Specifically,

Y c
ℓm = (−1)m 1√

2

(
Yℓm + Ȳℓm

)

Y s
ℓm = (−1)m 1

i
√

2

(
Yℓm − Ȳℓm

)
.
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Two Topics in Ab Initio Molecular Dynamics: Multiple
Length Scales and Exploration of Free-Energy Surfaces

Mark E. Tuckerman
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E-mail: mark.tuckerman@nyu.edu

This lecture will consider two problems that arise in molecular dynamics simulations of com-
plex systems. The first is the treatment of multiple length scales in simulations that employ
reciprocal-space techniques (plane-wave basis sets inab initio molecular dynamics, Ewald
summation,...) for the calculation of long-range forces. It will be shown that a dual-gridding
scheme, with reciprocal space grids of two very different resolutions, can be used to substan-
tially reduce the cost of the calculation without sacrificing accuracy. Interpolation between
the two grids is achieved via the use of Euler exponential splines commonly employed in the
particle-mesh Ewald method. Two application areas fromab initio molecular dynamics will be
illustrated, namely, the use of dual-gridding in QM/MM calculations and in cluster calculations
with plane-wave basis sets. The second problem is an inherently multiple time-scale problem
involving the exploration of rough free-energy surfaces. It will be shown that efficient explo-
ration and calculation of such surfaces is possible using anadiabatic dynamics technique in
which a subset of collective variables are “driven” at high temperature by a set of external driv-
ing variables whose masses are adjusted so as to effect an adiabatic decoupling of the collective
variables from the remainder of the system. Under these conditions, free-energy surfaces can
be constructed straightforwardly from the probability distribution functions generated with the
requirement of adjusting only a few parameters. The method will be illustrated on the folding
of an alanine hexamer.

1 The Multiple Length-Scale Problem

Chemical systems are often characterized by a set of electronically active constituents lo-
calized in a small region of space, surrounded by and interacting with a large bath of
electronically inert components. The division of a large system into chemically interesting
and chemically uninteresting regions is both an intuitively appealing and a practically use-
ful description that can be fruitfully applied to many different problems of chemical and
biological interest. For example, in the study of solution phase chemical reactions, it is
advantageous to consider, explicitly, the electronic degrees of freedom of the reactants and
products and perhaps a first solvation shell, while the remainder of the solvent is modeled
more approximately1. Similarly, in studies of enzyme catalysis, the valence electrons of
the amino acids and the water molecules near the active site,as well as those of the sub-
strate, must be modeled using a high level of theory while theremainder of these large and
complex systems can be modeled more approximately1–6. Thus, simulation studies based
on hybrid model descriptions promise to yield chemical insight into significant problems
for low computational cost. It is, therefore, important to develop both the models and
methods required to treat mixedab initio/empirical force field descriptions of chemical
and biological systems accurately and efficiently. In addition, systems with reduced peri-
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odicity that require a vacuum region in the non-periodic direction, require methodological
developments to reduce the inefficiency of treating a large empty spatial region.

It has been demonstrated that a wide variety of complex chemical systems can be
treated effectively using anab initio methodology that employs a plane wave basis set
in conjunction with the generalized gradient approximation to density functional theory
(GGA-DFT)7–10. Of course, in realistic calculations, many basis functions or equivalently,
a large plane wave energy cutoff (Ecut = ~

2g2
max/2me) must be employed to ensure ac-

curacy. The large basis set size coupled with the fact that plane waves, naturally, admit,
only a single length scale has made it difficult to employ plane wave based GGA-DFT to
study hybrid model systems.

Consider, for example, a small simulation cell containing the electron density embed-
ded within a large simulation cell containing the rest of thesystem (i.e. the bath) or possibly
empty space. In order to determine the long range interaction of the electron density with
the atoms outside the small simulation cell within the planewave formalism, it is necessary
to expand the electron density in the large simulation cell using thesamelarge cutoff re-
quired to describe the rapidly varying electron density in the small cell (e.g.Ecut ≈ 70 Ry).
Thus, the memory requirements are prohibitively large and the calculations scale poorly
with the size of the large cell (at fixed small cell size). However, such a scheme does allow
systems modeled using 3D periodic boundary conditions (liquids and solids) to be accu-
rately studied. It also permits novel reciprocal space based techniques that treat clusters,
wires and surfaces appropriately11–13(open, and 1D and 2D periodic boundary conditions,
respectively), properly, to be applied to “mixed” or “hybrid” model calculations.

In this lecture, we will describe a dual-gridding method14 designed to treat large sys-
tems that can be decomposed into electronically active and electronically inert portions
with high efficiency is presented. Two length scales are explicitly introduced into the plane
wave based GGA-DFT electronic structure formalism so that the small length scale, elec-
tronically active region can be treated differently than the long length scale, electronically
inert region without loss of generality and with large gainsin scalability and efficiency.
This is accomplished by employing a Cardinal B-spline basedformalism to derive a novel
expression for the electronic energy that explicitly contains both the long and short length
scales. The new expression can be evaluated efficiently using two independent plane wave
energy cutoffs and is smooth, differentiable, and rapidly convergent with respect to the
plane wave cutoff associated with the long length scale evenwhen the plane wave cutoff
associated with the short length scale is quite large. Thus,the method scales asN logN
whereN is number of atoms in the full system (at fixed size of the chemically active re-
gion) provided particle mesh Ewald techniques15–18 are employed to evaluate the atomic
charge density in the large cell. In addition, the new methodology does not involve an
ad hocelectrostatic potential fitting scheme based on point charges derived from a par-
ticular choice of population analysis and can be utilized totreat clusters, wires, surfaces
and solids/liquids without loss of generality. We note thata similar approach was recently
developed for use in Gaussian-based QM/MM calculations19.
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1.1 Methods

In the Kohn-Sham formulation of density functional theory,the electron density is ex-
panded in a set of orbitals{ψi(r)}

n(r) =

n∑

i=1

|ψi(r)|2 (1)

and the energy functional is given by

E[n] = Ts[{ψi}] + EH[n] + Exc[n] + Eext[n] (2)

whereTs is the kinetic energy of a system of noninteracting electrons,EH is the Hartree
energy, andExc is the exchange and correlation energy. For example, one could employ
a Generalized Gradient Approximation such as the BLYP (Becke86 exchange and LYP
correlation) functional20, 21. In this case, Eq. (2) is referred to as a GGA-density functional.

In this work, the GGA-density functional, Eq. (2), is minimized by expanding the or-
bitals in a finite plane wave basis set and varying the expansion coefficients subject to
the orthogonality constraints (〈ψj |ψi〉 = δij ). The plane wave basis set is truncated
by including all plane waves with kinetic energy less than orequal to a cutoff energy,
~g2/2me ≤ Ecut. Finally, core electrons, which are difficult to treat in a plane-wave ba-
sis set, are replaced by atomic pseudopotentials. Typical pseudopotentials contain a long
range local contribution,Eloc, and a short range angular momentum dependent nonlocal
contribution,Enonloc that serves to replace the core (i.e.Eext = Eloc + Enonloc).

The GGA-density functional, therefore, contains only two terms that act at long range,
specifically, the Hartree,EH[n], and local pseudopotential,Eloc[n], energies defined by

EH[n] =
e2

2

∑

Ŝ

∫

D(
↔

h)

dr

∫

D(
↔

h)

dr′
n(r)n(r′)

|r− r′ +
↔
hŜ|

(3)

Eloc[n] =
∑

Ŝ

N∑

I=1

∫

D(
↔

h)

dr φloc,I(r−RI +
↔
hŜ)n(r) (4)

whereRI is the Cartesian position of theIth ion,
↔
h is the cell matrix whose columns

contain thed cell vectors,det
↔
h = V is the volume, and̂S = {ŝa, ŝb, ŝc} is a vector of

integers indexing the periodic replicas (in clusters, onlyŜ = {0, 0, 0} is allowed while in
systems periodically replicated in three spatial dimensions, the three integers span the full
range).

In plane-wave based calculations the orbitals and, the density are expanded as fol-
lows,8, 22

ψj(r) =
1√
V

∑

ĝ

ψ̄j(g) exp(ig · r)

n(r) =
1

V

∑

ĝ

n̄(g) exp(ig · r), (5)

whereg =
↔
h

−1

ĝ and the vector of integers,̂g = {ga, gb, gc}, indexes reciprocal space.
Typically, a cutoff is introduced on the sums describing theorbitals such that~g2/2me ≤

179



Ecut. (Note, the reciprocal space summation for the density is over a reciprocal space
defined by the appropriately larger cutoff,E(density)

cut = 4Ecut.) It is convenient to express
the Hartree and local external energies in reciprocal space

EH =
e2

2V

∑

ĝ

′|n̄(g)|2
[
4π

g2
+ φ̂(screen,Coul)(g)

]

+

(
e2

2V

)

φ̂(screen,Coul)(0)|n̄(0)|2 (6)

Eloc =
1

V

∑

ĝ

′
N∑

I=1

n̄∗(g) exp(−ig ·RI)
[

φ̃loc,I(g)− eqI φ̂(screen,Coul)(g)
]

+
1

V

N∑

I=1

n̄(0)
[

φ̃
(0)
loc,I − eqI φ̂(screen,Coul)(0)

]

. (7)

Here, φ̃loc,I denotes the Fourier Transform of the local pseudopotential, the prime indi-

cates that theg = 0 term is eliminated and the function,̃φ(0)
loc,I is the non-singular part

of the local pseudopotential atg = 0. The screening function,̂φ(screen,Coul)(g), is added
to treat systems with fewer than three periodic dimensions (clusters, surfaces, wires), as
discussed in Refs.11–13. For a system periodically replicated in three spatial dimensions, it
is identically zero.

It is clear that the standard expressions for the Hartree andlocal external energies given
in Eq. (6) and Eq. (7), respectively, only possesses a singlelength scale. A second length
scale can be introduced by first rewriting the real space expressions for these two energies
using the identityerf(αr) + erfc(αr) = 1,

EH[n] =







e2

2

∑

Ŝ

∫

D(
↔

h)

dr

∫

D(
↔

h)

dr′
n(r)n(r′)erfc(α|r− r′ +

↔
hŜ|)

|r− r′ +
↔
hŜ|







+







e2

2

∑

Ŝ

∫

D(
↔

h)

dr

∫

D(
↔

h)

dr′
n(r)n(r′)erf(α|r − r′ +

↔
hŜ|)

|r− r′ +
↔
hŜ|







= E
(short)
H [n] + E

(long)
H [n] (8)

Eloc[n] =







∑

Ŝ

N∑

I=1

∫

D(
↔

h)

dr n(r)



φloc,I(r−RI +
↔
hŜ) +

eqIerf(α|r−RI +
↔
hŜ|)

|r−RI +
↔
hŜ|











−







∑

Ŝ

N∑

I=1

∫

D(
↔

h)

dr n(r)




eqIerf(α|r −RI +

↔
hŜ|)

|r−RI +
↔
hŜ|











= E
(short)
loc [n] + E

(long)
loc [n]. (9)

Here, the first term in the curly brackets in each equation is short range while the second
term is long range. Note, bothφloc,I(r) and−eqIerf(αr)/r approach−eqI/r, asymp-
totically whereqI is the charge onIth ion core. In the limitαV 1/3 >> 1, the sum over
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images in the first term of each expression (i.e. the short range parts) can be truncated at
the first or nearest image with exponentially small error.

In order to proceed, it will be assumed that the electrons arelocalized in a particular

region of the large cell described by
↔
h which can be enclosed in a small cell, described by

↔
hs, centered at the point,Rc. That is, the orbitals and, hence, electron density are taken to

vanish on the surface of
↔
hs. Furthermore, it is assumed, for simplicity, that theas, bs and

cs axes of
↔
hs are parallel to thea, b andc axes of

↔
h such that

↔
h

−1↔
hs =

↔
D, a diagonal

matrix. Thus, we can define,

ψj(rs + Rc) = ψj,s(rs)

n(rs + Rc) = ns(rs) (10)

where, thers span the small cell and can be expressed asrs =
↔
hss with 0 ≤ sα ≤ 1 and,

both,ψj(r) ≡ 0 andn(r) ≡ 0 for rs = r−Rc outside the domain of
↔
hs. The orbitals and

the electron density can be expanded in a plane wave basis setthat spans the small cell,
only,

ψj,s(rs) =
1√
V s

∑

ĝs

ψ̄j,s(gs) exp(igs · rs)

ns(rs) =
1

Vs

∑

ĝs

n̄s(gs) exp(igs · rs) , (11)

wheregs =
↔
hs

−1

ĝs, the vector of integers,̂gs = {ga,s, gb,s, gc,s}, indexes the small

reciprocal space andVs = det
↔
hs is the volume of the small cell. The plane wave energy

cutoff is taken to beE(short)
cut (with the cutoff on the density4E(short)

cut ).
Given that the electron density is localized in the small cell, the short range components

of the Hartree and local pseudopotential energies can be evaluated straightforwardly,

E
(short)
H [n] =

e2

2

∫

D(
↔

hs)

dr

∫

D(
↔

hs)

dr′
ns(r)ns(r

′)erfc(α|r− r′|)
|r− r′| (12)

=
e2

2Vs

∑

ĝs

′n̄s(−gs)n̄s(gs)

[
4π

g2
s

] [

1− exp

(

− g2
s

4α2

)]

+
e2π

2Vsα2
|ns(0)|2

E
(short)
loc [n] =

Ns∑

J=1

∫

D(
↔

hs)

dr ns(r)

[

φloc,J(r−RJ + Rc) +
eqJerf(α|r −RJ + Rc|)

|r−RJ + Rc|

]

=
1

Vs

∑

ĝs

′
Ns∑

J=1

n̄∗
s(gs) exp(−igs · [RJ −Rc])

×
[

φ̃loc,J(gs) +
4πeqJ
g2

s

exp

(

− g2
s

4α2

)]

+
1

Vs

Ns∑

J=1

n̄s(0)
[

φ̃
(0)
loc,J −

eqJπ

α2

]

. (13)

181



where theJ sum runs over theNs ions within the small cell, thêgs sum runs over the large
reciprocal-space grid of the small cell andRc is the position of the small cell inside the

large. Since the full system is not periodic on
↔
hs but on

↔
h , Eqs. (12-13) will only yield the

correct short range energy ifαV 1/3
s >> 1 andn(rs) vanishes on the small cell boundary.

The non-local pseudopotential energy is short range and is assumed to be evaluated within
the small cell (only, considering theNs ions in the small cell and using the small cell
reciprocal space). Similarly, the exchange correlation and the electronic kinetic energies
can also be evaluated in the small cell using standard techniques.

Next, the expressions for the long range portions of the Hartree and local pseudopo-
tential energies must be formulated. This can be accomplished by expanding the electron
density localized in the small cell in terms of the plane waves of the large cell. This expan-
sion is permitted because the electron density, localized in the small cell, obeys periodic

boundary conditions in the large cell (i.e. it is zero on the surface of
↔
h). Thus,

E
(long)
H [n] =

e2

2

∑

Ŝ

∫

D(
↔

h)

dr

∫

D(
↔

h)

dr′
n(r)n(r′)erf(α|r− r′ +

↔
hŜ|)

|r− r′ +
↔
hŜ|

=
e2

2V

∑

ĝ

′n̄(−g)n(g)

[
4π

g2
exp

(

− g2

4α2

)

+ φ̂(screen,Coul)(g)

]

+

(
e2

2V

)[

φ̂(screen,Coul)(0)− π

α2

]

|n(0)|2 (14)

E
(long)
loc [n] = −

∑

Ŝ

N∑

I=1

∫

D(
↔

h)

dr n(r)




eqIerf(α|r−RI +

↔
hŜ|)

|r−RI +
↔
hŜ|





= − e
V

∑

ĝ

′n̄∗(g)S(g)

[
4π

g2
exp

(

− g2

4α2

)

+ φ̂(screen,Coul)(g)

]

− e

V
n̄s(0)S(0)

[

φ̂(screen,Coul)(0)− π

α2

]

. (15)

where

S(g) =
∑

I

qI exp(ig ·RI) (16)

is the atomic structure factor and

n̄(g) =

∫

D(
↔

h)

dr exp[−ig · r]n(r) (17)

=

∫

D(
↔

hs)

drs exp[−ig · rs]n(rs + Rc)

=

∫

D(
↔

hs)

drs exp[−ig · (rs −Rc)]ns(rs)

are the plane wave expansion coefficients of the electron density in the reciprocal space of

the large cell,g =
↔
h

−1

ĝ. The integral in Eq. (17) can be extended to cover the domain
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described by the large cell without loss of generality becausen(rs + Rc) ≡ 0 outside of

the small cell. Note,̄n(g) = n̄s(gs) if
↔
hs ≡

↔
h andRc = 0. Methods for the efficient

evaluation of Eq. (17) and, hence, Eq. (14 ) and Eq. (15) are developed below.
First, it is clear from the long range/short range decomposition of the Hartree and local

pseudopotential energies that a different plane wave cutoff can be introduced to treat each
part. That is, one cutoff,E(short)

cut , can be used to evaluate the short range components of the

energy, Eq. (12) and Eq(13), and another,E
(long)
cut can be used to evaluate the long range

components, Eq. (14) and Eq.(15). While the long range/short range decomposition is
general, it is expected that the short range contributions will be obtained by integration over
functions that rapidly vary spatially while the long range contributions will be obtained by
integration over a slowly varying function. Therefore, theshort range energy contributions
must be evaluated using a large reciprocal space cutoff (i.e. the standardE(density,short)

cut =

4E
(short)
cut ). In contrast, the long range part can be evaluated in reciprocal space using a

small cutoff,E(long)
cut << E

(short)
cut . Thus, by splitting the electronic energy into two parts,

large gains in efficiency are possible.
Next, consider the case that the number of particles in the small cell, Ns and the

small cell volume,Vs), are much less than their large cell counterparts (Ns << N and
Vs << V ) as would be the case for a large, chemically inert bath surrounding a chemi-
cally active subsystem. The computational cost of evaluating the short range local pseu-
dopotential and short range Hartree, exchange correlation, non-local pseudopotential and
the electronic kinetic energy as well as the overlap matrix,〈ψj,s|ψi,s〉, scales like∼ N3

s .
The computational cost of evaluating the long range part of the Hartree and local pseu-
dopotential energies depends on the computational cost of evaluating the atomic charge
density, S(g), and the plane wave expansion of the density in the large cell (see Eq. (17)).
Since the atomic charge density can be evaluated inN logN using Particle Mesh Ewald
techniques15–17, if Eq. (17) could also be evaluated inN logN , the computational cost of

the method would then beN logN at fixed
↔
hs andNs. (The present approach yields a

linear scaling method because, at fixed particle density andplane wave cutoff, the number
of plane waves increases linearly with particle number).

In order to achieve linear scaling, the electron density must be interpolated from the
small cell where it is described by a plane wave expansion with a large cutoff,E(short)

cut , to

the large cell where it is described by a plane wave expansionwith a small cutoff,E(long)
cut ,

effectively. First, consider the Fourier components of thedensity

n̄(g) =

∫

D(
↔

h)

dr exp[−ig · r]n(r). (18)

If n(r) can be expressed in a finite plane wave basis,

n(r) ≡ 1

V

Pa/2
∑

ĝa=−Pa/2+1

Pb/2
∑

ĝb=−Pb/2+1

Pc/2
∑

ĝc=−Pc/2+1

exp(ig · r)n̄(g), (19)

then the Fourier coefficients can also be determined (exactly) from a discrete sum over a
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real space grid

n̄(g) ≡ V

PaPbPc

Pa−1∑

ŝa=0

Pb−1∑

ŝb

Pc−1∑

ŝc=0

e−2πiĝa ŝa/Pae−2πiĝb ŝb/Pbe−2πiĝcŝc/Pcn(
↔
hs)

(20)

Here,Pa, Pb, andPc are both the number of reciprocal lattice points along each direction
and the number of points discretizing thea,b, c axes of the cell, andsα = ŝα/Pα. Im-
portantly, Eq. (20) and its inverse, Eq. (19), can be evaluated using a three dimensional
Fast Fourier Transforms (3D-FFT) in orderN logN . A spherical cutoff is introduced in
reciprocal space by simply assuming thatn(r) is described by a basis in which̄n(g) ≡ 0
when~

2|g|2/2me > Ecut.
Next, consider a function,f(r) with plane wave expansion coefficients,

f̄(g) =

∫

D(
↔

h)

dr exp[−ig · r]f(r)

= V

∫ 1

0

dsa

∫ 1

0

dsb

∫ 1

0

dsce
−2πiĝasae−2πiĝbsbe−2πiĝcscf(

↔
hs). (21)

that can be described on a finite reciprocal space (cf. Eq. (20)). In order to express the
plane wave expansion coefficients, accurately, in terms of asum over an arbitrary set of
equally spaced discrete points in real space (as opposed to the continuous integrals given
in Eq. (21) or the discretization required by Eq. (20)), it useful to introduce the Euler
exponential spline

exp

(
2πiĝαu

P̃α

)

= dm(ĝα, P̃α)

∞∑

ŝ=−∞
Mm(u − ŝ) exp

(
2πiĝαŝ

P̃α

)

+O
(

2|ĝα|
P̃α

)m

dm(ĝα, P̃α) =
exp

(

2πi(m− 1)/P̃α

)

[
∑m−2

j=0 Mm(j + 1) exp
(

2πiĝαj/P̃α

)] (22)

whereŝ is an integer,u is a real number,m is the spline order assumed to be even and the
Mm(u) are the Cardinal B splines

M2(u) = 1− |u− 1| (23)

Mm(u) =

[
u

m− 1

]

Mm−1(u) +

[
m− u
m− 1

]

Mm−1(u− 1)

Mm(u) 6= 0 0 < u < m

Mm(u) = 0 u ≤ 0, u ≥ m (24)

The Cardinal B splines satisfy the following sum rule and recursion relation:

∞∑

ŝ=∞
Mm(u− ŝ) = 1

dMm(u)

du
= Mm−1(u)−Mm−1(u − 1)
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Inserting the Euler exponential spline into Eq. (21) yieldsa well defined approximation to
f̄(g),

f̄(g) ≈
[

V d∗m(ĝa, P̃a)d∗m(ĝb, P̃b)d
∗
m(ĝc, P̃c)

]

(25)

×
P̃a−1∑

ŝa=0

P̃b−1∑

ŝb=0

P̃c−1∑

ŝc=0

e−2πiĝa ŝa/P̃ae−2πiĝb ŝb/P̃be−2πiĝcŝc/P̃cf (conv)(
↔
hs)

where

f (conv)(
↔
hs) =

∫ 1

0

ds′a

∫ 1

0

ds′b

∫ 1

0

ds′c

∞∑

ka=−∞

∞∑

kb=−∞

∞∑

kc=−∞
f(

↔
hs′) (26)

×Mm([s′a − ka]P̃a − ŝa)Mm([s′b − kb]P̃b − ŝb)Mm([s′c − kc]P̃c − ŝc).

is the interpolation off(r) onto the discrete real space grid defined bysα = ŝα/P̃α and
0 ≤ ŝα ≤ P̃α − 1.

Equation (25) can be evaluated using a 3D-FFT in orderN logN provided the function,

f (conv)(
↔
hs), defined on the discrete real space, can be constructed in a computationally

efficient manner. In addition, Eq. (25) is smooth and possessesm − 2 continuous deriva-
tives. Note, ifP̃a > m+1 then each point in the continuous space,{s′a, s′b, s′c}, is mapped
to m3 unique points on the discrete grid indexed by{ŝa, ŝb, ŝc} due to the finite support
of theMm(p) (see Eq. (23)). Also, it is important to chooseP̃α > Pα to reduce the error
inherent in the interpolation (see Eq. (22)).

It is now a simple matter to generate a computationally efficient and well defined ap-
proximation to the Fourier coefficients,n̄(g), of an electron densityn(r) that is assumed

to be nonzero only in the small cell described by
↔
hs. First, given that̄ns(gs), defined in

Eq. (11), exists on a finite reciprocal space, the identity given in Eq. (20) holds. Thus, the
discrete form of the density can be inserted into Eq. (26) andthe integrals performed using
trapezoidal rule integration with loss of generality to yield the desired interpolation from
the small cell to the large cell,

n(conv)(
↔
hs) =

[
Vs

V

] [
1

Pa,sPc,sPc,s

] Pa,s−1
∑

ŝ′
a=0

Pb,s−1
∑

ŝ′
b
=0

Pc,s−1
∑

ŝ′
c=0

∞∑

ka=−∞

∞∑

kb=−∞

∞∑

kc=−∞
ns(

↔
hss

′)

× Mm([s′a + Sa,s − ka]P̃a − ŝa)Mm([s′b + Sb,s − kb]P̃b − ŝb)

× Mm([s′c + Sc,s − kc]P̃c − ŝc). (27)

Here,{Pa,s, Pb,s, Pc,s} are defined by the size of the small cell reciprocal space (through

the plane wave energy cutoff,E(short)
cut ), s′α = ŝ′α/Pα,s, Ss =

↔
h

−1

Rc, andVs/V = det
↔
D

while the{P̃a, P̃b, P̃c} are defined by the size of the large cell reciprocal space (through

the energy cutoff,E(long)
cut ).

The desired plane wave expansion of the density,n̄(g), is constructed by inserting

n(conv)(
↔
hs) into Eq. (25) and performing a 3D-FFT. Note, in the limit,̃Pa = Pa,s,

P̃b = Pb,s, P̃c = Pc,s or E(short)
cut = E

(long)
cut , and

↔
h =

↔
hs, then n̄s(gs) ≡ n̄(g) be-

cause Eq. (20) is exact for a finite reciprocal space and the Euler exponential splines are
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exact at the knots. Importantly, Eq. (27) can be evaluated inorderNsm
3 and the (dense)

discrete real space grid spanning the small cell,
↔
hs, and the (sparse) discrete real space

grid spanning the large cell,
↔
h , need not be commensurate. In addition, the separable form

of theMm(p), which is a consequence of the choice
↔
h

−1 ↔
hs =

↔
D, allows the required

Mm(p) to be evaluated independently in ordermN1/3
s . Thus, the overall computational

cost of constructinḡn(g) is N logN (dominated by the FFT). Finally, the resultingn̄(g)
(i.e. obtained by inserting Eq. (27) into Eq. (25)) is continuously differentiable with respect
to the expansion coefficients of the orbitals,ψ̄j,s(gs), defined in Eq. (11).

1.2 Use in cluster calculations

In anyab initio molecular dynamics scheme in which long-range forces are computed in
reciprocal space, e.g. plane-waves, Gaussians, DVRs, systems with reduced periodicity,
e.g., clusters, surfaces, wires, can be treated using the screening function methodology
developed by Martyna and Tuckerman11–13. Typically, when using the screening function,
however, the size of the box needs to be roughly twice the maximum distance between
the two furthest atoms in the cluster, which makes the use of this methodology somewhat
more expensive than other techniques. The dual-gridding technique above can be used
to circumvent this problem. In order to use the dual-gridding scheme in the context of a
cluster calculation, for example, one simply uses two boxes(see Fig. 1): The central box
contains the cluster system and is chosen large enough to contain the cluster with a small
buffer region. The outer box can be chosen quite large, at least twice as large as the furthest
distance between two atoms in the cluster (but it can be larger as well). The coarse grid
is then used to describe theg-space density in the large box, and the scheme outlined in
the Methods section is used to compute the long-range energies. The Hartree energy, for
example, would be computed as

EH =
1

2Vs

∑

gs

|n̄(gs)|2φ̃(short)(gs) +
1

2V

∑

g 6=(0,0,0)

|n̄(g)|2φ̄(long)(g) (28)

1.3 Illustrative examples

As a first, simple illustrative example, consider a simple Gaussian electron density,

n(r) =

(
κ2

π

)3/2

exp(−κ2r2). (29)

The interaction of this density with a point charge located an arbitrary distance,r0, away
from its center can be determined, analytically,Eext = erf(κr0)/r0. In Table I, the con-
vergence of the total external energy to the analytical value is presented as a function of the
large cell plane wave cutoff and Cardinal B-spline interpolation order, for various choices
of r0. The calculations were performed using the cluster boundary condition technique of
reference11 and fixed small cell plane wave cutoff (E(short)

cut = 120 Ry). In general, it can
be seen that low B-spline interpolation orders and small plane wave cutoffs in the large
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Figure 1. Illustration of the dual gridding scheme for cluster calculations.

cell, (E(long)
cut ), are sufficient to produce accurate results, indicating that the new method is

both valid and efficient.
Next, we consider the human carbonic anhydrase II (HCA II) enzyme solvated in liq-

uid water. In detail, the 260-residue HCA-II enzyme (complete with catalytic zinc – see
Fig. 2), was solvated by 8,859 waters, for a total of 30,649 atoms. Clearly, a fullab ini-
tio treatment of such a large system is not feasible, at present.However, a hybrid model,
wherein only the catalytic zinc, the side-chains of active site residues, HIS 94, HIS 96,
HIS 119, THR 199, GLU 106 and the five water molecules in the active site are treated
using anab initio description, can be studied. Thus, 320 valence electrons of80 atoms
in the active site (see Fig. 2) are treated at anab initio level while the remainder of the
system is treated using the empirical CHARMM22 all-atom parameter force field which
includes TIP3P water model23. Briefly, the electrons are assumed to interact with “ab ini-
tio” atoms via standard Troullier-Martins pseudopotentials24 and with “empirical atoms”
via pseudopotentials fit by the authors (see also5, 25). The BLYP, density functional20, 21

was employed to treat exchange and correlation.Ab initio atoms (ion-cores) were per-
mitted to interact with neighboring “empirical atoms” via appropriate bond, bend, torsion,
one-four, van der Waals and Coulomb forces. The parameters were obtained by enforcing
good agreement between mixed models, fully empirical models and fullyab initio mod-
els of relevant fragments. For example, the minimum energy geometry of hybrid model
CH3CO− (HIS) −NHCH3 deviates at most 2 degrees in the bend angles and0.02Å in
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Table 1. The interaction of a Gaussian charge density,κ = 3.779454Å−1 , with a point charge at distance,r0
from its center is presented as a function of large cell planewave cutoff and B-Spline interpolation order. The
large cell size was fixed atLl = 20Å on edge. The small cell size was fixed atLs = 4Å on edge and the

small cutoff was fixed atE(short)
cut = 120Ry. The electrostatic division parameter was set to beα = 6/Ls and

∆Eext = Eext −E
(exact)
ext .

r0 E
(long)
cut m Eext ∆Eext

(Å) (Rydberg) (Hartree) (Kelvin)

4 4 4 -0.132296 1
6 -0.132297 1
8 -0.132297 1

8 4 -0.132293 0
6 -0.132293 0
8 -0.132293 0

6 4 4 -0.088186 3
6 -0.088185 3
8 -0.088185 3

8 4 -0.088198 1
6 -0.088198 1
8 -0.088198 1

8 4 4 -0.066126 7
6 -0.066125 7
8 -0.066125 7

8 4 -0.066149 1
6 -0.066149 1
8 -0.066149 1

the bond lengths from the standards (CHARMM and fullyab initio treatments as appro-
priate).

The HCA II/water system described above was prepared by taking the crystallographic
configuration of the enzyme (PDB identification label, “1RAY”)26 and immersing it in
TIP3P water. Next, a 1 ns constant temperature molecular dynamics calculation was per-
formed using a fully empirical treatment23. This was followed by a 1 ns constant pressure
molecule dynamics calculation. At this point, the hybrid model was introduced. In Table
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Figure 2. Snapshot of human carbonic anhydrase. The electronic density in the active site is shown as the blue
isosurface.

Table 2. The total electronic energy of the active site of HCAII immersed in a bath of TIP3P molecules and
CHARMM22 model amino acid residues as a function of large cell plane cutoff and spline interpolation order.
The large cell size is fixed by the state point,66.7Å, on edge. The small cell size was fixed at18Å on edge and
the small cell cutoff was fixed at 70Ry. The electrostatic division parameter was set to beα = 9/Ls and the

accuracy measure is defined to be∆Etot = Etot(E
(long)
cut ,m) −Etot(4, 8).

E
(long)
cut m Etot ∆Etot

(Rydberg) (Hartree) (Kelvin)
0.5 6 -2329.31984 9200

8 -2329.33018 5900

2 6 -2329.34896 32
8 -2329.34905 3

4 6 -2329.34905 3
8 -2329.34906 0
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2, the convergence of the electronic energy for a representative configuration taken from
the simulation of the hybrid model, is shown versus the largecell, plane wave cutoff and
the Cardinal B-spline interpolation order. As is clear fromthe table, accurate energies are
obtained for low spline orders and plane wave cutoffs.

2 Exploration of Free-Energy Surfaces

One of the key quantities in thermodynamics is the free energy associated with changes in
conformation or thermodynamic state of a complex system. Molecular dynamics (MD) and
Monte Carlo based approaches have emerged as important theoretical tools to study such
free-energy changes along one-dimensional paths, e.g. along single reaction coordinates
or one-dimensionalλ-switching paths. Among these approaches, Umbrella Sampling27–29

and Thermodynamic Integration30–32 remain the most popular because they can be easily
implemented. However, the problem of computing a multi-dimensional free-energy sur-
face (FES) in several collective variables or reaction coordinates of interest has remained
a significant challenge, particular when the FES contains numerous minima separated by
high barriers. The mapping out of the free-energy landscapeof small peptides and proteins
in the Ramachandran angles, radius of gyration and/or number of hydrogen bonds, or the
characterization of dissociation or mass-transfer processes in aqueous solution in terms of
coordination numbers and distances are examples of this type of problem.

The challenge of treating such “rough” energy landscapes has lead to the introduc-
tion of various important new techniques for enhanced sampling of the configurational
distribution of complex systems, from which the free energyis obtained. These include
parallel tempering33–38, hyperdynamics39, parallel replica dynamics40, Wang-Landau sam-
pling41, 42, configuration-bias ’Monte Carlo43, the Reference-Potential Spatial-Warping Al-
gorithm44, 45, metadynamics46, and techniques based on adiabatic dynamics47–51, as a few
examples. A comprehensive review of free-energy techniques was recently presented in
the edited volume,Free Energy Calculations52.

The Adiabatic Free Energy Dynamics (AFED),47–49 introduced eight years ago by
Rosso,et al.,53 is a dynamical scheme for generating free-energy hypersurfaces in sev-
eral collective variables of interest. The approach employs an imposed adiabatic decou-
pling between a small set of collective variables or reaction coordinates and the remaining
degrees of freedom. Within this scheme, an elevated temperature is also applied to the
collective variables to ensure that they are able to cross the high energy barriers needed
to ensure sufficient sampling. In the limit of high temperature and adiabatic decoupling,
it can be shown that the free energy hypersurface in the collective variables is obtained
directly from their resultant probability distribution function47, 48. The approach has been
applied to the conformational sampling of small peptides49 and in the computation of sol-
vation and binding free energies via alchemical transformations51. In both cases, the use of
adiabatic dynamics has been shown to lead to significant improvement in efficiency com-
pared to traditional methods such as free-energy perturbation54, umbrella sampling27–29,
and the blue moon ensemble approach31, 32. In addition to being a relatively fast method,
the AFED approach requires noa posterioriprocessing of the simulation data. Moreover,
AFED is able to generate multi-dimensional free-energy hypersurfaces with significantly
greater efficiency than multidimensional versions of the aforementioned approaches49. By
construction, AFED generates full sweeps of the free-energy surface and, therefore, can
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rapidly map out the locations of the free-energy minima wellbefore the entire surface is
fully converged.

The AFED approach is derived and implemented, in practice, by transforming the co-
ordinate integrations in the canonical partition functionto a set of generalized coordinates
that explicitly contain the collective variables of interest. This gives rise to the disad-
vantage that the adiabatic dynamics must be carried out in these generalized coordinates,
which leads to a steep implementation curve due to the ratherinvasive modifications to
existing MD packages needed to introduce these transformations. It should be noted, how-
ever, that once such transformations are put in place, they can be subsequently combined
with additional spatial-warping transformations that also significantly enhance conforma-
tional sampling44, 45.

Recently, Maragliano and Vanden-Eijnden50 and, independently, Abrams and Tuck-
erman55 built on the AFED approach by introducing a set of extended phase-space or
“driving” variables that are harmonically coupled to the collective variables of interest. By
imposing the adiabatic decoupling and high temperature on these extended variables rather
than on the collective variables, the need for explicit transformations is avoided, thereby
enlarging the class of collective variables that can be treated and rendering the technique
substantially easier to implement. Maragliano and Vanden-Eijnden named the new tech-
nique “temperature accelerated molecular dynamics” or TAMD while Abrams and Tuck-
erman named if driven-AFED or d-AFED. It should be noted thatsuch “driving” variables
are also central in the so-called “metadynamics” approach46, where they are used together
with a time-dependent potential that floods energy basins with Gaussians, thereby allowing
the system to escape the basin and move into a neighboring one. In metadynamics, as the
basins are filled, the histogram in the collective variablesbecomes flat. When this occurs,
the sum of all of the Gaussians is used to recover the free-energy hypersurface.

2.1 Adiabatic free-energy dynamics

Consider a system ofN particles with Cartesian coordinatesr1, ..., rN ≡ r and conju-
gate momentap1, ...,pN ≡ p subject to a potential energyV (r1, ..., rN ). The classical
canonical partition function for the system is given by

Q = C

∫

dNp

∫

D(V )

dNr exp

{

−β
[

N∑

i=1

p2
i

2mi
+ V (r1, . . . , rN )

]}

(30)

whereH(p, r) =
∑

i p
2
i /2mi+V (r) is the Hamiltonian,β = 1/kBT ,D(V ) is the spatial

domain defined by the containing volume, andC is an overall prefactor that rendersQ di-
mensionless and compensates for overcounting of states obtained by exchanging particles
of the same chemical identity. For a system withM species,C = [h3N

∏M
α=1Nα!]−1,

whereh is Planck’s constant, andNα is the number of particles of speciesα.
Suppose we wish to determine the free-energy hypersurface in a set ofn < N collec-

tive variablesq1(r), ..., qn(r). Examples are the Ramachandran angles for characterizing
the conformational space of oligopeptides or combinationsof distances for characteriz-
ing a chemical reaction. The probability thatq1(r) has the values1, q2(r) has the value
s2,...,qn(r) has the valuesn is given by

P (s1, ..., sn) =

∫
dNpdNr e−βH(p,r)

∏n
i=1 δ(qi(r)− si)

∫
dNpdNr e−βH(p,r)

(31)
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Given this probability distribution, the free-energy hypersurface can be calculated accord-
ing to

F (s1, ..., sn) = −kT lnP (s1, ..., sn) (32)

In many complex systems, direct calculation of the probability distribution function
from a molecular dynamics trajectory is intractable because of the existence of high free-
energy barriers separating important minima on the hypersurface. Free-energy surfaces of
this type are said to be “rough”, and it is necessary to employenhanced sampling tech-
niques. The adiabatic free-energy dynamics (AFED) achieves enhanced sampling in the
variablesq1(r), ..., qn(r) by introducing a high temperatureTs ≫ T for thesen degrees of
freedom only, while maintaining the remaining3N − n degrees of freedom at the correct
ensemble temperatureT . The temperature disparity can be accomplished by introducing
two separate sets of thermostats for each set of degrees of freedom. The high temperature
Ts ensures that the variablesq1, ..., qn are able to cross high energy barriers on their part
of the energy landscape. However, this high temperature also destroys the thermodynamic
properties of the systemunlessthe variablesq1, ..., qn are also adiabatically decoupled
from the remaining degrees of freedom. In order to accomplish this decoupling, we need
to be able to run the dynamics in a coordinate system that explicitly containsq1, ..., qn.

Suppose there is a transformation from Cartesian coordinatesr1, ..., rN to generalized
coordinatesq1, ..., q3N ≡ q via the transformation equationsqα = qα(r). The inverse
transformations are denotedri = ri(q). Substituting the transformation into Eq. (30)
yields

Q = C

∫

dNp

∫

D(V )

d3Nq J(q) exp

{

−β
[

N∑

i=1

p2
i

2mi
+ V (r1(q), ..., rN (q))

]}

= C

∫

dNp

∫

D(V )

d3Nq exp

{

−β
[

N∑

i=1

p2
i

2mi
+ Ṽ (q1, ..., q3N )

]}

(33)

where the potential̃V contains the Jacobian of the transformationJ(q) = |∂r/∂q| and is
given by

Ṽ (q1, ..., q3N ) = V (r1(q), ..., rN (q))− kT lnJ(q1, .., q3N ) (34)

Note that the partition function in Eq. (33) is completely equivalent to that in Eq. (30).
Moreover, even though the transformation is not canonical,since we are only interested in
sampling the ensemble distribution, we can treat the3N Cartesian momentum components
as “conjugate” to the3N generalized coordinates, each being defined aspα = mαq̇α,
α = 1, ..., 3N , wheremα are the associated masses. Thus, in order to achieve the desired
adiabatic decoupling, we simply choose the firstn massesmα to be much larger than all
of the remaining masses,m1,...,n ≫ mn+1,...,3N .

Under the conditions of adiabatic decoupling and the temperature disparity, it was
shown in Refs.47, 48, via a decomposition of the classical propagator, that the probability
distribution, denotedPadb(s1, ..., sn), becomes

Padb(s1, ..., sn) = N
∫

dnp exp

[

−βs

n∑

α=1

p2
α

2mα

]

[Z(s1, ..., sn, β)]
T/Ts (35)
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where

Z(s1, ..., sn, β) =

∫

d3N−npd3Nq exp

{

−β
[

3N∑

α=n+1

p2
α

2mα
+ Ṽ (q1, ..., q3N )

]}

×
n∏

α=1

δ(qα − sα) (36)

andN is an overall normalization factor. In this case, because ofthe temperature ratio
T/Ts in the exponent, the exact free-energyF (s1, ..., sn) at the temperatureT , which is
defined to beF (s1, ..., sn) = −kT lnZ(s1, ..., sn, β), is obtained fromPadb(s1, ..., sn)
by

F (s1, ..., sn) = −kTs lnPadb(s1, ..., sn) (37)

Note that the multiplicative factor−kTs in Eq. (37) ensures that the free energyat temper-
atureT is obtained. Eq. (37) shows that the free-energy surface canbe computeddirectly
from the probability distribution function generated in anadiabatic dynamics calculation.
A detailed proof of the AFED method is given in Refs.47, 48.

2.2 Adiabatic free-energy dynamics without transformations

The AFED approach is a powerful one that is capable of generating multidimensional
free-energy surfaces efficiently, as was shown in Refs.48, 49. However, the need to work
in generalized coordinates is a distinct disadvantage of the method, as this requires rather
invasive modifications to existing molecular dynamics codes.

Recently, Maragliano and Vanden-Eijnden50 and Abrams and Tuckerman55 showed
that AFED could be re-expressed in a set of extended phase-space variables in a manner
similar to that used in the metadynamics approach of Laio andParrinello46, thereby cir-
cumventing the need for explicit coordinate transformations. This new formulation, which
the authors called “Temperature Accelerated Molecular Dynamics” (TAMD) or “driven-
AFED” (d-AFED) increases both the flexibility of the AFED method, allowing larger
classes of collective variables to be treated, and the ease of implementation in existing
packages.

TAMD/d-AFED can be derived as follows. We rewrite the product of δ-functions in
Eq. (31) as the limit of a product of Gaussian functions56

n∏

α=1

δ (qα(r)− sα) = lim
κ→∞

√

βκ

2π
exp

[

−
n∑

α=1

β

2
k (qα(r)− sα)2

]

(38)

When Eq. (38) is substituted into Eq. (31), we obtain

P (s1, ..., sn) = lim
κ→∞

Nκ

∫

dNp

∫

D(V )

dNr

× exp

{

−β
[

H(p, r) +
1

2
κ

n∑

α=1

(qα(r)− sα)2
]}

(39)

whereNκ is a κ-dependent normalization constant. For large but finiteκ, the integral
in Eq. (39) represents a close approximation to the true probability distribution, and we
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can regard the harmonic term in Eq. (39) as an additional potential term that keeps the
collective variablesq1(r), ..., qn(r) close to the valuess1, ..., sn. In this representation,
Eq. (39) resembles the probability distribution generatedwithin the umbrella sampling
approach27–29. However, if a set ofn independent Gaussian integrations is introduced into
Eq. (39) in the following form

P (s1, ..., sn) = lim
κ→∞

N ′
κ

∫

dNp

∫

D(V )

dNr

× exp

{

−β
[

H(p, r) +

n∑

α=1

p2
sα

2mα
+

1

2
κ

n∑

α=1

(qα(r)− sα)
2

]}

(40)

then the dependence of the distribution ons1, ..., sn remains unaltered.
The argument of the exponential can now be regarded as an extended phase-space

Hamiltonian

Hex(p, ps, r, s) =

n∑

α=1

p2
sα

2mα
+

N∑

i=1

p2
i

2mi
+ V (r1, ..., rN ) +

n∑

α=1

1

2
κ (qα(r)− sα)

2 (41)

This Hamiltonian generates the dynamics of the originalN Cartesian positions and mo-
menta and of the additionaln variabless1, ..., sn ≡ s and their conjugate momenta
ps1 , ..., psn

≡ ps The extended variables serve to “drag” or “drive” the collective variables
q1(r), ..., qn(r) via the harmonic coupling through their portion of the energy landscape
provided that the variabless1, ..., sn are able to sample a comparable region.

Assuming, again, that there are significant barriers hindering the sampling of the col-
lective variables, enhanced sampling can be achieved by employing a high temperature and
adiabatic decoupling, this time on the extended phase-space variables50. Thus, we intro-
duce a temperatureTs ≫ T and massesmα ≫ mi for these variables. As in the original
AFED scheme, the former condition ensures that high barriers can be crossed, ifTs is
chosen high enough, while the large masses ensure adiabaticdecoupling of the extended
phase-space variables from all other degrees of freedom. Following Refs.47, 48, 51, it can be
shown that, under these conditions, the distribution function generated takes the form

P
(κ)
adb(s1, ..., sn) ∝

∫

dnp exp

[

−βs

n∑

α=1

p2
sα

2mα

]

[Z(s1, ..., sn, β)]
βs/β (42)

whereβs = 1/kTs and

Z(s1, .., sn, β) =

∫

dNp

∫

D(V )

dNr exp

{

−β
[

N∑

i=1

p2
i

2mi
+ V̄ (r, s)

]}

(43)

and

V̄ (r, s) = V (r1, ..., rN ) +
1

2
κ

n∑

α=1

(qα(r)− sα)
2 (44)

The probability distribution in Eq. (42) generates an approximationFκ(s1, ..., sn) to the
true free energy profile at temperatureT according to

Fκ(s1, ..., sn) = −kTs lnP
(κ)
adb(s1, ..., sn) (45)
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and it is clear that in the limitκ→∞, the true free energy profile is recovered

F (s1, ..., sn) = lim
κ→∞

Fκ(s1, ..., sn) (46)

Eqs. (45) and (46) show that the free-energy hypersurface can be generated within the
adiabatic dynamics scheme without requiring a transformation to generalized coordinates.

The ability of TAMD and d-AFED to generate the free-energy surface efficiently de-
pends on the thermostatting mechanism employed to maintainthe two temperatures. The
adiabatic decoupling represents a non-equilibrium steadystate, and in Refs.47, 48, it was
shown that the generalized Gaussian moment thermostat (GGMT) of Liu and Tucker-
man57 is an effective approach for maintaining the temperature disparity within the AFED
scheme. Therefore, we employ it here as well. For completeness, we show the explicit
equations of motion, including the coupling to separate GGMTs at temperaturesT andTs.
As noted, GGMTs are capable of maintaining temperature control under the nonequilib-
rium (steady-state) conditions implied by the two temperatures and adiabatic decoupling.
Within the two-moment version of the GGMT technique, with a separate thermostat cou-
pled to each degree of freedom, the equations of motion for the d-AFED scheme read

ṙi,k =
pi,k

mi

ṗi,k = Fi,k − κ
n∑

α=1

(qα(r)− sα)
∂qα
∂ri,k

− pηi,k,1

Q1
pi,k −

pηi,k,2

Q2

[

(kT )pi,k +
p3

i,k

3mi

]

ṡα =
psα

mα

ṗsα
= κ (qα(r)− sα)− pξα,1

Q′
1

psα
− pξα,2

Q′
2

[

(kTs)psα
+

p3
sα

3mα

]

η̇i,k,1 =
pηi,k,1

Q1

η̇i,k,2 =

[

(kT ) +
p2

i,k,1

mi

]

pηi,k,2

Q2

ξ̇α,1 =
pξα,1

Q′
1

ξ̇α,2 =

[

(kTs) +
p2

sα

mα

]
pξα,2

Q′
2

ṗηi,k,1
=
p2

i,k

mi
− kT

ṗηi,k,2
=

p4
i,k

3m2
i

− (kT )2

ṗξα,1 =
p2

sα

mα
− kTs

ṗξα,2 =
p4

sα

3m2
α

− (kTs)
2 (47)

whereFi,k = −∂V/∂ri,k. In Eqs. (47), the thermostats are used to control the fluctuations
in the second and fourth moments of the distribution of each momentum variable in the sys-
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tem, whether these correspond toT orTs. Here,k indexes the three Cartesian components
of the physical coordinate and momentum of particlei, andηi,k,1, ηi,k,2, pηi,k,1

andpηi,k,2

are the corresponding GGMT variables. Similarly,α indexes the extended phase-space
driving variables, andξα,1, ξα,2, pξα,1 andpξα,2 are the corresponding GGMT variables.
The thermostat mass parametersQ1,Q2,Q′

1, andQ′
2 are chosen according to57:

Q1 = kT τ2 Q2 =
8

3
(kT )3τ2

Q′
1 = kTsτ

2
s Q′

2 =
8

3
(kTs)

3τ2
s (48)

whereτ andτs are characteristic time scales in the physical and extendedsystems, respec-
tively. A typical choice forτs is the period of the harmonic coupling(2π)

√

mα/κ.
Another important feature of Eqs. (47) is that the presence of the stiff harmonic force

term (κ/2)
∑

α(qα(r) − sα)2 renders them amenable to multiple time-scale (r-RESPA)
integration techniques58, 59. For Eqs. (47), the Liouville operator, from which such integra-
tors are derived, can be subdivided into a reference system containing the stiff oscillations
of the harmonic coupling and a second propagator for the relatively slow motions associ-
ated with the motion of the physical system. Using r-RESPA toevaluate the inexpensive,
but very fast, stiff harmonic force with a smaller timestep,while keeping the fundamental
timestep larger, significantly improves the efficiency of the method. For details of this type
of factorization the interested reader is directed to reference58, 59.

2.3 An illustrative example

The alanine hexamer (N-acetyl-(alanine)6-methylamide) is a six-residue peptide that ex-
hibits helical properties in solution60. Furthermore, computational studies of the alanine
hexamer in solution, parameterized with the AMBER force field, results in helical confor-
mational minima61.

The simulation was performed by solvating the alanine hexamer in 698 TIP3P water
molecules in a27.9737 Å cubic periodic box. The molecule was started in its completely
extended conformation and then equilibrated for 200 ps at constant volume (NVT), 1 ns at
constant pressure (NPT), and finally 500 ps at constant volume (NVT).

In applying the d-AFED/TAMD method with the AMBER (parm94) force field, the two
collective variables of interest chosen were the radius of gyration (RG) and the number of
intramolecular hydrogen bonds (NH). These collective variables are defined as follows62

RG =

√
√
√
√
√

1

Nb

Nb∑

i=1



ri −
1

Nb

Nb∑

j=1

rj





2

NH =

NOx∑

i=1

NHy∑

j=1

1−
(

ri−rj

d0

)6

1−
(

ri−rj

d0

)12 (49)

whereNb is the number of heavy backbone atoms, whereNOx andNHy are the number
of oxygen and hydrogen atoms, respectively, andd0 = 2.5Å. Corresponding extended
coordinates,s1 ands2, were added and these coordinates were treated as the slow variables

196



with massesms1,s2 = 15mC, wheremC is the mass of a carbon atom, and heated to a
temperature ofTs1,s2 = 600 K, while the physical variables were kept at a temperature of
300 K. s1 ands2 were coupled toRG andNH with harmonic coupling constants5.4 ×
106 K · Å−2

and5.4× 106 K, respectively.
The free energy surface computed from a relatively short production run of 5 ns,

for the alanine hexamer in solution, leads to the free energysurface shown in Figure 3.
The most significant feature of this surface is the presence of a global minimum at
(RG, NH) = (3.8, 4.4), corresponding to a right-handed helical,αR , conformation
(Figure 4a). Furthermore, there is also the presence of a large region of deformed/par-
tial helices all with free energies lower than+2 kcal ·mol−1 above the global minimum.
These preliminary results are very consistent with previous results61 for the alanine hex-
amer using the AMBER force field.
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Figure 3. (a) Free-energy surfaceF (RG, NH) and (b) contour plot computed for N-acetyl-(alanine)6 -
methylamide (alanine hexamer) in solution with the AMBER force field.
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Figure 4. (a) Right-handed helical conformation of the alanine hexamer (global minimum). (b) Misfolded, ex-
tended, conformation of the alanine hexamer. All waters have been deleted for clarity.
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Combined quantum-mechanical/molecular-mechanical (QM/MM) methods have become a
popular approach for modeling local electronic events in large systems with thousands of atoms.
QM methods are used to describe the active site where chemical reactions or electronic exci-
tations occur, and MM methods are employed to capture the effect of the environment on the
active site. This article gives an overview over methodological and practical issues in QM/MM
studies and outlines the scope and the limitations of current QM/MM applications.

1 Introduction

The QM/MM concept was introduced in 1976 by Warshel and Levitt who presented the
first semiempirical QM/MM model and applied it to an enzymatic reaction1. The QM/MM
approach found wide acceptance only much later, in the 1990s. Over the past decade,
numerous reviews have documented the development of the QM/MM methodology and its
application. Here we mention only a few of these2–8 and refer to our own recent reviews6, 8

for an up-to-date coverage of the field with an extensive literature survey (755 and 627
references, respectively). The reader should consult these reviews for access to the original
QM/MM papers since we shall quote only a small selection of these in the following.

The QM/MM approach is by now established as a valuable tool for modeling large
biomolecular systems, but it is also often applied to study processes in explicit solvent
and to investigate large inorganic/organometallic and solid-state systems. Methodological
issues that are common to all these areas will be addressed inSec. 2, while practical issues
and potential pitfalls will be discussed in Sec. 3. Thereafter, an overview over QM/MM
applications will be provided in Sec. 4. We conclude with a brief summary in Sec. 5.

2 Methodological Issues

The design of composite theoretical methods gives rise to a number of methodological
problems that need to be solved. The basic idea is to retain (as much as possible) the for-
malism of the methods that are being combined and to introduce well-defined conventions
for their coupling. In this section, we address the methodological choices that need to be
made in the QM/MM case.

2.1 QM/MM partitioning

The entire system is divided into the inner QM region that is treated quantum-mechanically
and the outer MM region that is described by a force field. There is a boundary region at the
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interface where the standard QM and MM procedures may be modified or augmented in
some way (e.g., by the introduction of link atoms or boundaryatoms with special features,
see below). The choice of the QM region is usually made by chemical intuition: one
can normally define a minimum-size QM region on chemical grounds by considering the
chemical problem at hand, and one can then check the sensitivity of the QM/MM results
with respect to enlarging the QM region.

Standard QM/MM applications employ a fixed QM/MM partitioning where the bound-
ary between the QM and MM regions is defined once and for all at the outset. It is also
possible, but more involved, to allow the boundary to move during the course of a simula-
tion (adaptive partitioning, ”hot spot” methods) in order to describe processes with shifting
active sites (e.g., the motion of solvated ions)9.

QM/MM methods can be generalized from two-layer to multi-layer approaches, with
a correspondingly extended partitioning. One such exampleis the use of a continuum
solvation model as a third layer to mimic the effects of bulk solvent10, 11. Other multi-layer
approaches such as ONIOM go beyond the original QM/MM concept by integrating two
or more QM regions12.

2.2 Choice of QM method

The selection of a suitable QM method in QM/MM calculations follows the same criteria
as in pure QM studies (accuracy and reliability versus computational effort). Tradition-
ally, semiempirical QM methods have been most popular, and they remain important for
QM/MM molecular dynamics (MD) where the computational costs are very high. Density
functional theory (DFT) is the workhorse in many contemporary QM/MM studies, and
correlated ab initio methods are increasingly used in electronically demanding cases or in
the quest for high accuracy.

In small-molecule quantum chemistry, one nowadays often attempts to converge the
results with regard to QM level and basis set. It has been demonstrated recently that
this is also possible in QM/MM work on enzymes: using linear scaling local correlation
methods the computed barriers for the rate-determining reactions in chorismate mutase and
p-hydroxybenzoate hydroxylase (PHBH) can be converged to within 1–2 kcal/mol at the
ab initio coupled cluster LCCSDT(0) level13, 14.

2.3 Choice of MM method

Established MM force fields are available for biomolecular applications (e.g., CHARMM,
AMBER, GROMOS, and OPLS) and for explicit solvent studies (e.g., TIP3P or SPC for
water). MM methods are generally less developed in other areas such as organometallic or
solid-state chemistry which may pose restrictions on corresponding QM/MM work. Even
in the favorable biomolecular case, it is often necessary toderive some additional force
field parameters (whenever the QM/MM calculations target situations in the active-site
region that are not covered by the standard force field parameters).

The classical biomolecular force fields contain bonded terms as well as nonbonded
electrostatic and van der Waals interactions. Electrostatics is normally treated using fixed
point charges at the MM atoms. The charge distribution in theMM region is thus unpolar-
izable which may limit the accuracy of the QM/MM results. Thelogical next step towards
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enhanced accuracy should thus be the use of polarizable force fields which are currently
developed by several groups in the biomolecular simulationcommunity using various clas-
sical models (e.g., induced dipoles, fluctuating charges, or charge-on-spring models). The
QM/MM formalism has been adapted to handle polarizable force fields8, 15, but one may
expect corresponding large-scale QM/MM applications onlyafter these new force fields
are firmly established. In the meantime, essential polarization effects in the active-site en-
vironment may be taken into account in QM/MM studies by a suitable extension of the
QM region (at increased computational cost, of course).

2.4 Subtractive versus additive QM/MM schemes

Subtractive QM/MM schemes are interpolation procedures. They require (i) an MM cal-
culation of the entire system, (ii) a QM calculation of the inner QM region, and (iii) an
MM calculation of the inner QM region. The QM/MM energy is then obtained simply by
summing (i) and (ii) and subtracting (iii) to avoid double counting. In such an interpolation
scheme, the QM/MM interactions are handled entirely at the MM level. This may be prob-
lematic with regard to the electrostatic interactions which will then typically involve fixed
atomic charges in the QM and MM regions. Therefore, realistic MM parameters are also
needed for the QM region which are often not available and difficult to obtain for typical
QM/MM applications (where the QM region is ”non-standard” and electronically demand-
ing). These drawbacks have made subtractive QM/MM schemes less attractive, especially
in the biomolecular area. On the positive side, it should be noted, however, that subtractive
schemes are easy to implement and to generalize to the multi-layer case12.

Additive schemes require (i) an MM calculation of the outer MM region, (ii) a QM
calculation of the inner QM region, and (iii) an explicit treatment of the QM/MM coupling
terms. The QM/MM energy is the sum of these three contributions. The coupling terms
normally include bonded terms across the QM/MM boundary, nonbonded van der Waals-
terms, and electrostatic interaction terms. The former twoare generally handled at the
MM level (using protocols that avoid double counting and related complications), while
the latter one is modeled explicitly. This has the advantagethat the electrostatic QM/MM
interactions can be described realistically using QM-based treatments (see below). It is
probably for this reason that the majority of the currently used QM/MM schemes are of
the additive type.

2.5 Electrostatic QM/MM interactions

A hierarchy of models is available for handling the electrostatic coupling between the QM
charge density and the MM charge model which may be classified16 as mechanical embed-
ding (model A), electrostatic embedding (model B), and polarized embedding (models C
and D). They differ by the extent of mutual polarization between the QM and MM region.

Mechanical embedding is equivalent to the subtractive QM/MM scheme outlined above
in that it treats the electrostatic QM/MM interactions at the MM level (typically between
rigid atomic point charges). Both the QM and MM region are unpolarized in this case, and
the QM charge density comes from a gas-phase calculation (without MM environment).
This will often not be accurate enough, especially in the case of very polar environments
(as in most biomolecules).
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Electrostatic embedding allows for the polarization of theQM region since the QM cal-
culation is performed in the presence of the MM charge model,typically by including the
MM point charges as one-electron terms in the QM Hamiltonian. The electronic structure
of the inner region can thus adapt to the environment, and theresulting QM density should
be much closer to reality than that from a gas-phase model calculation. The majority of the
current QM/MM work employs electrostatic embedding.

Polarized embedding attempts to capture the back-polarization of the MM region by
the QM region as well, either in a one-way sense (model C) or ina fully self-consistent
manner with mutual polarization (model D). The latter is themost refined embedding
scheme which, however, has been applied only rarely up to now. It is expected to become
more popular when general-purpose polarizable force fieldsare being used more often as
MM components in QM/MM work, because polarized embedding isthe natural coupling
scheme in this case. As already mentioned above, polarization effects near the active site
can alternatively also be taken into account with standard electrostatic embedding if the
QM region is extended accordingly.

2.6 Boundary treatment

In many QM/MM studies it is unavoidable that the QM/MM boundary cuts through a
covalent bond. The resulting dangling bond must be capped tosatisfy the valency of the
QM atom at the frontier, and in the case of electrostatic or polarized embedding, one must
prevent overpolarization of the QM density by the MM chargesclose to the cut. To cope
with these problems, there are essentially three differentclasses of boundary schemes that
involve link atoms, special boundary atoms, and localized orbitals, respectively.

Link-atom schemes introduce an additional atomic center (usually a hydrogen atom)
that is not part of the real system and is covalently bonded tothe QM frontier atom. Each
link atom generates three artificial nuclear degrees of freedom that are handled differently
by different authors. The most common procedure is to fix the position of the link atom
such that it lies in the bond being cut, at some well-defined distance from the QM frontier
atom, and to redistribute the forces acting on it to the two atoms of the bond being cut (by
applying the chain rule)17. This effectively removes the artificial degrees of freedomsince
the link-atom coordinates are fully determined by the positioning rule rather than being
propagated according to the forces acting on them. Concerning the possible overpolar-
ization in link-atom schemes, several protocols have been proposed to mitigate this effect
which involve, for example, deleting or redistributing or smearing certain MM charges in
the link region. Widely used is the charge-shift protocol18.

Boundary-atom schemes replace the MM frontier atom by a special boundary atom that
participates as an ordinary MM atom in the MM calculation, but also carries QM features
to saturate the valency of the QM frontier atom in the QM calculation. These QM features
are parametrized such that the boundary atom mimics the cut bond and possibly also the
electronic character of the attached MM moiety. Examples for such schemes include the
adjusted connection atoms for semiempirical QM methods19, the pseudobond approach for
ab initio and DFT methods20, and the use of tailored pseudopotentials within plane-wave
QM methods21. Properly parametrized boundary-atom schemes should be more accurate
than link-atom schemes, but they are less popular in practice because the required special
parameters are not generally available (only for selected bonds).
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Localized-orbital schemes place hybrid orbitals at the boundary and keep some of them
frozen such that they do not participate in the SCF iterations. These approaches are theo-
retically satisfying because they provide a boundary treatment essentially at the QM level.
However, they are technically involved (mainly because of the orthogonality constraints
that need to be imposed), and require transferability of thelocalized orbitals between model
and real systems. Examples for such schemes are the local SCFmethod22 in different vari-
ants8 and the generalized hybrid orbital (GHO) method23.

There have been several evaluations of and comparisons between the available bound-
ary treatments. Overall the performance of link-atom schemes seems generally on par with
localized-orbital approaches: both provide reasonable accuracy when applied with care. In
practice, the link-atom scheme is most popular because of its simplicity and robustness,
but the GHO treatment is also frequently used.

2.7 QM/MM geometry optimization

In theoretical studies of small molecules, potential energy surfaces (PES) are commonly
explored by geometry optimization to locate the relevant stationary points (minima, transi-
tion states). This is also possible in QM/MM studies of largemolecules with thousands of
atoms, in principle, but it is obvious that one needs techniques that can handle thousands
of degrees of freedom and are still efficient. The algorithmsfor manipulating coordinates
should ideally be scaling linearly with the number of degrees of freedom, and the optimiza-
tion should take advantage of the partitioning of the systeminto a QM region, where energy
and gradient evaluation are computationally expensive, and an MM region, where these
calculations are almost for free. Among the various approaches that have been proposed
in this context8, we only mention a linear-scaling fragment-based divide-and-conquer op-
timizer24 and microiterative optimization strategies25 with alternating geometry relaxation
in the core region (containing the QM region) and the environment. Their combined use
allows the efficient optimization of minima and transition states in large molecules at the
QM/MM level even when using electrostatic or polarized embedding26.

Given the vast configuration space that is accessible to the large molecules studied by
QM/MM techniques, there are many closely related minima andtransition states for any
particular chemical reaction. QM/MM geometry optimizations of the stationary points
along a single reaction path are therefore of limited significance. It is thus advisable in
QM/MM optimization studies to determine at least several representative transition states
with their corresponding minima in order to assess the influence of the conformational
diversity of the environment; snapshots from classical MD simulations can serve as starting
structures. Application of this procedure to the rate-limiting reaction in PHBH has shown
that rms fluctuations of the computed QM/MM barriers for 10 snapshots are of the order of
2 kcal/mol14. Uncertainties of this magnitude must be anticipated when investigating only
a single reaction path.

2.8 QM/MM molecular dynamics

The preceding discussion emphasizes the need for sampling configuration space in large
molecules using molecular dynamics or related approaches.QM/MM MD calculations are
computationally quite demanding, however, and routinely affordable only at the semiem-
pirical QM/MM level. As in the case of QM/MM geometry optimization, this calls for
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special techniques that reduce the computational cost by exploiting the QM/MM partition-
ing. One strategy is to avoid the expensive direct sampling of the QM region while fully
sampling the MM configurations. An early example of this approach27 kept the QM region
fixed while sampling the MM region and used ESP(electrostatic potential)-derived charges
for the QM atoms to evaluate the electrostatic QM/MM interactions during the MD run;
this was shown to be successful in the context of a QM/MM free energy perturbation treat-
ment in which the entropic contributions from the QM region are estimated separately27, 28.
There are a number of recent other activities to improve the available QM/MM MD tech-
nology7, 8.

2.9 QM/MM energy versus free energy calculations

Free energy differences govern chemical thermodynamics and kinetics, and theoretical
studies should thus aim at free energy calculations. Statistical mechanics provides various
techniques to determine free energy differences through sampling, e.g., thermodynamic
integration, umbrella sampling, or free energy perturbation. All these techniques have
been used in conjunction with semiempirical QM/MM methods in a straightforward man-
ner28–30, but they tend to become too expensive with ab initio or DFT QMcomponents.
For the latter case, approximate free energy treatments have been devised that have been
reviewed recently7.

In view of the computational effort and the technical difficulties of QM/MM free energy
calculations, it is of interest to check how much the QM/MM results for energies and free
energies differ in typical cases. There are not yet enough theoretical data available for
a systematic assessment. However, judging from the QM/MM energy and free energy
barriers for several enzymatic reactions, the differencesoften appear to be less than 1
kcal/mol for localized chemical events (e.g., hydrogen abstraction in cytochrome P450cam,
OH transfer in PHBH, nucleophilic substitution in fluorinase, proton transfer in cystein
protease). This confirms that the less demanding QM/MM geometry optimization studies
can provide valuable information for many types of reactions.

3 Practical Issues

QM/MM calculations are not yet ”black-box” procedures. Therefore it seems worthwhile
to address some of the practical problems and choices that are encountered in QM/MM
work.

3.1 QM/MM software

QM/MM applications require efficient programs with wide-ranging functionality. Many
of the commonly available QM and MM packages nowadays offer QM/MM capabilities
as an add-on. The alternative is a modular approach that links external QM and MM
codes via interfaces to a central core which supplies the QM/MM coupling as well as
routines for standard tasks such as structure optimization, molecular dynamics, etc. The
core also provides a common user interface to the external programs, at least for the most
common options. The ChemShell software31 is an example for such a modular QM/MM
implementation which currently supports interfaces to several QM codes (GAUSSIAN,
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TURBOMOLE, MOLPRO, ORCA, GAMESS-UK, NWChem, MNDO) and several MM
force fields (CHARMM, GROMOS, AMBER, GULP).

When embarking on a QM/MM project it may be easiest to use the QM/MM capabil-
ity of a standard QM or MM package that one is familiar with. Inthe long run, modular
QM/MM software will offer more flexibility and allow the userto access more combina-
tions of QM and MM methods and, in general, more QM/MM functionality.

3.2 QM/MM setup for biomolecular simulations

QM/MM studies on large systems such as enzymes require realistic starting structures.
These will normally be derived from experiment (e.g., X-rayor NMR) because they cannot
be generated by purely theoretical means. Small modifications of experimental structures
are common in the setup phase, e.g., involving the replacement of an inhibitor by a sub-
strate or the substitution of specific residues to generate the starting structure for a mutant
of interest.

The available structural information from experiment is generally not complete and
often not error-free. It thus needs to be checked and processed using the protocols that
have been developed over the past decades by the classical simulation community. This
involves, e.g., adding hydrogen atoms that are missing in X-ray structures, adding water
molecules inside the biomolecule in ”empty” spots, assigning the protonation states of
titrable residues, and checking the orientation of residues in ambiguous cases. The system
is then put into a water box and relaxed by a series of constrained energy minimizations
and MD runs at the classical force field level; this may necessitate the derivation of force
field parameters for the ”non-standard” parts of the system.After equilibration, the system
is subjected to a classical MD production run from which snapshots are taken as starting
geometries for the QM/MM work. These starting structures typically contain the biomolec-
ular system in a droplet of water (normally around 20000–30000 atoms).

It should be emphasized that this setup requires a lot of workprior to the actual
QM/MM calculations. Errors and wrong choices (e.g., with regard to protonation states
or the number of water molecules near the active site) cannotnormally be recovered at
a later stage. These issues have been discussed more thoroughly in a previous review6,
and further practical guidance is available in the originalpapers that deal with these ques-
tions32, 33. Finally, while the preceding considerations have addressed the QM/MM setup
for biomolecules, they should apply in an analogous manner to other systems with similar
complexity.

3.3 Accuracy of QM/MM results

QM/MM calculations involve a lot of choices (see Sec. 2), andit is therefore very diffi-
cult to converge the QM/MM results with regard to all computational options. Typical
biomolecular studies may employ DFT/MM calculations with astandard protein force
field, electrostatic embedding, and a link-atom boundary treatment with a charge-shift
scheme. The latter ingredients are considered as an integral part of the chosen QM/MM
approach, and the sensitivity of the QM/MM results with regard to the chosen force field,
embedding scheme, and boundary treatment is thus normally not checked (even though
the QM/MM results will depend on these choices). On the QM side, different basis sets
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are used in most DFT/MM studies to assess basis set convergence, and it is also common
practice to check by how much the DFT/MM results change when using a different func-
tional. Given the large computational effort in QM/MM work,it is not too surprising that
high-level ab initio QM components are used rather seldom and that systematic conver-
gence studies with respect to QM level and basis set are rare (unlike in small-molecule
QM studies).

Conceptually, QM/MM treatments become more realistic uponextension of the QM
region because the effects of the QM/MM coupling terms and ofthe MM force field on
the active site should decrease by increasing the distance to the QM/MM boundary. It is
thus highly advisable to validate the QM/MM results for any given application through
QM/MM test calculations with larger QM regions.

3.4 QM/MM exploration of potential energy surfaces

In QM/MM geometry optimizations of systems with 20000–30000 atoms (see above) it is
usually considered sufficient to allow only around 1000 atoms to move (i.e., the active site
and the environment within a distance of typically 6–10Å from the active site) while the
outer part of the system remains fixed at the initially prepared snapshot geometry. This
convention is beneficial in QM/MM studies of reaction profiles where it is essential to
retain the same conformation of the optimized ”active” region during the reaction in order
to guarantee a smooth reaction path. Experience shows that this requirement can be well
satisfied in practice with systems of around 1000 atoms, which becomes progressively
more difficult for larger systems. If this requirement is notfulfilled (e.g., by the flip of a
distant hydrogen bond or some other remote conformational change), the QM/MM results
from geometry optimization become spurious since the PES isno longer smooth32.

In QM/MM MD simulations of a large biomolecule in a water droplet, the outermost
water layer is normally fixed or restrained such that there isno evaporation. Strict conver-
gence criteria need to imposed in the QM part of the calculation to ensure energy conserva-
tion during the MD run29. Standard procedures can be applied to monitor the convergence
of QM/MM MD simulations29 and to analyze the results30.

4 Applications

Biomolecular QM/MM studies constitute the largest application area, with enzymatic reac-
tions as the prime target. Our previous reviews list 286 suchQM/MM publications between
2001 and early 20066, and 179 such papers in the period 2006-20078. A thorough survey
of this work is obviously far beyond the scope of this article. Generally speaking, the
QM/MM calculations provide detailed mechanistic insight into enzymatic reactions. The
QM/MM energy, and particularly the QM/MM interaction energy, can be partitioned into
its various components which offers the opportunity to analyze the effect of the protein
environment (down to individual residues). Further insights can be gained by comparing
the QM/MM results for the complete enzyme with QM results forsuitably chosen model
systems. In this manner, one can arrive at an improved understanding of the catalytic power
of enzymes (as shown, for example, by a recent summary8 of QM/MM studies on PHBH,
chorismate mutase, and cytochrome P450).
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QM/MM methods are suitable not only for studying chemical reactions in the active
site of a large system, but also for investigating other localized electronic processes such
as electronic excitation. In recent years there is an increasing number of QM/MM appli-
cations that address spectroscopic properties and electronically excited states. A typical
procedure is to perform a DFT/MM geometry optimization or toextract snapshots from
a semiempirical QM/MM MD run, followed by single-point calculations of spectroscopic
properties at a suitable QM level (with inclusion of the MM point charges of the environ-
ment). QM/MM studies of this kind have been performed to compute not only electronic
spectra (UV/vis absorption, emission, and fluorescence spectra), but also magnetic res-
onance spectra (NMR, EPR) and Mössbauer spectra. Examplesinclude color tuning in
the UV spectra of rhodopsins34, NMR chemical shifts in rhodopsins35 and in vanadium
chloroperoxidase36, as well as EPR and Mössbauer parameters in cytochrome P450cam37.
QM/MM calculations can also be used to study excited-state reactivity in large systems
(e.g., the photoisomerization in photoactive yellow protein38 or the dynamics of a photoac-
tive C–G base pair in DNA39).

Another QM/MM application area is experimental structure refinement of large
biomolecular systems. The basic idea is to use a QM/MM, rather than a pure MM, model
that is refined against the experimental data40. This is particularly advantageous in and
around the active site since the standard biomolecular force fields are less reliable for the
inhibitors or substrates that are present in this region. This approach has been applied to
the refinement of X-ray, NMR, and EXAFS data8.

The QM/MM applications outlined so far have been concerned with large
biomolecules. As mentioned in the Introduction, QM/MM methods have also often been
used to study processes in explicit solvent and in inorganic/organometallic and solid-state
chemistry. An overview over these activities is beyond the scope of this article, leading
references are available in our recent review8.

5 Concluding Remarks

QM/MM methods are by now established as a powerful computational technique to treat
reactive and other electronic processes in large systems. They can be applied whenever
one needs to model a localized electronic event in an active site (typically of the order of
100 atoms) that is influenced by an interacting larger environment. Since they are not yet
”black-box” methods, one should exercise great care in the choice of the various compu-
tational QM/MM options and in the assessment of the results obtained. Despite the need
to improve the available QM/MM tools further, especially with regard to higher accuracy
and better sampling, there is a growing number of successfulQM/MM applications in all
branches of chemistry. This indicates that the existing QM/MM methods are good enough
for the realistic modeling of real-world chemical problems.
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1 TCM Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
E-mail: jrk33@cam.ac.uk

2 Engineering Laboratory, Trumpington Street, Cambridge, CB2 1PZ, UK

Classical molecular dynamics and first principles quantum mechanical calculations are two of
the most important methods currently used to model physicalsystems at the atomic level. The
former allow simulations of millions of atoms to be carried out on a nanosecond timescale
but the accuracy is limited by the requirement to use simple parameterisations as interatomic
potentials. If the scientific question of interest can be effectively answered by considering the
behaviour of a very small number of atoms, up to around a hundred, thenab initio approaches
allow this limitation to be overcome. In many cases we can extract enough information from
these accurate quantum mechanical calculations to parameterise less transferable, but far less
expensive, models and use them on a larger length scale. For some systems however, it is
impossible to separate the behaviour on the various length scales, since the coupling between
them is strong and bidirectional. Then the only option is to carry out ahybrid simulation,
where some parts of the system are treated at a higher level ofaccuracy; this is the subject of
this lecture.

1 Introduction

Over the last twenty years, theab initio methods described in the previous lectures have
made modelling of simple systems reliable, accurate and routine. This is partly due to
the significant increase in capacity and speed of available computers and partly to the de-
velopment of high quality codes that make effective use of these resources. As a result,
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Figure 1. Schematic representation of the range of length- and time-scales accessible to a variety of modelling
methods, from quantum Monte Carlo (QMC) for very accurate, very expensive static calculations through to
approximate methods such as finite-element modelling.
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attention is now focusing on modelling larger scale, more complex systems. Represen-
tative examples from fields as disparate as biology and materials science include enzyme
catalysis1 and defect migration in semiconductors. Ideally, we would simulate such sys-
tems using entirely first principles methods, free of empirical parameters and the accuracy
and transferability problems associated with them. However, ab initio molecular dynamics
is limited to simulating a few hundred atoms for up to a few picoseconds. Using more
approximate methods (e.g. tight binding), the number of atoms can be extended to per-
haps thousands, or the time period increased by a few orders of magnitude, but for many
problems this is still insufficient. Fig. 1 illustrates the approximate range of application of
various modelling techniques and makes clear the challenges we face if we wish to model
complex problems with high accuracy.

1.1 Hierarchical Modelling

In recent years, there has been a great deal of work on multiscale methods that attempt
to apply accurate quantum calculations to larger systems inone way or another. Most
commonly, such methods are examples ofhierarchical multiscale modelling, where the
results of a calculation at one scale are used to parameterise less accurate calculations
at a larger scale, making bigger systems or longer simulation times possible. There are
many such examples of DFT based coarse graining in the literature including: using DFT
forces to parameterise empirical interatomic potentials;calculating defect energies, often in
different charge states, to their determine equilibrium concentrations; calculating surface
stresses and the energies of surface steps to determine the thermodynamic properties of
stepped surfaces.

For many materials and biological processes, the relevant timescale is of the order of
milliseconds or longer, well beyond the capability of traditional molecular dynamics. To
make progress we can either form a hierarchical multiscale model by coarse graining the
system and considering the dynamics of the aggregate particles, or we can try to extract
activation energies and reaction pathways from static calculations or short MD runs to
parameterise Monte Carlo models. For a review of hierarchical multiscale methods and
examples of their application, see Ref. 2.

1.2 Simultaneous Modelling

There is a large class of problems where the physical processes on the various length scales
are strongly coupled and cannot be separated into a series ofindependent calculations; of-
ten this is because the nanoscale phenomena is driven by forces determined at least partially
on the macroscopic scale. Simulation of such systems requiressimultaneouscoupling of
length scales. Over the last ten years there has been much effort to devise schemes, referred
to ashybrid or embeddedmethods, that combine a range of modelling techniques into a
single simulation.

Occasionally, the large scale processes are so simple that they can be simulated very
easily, as an example Martonak3 added a classical pressure reservoir of soft spheres to
anab initio simulation of a small molecule. Usually, however, the largescale behaviour
requires a more complex model to accurately capture the physics; this will be assumed to
be the case for the remainder of the work discussed in the lecture.
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1.3 Multiscale Applications in the Solid State

Stress induced defect processes in metals and semiconductors often give rise to strongly
coupled multiscale phenomena. Examples include point-defect diffusion, dislocation mo-
tion, grain boundaries and, of course, the prototypical multiscale modelling problem: frac-
ture.

Point-Defect DiffusionThe stability and migration of point defects in semiconductors is
affected both by local chemical interactions and long rangestrain fields. An example
long range effect is the strain field resulting from the lattice mismatch between epitax-
ial layers in semiconductors. Although the quantum mechanical treatment of the bonding
rearrangement around a defect requires only a few hundred atoms, we would need to in-
clude thousands more atoms to accurately represent the inhomogenous strain environment,
particularly if we are to model interactions between multiple defects.

Dislocation MotionThe strength of many materials is dominated by the behaviourof their
dislocations. The core of a dislocation is a 1D region in which the bonding is significantly
distorted. Dislocations in covalent materials move by the formation of kinks in the dislo-
cation, where the bonding is very highly distorted. As the kink moves, so does this region
of distortion. This motion requires bond breaking and reformation, therefore this region
should be modelled by a highly accurate quantum mechanical technique.

Grain BoundariesIt is not always possible to assume perfect single crystal structure and
ignore the effect of grain boundaries when studying the physical and electronic properties
of semiconductors. This is true for many materials of growing technological relevance,
for example gallium nitride, silicon carbide and diamond.4 Grain boundaries change the
crystal structure on two length scales: they introduce long-range elastic distortion and lo-
cal bonding disorder. They also act as sinks and sources for dislocations and traps for
dopants, electrons and holes, further increasing the localchemical complexity. A multi-
scale description is needed to describe these systems sinceempirical interatomic potentials
describe the long range-interactions adequately but localrebonding requires quantum me-
chanical accuracy.

Brittle Fracture Fracture is perhaps the best example of a multiscale materials process.
The conditions for crack propagation are created by stress concentration at the crack tip,
and depend on macroscopic parameters such as the loading geometry and dimensions of
the specimen.5–8 In real materials, however, the detailed crack propagationdynamics, are
entirely determined by atomic scale phenomena since brittle crack tips are atomically sharp
and propagate by breaking bonds, one at a time, at each point along the crack front.9, 10 This
means the tip region is primarily a one dimensional line, perpendicular to the direction of
propagation, and so it should be possible to define a contiguous embedding region to be
treated with a more accurate model in a hybrid simulation. There is a constant interplay
between the length scales because the opening crack gives rise to a stress field with a
singularity at the tip,11 as illustrated in Fig. 2, and in turn it is this singular stress field
which breaks the bonds that advance the crack. Only by including the tens of thousands
of atoms that contribute significantly to the elastic relaxation of this stress field can we
hope to accurately model the fracture system, and thus a multiscale approach is essential.
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Figure 2. Maximum principal stress near the the tip of a crackunder uniaxial tension in the opening mode, from
the linear elastic solution. Light areas are the most highlystressed and dark the least.

Brittle fracture is the prototypical problem that has spurred many recent advances in the
field of hybrid modelling of materials systems. For an example of a recent hybrid approach
to modelling the fracture of silicon, see Ref. 12.

2 Coupling Continuum and Atomistic Systems

In the lecture, we shall concentrate on hybrid schemes whichlink quantum mechanical
and classical modelling, but to provide some historical background, we shall first look
briefly at a larger length scale. The pioneering hybrid simulations of materials systems
were performed by Kohlhoff,13 where classical atomistic and continuum elastic models
were coupled to successfully model the directional cleavage anisotropy of a BCC crystal.
This approach has been developed in thequasicontinuum(QC) method of Tadmoret al.14

The key problem with coupling atomistic and continuum models of matter is finding
ways to connect these conceptually very different descriptions. Atomic positions need to
be mapped onto a continuous displacement field, and energy calculations from interatomic
potentials in the atomistic region and constitutive laws inthe continuum region need to
be harmonised. In the QC approach, a small subset of the atomsthat would appear in
a fully atomistic model are selected to represent the systemas a whole, with a higher
sampling density in highly deformed regions. The system is divided into cells, with one
representative atom in each cell, as illustrated in Fig. 3. We assume that the energy of all
the atoms in each cell is the same as that of the representative atom. The energies of these
representative atoms are computed from the local environment, either from constitutive
laws in areas that are nearly homogeneously deformed, or fully atomistically for non-
uniformly deformed regions.

The atomistic and continuum methods are not completely compatible: non-physical
forces arise on the continuum side of the boundary since it looks like an artificial surface.
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Figure 3. Schematic illustration of the finite element discretisation of a solid in the quasicontinuum method. The
lower panel shows the representative atom for a particular triangular element. Reproduced from Ref. 14

Buffer B 1

Buffer B 2

Overlap region

Region I 2

Model 1 Model 2

Region I 1

Figure 4. Schematic showing how overlap buffers can be used to solve the boundary problem in a classical/clas-
sical embedding scheme, where all interactions are short ranged.

The atomistic interactions used in QC are limited to be nearest neighbour models so there
are no artificial forces in the atomistic region. In a refinement of the QC method, Shenoy
et al.15 removed these ghost forces in what they called the dead load approximation. The
QC method has been applied to many systems, for example to study the interaction of
dislocations with grain boundaries16 and the effect of grain orientation on fracture.17

3 Coupling Two Classical Atomistic Systems

As a prelude to looking at the difficulties posed when attempting to couple quantum and
classical systems, let’s consider how two classical atomistic models could be combined.
Providing the models are both short ranged, a straightforward treatment of the boundary
is possible. We allow the regions to overlap as shown in Fig. 4, then evaluate the energy
for the two regions separately, with a buffer region for bothcalculations. The locality of
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the classical potentials means that each of these energies is a sum of local energiesǫi for
each atom, so it is easy to separate the energy into a contribution due to the interior atoms
and one due to the buffer atoms. For example, the energy for Model 1 of Fig. 4 can be
decomposed as

E(1) =
∑

i

ǫi =
∑

i ∈ I1

ǫi

︸ ︷︷ ︸

E
(1)
I

+
∑

i ∈ B1

ǫi

︸ ︷︷ ︸

E
(1)
B

(1)

whereI1 andB1 denote the interior and buffer sections of region one, as shown in Fig. 4.
The same decomposition can be applied to giveE(2) for Model 2. The total hybrid energy
is then obtained by summing the contributions from the two interior regions, neglecting the
buffers:

Ehybrid = E
(1)
I + E

(2)
I (2)

The artificial surfaces created at the boundary will be much more of a problem when we
come to consider embedding a non-local quantum system whichis described in the next
section.

4 Coupling Quantum and Classical Systems

Coupling quantum and classical systems poses significantlygreater challenges than com-
bining two classical descriptions of matter. As quantum mechanics is non-local the simple
partitioning scheme described above will not work. To overcome this problem we need to
provide appropriate boundary conditions for the quantum calculations and find a way to
spatially localise their effects.

The quantum mechanical model is assumed to be accurate enough to describe the
physics of the region of interest correctly, perhaps using tight binding or anab initio ap-
proach. The classical model needs only to correctly capturethe basic topology of bonding
and give the correct response to small elastic deformations, while remaining inexpensive
to compute: empirical interatomic potentials are ideal forthis purpose. Furthermore, since
we shall use the quantum model anywhere we suspect the classical model will be unreli-
able, we prefer that the classical model be robust and inexpensive rather than being highly
transferable. There has been a great deal of effort in recentyears to produce potentials
which attempt to model complex processes such as defect formation — generally we have
found that such potentials are not useful in a hybrid simulation. We prefer simple potentials
such as the Stillinger-Weber model to more complex ones suchas EDIP.

The widely used assumption, upon which all quantum/classical hybrid schemes rely, is
that the physics is local so that observables can be computedlocally, taking into account
only atoms which lie within some finite distance of the regionof interest. Equivalently, we
require that distant trajectories are instantaneously independent. Providing the quantum
region is large enough, the trajectories that are importantare not affected by the fact that,
far away, the system is treated classically. However, it is also necessary, from a practical
point of view, that the quantum trajectories can be computedaccurately using a small
quantum region. Both these conditions are satisfied by thestrong localitycondition:

∂n

∂rn
j

∂Etotal

∂ri
→ 0 as |ri − rj | → ∞ ∀n ∈ N, i 6= j (3)
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Figure 5. Top: distribution of force component errors at thecentre of a finite cluster for a range of cluster sizes.
The peaks on the right represent the integrated distribution of errors which are larger than 0.02 eV̊A−1. The
system is a silicon self-interstitial in a 512-atom cubic cell with periodic boundary conditions, equilibrated at
1400 K. Bottom: the mean of the absolute error in the force components as a function of cluster radius. The peak
at 10.5Å is due to the periodicity of the underlying system. Clusters were terminated with hydrogen atoms. The
force model is tight binding, from Ref.18. This figure is reproduced from Ref.19.

whereri andrj are the positions of atomsi andj. This spatial localisation of observables
is a stronger requirement than that the density matrix be sparse so that its elements decay
rapidly as the separation between two atoms increases. The strong locality assumption
can be tested for a particular system by testing the rate of convergence of the force on the
central atom of a cluster as the cluster radius is increased.Fig. 5 shows an example of a
test of strong locality for silicon using a tight binding force model. Most quantum systems
either obey strong locality, or at least the parts of the Hamiltonian that do not, such as long
range Coulomb and van der Waals interactions, can be dealt with in a purely classically
manner.

Before we consider the details of the coupling strategy, it is appropriate to ask what we
want from an ideal hybrid simulation. It is not feasible for the atoms in the quantum region
to move as if the whole system were described quantum mechanically, since the classical
atoms still move along classical trajectories, and the quantum atoms will respond to the
new positions of the classical atoms. Hence, the best we can aim for is for the quantum
atoms to behaveinstantaneouslyas if they are embedded in a fully quantum system.

5 The QM/MM Approach

The earliest quantum/classical hybrid simulation was performed by Warshel1 in 1976 in
which they model the reaction of the enzyme lysozyme. Enzymecatalysis is often con-
trolled by large scale motion of macromolecules, with a small active site at which the
chemical reaction takes place. Warshel and Levitt noted theneed to describe the active
site at a quantum mechanical level of detail to give an accurate description of hydrophobic
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interactions and hydrogen bonding during catalysis. The electrostatic environment at the
active site is determined by the configuration of the entire system of enzyme, substrate and
solvent. The long range nature of electrostatic forces in such systems means that atoms far
from the active site respond to the presence of a substrate, which in turn causes a change
in the local electrostatic environment.

Hybrid methods of this kind, where the dominant interactionis electrostatic, have
become known as quantum mechanical/molecular mechanical (abbreviated QM/MM)
methods. They have become very popular in the biological andbiochemical modelling
communities in recent decades. All the fundamental aspectsof modern QM/MM tech-
niques were contained in Warshel’s pioneering work: the quantum region was chosen very
carefully by hand, and the boundary atoms were terminated with a frozen hybrid orbital.

In this section we will give only a brief overview of the QM/MMmethod which was
covered in detail in Professor Thiel’s lecture. In the context of the present lecture, DFT
embedding should be understood simply as using DFT as the ’QM’ method in a QM/MM
scheme. It is worth pointing out that compared to quantum chemistry methods, such as
Hartree Fock, DFT has a significant disadvantage for embedding schemes. It is known that
DFT underestimates bandgaps. One consequence is that the density matrix is less localised
in DFT than in quantum chemistry approaches and so DFT embedding is expected to be
more sensitive to boundary effects. For reviews of recent developments in the QM/MM
field see Ref. 20 and Ref. 21. Within the QM/MM framework, the total energy is the
sum of three contributions: the quantum mechanical energy of the quantum region, the
classical energy of the rest of the system, and a term representing the interaction between
the two. There are two distinct approaches to performing a QM/MM calculation, which
differ in their treatment of the interaction between regions: mechanical embeddingand
electrostatic embedding. We describe each of these below.

5.1 Mechanical Embedding

Mechanical embedding schemes perform quantum calculations for the QM region in the
absence of the MM region, treating the interactions betweenthe regions classically. The
simplest mechanical embedding scheme is the two-layer ONIOM method,22 illustrated in
Fig. 6. Here the total energy is obtained from three independent calculations:

EQM/MM = EQM (QM) + EMM (QM +MM)− EMM (QM) (4)

where the subscripts denote the energy model and the function arguments indicate the parts
of the system to be included in each calculation. The MM system contains all the atoms
and the quantum system contains the atoms of quantum mechanical interest pluslink atoms
used to cap dangling covalent bonds. ONIOM relies on cancellation of errors between the
two surface energies.

There are two major drawbacks to the mechanical embedding approach. Firstly it is
not always possible to obtain an accurate set of electrostatic MM parameters for atoms
in the QM region; this is a particular problem since it is often the unavailability of such
parameters which motivates the desire to treat this region quantum mechanically in the
first place. Secondly, the scheme ignores perturbations in the electronic structure of the
QM region caused by the charge distribution of the MM region.The three layer ONIOM
method23, 24goes some way to solving these problems by introducing an intermediate layer,
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Figure 6. The two-layer ONIOM-style QM/MM scheme. Dark regions are treated with QM and light regions
with MM. The termination atoms indicated as H could in fact bea more complex pseudoatom termination.

treated at semi-empirical quantum mechanical accuracy. This allows a consistent treatment
of the polarisation of the active site.

5.2 Electrostatic Embedding

In an electrostatic embedding scheme the QM calculation is carried out in the presence of
the classical charge distribution by adding terms that describe the electrostatic interaction
between regions to the QM Hamiltonian. Normally atom centred partial point charges are
used, but more advanced techniques employ a multipole expansion of the electric field for
increased accuracy. Bonded and van der Waals interactions between the regions are still
treated classically.

One problem of the standard electrostatic embedding approach is that classical atoms
just outside the quantum region look appear as bare coulomb charges in the quantum cal-
culation. There is a tendency for electron density to unphysically ‘spill-out’ onto these
atoms to neutralise these charges. Laioet al.25 have developed an efficient implementation
of an electrostatic embedding scheme that addresses this issue by dealing with the short
and long range electrostatic interactions differently to avoid spill-out.

5.3 Termination of Covalent Bonds

The QM/MM method has been applied fairly extensively to multiscale solid state systems
of the types described at the beginning of this chapter. Electrostatic screening is very
effective in metals and small band gap insulators, so mechanical embedding schemes are
widely used for such systems. Bonded interactions between the QM and MM regions are
much more of a problem in the solid state, since for a typical spherical QM region the
number of covalent bonds that have to be cut to generate the QMcluster is of the same
order as the number of atoms in the region.

To incorporate a quantum mechanical calculation of a subsystem into the total Hamilto-
nian, these artificially cut bonds must be terminated. Thereare various methods for doing
this, usually based on using hydrogen link atoms or parameterised semiempirical ‘pseu-
doatoms’ that attempt to mimic the electronic effect of the region outside the subsystem
that has been removed. A localised orbital parameterised with calculations on small model
systems can be used to provide a quantum mechanical description of the charge distribution
around the QM/MM boundary.26 This approach is less widely used since is not possible to
include these hybrid orbitals in a plane waveab initio code.

We have seen in Section 2 that these termination strategies are sufficient to give ac-
curate classical forces, since the classical description of covalent bonding is very near
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Figure 7. Comparison of QM/MM (left panel) and force mixing (right panel) approaches to the electronic termi-
nation problem.

sighted. Quantum mechanics, however, is not a nearest neighbour model, so atoms close
to the terminated boundary of the QM subsystem feel an artificial environment, no matter
how complex the passivation scheme employed. Moreover, it is impossible to exclude the
contribution of the termination atoms to the total quantum mechanical energy of the sub-
system. In a typical covalent system the length scale for strong locality of the electronic
energy is the order of a nanometre, so any termination methodthat merely replaces a bro-
ken bond with a single atom cannot hope to give accurate forces at the boundary, due to
the non-local nature of the quantum mechanical forces.

5.4 Force Mixing

An alternative to the standard QM/MM termination method is to move smoothly from
quantum to classical forces over a transition region. This is theforce mixingtechnique,
where the forces used for the dynamics are interpolated, commonly linearly according to

F = λFQM + (1− λ)Fclassical (5)

with λ varying from zero on the classical edge of the transition zone to one at the QM
edge. Higher order interpolation is also possible. A comparison of traditional QM/MM
termination and force mixing is illustrated in Fig. 7.

Compared to the link atom method, force mixing slightly reduces the effect of inaccu-
rate forces on atoms near to the edge of the QM region, since they are reduced in weight
and mixed with classical forces. However, since the strong locality length scale is large,
the transition zone must be very wide for this to have much of an effect, so large quantum
mechanical zones are required.

A major disadvantage of force mixing is that since the forcesno longer come from a
single Hamiltonian neither energy nor momentum are conserved. The resulting dynamics
can be unphysical. The action-reaction principle is not obeyed so, for example, the forces
on a dimer spanning the boundary do not sum to zero. This creates a mechanical incompat-
ibility across the boundary, which can lead to instabilities in the dynamics. Nevertheless,
force mixing continues to be the most widely used approach for hybrid simulation of solid
state systems.

The earliest quantum/classical multiscale fracture simulations were published in 1993
by Spence.27 They describe their approach as a flexible boundary condition for anab initio
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Figure 8. Early hybrid fracture simulation techniques. Left panel: relaxed 324 atom obtained using flexible
boundary conditions. Region I (120 atoms) was treated with an ab initio method and Region II with an interatomic
potential. Reproduced from Ref. 27. Right panel: snapshot from a MAAD simulation of fracture, showing the
decomposition of the simulation into finite element (FE), molecular dynamics (MD) and tight binding (TB)
regions. Reproduced from Ref. 28.

calculation, but it is effectively a force mixing embeddingscheme. Alternate relaxations
of the two regions illustrated in Fig. 8a were performed, with an overlap buffer to ensure
self consistency. Some years later, Broughton28 proposed the MAAD (macroatomisticab
initio dynamics) method which couples finite elements, molecular dynamics and semiem-
pirical tight binding in a QM/MM approach to model crack propagation; a snapshot of
the dynamics is shown in Fig. 8b. Pseudoatom terminator ‘silogens’ designed to behave
like monovalent silicon atoms were used to terminate the tight binding region and a force
mixing embedding approach was used.

Ogata’s group has applied the ONIOM method to the simulationof cracks,29 surface
oxidation30, and more recently they have investigated the effect of water on the initiation
of corrosion induced cracks.31 The group uses an improved version of ONIOM called the
buffered-cluster method.32 The QM region is cut out as normal, but then buffer atoms
are added to terminate broken covalent bonds. The buffer is then relaxed using the clas-
sical force model, resulting in a relaxed buffered cluster which gives better surface error
cancellation since it is closer to the equilibrium bulk structure.

5.5 Multiple Layer Termination

In 2001, Bernstein and Hess33 proposed a modified treatment of the quantum zone bound-
ary that addresses the electronic termination problem. They used a Green’s function tech-
nique to create atransition zonewith a thickness of several atomic layers which is included
in the quantum mechanical calculation. Forces from this zone are not included in the dy-
namics. This method was later employed in a hybrid classicaland tight binding simula-
tion,34 referred to as the DCET (dynamic coupling of empirical potential and tight binding)
method. The combination of transition zone and force mixinggives accurate quantum me-
chanical forces and allowed the QM region to be moved during asimulation for the first
time. However, the force mixing technique requires a large QM region, making the method
difficult to scale up to a fullab initio calculation.

There is an alternative, more straightforward, termination strategy: we can obtain ac-
curateforcesfor all atoms in the quantum region by using a wider buffer region. If we
include a thick enough shell of nominally classical atoms inthe quantum calculation, then
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the forces on the QM atoms themselves will be accurate. Sincethese forces are local quan-
tities, we can easily discard the contaminated terminationregion and keep only the forces
on the original QM atoms. This finite buffer scheme, illustrated in Fig. 9, is a major in-
gredient of the ‘Learn on The Fly’ hybrid method which will bethe primary topic of the
lecture.

These multiple layer termination approaches can solve the electronic termination prob-
lem, but there will still be a mechanical incompatibility across the boundary. If we used
forces from the finite buffer scheme to do molecular dynamics, the resulting trajectories
could be unstable, exactly as in the force mixing approach discussed above.

6 Summary

This lecture has introduced hybrid modelling techniques and reviewed a number of ap-
proaches which allow simultaneous simulation of coupled quantum and classical systems.
We have seen that the fundamental difficulty of constructingsuch a hybrid modelling
scheme lies in finding an effective treatment of the boundary. This is a particular prob-
lem in solid state systems, where many covalent bonds have tobe cut to form the QM
cluster and this has restricted the application of the QM/MMmethod. The problem can
be divided into the electronic termination problem, which can be solved by discarding the
inaccurate forces in a buffer zone at the edge of the QM region, and the mechanical match-
ing problem. A solution to this mechanical mismatch is the basis of the ‘Learn on The Fly’
method.
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19. Gábor Csányi, T. Albaret, G. Moras, M. C. Payne, and A. De Vita,Multiscale hybrid
simulation methods for material systems, J. Phys.: Cond Mat,17, R691–R703, 2005.

20. Hai Lin and Donald G. Truhlar,QM/MM: what have we learned, where are we, and
where do we go from here?, Theor. Chem. Acc.,117, 185–199, 2007.

21. M. F. Ruiz-Lopez,Combined QM/MM calculations in chemistry and biochemistry, J.
Mol. Struct.: THEOCHEM,632, ix, 2003.

22. Feliu Maseras and Keiji Morokuma,IMOMM: A new integratedab initio + molecu-

227



lar mechanics geometry optimization scheme of equilibriumstructures and transition
states, J. Comput. Chem.,16, 1170–1179, 1995.

23. M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, S. Sieber, and K. Morokuma,
ONIOM: A Multilayered Integrated MO + MM Method for GeometryOptimizations
and Single Point Energy Predictions. A Test for Diels-AlderReactions and Pt(P(t-
Bu)3)2 + H2 Oxidative Addition, J. Phys. Chem.,100, no. 50, 19357–19363, 1996.

24. Thom Vreven, Keiji Morokuma,̈Odön Farkas, H. Bernhard Schlegel, and Michael J.
Frisch,Geometry optimization with QM/MM, ONIOM, and other combined methods.
I. Microiterations and constraints, J. Comput. Chem.,24, 760–769, 2003.

25. Alessandro Laio, Joost VandeVondele, and Ursula Rothlisberger,A Hamiltonian elec-
trostatic coupling scheme for hybrid Car–Parrinello molecular dynamics simulations,
J. Chem. Phys.,116, no. 16, 6941–6947, 2002.

26. N. Reuter, A. Dejaegere, B. Maigret, and M. Karplus,Frontier Bonds in QM/MM
Methods: A Comparison of Different Approaches, J. Phys. Chem. A,104, no. 8,
1720–1735, 2000.

27. J. C. H. Spence, Y. M. Huang, and O. Sankey,Lattice trapping and surface recon-
struction for silicon cleavage on (111). Ab-initio quantummolecular dynamics cal-
culations, Acta Metall. Mater.,41, 2815–2824, 1993.

28. Jeremy Q. Broughton, Farid F. Abraham, Noam Bernstein, and Efthimios Kaxiras,
Concurrent coupling of length scales: Methodology and application, Phys. Rev. B,
60, no. 4, 2391–2403, Jul 1999.

29. Shuji Ogata, Fuyuki Shimojo, Rajiv K. Kalia, Aiichiro Nakano, and Priya Vashishta,
Hybrid quantum mechanical/molecular dynamics simulationon parallel computers:
density functional theory on real-space multigrids, Comput. Phys. Commun.,149,
30–38, 2002.

30. Shuji Ogata, Elefterios Lidorikis, Fuyuki Shimojo, Aiichiro Nakano, Priya Vashishta,
and Rajiv K. Kalia, Hybrid finite-element/molecular-dynamics/electronic-density-
functional approach to materials simulations on parallel computers, Comput. Phys.
Commun.,138, 143–154, 2001.

31. Shuji Ogata, Fuyuki Shimojo, Rajiv K. Kalia, Aiichiro Nakano, and Priya Vashishta,
Environmental effects of H2O on fracture initiation in silicon: A hybrid electronic-
density-functional/molecular-dynamics study, J. Appl. Phys.,95, no. 10, 5316–5323,
2004.

32. Shuji Ogata,Buffered-cluster method for hybridization of density-functional theory
and classical molecular dynamics: Application to stress-dependent reaction of H2O
on nanostructured Si, Phys. Rev. B.,72, no. 4, 045348, 2005.

33. N. Bernstein,Linear scaling nonorthogonal tight-binding molecular dynamics for
nonperiodic systems, Europhys. Lett.,55, no. 1, 52–58, 2001.

34. N. Bernstein and D. W. Hess,Lattice Trapping Barriers to Brittle Fracture, Phys.
Rev. Lett.,91, 025501, 2003.

228



Bond-Order Potentials for Bridging the Electronic to
Atomistic Modelling Hierarchies

Thomas Hammerschmidt and Ralf Drautz

Interdisciplinary Centre for Advanced Materials Simulation (ICAMS)
Ruhr-Universität Bochum

Stiepeler Strasse 129, 44801 Bochum, Germany
E-mail: {thomas.hammerschmidt, ralf.drautz}@rub.de

Robust interatomic potentials must be able to describe the making and breaking of interatomic
bonds in a computationally efficient format so that the potentials may be employed in large-
scale atomistic simulations. We summarize the fundamentals of such potentials, the bond-order
potentials, and their derivation from the electronic structure. By coarse graining the tight-
binding electronic structure and relating it to the local atomic environment, the bond-order
potentials are derived as quantum-mechanical footed effective interatomic interactions.

1 What are Bond-Order Potentials?

Bond-order potentials are interatomic potentials that arederived from quantum mechanics.
In contrast to classical empirical potentials, bond-orderpotentials capture bond formation
and breaking, saturated and unsaturated bonds, dangling bonds and radical bonds, as well
as single, double or triple bonds. The bond-order potentials provide similar accuracy as
tight-binding calculations at less computational effort,and thus open the way to large-
scale atomistic simulations of systems which cannot be described by classical empirical
potentials.

The bond-order potentials (BOPs) are derived by systematically coarse graining the
electronic structure at two levels of approximation,

1. In the first step, the density functional theory (DFT) formalism is approximated in
terms of physically and chemically intuitive contributions within the tight-binding
(TB) bond model1, 2. The TB approximation is sufficiently accurate to predict struc-
tural trends across the sp-valent and d-valent elements, aswell as sufficiently simple
to allow a physically meaningful interpretation of the bonding in terms ofσ, π andδ
contributions. The parameters of the TB model can be obtained from ab-initio calcu-
lations in a systematic way.

2. In the second step, the TB electronic structure is coarse grained and related to the local
topology and coordination of the material. The functional form of the bond energy
is derived as a function of the positions and the types of atoms that surround a given
bond.

The first step of coarse graining from DFT to TB is discussed byAnthony Paxton in his
contribution to this issue1. In this contribution we will start from the TB description of
the electronic structure, focus on the second level of coarse graining and discuss how the
electronic structure may be hidden in effective interatomic interactions.
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1.1 Aim of this Contribution and some Literature

With this short introduction we do not aim at giving an overview of the bond-order po-
tentials. Instead, with our contribution we would like to give an easy to read summary of
the ideas and concepts that are used to coarse grain the electronic structure into effective
interatomic interactions. A recent special issueModelling Electrons and Atoms for Ma-
terials Scienceof Progress in Materials Science3 contains a number of reviews that give
a detailed overview of the bond-order potentials and their application to the simulation of
elastic and plastic properties of transition metals, the growth of semiconductor thin films
and hydrocarbons4–7. We would like to recommend these reviews to the interested reader.

2 Binding Energy

The starting point for the derivation of bond-order potentials is the tight-binding bond
model2 that is introduced in the lecture of Anthony Paxton1. The binding energy within
the tight-binding bond model is given as the sum of covalent bond energyUbond, promotion
energyUprom, and repulsive energyUrep ,

UB = Ubond + Uprom + Urep . (1)

The promotion energy is calculated as a sum over orbitals|iα〉 centred on atomi (whereα
labels the valence orbital), whereas the repulsive energy is often approximated as sum over
pairs of atoms

Uprom =
∑

iα

E
(0)
iα

(

Niα −N (0)
iα

)

, (2)

Urep =
∑

ij

φij (Rij) , (3)

with the free atom reference onsite levelsE(0)
iα . The promotion energy accounts for the

redistribution of the electrons across the orbitals of an atom due to hybridisation. The
simplest form of the repulsive energy as given above is a pairwise term that depends solely
on the interatomic distanceRij between atomsi andj. Some materials require a more
complex description of the repulsive energy,e.g.Mrovecet al.8 introduced a Yukawa-type
environment-dependent term to account for the strong core repulsion in transition metals.

As we will see in the following, the bond energyUbond can be given in either onsite
representation (in terms of the atom-based density of states) or intersite representation
(in terms of the bond-based density matrix or bond order). The two representations are
equivalent but offer different views on the formation of bonds in materials.

2.1 Bond Energy: Onsite Representation

The onsite representation of the bond energy is based on the local density of statesniα(E)
of orbitalα on atomi. The contribution of each orbital to the bond energy is calculated by
integrating its local density of states (DOS) up to the FermilevelEF

Ubond = 2
∑

iα

EF∫

(E − Eiα)niα(E)dE . (4)
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The factor of two accounts for the neglect of magnetism in themodel, so that spin up
and spin down spin channels are degenerate. The onsite levelEiα is shifted relative to its
free atom valueE(0)

iα until self-consistency is achieved (cf. lecture of Anthony Paxton1).
The local density of statesniα(E) may be obtained from the eigenfunctions|ψn〉 of the
HamiltonianĤ,

Ĥψn = Enψn , (5)

by expressing the eigenfunctions|ψn〉 in an orthonormal basis centred on atomsi

|ψn〉 =
∑

iα

c
(n)
iα |iα〉 , (6)

where the indexα denotes the valence orbital. Then, by calculating the band energyUband

as the sum over all occupied orbitals, we find that

Uband = 2
occ∑

n

En = 2
occ∑

n

〈ψn|Ĥ|ψn〉 = 2
occ∑

n

En〈ψn|ψn〉

= 2
occ∑

n

∑

iα

∑

jβ

Enc
∗(n)
iα c

(n)
jβ 〈iα|jβ〉 = 2

occ∑

n

∑

iα

∑

jβ

Enc
∗(n)
iα c

(n)
jβ δiαjβ

= 2
∑

iα

EF∫

E
∑

n

δ(E − En)c
∗(n)
iα c

(n)
iα dE . (7)

We identify the local density of states of orbital|iα〉 as

niα =
∑

n

∣
∣
∣c

(n)
iα

∣
∣
∣

2

δ(E − En) , (8)

such that the band energyUband is written as

Uband = 2
∑

iα

EF∫

Eniα(E)dE . (9)

The bond energy Eq.(4) is the band energy calculated with respect to the onsite levelsEiα,

Ubond = 2
∑

iα

EF∫

(E − Eiα)niα(E)dE = Uband −
∑

iα

EiαNiα , (10)

with the number of electronsNiα in orbital |iα〉,

Niα = 2
∑

iα

EF∫

niα(E)dE . (11)

Some authors prefer not to calculate thebondenergy that is calculated with respect to the
onsite levels but to use thebandenergy instead, such that

UB = Uband + Uprom + Urep . (12)

However, as discussed in the lecture of Anthony Paxton1, this tight-bindingbandmodel is
inconsistent with the force theorem2, 9, 10while the bond energy in the tight-bindingbond
model properly accounts for the redistribution of charge due to the shift of the onsite levels
that arise from atomic displacements.
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2.2 Bond Energy: Intersite Representation

An alternative but equivalent representation to the onsiterepresentation of the band energy
Eq.(9) is the intersite representation. The intersite representation is obtained by expanding
the eigenfunctions|ψn〉 =

∑

iα

c
(n)
iα |iα〉 in terms of the TB basis,

Uband = 2

occ∑

n

En = 2

occ∑

n

〈ψn|Ĥ |ψn〉 = 2
∑

iα

∑

jβ

occ∑

n

c
∗(n)
iα c

(n)
jβ 〈iα|Ĥ |jβ〉

= 2
∑

iαjβ

ρiαjβHiαjβ , (13)

with the density matrix

ρiαjβ =
occ∑

n

c
∗(n)
iα c

(n)
jβ . (14)

Thebondenergy is obtained from thebandenergy in intersite representation by restricting
the summation to off-diagonal elements asNiα = ρiαiα. Therefore, the bond energy in
intersite representation is given by

Ubond = 2
∑

iα6=jβ

ρiαjβHiαjβ . (15)

The bond orderΘiαjβ of a bond between the valence orbitalsα andβ of two atomsi and
j is just two times the corresponding element of the density matrix

Θiαjβ = 2ρiαjβ . (16)

By construction the onsite and intersite representation ofthe bond energy are equivalent

Ubond = 2
∑

iα

EF∫

(E − Eiα)niα(E)dE =
∑

iα6=jβ

ΘiαjβHiαjβ , (17)

however, the two representations offer different views on bond formation. We see that
while the bond energy in onsite representation is obtained by filling electrons into the local
density of statesniα(E) on each atom, the intersite representation calculates the bond
energy as a sum over pairwise Hamiltonian matrix elementsHiαjβ that are weighted with
the density matrix elementρiαjβ . In the following we will discuss some properties of the
density matrix.

3 Properties of the Bond Order

In the previous section we decomposedglobalquantities, like the bond energy or the band
energy, in theirlocal contributions, the atom-based local density of states in the onsite rep-
resentation and the bond-based bond order in the intersite representation. In the following
we will discuss some properties of the bond order, while the properties of the local density
of states will be discussed in section 4.
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An intuitive physical interpretation of the bond order becomes apparent when we trans-
form the atomic orbitals to linear combinations (dimer orbitals)

|+〉 = 1√
2

(|iα〉+ |jβ〉) bonding , (18)

|−〉 = 1√
2

(|iα〉 − |jβ〉) antibonding . (19)

The number of electrons in the bonding and antibonding dimerorbitals may be obtained
by projection on the occupied eigenstates,

N+ = 2

occ∑

n

|〈+|ψn〉|2 , N− = 2

occ∑

n

|〈−|ψn〉|2 , (20)

By expanding the eigenstates in the atomic basis, Eq.(6), and by making use of the defi-
nition of the bond order Eq.(16), one finds that the bond orderis one-half the difference
between the number of electrons in the bonding state compared to the antibonding state

Θiαjβ =
1

2
(N+ −N−) . (21)

With a maximum of two electrons in an orbital, the bond order takes its largest absolute
value of 1 for two electrons of opposite spin in the bonding and and none in the antibonding
orbital. Furthermore, as the number of electrons in the bonding stateN+ is less or equal to
the total number of electrons in the bondNiαjβ = 1

2 (Niα +Niβ) = 1
2 (N+ +N−),

N+ ≤ N+ +N− , (22)

the value of the bond order in general is limited by an envelope function11

|Θiαjβ | ≤
{

Niαjβ for 0 ≤ Niαjβ ≤ 1 ,
2−Niαjβ for 1 < Niαjβ ≤ 2 .

(23)

As an example, consider the H2 molecule with ones-orbital on each atom. The eigen-
states of the H2 dimer are given by bonding and antibonding linear combinations of the
s-orbitals. Both valence electrons occupy the bonding state, while the antibonding state
remains empty. Therefore we expect that the H2 dimer forms a fully saturated covalent
bond with bond orderΘ = 1. If we look at a He2 dimer instead, the eigenstates are also
given by bonding and antibonding linear combinations of thes-orbitals just like in the case
of H2. However, now the 4 valence electrons have to completely fillboth, the bonding and
the antibonding states such that the bond order is zeroΘ = 0. Therefore, we expect that the
He2 molecule does not form a covalent bond. In contrast to these two extremal cases, the
bond order usually takes intermediate values (see Fig. 1) that depend sensitively on local
coordination and number of valence electrons. It is the aim of the bond-order potentials to
describe these intermediate values as accurately as possible. More examples and a detailed
discussion of the bond order of different molecules and solids is given in the textbook of
Pettifor12.
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not saturated

saturated

Figure 1. Schematic of the bond order as a function of the number of electrons in the bond (bond-filling fraction
f = Niαjβ/2). The bond order of a saturated bond closely follows the envelope function Eq.(23) and is close to
1 at half-full band. Typically materials with open structures like, for example, Si in the diamond lattice, show the
formation of saturated bonds. In close-packed crystals, for example ind-valent transition metals, the electrons
cannot be distributed only into bonding states, the bonds are not saturated and the bond order takes a smaller
value.

4 Moments

For the development of effective interatomic potentials wewould like to bypass the numer-
ical diagonalisation of the TB Hamiltonian̂H and instead determine local quantities like
the local density of statesniα(E) or the bond orderΘiαjβ directly from the local atomic
environment. This may be achieved by making use of the moments theorem13 that relates
the electronic structure (niα(E), ρiαjβ ) to the crystal structure (the position of the atoms).
TheN th moment of orbital|iα〉 is given by

µ
(N)
iα =

∫

ENniα(E)dE . (24)

Inserting the density of states from Eq.(8) and making use ofthe identity operator

1̂ =
∑

n

|ψn〉〈ψn| , (25)

results in an expression for the moments in terms of atomic orbitals|iα〉 and the Hamilto-
nianĤ:

µ
(N)
iα =

∫

EN
∑

n

∣
∣
∣c

(n)
iα

∣
∣
∣

2

δ(E − En)dE

=
∑

n

|〈iα|ψn〉|2EN
n

=
∑

n

〈iα|ĤN |ψn〉〈ψn|iα〉

= 〈iα|ĤN |iα〉 . (26)
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By using an orthogonal basis set that completely spans the TBHilbert space,i.e.

1̂ =
∑

jβ

|jβ〉〈jβ| , (27)

theN th power of the Hamilton operator acting on orbital|iα〉 can be written as the product
of N Hamilton matrices,

〈iα|ĤN |iα〉 =
∑

jβkγ···
〈iα|Ĥ |jβ〉〈jβ|Ĥ |kγ〉〈kγ|Ĥ | . . . 〉 · · · 〈. . . |Ĥ |iα〉 . (28)

Each Hamiltonian matrix elementHiαjβ = 〈iα|Ĥ |jβ〉 connects two neighbouring atoms
i andj and is frequently called ahop. Looking at the indices, we see that the product of
Hamiltonian matrices defines a path through the atomic structure (|iα〉 → |jβ〉 → |kγ〉 →
· · · → |iα〉) which we will refer to as hopping path. Therefore theN th momentµ(N)

iα ,
Eq.(26), can be understood as the sum over all hopping paths of lengthN that start and
end on the same orbital|iα〉,

µ
(N)
iα =

∫

ENniα(E)dE =
∑

jβkγ···
HiαjβHjβkγHkγ... · · ·H...iα . (29)

Figure 2 illustrates one hopping path that contributes to the 4th moment. As different
crystal structures have different numbers of hopping pathsof a given lengths, the moments
are sensitive to changes in the crystal structure. Higher moments correspond to longer
hopping paths and thus to a more far-sighted sampling of the atomic environment.

H

iα

jβiα jβ

Figure 2. A path that contributes to the 4th moment of orbitaliα. The 4th moment is important for the energy
difference of thefcc andbccstructure of the transition metals.

Moments are well known in statistical mathematics as a concept to describe a distribu-
tion (in our case the local DOS). The first few moments are often discussed as measures of
specific properties of the distribution,

µ
(0)
iα =

∫
niα(E)dE : norm , (30)

µ
(1)
iα =

∫
Eniα(E)dE : centre of gravity , (31)

µ
(2)
iα =

∫
E2niα(E)dE : rootmean square width , (32)

µ
(3)
iα =

∫
E3niα(E)dE : skewness , (33)

µ
(4)
iα =

∫
E4niα(E)dE : bimodality . (34)
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While µ(0)
iα andµ(1)

iα do not contain any information of the surroundings of an atom, the

second momentµ(2)
iα is the lowest moment that contains physical information of the envi-

ronment of an atom (the root mean square width of the density of states). The Hamiltonian
is typically attractive, therefore the third moment is typically negative

µ
(3)
iα =

∑

jβkγ

〈iα|Ĥ |jβ〉〈jβ|Ĥ |kγ〉〈kγ|Ĥ|iα〉 < 0 , (35)

and gives rise to a skewed DOS as illustrated in Fig. 3(a). Therefore, if one calculates the
energy difference of two densities of states at identical second moment but withµ(3)

iα = 0

andµ(3)
iα < 0, one obtains as a function of band filling a figure similar to Fig. 3(b). For less

than half-full band the negative 3rd moment contribution tends to stabilise the DOS with
µ

(3)
iα < 0 relative to the DOS with vanishing third moment. The third moment gives a first

a)

E

n(E)

µ   = 0(3)
iα

µ   < 0(3)
αi

b)

E∆

N

0

0 1

Figure 3. The 3rd moment gives rise to a skewing of the DOS (a) that typically (forµ(3)
iα < 0) stabilises close-

packed structures for less than half-full band (b).

indication of the crystal structure of elements with less than half-full band (like Mg and
Al): the observed close-packed structure offers many self-returning paths of length three
and therefore has a large third moment. In contrast, elements with more than half-full band
(like Cl and S) tend to avoid a large third moment and therefore form open structures or
molecules that have no hopping paths of length three.
The fourth moment characterises the bi-modal (in contrast to uni-modal) behaviour of the
density of states as shown in Fig. 4(a). A bimodal DOS has a lowdensity of states at the
centre of the band and tends to be stable over a unimodal DOS athalf-full band as shown
in Fig. 4(b). This is the reason whysp-valent elements with half-full band (such as Si, Ge)
have a tendency to crystallise in the diamond structure. Thediscussion of the first four
moments may be generalised for higher moments. For example,six moments are required
to resolve the energy difference between the close-packedfcc andhcp lattices14, many of
the small differences between more complex crystal structures can also be resolved with an
expansion to only about the 6th moment15, 16. Furthermore, if two structures are different
only at the level of theN th moment and thisN th moment dominates, then the energy
difference between the two structures showsN − 2 zeros between empty and full band17.
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a)

E

n(E) b)

E∆

N

0

0 1

Figure 4. The 4th moment causes the DOS to take a bimodal shape(a), thereby favouring the diamond structure
at half-full band.

5 Recursion

In the previous section we showed that the moments of the density of states relate the
atomic structure to the electronic structure. A mathematically equivalent way of relating
the electronic structure to the crystal structure is the recursion method18.
Given a starting state|u0〉, which we may think of for example as an atomic orbital|iα〉,
the Hamilton operator is used to generate a new state|u1〉 by

b1|u1〉 =
(

Ĥ − a0

)

|u0〉 . (36)

The new state is normalized (〈u1|u1〉 = 1) and orthogonal to|u0〉 (〈u1|u0〉 = 0). The
coefficientsa0 andb1 are determined by multiplying from the left with|u1〉 and|u0〉:

b1 = 〈u1|Ĥ|u0〉 , (37)

a0 = 〈u0|Ĥ|u0〉 . (38)

In a similar fashion, the Hamiltonian is used to generate from |u1〉 an other new state|u2〉
that cannot be written as a linear combination of|u0〉 and|u1〉:

b2|u2〉 =
(

Ĥ − a1

)

|u1〉 − b1|u0〉 , (39)

which is again normalized (〈u2|u2〉 = 1) and orthogonal to|u1〉 (〈u2|u1〉 = 0). The
coefficientsa1 andb2 are given correspondingly by

b2 = 〈u2|Ĥ|u1〉 , (40)

a1 = 〈u1|Ĥ|u1〉 . (41)

The general form of the recursion may be written as

bn+1|un+1〉 =
(

Ĥ − an

)

|un〉 − bn|un−1〉 , (42)

with the matrix elements

bn = 〈un|Ĥ |un−1〉 , (43)

an = 〈un|Ĥ |un〉 . (44)
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The states|un〉 are orthogonal,〈un|um〉 = δnm. This means that in the basis
{|u0〉, |u1〉, |u2〉, . . . }, which is generated from the atomic-like orbitals|u0〉 = |iα〉 by
recursion, the Hamiltonian matrix takes the following, tridiagonal form

〈un|Ĥ|um〉 =
















a0 b1
b1 a1 b2
b2 a2 b3
b3 a3 b4

b4 a4
. . .

. . .
. . .

. . .
. . .

. . .
















.

All elements that are not in the diagonal or next to the diagonal are identical to zero. This
Hamiltonian matrix may be thought of as the Hamiltonian of a one-dimensional chain
with only nearest neighbour hopping matrix elements, see Fig. 5. Using the recursion

a0

...

aa3 4

b4

|u >

b3

|u >

a2a1

b2b1

|u > |u >2 3 4|u >0 1

Figure 5. Graphical representation of the recursion Hamiltonian as one-dimensional chain: the Lanczos chain.

and writing|un〉 as linear combination of atomic orbitals, the moments are related to the
expansion coefficientsan andbn. TheN th moment can be determined by summing over
all possible paths of lengthN that start and end on orbital|u0〉. For example, the first four
moments are given by

µ
(0)
iα = 1 , (45)

µ
(1)
iα = a0 , (46)

µ
(2)
iα = a2

0 + b21 , (47)

µ
(3)
iα = a3

0 + 2a0b
2
1 + a1b

2
1 , (48)

which is easily verified by identifying all paths of corresponding length in Fig. 5. The
purpose of introducing the recursion method in the context of bond-order potentials is to
transform the TB Hamiltonian to an orthogonal basis where ittakes a tridiagonal form. This
procedure of transforming the Hamiltonian to a semi-infinite one-dimensional nearest-
neighbour chain is the Lanczos algorithm19 and establishes anO(N) approach to calculate
the local electronic density of states as we shall see in the following.

6 Green’s Functions

In the previous section we learned how to calculate the moments of the density of states
from the crystal structure. We would like to use the information contained in the moments
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to calculate the bond energyUbond, Eq.(4). The Green’s function̂G is closely related to
the density of states Eq.(8) and the density matrix Eq.(14),as we will see in the following.
It will therefore be helpful for the construction of the bondenergyUbond, Eqs.(4) and (15).
As a first step in this direction we will use the Green’s functions to reconstruct the local
density of statesniα(E) from the moments. Once we have obtained the local density of
states, we can integrate it to calculate the bond energy. We define the Green’s function̂G
as the inverse of the Hamiltonian,

Ĝ =
(

E1̂− Ĥ
)−1

. (49)

As the Hamilton operator in the basis of the eigenstatesψn is written as

〈ψn|
(

E1̂− Ĥ
)

|ψm〉 = (En − E)δnm , (50)

and by definition ofĜ,

〈ψn|
(

E1̂− Ĥ
)

Ĝ|ψm〉 = 〈ψn|ψm〉 = δnm , (51)

the Green’s function matrix elements of the eigenstates maybe written explicitly as

〈ψn|Ĝ|ψm〉 =
δnm

E − En
. (52)

This can be verified by inserting the identity1̂ =
∑

k |ψk〉〈ψk|,

〈ψn|
(

E1̂− Ĥ
)

Ĝ|ψm〉 =
∑

k

〈ψn|
(

E1̂− Ĥ
)

|ψk〉〈ψk|Ĝ|ψm〉 (53)

=
∑

k

(E − En) δnk
δkm

E − Em
(54)

= (E − En) δnm
1

E − Em
(55)

= δnm . (56)

The matrix elements of the Green’s function in the atomic orbital basisGiαjβ(E) =

〈iα|Ĝ|jβ〉 are obtained as

Giαjβ(E) =
∑

nm

〈iα|ψn〉〈ψn|Ĝ|ψm〉〈ψm|jβ〉 =
∑

n

c
∗(n)
iα c

(n)
jβ

E − En
, (57)

By making use of the identity/residue

− 1

π
Im

∫
1

E − En
dE =

∫

δ(E − En)dE , (58)

we can replace Eq.(8) and Eq.(14) using matrix elements of the Green’s function

niα(E) = − 1

π
ImGiαiα(E) , (59)

ρiαjβ = − 1

π
Im

EF∫

GiαjβdE . (60)
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Connection can now be made to the recursion method introduced in the previous section.
The diagonal element of the Green’s function at the startingorbital of the semi-infinite
one-dimensional Lanczos chain is given as a continued fraction20

Giαiα = G00 =
1

E − a0 −
b21

E − a1 −
b22

E − a2 −
b23
.. .

. (61)

The continued fraction expansion provides a direct way of calculating the density of states
which in turn may be used to calculate the bond energy.
Taking the continued fraction to an infinite number of recursion levels corresponds to an
exact solution of the tight-binding model. Byterminatingthe continued fraction after a
certain number of levels, a local expansion of the electronic structure is obtained. The
different flavors of using truncated Green’s function expansion for a local calculation of
the bond energy are presented in the following section. A more detailed review of the
connection between bond-order potentials, Green’s functions and the recursion method is
given,e.g., in Refs. 21–23.

7 Calculation of the Bond-Energy I – Numerical Bond-Order
Potentials

The recursion expansion representation of the HamiltonianEq. (42) offers a direct way of
writing the onsite Greens-function matrix elementsGiαiα = 〈iα|Ĝ|iα〉 = G00 in the form
of a continued fraction expansion, Eq.(61). For the bond-order potentials we are interested
in a local calculation of the bond energy and not in an exact solution of the underlying TB
model. This is achieved byterminatingthe expansion after a few recursion levelsn. This
is equivalent to evaluating the first2n + 1 moments of the density of states (cf. Sec. 5).
In the simplest case, the recursion coefficientsam andbm for m > n are replaced by a
constant terminator

am = a∞, bm = b∞ for m > n . (62)

By inserting the continued fraction expression for the Green’s function matrix element
Eq.(61) in Eq.(59) one obtains an approximate closed-form representation of the density
of statesniα. The bond energy Eq.(4) is obtained bynumericalintegration of

Ubond = − 2

π
Im

EF∫

(E − Eiα)
1

E − a0 −
b21

.. . −
. . .

E − a∞ −
b2∞

E − . . .

dE (63)

and therefore this representation of the energy is called numerical bond-order potential.
In general the approximation error in the bond energy will become smaller with more
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recursion levelsn taken into account exactly. Therefore, the number of recursion levels
provides a way of systematically converging the bond energyto the bond energy that one
obtains from an exact solution of the TB Hamiltonian.
For the calculation of the forces on the atoms one requires the bond-order/density matrix
and therefore the calculation ofGiαjβ . For numerical stability and convergence of the
continued fraction expansion ofGiαjβ , one relatesGiαjβ to the onsite matrix elements
Giαiα andGjβjβ . This is achieved by using a linear combination of atomic orbitals in the
recursion expansion

|u0〉 =
1√
2

(
|iα〉+ eiϑ|jβ〉

)
, (64)

with ϑ = cos(λ) such that

G00 = λGiαjβ +
1

2
(Giαiα +Gjβjβ) . (65)

Therefore, the intersite matrix elements of the Green’s function is given as a derivative of
the onsite elements of the starting Lanczos orbital, a central result of BOP theory24

Giαjβ =
d

dλ
G00

∣
∣
∣
∣
λ=0

. (66)

At any level of approximation exists a termination of the expansion ofGiαjβ which ensures
that the onsite and intersite representation of the bond energy are identical25, as of course
it would have to be if the problem would have been solved exactly. A detailed review of
the numerical bond-order potentials is available in Ref. 5.

8 Calculation of the Bond-Energy II – Analytic Bond-Order
Potentials

As the integral for the calculation of the bond energy in Eq.(63) is carried out numerically
in numerical BOPs, no analytic representation of the effective interactions between atoms
and therefore no analytic interatomic potential may be obtained. In this section we will
discuss how analytic representations of the bond energy maybe obtained, such that explicit
analytic interatomic potentials may be written down.

8.1 Analytic Bond-Order Potentials for Semiconductors

If the expansion ofGiαiα in Eq.(61) is terminated witha∞ = 0 andb∞ = 0 after only
two recursion levels (n = 2) corresponding to four moments, the integral for the bond
energy Eq.(63) may be carried out analytically. In order to achieve a good convergence
with only two recursion levels, the starting state of the recursion |u0〉 must be taken as
an as close approximation of the solution as possible. For semiconductors with saturated
covalent bonds one achieves very good convergence if the starting state is chosen as a
dimer orbital26, 27

|u0〉 =
1√
2

(|iα〉+ |jβ〉) . (67)
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The resulting analytic bond-order potentials26, 27have been applied to modelling the growth
of semiconductor films and hydrocarbons. A detailed review of the analytic BOPs for
semiconductors may be found in Refs. 6,7. If one takes the expansion of this analytic bond-
order potential only to two moments of the density of states instead of four moments, then
an expansion is obtained that is very close28 to the empirical potential given by Tersoff29.
Therefore the analytic BOP may be viewed as an systematic extension of the Tersoff-
Brenner-type potentials.

8.2 Analytic Bond-Order Potentials for Transition Metals

In a close-packed transition metal, the bonds between atomsare not saturated. Therefore
the expansion of the analytic BOPs for semiconductors that is built on a saturated dimer
bond may not be directly applied to transition metals. Instead of taking a dimer orbital as
the starting state of the expansion, inserting a spherical atomic orbital into a close-packed
crystal structure leads to a faster convergence of the expansion. However, in order to re-
solve for example the energy difference between thefcc andhcpstructure in a canonical
TB model30, at least six moments are required14. For six moments or equivalently three
recursion levels, the integration of Eq.(63) cannot be carried out analytically. Instead of
integrating Eq.(63), one therefore constructs a perturbation expansion of the continued
fraction representation ofGiαiα. This perturbation expansion may then be integrated ana-
lytically.

The starting point of the expansion is the observation that the Green’s function may
be written down in a compact form if all the expansion coefficientsan andbn are taken
identical to

an = a∞ , (68)

bn = b∞ . (69)

Then the density of states is given by

n
(0)
iα (ε) =

2

π

√

1− ε2 , (70)

with the normalized energyε,

ε =
E − a∞

2b∞
. (71)

The density of statesn(0)
iα (ε) is then used as the reference density of states in a perturbation

expansion31

niα(ε) = n
(0)
iα (ε) + δniα(ε) . (72)

Chebyshev polynomialsPn(ε) of the second kind are orthogonal with respect to the weight
functionn(0)

iα ,

2

π

+1∫

−1

Pn(ε)Pm(ε)
√

1− ε2dε = δnm . (73)
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The density of states is thus expanded in terms of Chebyshev polynomials

niα(ε) =
2

π

√

1− ε2
(

σ0 +
∑

n=1

σnPn(ε)

)

, (74)

with expansion coefficientsσn. The expansion coefficients are related to the moments of
the density of states Eq.(29) by writing the Chebyshev polynomials explicitly in the form
of polynomials with coefficientspmk,

Pm(ε) =

m∑

k=0

pmkε
k . (75)

Then the expansion coefficientsσm are obtained in terms of the momentsµ(k)
iα ,

σm =

+1∫

−1

m∑

k=0

pmkε
kniα(ε)dε =

m∑

k=0

pmk

+1∫

−1

εkniα(ε)dε =

m∑

k=0

pmkµ̂
(k)
iα , (76)

where we introduced the normalized moments

µ̂
(n)
iα =

1

(2bi∞)n

n∑

l=0

(
n

l

)

(−ai∞)(n−l)µ
(l)
iα . (77)

Therefore, by calculating the momentsµ(k)
iα according to Eq.(29) by pathcounting and

inserting the expansion coefficientsσn into the expansion Eq.(74), one obtains a closed-
form approximation of the density of states. Integration ofthe density of states analytically
yields an analytic expression for the bond energy associated with orbitaliα

Ubond,iα =

EF∫

(E − Eiα)niα(ε)dε =
∑

n

σn [χ̂n+2(φF)− γχ̂n+1(φF) + χ̂n(φF)] ,

(78)
where we introduced the so-called response functions

χ̂n (φF) =
1

π

(
sin(n+ 1)φF

n+ 1
− sin(n− 1)φF

n− 1

)

, (79)

and the Fermi phaseφF = cos−1(EF/2bi∞).
The lowest order approximation of the analytic bond-order potential that includes only

two moments is similar to the Finnis-Sinclair potential32, so that the analytic BOP expan-
sion may be viewed as a systematic extension of the Finnis-Sinclair potential to include
higher moments. On the other hand, as the expression for the bond energy may be inte-
grated analytically for an arbitrary number of moments, theexpansion Eq.(78) provides an
effective interatomic interaction that may be systematically converged with respect to the
exact solution of the TB Hamiltonian by including higher moments. As in the case of the
numerical bond-order potentials, the bond energy, Eq.(78), may be rewritten as an equiva-
lent intersite representation. A detailed derivation of the analytic bond-order potentials for
transition metals may be found in Ref. 14.
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9 Calculation of Forces

The computationally fast and efficient calculation of forces is important for efficient
molecular dynamics simulations. In self-consistent electronic structure calculations the
Hellmann-Feynman theorem33, 34makes an efficient calculation of forces possible, as only
gradients of the Hamiltonian matrix elements need to be evaluated. The contribution of the
bond energy to the forces may be written as

FFF k = ∇kUbond =
∑

iα6=jβ

Θiαjβ∇kHjβiα . (80)

The Hamiltonian matrix elements are pairwise functions, therefore the calculation of the
gradients is very efficient. For the bond-order potentials Hellmann-Feynman-like forces14

may be derived that may be written in a form similar to the Hellmann-Feynman forces
Eq.(80),

FFF k = ∇kUbond =
∑

iα6=jβ

Θ̃iαjβ∇kHjβiα , (81)

whereΘ̃iαjβ is an approximate representation of the bond order. Just as in the case of
the Hellmann-Feynman forces, the calculation of the forcesin the bond-order potentials
requires only the calculation of the gradient∇kHjβiα and not the differentiation of a
complex many-body function and is therefore computationally efficient compared to the
evaluation of the gradient of an empirical many-body potential.

10 Conclusions

This introductory lecture provides a brief guide to the central ideas and concepts behind the
derivation of the bond-order potentials. Instead of diagonalising the TB Hamiltonian, the
bond-order potentials provide an approximate local solution of the TB Hamiltonian and the
binding energy. The local solution is constructed as a function of the crystal structure or,
more general, the positions of the atoms, by relating the electronic structure to the crystal
structure using the moments theorem. In this way explicit parametrisations of the energy as
a function of the atomic positions are obtained. The accuracy of the bond-order potential
with respect to the corresponding tight-binding solution can be improved systematically
by including higher moments, which corresponds to taking into account more far-sighted
atomic interactions. Hellmann-Feynman-like forces allowfor an efficient calculation of
the forces in molecular dynamics simulations.
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The accuracy of the results obtained in theoretical simulations critically depends on the relia-
bility of the employed interatomic potentials. While efficient electronic structure methods like
density functional theory (DFT) have found a wide application in molecular dynamics simula-
tions of comparably small systems containing up to a few hundred atoms, for an investigation
of many interesting questions one has to deal with systems too large for DFT. In recent years
artificial neural networks (NN) have become a promising new tool for the representation of
potential-energy surfaces (PES). Due to their flexibility they are able to accurately reproduce a
given set of electronic structure data, while the resultingcontinuous NN-PES can be evaluated
several orders of magnitude faster than the underlying electronic structure calculations. Addi-
tionally, analytic energy gradients are readily availablemaking NN potentials well suitable for
applications to large-scale molecular dynamics simulations. The main drawback of NN poten-
tials is their intrinsically non-physical functional form. Consequently, large reference data sets
from electronic structure calculations have to be available to construct reliable NN potentials,
which are thus more costly to construct than conventional empirical potentials.

1 Introduction

The investigation of many interesting chemical problems requires long simulations of large
systems containing hundreds or thousands of atoms. While inprinciple accurate electronic
structure methods are available1, 2, a direct combination with molecular dynamics (MD)
simulations “on-the-fly” is feasible only for small systems, and an application of these
methods to large systems is in most cases prohibitively expensive. This dilemma is often
circumvented by employing a so-called “divide and conquer”approach. In this approach
the costly evaluation of accurate energies and forces by sophisticated electronic structure
methods is separated from the actual simulation by a three step procedure. First, the po-
tential is evaluated for a set of representative atomic configurations by highly accurate
methods (sometimes also experimental data is used). In the second step a continuous po-
tential representation is constructed, which can be evaluated much faster but should ideally
provide essentially the same description as the underlyingelectronic structure methods.
This potential then provides fast access to the potential-energy surface (PES). Finally, in
the third step the simulations are carried out employing this potential, which typically al-
lows an extension of length and/or time scales by many ordersof magnitude. The use of
this approach is wide-spread, a well-familiar example is the use of classical force fields3–7

in MD simulations, and countless other empirical potentials of varying form and complex-
ity have been developed in the past years for many types of systems.

Fitting complex potential-energy surfaces is a highly non-trivial task. The functional
form has to be sufficiently flexible to adapt to the reference points with high accuracy, the
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obtained PES should have continuous derivatives for applications in molecular dynamics
simulations, it should be fast to evaluate, and its construction should not require a signif-
icant amount of manual work. Finally, an improvement and extension in certain regions
of the configuration space should be possible without much effort, i.e., without starting
the whole elaborate construction of a functional form and the fitting process right from
the beginning, if new data points become available. The ideal method also would not be
constrained to be applicable only to a certain type of system, like to certain classes of
molecules or solids.

For simple systems analytical functional forms containinga few parameters can be
“guessed”, if possible based on physical knowledge about the system, and the parameters
can be fitted to theoretical and/or experimental data. The choice of the functional form
requires great care. If the functional form is not chosen appropriately, either unphysical
artefacts may be introduced, or the shape of the PES is too much constrained and no ac-
curate fit can be obtained. A well-known example for an analytic fit is the Lennard-Jones
12-6 potential8

V (r) = 4ǫ

{(σ

r

)12

−
(σ

r

)6
}

(1)

with two parametersǫ andσ. This functional form can well represent the interaction be-
tween two noble gas atoms, but there is no hope to describe complex organic molecules
with this type of pair potential without any angular dependence. More elaborate potentials
have been developed for many different types of systems. Classical force fields3–7 are fre-
quently used for large organic molecules, in particular forstudies in the field of biochem-
istry. Their main drawback, the inability to describe the breaking and making of chemical
bonds has been overcome for some systems by so-called “reactive force fields”9–13. Many
other types of analytic potentials have been developed in recent years, and discussing even
a small fraction is beyond the scope of the present lecture.

The general advantage of analytical fits is that the number ofparameters is rather small,
consequently only a few reference calculations are sufficient for setting up the potentials.
Additionally, the individual terms often allow for a physical interpretation and an unex-
pected behavior of the potentials during simulations is rare. Problems may arise, if the
functional form is too simple and thus cannot reproduce the reference data. For many sys-
tems the construction of suitable functional forms has beena frustrating challenge, and
the sheer complexity of chemical bonding enforces either a limitation to a subset of pos-
sible structures that can be accurately described (e.g. by prohibiting bond breaking) or
the chemical complexity has to be reduced. Most “reactive” potentials developed so far
are thus applicable only to monocomponent or binary systemsand have been mainly ap-
plied in the field of materials science14–17 or to describe low dimensional PESs in surface
science18–20.

Another possibility to construct PESs is to use purely mathematical fitting methods
like splines. They have a very general functional form, but they are not applicable to high-
dimensional PESs, because the error increases rapidly withthe number of dimensions, and
they are very sensitive to noise in the data. An example for a very general approach for the
description of molecule-surface interactions is the modified Shephard method21, 22, which
is based on a Taylor expansion of the energy around the reference points.

In recent years, another mathematical approach based on artificial neural networks
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(NN) has become a promising new tool for the construction of potential-energy surfaces.
Artificial neural networks have been first introduced in 1943by McCulloch and Pitts in-
spired by the way of signal processing in the brain23. The robustness, fault tolerance,
ability to handle noisy data and highly parallel structure of the brain since then stimulated
a lot of research and many attempts have been made to mimic these properties in computer
algorithms. Nowadays, neural networks have found numerousapplications in many fields
of science. They have the general ability to associate some input pattern with a response,
and are very well suited for applications like finger print identification, voice recognition
and many others24. Apart from pattern recognition applications they can alsobe used to
approximate functions based on a known set of function values25.

There are various examples for applications in chemistry26–29: establishing structure-
activity relationships30, prediction of reaction probabilities31, medical classification prob-
lems in clinical chemistry32, binding site prediction33, extraction of pair potentials from
diffraction data34, estimation of force constants in large molecules35, “data mining” in drug
design36, electrostatic potential analysis30, 29, construction of exchange correlation poten-
tials37, the numerical solution of the Schrödinger equation for simple model systems38, the
prediction of secondary protein structure39, and the detection of signals in the presence of
noise40.

The topic of this lecture is the application of neural networks to the construction of
potential-energy surfaces employing their ability to approximate unknown functions very
accurately. The central assumption behind the construction of potential-energy surfaces
using neural networks is that an analytic representation ofthe PES exists. This analytic
form may be very complex (indeed too complex to be ever written down) and completely
unknown. But if it in principle exists, the neural network can be used to approximate this
unknown functional form to high accuracy, since it has been proven that any real-valued
function depending on a set of variables can be represented by a feed-forward neural net-
work with arbitrary precision25, 41, 42. The reason for this capability of NNs is the extreme
flexibility arising from a large number of simple non-linearfunctions which are combined
in a hierarchical and systematic way. This is similar to the interconnection of biological
neurons in the nervous system and gave the method its name. The structure of NNs is
described in detail in the following sections.

Translating this capability of NNs to real world applications is not straightforward and
a lot of effort has been put into the construction of neural network potentials by many
research groups in chemistry and physics. The aim of this lecture is not to give a complete
review of all techniques developed so far, but to point out some conceptual problems and
how they can be solved for different types of chemical applications. For this purpose we
will in particular focus on the class of multilayer feed-forward neural networks, which is
most important for the representation of potential-energysurfaces.

2 Neural Network Potentials

2.1 The Functional Form of a Feed-Forward Neural Network

Since the introduction of artificial neural networks many different NN types have been
developed24, 43–45. For the representation of potential-energy surfaces in particular feed-
forward neural networks have gained a central role. They have a very general, i.e. unbi-
ased, form, which is a nested function of a large number of simple functional units. The
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Figure 1. Schematic structure of a simple 2-3-4-1 feed-forward neural network. The value of the node in the
output layer corresponds to the energyE, which depends on the variablesGi in the input nodes. The bias
weightsbji connect the bias node with the nodesi in layer j and shift the non-linear region of the activation
functions. The number of hidden layers and the nodes in theselayers define the functional form of the NN. The
weights parametersakl

ij connecting nodei in layer k with nodej in layer l as well as the bias weights are the
fitting parameters of the NN. They are determined iteratively using a set of known reference data points.

functional form of such a NN can be visualized schematicallyas shown for a small exam-
ple NN in Fig. 1. The NN consists of artificial neurons called nodes and are represented
by the grey circles. These nodes correspond to the neurons inthe biological NN. They are
arranged in several layers: an input layer, an output layer,and one or more hidden layers.
The nodes in the input layer correspond to thei variablesGi of the potential-energy func-
tion, i.e., to the atomic degrees of freedom that determine the total energy of the system.
The node in the output layer is the target quantity, the potential-energy of the system. The
purpose of the remaining parts of the NN is to set up a functional relation between the
atomic positions and the energy. The specific functional form is defined by the number of
hidden layers and the number of nodes in each layer. The term “hidden layer” indicates
that the nodes in these layers have no physical meaning and are just auxiliary mathemat-
ical constructs to provide the required flexibility. Each node in each layer is connected
to the nodes in the adjacent layers by so-called weight parameters, the fitting parameters
of the NN. Here,akl

ij is the weight parameter connecting nodei in layerk with nodej in
layer l. The weight parameters are represented by the arrows in Fig.1. Additionally, the
nodes in the hidden layers and the output node are connected to a bias node via bias weight
parameters. We use the symbolbji , which is the bias weight acting on nodei in layerj.

Once the topology of the NN is set up, the output is calculatedin the following way:
First, the numerical values of the coordinates of the atoms in a given structure are provided
to the NN in the nodes of the input layer, which has the layer index “0”. The valueGi

of each nodei is then propagated to each node in the first hidden layer and multiplied by
the value of the connecting weight parameter. At each nodej in the first hidden layer the
sum of products

∑

iGia
01
ij is calculated. So far this corresponds to a linear combination of
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the atomic coordinates. Clearly, in the true PES there is a complicated non-linear relation
between the energy and the atomic positions, and the capability to represent these general
non-linear functions is introduced by applying a non-linear activation functionfk

j to the
final sum at each nodej in layerk. Examples for activation functions will be given below.
Frequently used activation functions have a sigmoidal shape, i.e., they have a finite non-
linear region and saturate for very small and very large arguments. The role of the bias
weightsbji is to shift the sum at each node into the non-linear regime of the activation
functions (cf. Sec. 2.2). In summary, the valuey1

j of nodej in the first hidden layer is then
calculated by

y1
j = f1

j

(
∑

i

b1j + a01
ij Gi

)

(2)

and for a general nodej in layerk the equation becomes

yk
j = fk

j

(
∑

i

bkj + ak−1,k
ij yk−1

i

)

. (3)

The number obtained at each node in the first hidden layer is then propagated to each node
in the second hidden layer and again multiplied by the respective connection weight. At
each node in the target layer again an activation function isapplied and so forth until finally
a number is obtained at the node in the output layer of the NN.

The full functional form of the example NN in Fig. 1 is given accordingly by

E = y3
1 = f3

1



b31 +

4∑

k=1

a23
k1 · f2

k



b2k +

3∑

j=1

a12
jk · f1

j

(

b1j +

2∑

i=1

a01
ij ·Gi

)





 (4)

In general the NN output depends on the topology of the NN, i.e., the number of layers
and nodes per layer, the type of activation functions, and most importantly, the numerical
values of the weight parameters. Initially, the weight parameters are chosen randomly and
the output of the NN is of course very different from the correct potential-energy of the
structure. But if for a set of reference structures the potential-energy is known, e.g. from
electronic structure calculations, then an error functioncan be defined as the difference
between the output of the NN and the known correct energy. This error function can then
be minimized by optimizing the weight parameters until all example points are accurately
reproduced by the NN. Details on the weight optimization aregiven in Section 3 below.
This optimum set of weight parameters is then kept fixed and can be used to predict the
energies of new (similar) structures not included in the reference set, for instance structures
visited in the trajectory of a MD simulation.

The size of the NN is determined empirically for a given system by constructing fits
with different numbers of hidden layers and nodes per layer,and choosing the structure
which provides the most accurate fit. Care has to be taken in that large networks may
contain too many parameters. The resulting high flexibilitymay yield overfitting, which
has to be checked carefully as will be discussed in Sec. 3.4. As a general rule, if two NN
architectures provide the same accuracy the one with less parameters should be preferred.
It has also been suggested to adapt the number of nodes duringthe fit, e.g. by employing
genetic algorithms46, but due to the increased computational costs of this approach so far
it did not find regular use in the context of potential-energysurfaces.
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Figure 2. Frequently used activation functions: hyperbolic tangent (a), and sigmoid function (b). Activation
functions saturate for very small and very large arguments,but have a non-linear region in between, which ensures
that the neural network is able to adapt to general non-linear functions.

The topology of a feed-forward neural network can be described by a set of numbers
defining the number of nodes in the input layer, each hidden layer and the output layer47.
The simple example network in Fig. 1 in this scheme is a 2-3-4-1 NN. Additional letters
can be provided describing the type of activation functionsused in the individual layers,
e.g. t for a hyperbolic tangent,s for a sigmoid function, andl for a linear function (cf.
Section 2.2).

2.2 Activation Functions

Neural networks obtain the ability to fit general, i.e., non-linear, functions by the incor-
poration of so-called activation functions. Activation functions are also called “transfer
functions” or “basis functions” of the network. In general they map a variablex to a range
between -1 and 1 or between 0 and 1. This is a consequence of their general property
that they saturate to these numbers for very small and very large values ofx and have a
non-linear region in between. Frequently used examples foractivation functions are the
sigmoid function

f(x) =
1

1 + e−x
, (5)

the Gaussian function

f(x) = e−αx2

, (6)

or the hyperbolic tangent

f(x) = tanh(x) . (7)

The sigmoid function and the hyperbolic tangent activationfunctions are plotted in Fig. 2.
For the output node sometimes also a linear function is used to avoid any constraint on the
possible range of output values,

f(x) = x . (8)

Alternatively, if e.g. a hyperbolic tangent is applied, therange of energy values can be
rescaled before the fitting to the interval between -1 and 1 that corresponds to the range of
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Figure 3. Illustration of the flexibility of the hyperbolic tangent activation function. The functional form of a
neural network (Eq. 4) contains building blocksf(x) = d + c · tanh (a · x+ b) which can adapt to general
functions by varying the parametersa, b, c, andd. For comparison also the unmodified hyperbolic tangent is
plotted as black line.

values of the hyperbolic tangent, and the values at the output node are scaled back to the
original range. The activation functions have to be continuous and differentiable, which is
needed for the application of standard optimization algorithms, but also for the calculation
of the derivatives of the output with respect to the atomic coordinates, i.e., for the atomic
forces.

We will illustrate the capability of the non-linear activation functions to adapt to arbi-
trary functions using the example of the potential of the harmonic oscillator

V (x) = x2 . (9)

For instance for the hyperbolic tangent activation function the nested form of the neural
network energy expression (e.g. Eq. 4) can be decomposed into a set of functional units of
the form

f(x) = d+ c · tanh (a · x+ b) (10)

with four “parameters”a, b, c, andd. By optimizing these parameters, the shape of the
hyperbolic tangent can be modified as illustrated in Fig. 3 This flexibility can be used to
obtain a rather good approximation to the parabolic potential in a given range by just 2
activation functions, as shown in Fig. 4. Finally, we note that it has also been suggested
to employ periodic activation functions, which can facilitate fitting periodic functions like
torsional potentials48.

253



-5 -4 -3 -2 -1 0 1 2 3 4 5
x

-5

0

5

10

15

20

25
f(

x)

-5 -4 -3 -2 -1 0 1 2 3 4 5
x

-5

0

5

10

15

20

25

f(
x)

x
2

x
2

g
1 g

2

(a) (b) g
1
+g

2

Figure 4. Example for the fit of a parabola in the range−3 < x < 3 by two hyperbolic tangent functionsg1 and
g2. In (a) the two functions are plotted separately, in (b) the sum is compared with the parabola.

2.3 Symmetry Functions

For several reasons it is advantageous not to use directly the Cartesian coordinates of the
atoms as input for the neural network but to perform a transformation to coordinates which
are physically more appropriate. These new sets of coordinates are often called “symmetry
functions”49. This transformation is necessary because the numerical values of the Carte-
sian coordinates of the atoms do not carry the structural information defining the energy of
the system in a directly usable form, but the relevant information is included in the relative
positions of the atoms with respect to each other. A mere translation or rotation of the com-
plete system must not change its energy, but it clearly affects the numerical values of the
Cartesian coordinates. If these coordinates were used as input for the NN, the NN output
would change with translation or rotation. A very basic coordinate transformation to avoid
this problem is to switch from Cartesian to internal coordinates, i.e., defining the system
in terms of bond lengths, bond angles and torsion angles. We note here that in contrast
to classical force fields neural networks in general do not require the the specification of
bonds (“bonded” atom pairs) and angles, so these terms couldalso be called two-, three-
and four-body terms.

The use of internal coordinates provides a reasonable description of small molecu-
lar systems without any significant structural change like the breaking of bonds. Larger
molecules, however, will contain many atoms of the same chemical species, and if two
atoms of the same element are simply exchanged, the total energy of the system must not
change. This symmetry information is not included in a set ofinternal coordinates, because
the order in which the internal coordinates are fed into the NN is not arbitrary. Capturing
this additional symmetry for general systems is a difficult task. For low-dimensional sys-
tems a sequence of symmetrization and antisymmetrization steps has been suggested50, 51.
To illustrate the procedure, imagine a water molecule with the bond lengthsrOH,1 and
rOH,2. A proper set of input coordinates for the NN has to take into account that both
hydrogen atoms are indistinguishable, i.e., their numbering is arbitrary and exchanging the
interatomic distancesrOH,1 andrOH,2 must not change the output of the NN. By squaring
the sum and the difference ofrOH,1 andrOH,2 we obtain two functionsG1 andG2, which
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are independent of the numbering of the hydrogen atoms, i.e., exchanging both atoms does
not change the values ofG1 andG2.

G1 = (rOH,1 + rOH,2)
2 (11)

G2 = (rOH,1 − rOH,2)
2 (12)

In order to completely define this system with three degrees of freedom, a third coordinate
for the distance between both hydrogen atoms or the angle H1-O-H2 can be introduced,
which does not need to be symmetrized.

For an extension of this symmetrization/antisymmetrization scheme to high-
dimensional systems soon numerical problems arise from theemergence of very large and
very small numbers for theGi as well as from the increasingly complicated terms. This
can be seen from the example methane, for which we give here the symmetrized terms for
the four CH distances.

G1 =
[
(rCH,1 + rCH,2)

2 + (rCH,3 + rCH,4)
2
]2

(13)

G2 =
[
(rCH,1 + rCH,2)

2 − (rCH,3 + rCH,4)
2
]2

(14)

G3 =
[
(rCH,1 − rCH,2)

2 + (rCH,3 − rCH,4)
2
]2

(15)

G4 =
[
(rCH,1 − rCH,2)

2 − (rCH,3 − rCH,4)
2
]2

(16)

Many more symmetrized terms for the H-H distances and/or HCHangles are required to
describe all degrees of freedom. It is immediately obvious that this scheme cannot be
extended to larger molecules containing many atoms of the same species. Nevertheless,
for low-dimensional potential-energy surfaces this scheme is very useful and can also be
applied to molecule-surface interactions. In the latter case further compilations are related
to the lateral periodicity of crystalline surfaces. For theconstruction of symmetry functions
in this case the bond lengths have to be replaces by Fourier terms reflecting the surface
symmetry51.

In general, the choice of symmetry functions is system-dependent, but they have to
fulfill several requirements. They need to be continuous in value and slope, they should be
fast to evaluate, and there should be a one-to-one correspondence between a given structure
and its set of symmetry function values. If two structures with different energies yield the
same set of symmetry function values, fitting the NN is not possible, because the NN would
associate two different energies to the same structure. It should also be noted that there is
no need to ever invert the transformation of the coordinates. The mapping is always from
atomic configurations to symmetry functions, for the construction of the training set as
well as for the energy prediction of a new structure.

Typically the range of values of each symmetry function is scaled. This has numerical
reasons, because it is advantageous to avoid symmetry function values in the saturation
region of the activation functions. In this case the function values of the activation func-
tions would be about the same for all symmetry function values. Further, depending on the
definition, symmetry functions may have a very large or very small range of values, in par-
ticular if symmetrization/antisymmetrization is applied. Also in this case it is advantageous
to rescale the range of values to an interval between 0 and 1.

In summary, it is usually not possible to use the Cartesian coordinates of the atoms to
construct a NN PES. Instead, in a first step, the Cartesian coordinates are mapped onto a
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set of symmetry functions{Gi}. In the next step the symmetry function values are used as
input for the NN, which then yields the energy of a structure.

2.4 Atomic Forces

The analytic form of the neural network total energy expression in Eq. 4 allows to cal-
culate analytic derivatives, which are essential to obtainaccurate forces for applications
in MD simulations. If an intermediate mapping of the atomic coordinates onto symmetry
functions{Gi} is used, the force with respect to an atomic coordinateα is given by

Fα = −∂E
∂α

= −
∑

i

∂E

∂Gi

∂Gi

∂α
(17)

The derivative∂E
∂Gi

is given by the NN topology, the derivative∂Gi

∂α is defined by the choice
of symmetry functions. Also other quantities containing analytic derivatives like the stress
tensor are directly accessible.

3 Optimization of the Weight Parameters

3.1 The Fitting Procedure

In order to predict the potential-energy of an atomic configuration, the weight parameters
of the NN have to be known. Typically, these parameters are optimized iteratively using a
set of known function values. This optimization process is called “training” or “learning”
of the NN.

A large variety of algorithms can be used to optimize the weight parameters52,
which can be classified as gradient-based algorithms and random methods. Examples
for gradient-based methods are the steepest-descent algorithm, which is called “back-
propagation” in the NN community, conjugate gradients53–55, the global extended Kalman
filter56, and many more. Gradient-based learning schemes are likelyto get trapped in local
minima at some point, but they are fast. Examples for random methods are the weight opti-
mization employing genetic algorithms52 or a swarm search52. Random methods can easily
jump from one local minimum to another, but they are computationally very demanding.
A method combining ideas from gradient-based and random methods is simulated anneal-
ing57, 35, 52, which is essentially a damped dynamics in the space of the weight parameters.

For complex potential-energy surfaces and large data sets,which can easily reach the
order of 10000 reference points, typical NNs contain between one and three hidden lay-
ers and between 25 and 40 nodes per layer. Consequently, roughly 1000 to 5000 weight
parameters are used. The optimization of such a large numberof weight parameters is a
formidable task and there is no hope in practical fits to find the global minimum. Still,
many local minima may represent the training set sufficiently well and can provide a re-
liable NN potential, and often many fits of a comparable quality are found with different
sets of weight parameters. The resulting NNs, which yield about the same fit quality but
cannot be transferred into each other by a simple permutation of the NN nodes, are called
degenerate NNs58.
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The optimization of the weight parameters corresponds to the minimization of a cost
functionΓ, which is defined as the sum of the squared errors of the energiesEi,NN pre-
dicted by the NN and the “true” reference energiesEi,Ref from electronic structure calcu-
lations.

Γ =

N∑

i=1

1

N
(Ei,NN − Ei,Ref)

2 (18)

It is also possible to modify this cost function by assigningdifferent fitting weights (not to
be confused with the weight parameters) to enforce a more accurate fit for certain parts of
the PES, e.g. along the reaction path49.

The optimization process is started by initializing the weight parameters as random
numbers, typically in the range[−1, 1]. In each iteration, which is also called “epoch” in
the NN community, each training point is presented once to the NN. Usually the training
points are presented in random order, to reduce the probability of ending up in a close local
minimum.

The measure for the quality of a fit is the root mean squared error of the training points

RMSE =

√

1

N

∑

i

(Ei,NN − Ei,Ref)
2 (19)

which is calculated in every epoch. Sometimes also the mean absolute deviation

MAD =
1

N

∑

i

|Ei,NN − Ei,Ref | (20)

is monitored. The course of the RMSE in a typical fit will be discussed in Section 3.4.
Because of their efficiency compared to random fitting methods, gradient-based algo-

rithms play a dominant role. For their application the partial derivatives of the NN output

∂Γ

∂akl
ij

=
∑

µ

1

µ

∂Eµ,NN

∂akl
ij

(21)

and

∂Γ

∂bji
=
∑

µ

1

µ

∂Eµ,NN

∂bji
(22)

with respect to all weight parameters have to be calculated for each training point. There
are two types of learning. In the so-called “offline” learning the weights are updated once
per epoch, e.g. if a conjugate gradient is applied. In “online” learning the weights are
updated after the presentation of each individual trainingpoint. In this case the summation
in Eqns. 21 and 22 are dropped and the gradients for each single point are used separately.
An example for an algorithm for online learning is the globalextended Kalman filter. In
the following Sections two frequently used optimization algorithms, back-propagation and
the global extended Kalman filter will be discussed.
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3.2 Back-Propagation

The most frequently employed algorithm for the optimization of the weight parameters is
“back-propagation”. Essentially, this is identical to a standard steepest-descent optimiza-
tion. In the back-propagation optimization the weight parameters are updated according
to

akl
ij,new = akl

ij,old − κ
∂Γ

∂akl
ij

(23)

κ is a positive damping factor called “learning rate”. The term “back-propagation” has its
origin in the way the derivatives with respect to the weightsare calculated. The output of a
feed-forward NN is calculated in a so-called “forward-pass” through the NN. First, using
the values at the input nodes and of the connecting weights the values at the nodes in the
first hidden layer are determined. They are then passed forward to the second hidden layer,
to evaluate the numerical values at the nodes in this layer and so on. Consequently, the total
output of the NN is calculated by propagating the information forward through the NN. On
the other hand, for the calculation of the derivatives of theNN output value with respect to
the connecting weights the information flow is in the opposite direction, “backwards”.

As a steepest-descent method back-propagation is not very efficient and likely to get
trapped in a local minimum. It may also show an oscillating behavior or diverge ifκ is
chosen too large, and the optimum value ofκ is system-dependent.

3.3 The Kalman Filter

An optimization scheme which has become very popular in the context of neural networks
is the extended Kalman filter. The global extended Kalman filter is a very sophisticated
algorithm originating from estimation and control theory59. It is used for online learning,
i.e., the weight parameters are optimized after the presentation of each individual training
point. In the Kalman filter the update is directed by a weighted history of previous updates
of the weight parameters. The derivation of the equations used in the weight update is
beyond the scope of the present lecture, and here we will justpresent the result for the
Kalman filter recursion relations for the updaten:

K(n) = λ−1P(n− 1)J(n)
[
I + λ−1JT (n)P(n− 1)J(n)

]−1
(24)

P(n) = λ−1P(n− 1)− λ−1K(n)JT (n)P(n − 1) (25)

w(n) = w(n− 1) + K(n) [ERef(n)−ENN(w(n− 1)] (26)

K is the Kalman gain matrix, andJ is the Jacobi matrix with the elements

Ji =
∂E

∂wi
(27)

wherew is either a connection or a bias weight parameter.P is the covariance matrix, and
I is the identity matrix. For each training point first the Kalman gain matrix is updated
using the covariance matrix of the previous epoch and the current weight derivatives in
the Jacobi matrix. Then the new vector of weight parametersw is determined usingK.
Finally, the covariance matrix is updated according to Eq. 25. A “forgetting schedule” is
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Figure 5. Illustration of “overfitting”. In (a) the trainingpoints (diamonds) are well represented and smoothly
connected by the fit (line). Also in (b) the fit is very accuratefor the training points, but many local extrema are
present in between the training points. These extrema are not based on information in the training set but are
artefacts of the fit arising from too much flexibility. This “overfitting” can be detected for example by using a test
set of point located in between the training points. If the error of the test points is significantly higher than the
error of the training points, overfitting is present.

introduced viaλ to ensure that only the recent history of updates in taken into account for
the update of pointn,

λ(n) = λ0λ(n− 1) + 1− λ0 . (28)

The constantλ0 is usually chosen between 0.99000 and 0.99900.
Adapting the weight parameters after each training point iscomputationally rather

costly. In its adaptive form the extended Kalman filter thus is not used to update the weight
parameters after each individual training point, but an error thresholdα is defined in terms
of the actual RMSE of the full training set. Only if the error of a training point is larger
than the product ofα and the current RMSE, the point will be used to update the weights.
This can reduce the computational effort significantly, since only points are used in the fit,
which are not well represented.

For the construction of NN potentials, the extended Kalman filter often shows a perfor-
mance which is superior to other optimization algorithms56, 58, because is less likely to get
trapped in shallow local minima.

3.4 Overfitting

Employing a very flexible functional form immediately risesthe question, how overfitting
can be detected and controlled. If a set of training points isfitted very accurately while
other points not included in the training set are poorly described, this is called “overfitting”.
In other words, overfitting is an improvement of the fit in one region of the configuration
space at the cost of a poor quality in another region. This is illustrated in Fig. 5. In (a)
the training points are well represented and connected by a smooth curve which seems to
be a reasonable fit. The RMSE of the training points will be very low in this case. In (b),
however, the RMSE will be very low as well, possibly lower than in (a), because also here
the curve is very close to all the training points indicated as diamonds. Nevertheless, in
(b) the curve shows many local extrema, which are apparentlynot justified by the training
data. This is a typical example for overfitting.
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Figure 6. Typical course of the errors of the training set andthe test set in the iterative optimization of the NN
weight parameters.

Most applications of neural networks do not allow for a visual inspection of the fit
quality due to the high dimensionality. A commonly employedmethod in these cases is
the so-called “early stopping” method. In this method the available points are split into a
training set which is used to update the weight parameters, and a test set, which is not used
in the optimization procedure. A comparison of the RMSEs of the training and the test set
then allows for an estimate of the generalization properties of the NN fit. The typical course
of the training error and the test error in the iterative fit isshown in Fig. 6. The training error
decreases steadily since the weight parameters are optimized to reproduce the training set
as accurately as possible. Initially, also the test error drops quickly, because the description
of the overall shape of the potential-energy surface is improving in each epoch. Then the
test error reaches an local minimum and starts to increase slowly. This increase indicates
that now the accuracy of the training points is improved on the expense of the regions in
configuration space in between the training points. This is detected by the RMSE of the test
points, which are located in between the training points. Inthe “early stopping” method,
the set of weights, which minimizes the error of the test set is considered to represent the
best fit.

4 Construction of the Training Set

The training set for the optimization of the weight parameters can be obtained from any
electronic structure method, because the only informationrequired for each atomic con-
figuration in the training set is its total energy. Information on energy gradients can in
principle also be used in the construction of the NN potentials58, but in practice this is
rarely done. A significant constraint on the choice of the electronic structure method for
large systems is the large number of training points that is needed to set up a neural net-
work potential. This limits the application of computationally demanding but very accurate
quantum chemical methods to small molecules, and the most frequently used electronic
structure method for large systems is density functional theory.
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Having chosen an electronic structure method for the calculation of the training set,
the next problem is the choice of the atomic configurations. For small systems with few
degrees of freedom, e.g. small molecules, a dense grid of points can be obtained by system-
atically varying all degrees of freedom. However, the exponential growth of the number of
configurations prevents a systematic mapping for larger systems of typically more than six
degrees of freedom. This is because if each degree of freedomis sampled byN points, for
d degrees of freedom the number reference calculations isNd. In practical applications
like MD simulations often only a subspace of the full configuration space is accessible for
the system. This relevant subspace can be mapped by a systematic approach in the fol-
lowing way: First, some random structures are calculated and a preliminary NN potential
is constructed using these points. This potential will not be reliable and may contain un-
physical stationary points. Nevertheless it can be used to perform short MD simulations
or structural relaxations to propagate the system to new configurations. The configura-
tions suggested in this way by the NN can then be recalculatedusing electronic structure
methods, and the resulting energies can be compared with theNN predictions. If the agree-
ment is not satisfactory, the new structures can be includedin the training set and the fit
can be refined. In contrast to conventional empirical potentials with a given analytic form
and a few adjustable parameters no change in the functional form of the NN is required,
and improving the NN is straightforward without any manual work. The new fits again can
be used to suggest new structures and so forth, until all wrong features of the NN PES have
been removed and the training data set is reproduced with thedesired accuracy. Typically,
an accuracy of a few meV per atom with respect to the referenceenergies can be obtained
in this way.

It is also possible, to identify regions of the configurationspace, which are relevant
but not well represented in the training set, without carrying out costly electronic struc-
ture calculations. For this purpose several NN fits are constructed employing different NN
topologies. Because the NN topologies are different, so is the functional form of the fits.
Now two fits with approximately the same RMSEs for the training and the test set are cho-
sen. Accordingly, it is not possible to judge which of the twofits is a better representation
of the true PES. Then a large number of structures is generated, e.g., random structures,
optimized structures or snapshots from MD simulations. Theenergy for all structures is
predicted by both fits. If a structure is close to a point already included in the training set,
both NNs are likely to predict a similar energy, otherwise the RMSEs of the NNs would
be clearly different. But if the predicted energies are verydifferent, then the NNs have too
much flexibility at this point in the configuration space and an electronic structure calcula-
tion should be carried out for this point. This way it is possible to avoid a large number of
unnecessary electronic structure calculations.

5 Applications of Neural Network Potential-Energy Surfaces

5.1 Neural Network Potentials for Molecular Systems

To date, the most frequent application of NN potentials is the representation of rather low-
dimensional molecular PESs. Many different sets of coordinates have been developed to
transform the atomic positions to suitable inputs for the NN. For simple diatomic molecules
the potential depends only on the interatomic distance and one input coordinate is sufficient
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for the PES construction. An example is a study of the photodissociation of the HCl+ ion
using NN PESs for the ground and excited state60. Also transition probabilities in the OH
radical have been studied61. However, for larger molecules the coordinates can become
significantly more complicated. Ideally, the coordinate transformations takes the molecular
symmetry directly into account. The exact form of the applied set of symmetry functions
is highly system-specific. In a study of the vibrational levels of the H+

3 ion a symmetrical
formulation has been suggested taking into account the equivalence of all three nuclei62, 63.
NNs have also been used to describe the interaction between two HF molecules as well as
between a HF and a HCl molecule64.

NN potentials can be very useful in situations when the polarizability of molecules
complicates the construction of classical potentials. This has been shown for the exam-
ple of the Al3+ ion in water by combining conventional two-body terms with three-body
interactions, which are represented by a flexible NN50. The equivalence of the two wa-
ter molecules interacting with the Al3+ has been included by symmetrized coordinates.
NN potentials have also been constructed for the water dimer65, and later applied to liq-
uid water in combination with empirical parameters of the TIP4P water model66. A very
general method for molecules has been suggested based on a high-dimensional model rep-
resentation employing a many-body expansion of the potential67–70. This approach is very
systematic and promises a very high accuracy, but due to its complexity and computa-
tional demand, it is still limited to a rather small number ofdegrees of freedom in practical
applications.

5.2 Neural Network Potentials for Molecule-Surface Interactions

Neural network potentials have also been applied to the description of molecule-surface
interactions47, 49, 71. In contrast to molecular systems the number of degrees of freedom is
typically much larger, because realistic surface models for instance in form of periodically
repeated slabs contain a significant number of atoms. Two approaches have been followed
in order to reduce the resulting complexity: either only a few degrees of freedom of selected
surface atoms are included47, or a frozen surface approximation is applied, i.e., all degrees
of freedom of the surface atoms are eliminated by freezing their positions. For diatomic
molecules this approach reduces the problem to a six-dimensional potential-energy surface,
which can then be mapped systematically on a grid of a few thousand points by electronic
structure calculations. The frozen surface approximationis a drastic approximation and
its validity has to be checked carefully for each individualsystem. It has been found
that physical quantities, which are less sensitive to a motion of the surface atoms, can be
calculated to good accuracy51, 72–74, 49.

Applications to molecule-surface interactions require a special type of symmetry func-
tions71, 51, which have to include the periodicity of the surface as wellas all symmetry
elements of the surface unit cell. A transformation of the molecular coordinates to these
symmetry functions is then equivalent to folding the configuration space into the symme-
try unique wedge of the surface. An example of the symmetry unique wedge of the (111)
surface of an fcc metal is shown in Fig. 7. This significantly reduces the computational
costs for the calculation of the reference electronic structure calculations, because only
configurations inside the symmetry unique wedge have to be calculated. Whenever the
molecule leaves this wedge in the course of the trajectory, its coordinates are folded back

262



Figure 7. Symmetry unique wedge of the (111) surface of an fccmetal spanned by the top, fcc and hcp sites. The
mirror planes perpendicular to the surface are indicated asdotted lines, the triangles represent threefold rotational
axes.

to an energetically equivalent position in the symmetry unique wedge. In MD applications
the NN PES needs to be continuous in value and slope. A specialrequirement for the de-
scription of molecule-surface interactions is that the symmetry functions have continuous
derivatives at the boundaries of the symmetry unique wedge to avoid discontinuities of the
atomic forces. A detailed discussion of a scheme for the systematic construction of suitable
symmetry functions can be found elsewhere51.

5.3 High-Dimensional NN Potentials for Condensed Systems

To date NN potentials have been mainly applied to PESs of gas phase molecules with a
rather low number of up to about 12 degrees of freedom. For general chemistry in con-
densed systems, e.g. in solution, in the solid state or at surfaces, an extension of the NN
methodology to high-dimensional PESs explicitly depending on hundreds of degrees of
freedom is required. This cannot be achieved in a brute-force approach by simply increas-
ing the number of input nodes, because a systematic mapping of the associated config-
uration space is too costly. Further, the efficiency of the NNevaluation decreases with
increasing number of input nodes. Finally, the internal structure of the NN constitutes a
major obstacle in that the input nodes of the NN are “ordered”. Each node in the input
layer is connected to all nodes in the first hidden layer, but the numerical values of the
connecting weights are all different. For larger systems containing many atoms there is
necessarily an invariance of the total energy with respect to the exchange of atoms of the
same element. Any high-dimensional NN approach must take this invariance into account.
Recently, several extensions of the NN methodology have been suggested to address sys-
tems with a large number of degrees of freedom.

An extension of NN PESs to in principle arbitrary dimensionality has been proposed
by employing the NN to fit the many-body term of an empirical potential75. Specifically,
the functional form of the Tersoff potential has been used15:

VTersoff =
1

2

∑

i

∑

j 6=i

fc(rij) [VR(rij − bijVA(rij))] (29)
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Figure 8. Schematic structure of a high-dimensional neuralnetwork potential for a condensed systems containing
N atoms79. Each atom contributes the energyEi to the total energyE. The local geometric environment of
each atom with the Cartesian coordinates

˘

Rα
i

¯

is described by a set of symmetry functions
˘

Gi
µ

¯

. The set
of symmetry functions of each atom thus depends on the positions of all other atoms up to a cutoff radius as
described by the dotted arrows. The symmetry functions are then used as input values for atomic neural networks
(NN), which yield theEi. The NN can be applied to any system size, because all atomic NNs have are identical,
and for each additional atom one line has to be added to this scheme.

VR andVA are repulsive and attractive two-body terms. The attractive term is scaled by
a many-body termbij , which is now replaced by a NN. The method has been applied to
a binary system containing C and H75 and to elemental silicon76, 77. Its main drawbacks
are the constrained functional form due to the combination with a rather simple empirical
potential and the limitation to binary systems. Still, applications to large bulk structures and
clusters with an explicit energy dependence on all atomic degrees of freedom have become
possible showing promising results. Recently, this approach has been reformulated in terms
of a general many-body expansion including two-, three- andfour-body interactions78.

Another approach for the construction of high-dimensionalNN PESs avoiding any
incorporation of empirical functional forms is based on a decomposition of the total energy
E of the system into atomic energy contributionsEi

79. This ansatz, which is also used in
many empirical potentials, is based on the assumption that the energy contribution of each
atomi in the system is determined by its local chemical environment up to a certain cutoff
radiusRc. The total energy of the system is then constructed as a sum ofthe energy
contributions of all atoms in the system

E =
∑

i

Ei (30)

The atomic energy contributions are calculated by atomic neural networks. The procedure
is shown schematically in Fig. 8. Each atom in the system corresponds to one line in this
scheme. First, the Cartesian coordinatesRi = {Xi, Yi, Zi} of atom i are transformed
to a set of symmetry functions{Gi}, which describe the local environment of this atom.
The{Gi} thus can be regarded as a kind of structural fingerprint, which is then used as
input for an atomic NN. Typically 40-50 symmetry functions are used for each atom. This
corresponds to an effective reduction of the dimensionality of the problem, because for
each atom only neighbors inside the cutoff sphere determinethe symmetry function values
as indicated by the dotted arrows in Fig. 8. The cutoff radiusRc is typically chosen in the
order of 6Å, and the cutoff functionfc is defined as

fc (Rij) =

{

0.5 ·
[

cos
(

πRij

Rc

)

+ 1
]

for Rij ≤ Rc

0 for Rij > Rc,
(31)
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with Rij being the distance between atomi and its neighborj. At the cutoff radiusfc

has zero value and slope. For the description of the local atomic environments many-body
terms are used that depend explicitly on the positions of allatoms in the cutoff sphere. A
“radial” symmetry function

Gi =
∑

j

e−η1(Rij−Rs)
2 · fc (Rij) (32)

and an “angular” symmetry function for the angleθ =
Rij·Rik

RijRik
centered at atomi, with

Rij = Ri −Rj,

Gi = 21−ζ
∑

θ

(1 + γ cos θ)
ζ · e−η2(R2

ij+R2
jk+R2

jk)

·fc (Rij) · fc (Rik) · fc (Rjk) (33)

have been employed. These functions depend on parametersη1, η2, γ, Rs andζ, which
define the region of configuration space described by the symmetry functions, and which
are not optimized. A set of many different symmetry functions of these types is typically
used differing in the parameter values. The radial functions can be interpreted as effective
coordination numbers at various distances, the angular functions as angle distributions.
Further details on the symmetry functions can be found elsewhere79, 80.

The outputs of the atomic NNs are the atomic energiesEi, which are finally added to
yield the total energy of the system. This scheme has severaladvantages: first, the topol-
ogy as well as the weight parameters of all atomic NNs are identical, thus exchanging two
atoms in the system does not change the total energy. Secondly, once the weight param-
eters of the atomic NN have been determined, the NN PES can be applied to systems of
varying size, because for each additional atom simply an atomic NN is added in the scheme
in Fig. 8. Finally, because all symmetry functions are high-dimensional many-body func-
tions, they are very well suited to describe systems with strong many-body interactions
like metals. A drawback of this approach is related to the finite range of the atomic in-
teractions, which is defined by the cutoff radius. If long-range interactions are important,
which is typically the case for systems with charge transfer, the accuracy of the approach
will be strongly reduced unless these interactions are explicitly taken into account. Thus,
up to now only a few applications for elemental solids exist81, 80, 82.

6 Discussion

In general, neural networks provide a very general and unbiased way to construct accu-
rate potential-energy surfaces. However, there are also some drawbacks that need to be
discussed. First of all, NNs provide analytic energy expressions which do not allow for a
physical interpretation of individual terms. Internally,NNs remain a “black box”, and the
reliability of the PES has to be checked carefully.

A serious problem of NN potentials is related to the very flexible functional form,
which is the reason for the accurate representation of the training points, but isa priori
non-physical. Consequently, neural networks are very accurate for the energy prediction
of structures similar to the structures included in the training set, but they can spectacularly
fail for very different structures. An illustrative example is given in Fig. 9. It shows the
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Figure 9. Demonstration of the poor extrapolation capabilities of neural networks (NN) for the binding curve of
a dimer. In the range well represented by training points (solid diamonds) the NN potential (straight line) is very
accurate, but because the NN does not include any assumptions on the functional form of the potential-energy
surface, the highly repulsive part of the potential at shortbond lengths is not described correctly. Instead the
superposition of the tails of the activation functions giverise to an unphysical and unpredictable shape of the
curve.

NN fit of a typical pair-potential of a dimer using a set of training points indicated as
diamonds. In the range of bond lengths well-represented by the training points the NN
energy curve is close to the reference data. For very short bonds however, the potential
should be highly repulsive. Instead an obviously unphysical curve shape is obtained arising
from a superposition of the tails of the activation functions. Because no training points are
present in this range, this problem cannot be detected by an inspection of the RMSEs of
the training set and the test set, which is typically distributed in the same range of values
as the training set. However, it is straightforward to identify these regions by comparing
for each input node of the NN the minimum and maximum values, which are present in
the training set, with the symmetry functions values of a newatomic configuration. If the
energy is requested for a structure whose symmetry functionvalues are outside this range,
the energy prediction should be taken with great care. Neural networks are designed for
accurate interpolation, but they are not reliable in case ofextrapolation. In molecular
dynamics applications one has to make sure that the NN potential is “complete”, i.e., there
must not be any energetically accessible parts of the configuration space which are not well
represented in the training set.

An advantage of NN potentials is that in contrast to classical force fields3–7 they do not
require a classification of atoms in terms of functional groups or hybridization state, and
no bonds need to be specified. Neural network potentials are intrinsically “reactive” and in
the course of an MD simulation based on a NN potential bonds can be broken or formed.
Like in the underlying electronic structure calculations,just the atomic positions have to
be provided in form of a suitable set of coordinates.

The use of system-specific symmetry functions allows to include information on the
molecular symmetry in the NN, but often the construction of suitable symmetry functions is
not straightforward. A combination of symmetry functions with a structural partitioning of
the system into local environments as described in Section 5.3 now enables an application
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to high-dimensional systems, but the exponential growth inthe number of possible atomic
configurations with the number of elements makes it unlikelyfor the near future that NN
potentials will become a serious competitor for classical force fields e.g. in the field of
biochemistry, unless their major advantages of “reactivity” is sacrificed by reducing the
NN to fitting given parts of force fields. On the other hand, chemical problems involving
a large number of atoms but a moderate number of elements, like in materials science,
solid state chemistry, and some fields of surface science might strongly benefit from NN
potentials in the future.

7 Concluding Remarks

In summary, the basic methodology and some technical aspects of the application of artifi-
cial neural networks to the construction of potential-energy surfaces for chemical reactions
have been reviewed. Neural networks represent flexible functions, which are able to repro-
duce a given set of electronic structure data with high accuracy and to provide interpolated
energies for similar structures. The resulting NN PES is computationally many orders of
magnitude faster to evaluate than efficient electronic structure methods like density func-
tional theory. The NN methodology itself is not bound to any particular reference total
energy method and can also be applied in combination with wave-function based quan-
tum chemical methods. The availability of analytic energy gradients enables a straightfor-
ward calculation of atomic forces for molecular dynamics simulations. The high flexibility,
which is the reason for the numerical accuracy, is also the major drawback of NNs, namely
the non-physical functional form. A large number of reference points is required to train
a reliable NN PES and an extrapolation of the energy of structures very different from the
structures included in the training set is not possible. Themain future challenges are an ex-
tension of the applicability of NN potentials to high-dimensional multicomponent systems
and the development of more systematic strategies for the construction and transferability
checks of these potentials.
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A widely used multiscale approach for the calculation of temperature-dependent magnetic prop-
erties of materials is presented. The approach is based on density functional theory, which, start-
ing only from fundamental physical constants, provides theground-state magnetic structure and
a reasonable parametrization of the excited-state energies of magnetic systems, usually in terms
of the Heisenberg model. Aided by statistical mechanical methods for the solution of the latter,
the approach is at the end able to predict to within 10-20% high-temperature, material-specific
magnetic properties such as the Curie temperature or the correlation function without the need
for any fitting to experimental results.

1 Introduction

The physics of magnetism in materials spans many length scales. Starting from the for-
mation of atomic moments by electron spins on theÅngström scale, it extends through the
inter-atomic exchange interaction on the sub-nanometer scale to the formation of magnetic
domains and hysteresis phenomena on the mesoscopic and macroscopic scale. In addition,
the physics of magnetism spans many energy scales. The moments formation energy can
be of the order of a few eV, the inter-atomic exchange of the order of 10-100 meV, ele-
mentary spin-wave excitations are of the order of 1-10 meV, while the magnetocrystalline
anisotropy energy can be as low as aµeV. An energy-frequency correspondence implies
the importance of as many time scales: from characteristic times of femto-seconds, re-
lated to the inter-atomic electron hopping and the atomic moments, through pico-seconds,
related to the magnonic excitations, to seconds, hours or years related to the stability of
a macroscopic magnetic configuration, e.g. defining a bit of information on a hard disc
drive.

Clearly, a unified description of all these scales on the samefooting is impossible.
While many-body quantum mechanical calculations are necessary for the understanding
of the small length scale phenomena, simple, possibly classical models have to suffice for
the large scale. In this situation, multiscale modelling can provide a description on all
scales, without adjusting parameters to experiment, but rather using results from one scale
as input parameters to the model of the next scale. The scope of this manuscript is the
presentation of such an approach, called here the Multiscale Programme, which is widely
applied in present day calculations of magnetic material properties.

The manuscript is meant to serve as an introduction to the subject, not as a review. The
list of references is definitely incomplete, reflecting onlysome suggested further reading.
Finally, it should be noted that there are other multiscale concepts in magnetism, mainly in
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the direction of micromagnetics and time evolution of the magnetization, as mentioned in
Sec. 7.3. This type of multiscale modelling is an important field, however its description is
beyond the scope of the present manuscript.

2 Outline of the Multiscale Programme

The outline of the Multiscale Programme can be summarized bythe following steps, which
will be explained in more detail in the next sections:

1. Calculation of the exchange-correlation energy of the electron gas,Exc[ρ], as a func-
tional of the electron densityρ(~r) by quantum Monte Carlo calculations and/or many-
body theory.

2. Proper (approximate) parametrization ofExc[ρ], usually in terms ofρ and∇ρ.

3. Use ofExc[ρ] in density functional calculations for the unconstrained ground-state
properties of a magnetic material (in particular, ground state atomic magnetic mo-
ments ~Mn and total energyE0

tot).

4. Use ofExc[ρ] in constraineddensity functional calculations for the ground-state prop-
erties of a magnetic material under the influence an external, position-dependent mag-
netic field that forces a rotation of the magnetic moments{ ~Mn}, resulting in a total
energyEconstr

tot ({ ~Mn}).

5. The adiabatic hypothesis: assumption that the time-scale of low-lying magnetic
excitations is much longer than the one of inter-site electron hopping, so that
Econstr

tot ({ ~Mn}) is a good approximation to the total energy of the excited state.

6. Correspondence to the Heisenberg hamiltonian under the assumption that
∆E({ ~Mn}) := Econstr

tot ({ ~Mn})− E0
tot ≃ − 1

2

∑
Jnn′ ~Mn · ~Mn′ + const.

7. Solution of the Heisenberg hamiltonianH = − 1
2

∑

nn′ Jnn′ ~Mn · ~Mn′ , e.g. for the
Curie temperature, via a Monte Carlo method.

Steps 3 and 6 are connecting different models to each other.

3 Principles of Density Functional Theory

The most widely used theory for quantitative predictions with no adjustable parameters in
condensed matter physics is density functional theory (DFT). “No adjustable parameters”
means that, in principle, only fundamental constants are taken from experiment: the elec-
tron charge, Planck’s constant, and the speed of light in vacuum. Given these (and the types
of atoms that are present in the material of interest), DFT allows to calculate ground-state
properties of materials, such as the total energy, ground-state lattice structure, charge den-
sity, magnetization, etc. Naturally, since in practice themethod relies on approximations
to the exchange and correlation energy of the many-body electron system, the results are
not always quantitatively or even qualitatively correct.
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3.1 The Hohenberg-Kohn theorems and the Kohn-Sham ansatz

Density functional theory relies on the theorems of Hohenberg and Kohn.1 Loosely put,
these state that the ground-state wave function of a many-electron gas (under the influ-
ence of an external potential) is uniquely defined by the ground-state density (ground-state
wavefunctions and densities are in one-to-one correspondence), and that an energy func-
tional of the density exists that is stationary at the ground-state density giving the ground-
state energy. Thus a variational scheme (introduced by Kohnand Sham2) allows for mini-
mization of the energy functional in terms of the density, yielding the ground-state density
and energy. Within the Kohn-Sham scheme2 for this minimization, an auxiliary system
of non-interacting (with each other) electrons is introduced, obeying a Schrödinger-like
equation in an effective potentialVeff . The effective potential includes the Hartree poten-
tial and exchange-correlation effects which depend explicitly on the density, as well as the
“external” potential of the atomic nuclei (external in the sense that it does not arise from
the electron gas). The Schrödinger-like equation must then be solved self-consistently so
that the density is reproduced by the auxiliary electron system. In order for the scheme to
work, a separation of the total energy functional is done:

EDFT[ρ] = Tn.i.[ρ] + Eext[ρ] + EH[ρ] + Exc[ρ]. (1)

Here, Tn.i. is the kinetic energy of the auxiliary non-interacting electrons, Eext =
∫
d3r ρ(~r)Vext(~r) is the energy due to the external potential (e.g., atomic nuclei), EH =
−e2 1

2

∫
d3r

∫
d3r′ρ(~r)ρ(~r ′)/|~r − ~r ′| is the Hartree energy, andExc is “all that remains”,

i.e., the exchange and correlation energy. All but the latter can be calculated with arbitrary
precision, whileExc requires some (uncontrolled) approximation which also determines
the accuracy of the method.

In practice, DFT calculations rely on a local density approximation (LDA) to the
exchange-correlation energy. This means thatExc[ρ] is approximated byELDA

xc [ρ] =
∫
d3r εhom

xc (ρ(~r)) ρ(~r), whereεhom
xc (ρ) is the exchange-correlation energy per particle for

a homogeneous electron gas of densityρ. In case of spin-polarized calculations, the
spin density~m(~r) must be included, andρ is replaced by the density matrixρ(~r) =
ρ(~r)1 + ~σ · ~m(~r) (~σ are the Pauli matrices and1 the unit matrix); then we have the
local spin density approximation (LSDA). Gradient corrections, taking into account also
∇ρ, lead to the also widely used generalized gradient approximation (GGA).

Henceforth we will denote byρmin, ~mmin, andρmin the density, spin density, and den-
sity matrix that yield the minimum of energy functionals (either within DFT or constrained
DFT, to be discussed in Sec. 5.1). These can be found by application of the Rayleigh-Ritz
variational principle to eq. (1) which leads to the Schrödinger-like equation:

(

− ~
2

2m
∇2 + Veff(~r) + ~σ · ~Beff(~r)− Ei

)(
ψi ↑(~r)
ψi ↓(~r)

)

= 0. (2)

This is the first of the Kohn-Sham equations for the one-particle eigenfunctionsψ↑,↓(~r;E)
(dependent on spin ‘up’ (↑) or ‘down’ (↓) with respect to a local magnetization direction
µ̂(~r) along ~Beff(~r)) and eigenenergiesEi of the auxiliary non-interacting-electron sys-
tem. The set of Kohn-Sham equations is completed by the expressions for charge and spin
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density,

ρ(~r) =
∑

Ei≤EF

(
|ψi ↑(~r)|2 + |ψi ↓(~r)|2

)
(3)

~m(~r) = µ̂(~r)
∑

Ei≤EF

(
|ψi ↑(~r)|2 − |ψi ↓(~r)|2

)
, (4)

and the requirement for charge conservation that determines the Fermi levelEF,

N =

∫

d3rρ(~r) =

∫

d3r
∑

Ei≤EF

(
|ψi ↑(~r)|2 + |ψi ↓(~r)|2

)
. (5)

Expressions (2-5) form the set of non-linear equations to besolved self-consistently in any
DFT calculation. The effective potentialVeff(~r) and magnetic field~Beff(~r) follow from
functional derivation of the total energy termsEext[ρ], EH[ρ], andExc[ρ] with respect to
ρ(~r) and ~m(~r). At the end of the self-consistency procedure one obtains the ground-state
energyE0

tot = EDFT[ρmin].
In terms of the single-particle energiesEi, the total energy (1) can be split into the

“single-particle” partEsp and a “double-counting”Edc part as

EDFT = Esp + Edc (6)

with

Esp =
∑

Ei≤EF

Ei (7)

Edc = −
∫

d3r
(

ρ(~r)Veff(~r) + ~m(~r) · ~Beff(~r)
)

+ EH[ρ] + Eext[ρ] + Exc[ρ]. (8)

3.2 Exchange-correlation energy of the homogeneous electron gas

The total energy of the homogeneous electron gas can be split, following the Kohn-Sham
ansatz, in three parts (here there is no external potential): the kinetic energy of a system of
non-interacting electrons,T hom

n.i. , the Hartree energyEhom
H , and the exchange-correlation

energyEhom
xc which is, by definition, all that remains :

Ehom
xc [ρ] = Ehom

tot [ρ]− T hom
n.i. [ρ]− Ehom

H [ρ] (9)

Given thatT hom
n.i. [ρ] andEhom

H [ρ] are straightforward to calculate, an approximation to
Ehom

tot [ρ] yields an approximation toEhom
xc [ρ].

Analytic approximations toEhom
xc [ρ] have proven successful. In particular, in the first

paper to introduce the LSDA3 von Barth and Hedin presented an analytic calculation of
the exchange-correlation energy and potential, includinga suitable parametrization. This
result, with a slightly different parametrization, was successfully applied to the calculation
of electronic properties of metals (including effects of spin polarization).4 A more accurate
calculation ofEhom

tot [ρ], based on a quantum Monte Carlo method, was given by Ceperley
and Alder,5 the exchange-correlation part of which was parametrized byVosko, Wilk and
Nusair.6 This is the most commonly used parametrization of LSDA, although in practice
there is little difference in calculated material properties among the three parametriza-
tions of LSDA.3, 4, 6 Larger differences, usually towards increased accuracy, are provided
when density gradient correction are included within the generalized gradient approxima-
tion (GGA).7
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4 Magnetic Excitations and the Adiabatic Approximation

Density functional calculations reproduce, in many cases with remarkable accuracy, the
ground-state magnetic moments of elemental or alloyed systems. Transition-metal fer-
romagnets (Fe, Co, Ni) and ferromagnetic metallic alloys (e.g. Heusler alloys, such as
NiMnSb or Co2MnSi), magnetic surfaces and interfaces are among the systems that are
rather well described within the LSDA or GGA (with an accuracy of a few percent in the
magnetic moment). On the other hand, materials where strongcorrelations play an im-
portant role, such asf -electron systems or antiferromagnetic transition metal oxides are
not properly described within the LSDA or GGA, but in many cases corrections can be
made by including additional semi-empirical terms in the energy and potential (as in the
LSDA+U scheme).8 As an example of the accuracy of the LSDA in the magnetic prop-
erties of transition metal alloys, fig. 1 shows experimentaland theoretical results on the
magnetic moments of Iron-, Cobalt-, and Nickel-based alloys.9

However, density functional theory is, in principle, a ground-state theory—at least in
its usual, practical implementation. This means that the various approximations to the
exchange-correlation potential, when applied, yield approximate values of ground-state
energy, charge-density, magnetization, etc. Nevertheless, physical arguments can be used
to derive also properties of excited states from DFT calculations. A basis for this is theadi-
abatic approximation(or adiabatic hypothesis), i.e., that the energies of some excitations,
governed by characteristic frequencies much smaller than the ones of intra- and inter-site
electron hopping, can be approximated by ground-state calculations. The adiabatic hypoth-
esis is most often used in the calculation of phonon spectra,ab-initio molecular dynamics,
or magnetic excitations.

In magnetic materials, two types of magnetic excitations can be distinguished: (i) the
Stoner-type, or longitudinal, where the absolute value of the atomic moments changes,
and (ii) the Heisenberg-type, or transverse, where the relative direction of the moments
changes. Longitudinal excitations usually require high energies, of the order of the intra-
atomic exchange (order of 1 eV); clearly this energy scale isfar beyond the Curie tem-
perature (ferromagnetic fcc Cobalt has the highest known Curie temperature at 1403 K,
while 1 eV corresponds to 11605 K). Transverse excitations (magnons), on the other hand,
are one or two orders of magnitude weaker, and are responsible for the ferromagnetic-
paramagnetic phase transition.

The characteristic time scale of magnons is of the order of10−12 seconds. On the
other hand, inter-atomic electron hopping takes place in timescales of the order of10−15

seconds. As a result, during the time that it takes a magnon totraverse a part of the system,
it is expected that locally the electron gas has time to adjust and relax to a new ground
state, defined by a constrained, position-dependent magnetization direction. This is the
adiabatic hypothesis. For practical calculations, this means that the magnon energy can be
found by using an additional position-dependent magnetic field to constrain the magnetic
configuration to a magnon-like form (a so-called spin spiral), and calculating the resulting
total energy. It should be noted here that the magnon energy arises from the change in
electron inter-site hopping energy.

Essentially, the adiabatic hypothesis directs us to approximate the excited-state energy
of one system (e.g., a ferromagnet) by the ground-state energy of a different system (a
ferromagnet under the influence of constraining fields).
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Figure 1. Magnetic moments of Fe, Co and Ni based transition-metal alloys, taken from Dederichs et al.9 The
theoretical results were calculated within the LSDA, usingthe Korringa-Kohn-Rostoker Green function method
and the coherent potential approximation for the description of chemical disorder. The magnetization as a function
of average number of electrons per atom follows theSlater-Pauling rule.

5 Calculations within the Adiabatic Hypothesis

In this section we discuss how the adiabatic hypothesis can be practically used to extract
excited state energies from density functional calculations. The accuracy of the method
is such that small energy differences, of the order of meV, can be reliably extracted from
total energies of the order of thousands of eV; for instance,for fcc Co the calculated total
energy per atom is approximately 38000 eV, while the nearest-neighbour exchange cou-
pling is approximately 14 meV. Such accuracy is crucial for the success of the Multiscale
Programme.
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5.1 Constrained density functional theory for magnetic systems

Constrained DFT10 includes an additional term to the energy functional, so that the sys-
tem is forced to a specific configuration. For the case of interest here, the following func-
tional must be minimized in order to obtain a particular configuration of magnetic moments
{ ~Mn}:

ECDFT[ρ; { ~Mn}] = EDFT[ρ]−
∑

n

∫

Cell n
d3r ~Hn ·

[

~m(~r)− ~Mn

]

. (10)

In this expression,EDFT[ρ] is the DFT energy functional (1) (e.g., in the LSDA or GGA),
while the quantities{ ~Hn} are Lagrange multipliers, physically interpreted as external mag-
netic fields acting in the atomic cells{n}; for convenience in notation we define~Hn to be
constant in the atomic celln and zero outside. Furthermore,~m(~r) is the spin density, while
~Mn is the desired magnetic moment. Application of the Raleygh-Ritz variational principle

to eq. (10) leads to the Schrödinger-like equation:
(

− ~
2

2m
∇2 + Veff(~r) + ~σ · ~Beff(~r) + ~σ ·

∑

n

~Hn − Ei

)(
ψi ↑(~r)
ψi ↓(~r)

)

= 0. (11)

This is just the Kohn-Sham equation (2) with an additional term containing the Lagrange
multipliers ~Hn which act as an external Zeeman magnetic field (note that thisis not really
a magnetic field, in the sense that it is not associated to a vector potential, Landau levels,
etc.). In practice,~Hn is specified and the corresponding value of~Mn is an output of the
self-consistent calculation, calculated from the spin density as

~Mn =

∫

Cell n
d3r ~m(~r). (12)

If a particular value of ~Mn is to be reached, then~Hn has to be changed and~Mn re-
calculated, until ~Mn reaches the pre-defined value. At the end the energy-functional
minimization yields the densityρmin, obeying the condition (12). Since the multipliers
{ ~Hn} enter equation (11) as external parameters, it is evident that the minimizing den-
sity ρmin and the constrained ground-state energyECDFT[ρmin; { ~Mn}] are functions of
{ ~Hn}. Therefore, to simplify the notation when referring to the constrained ground state,
we write ρmin = ρmin[{ ~Hn}], ECDFT[ρmin; { ~Mn}] = ECDFT[{ ~Hn}]. Similarly, the
multipliers{ ~Hn} are functions of the constrained ground-state moments, andvice versa:
~Hn = ~Hn[{ ~Mm}], ~Mn = ~Mn[{ ~Hm}].

The total energy of the constrained state is given by

Econstr
tot ({ ~Mn}) := ECDFT[{ ~Hn}] = EDFT

[

ρmin[{ ~Hn}]
]

(13)

(the latter step, where the constrained ground-state density ρmin[{ ~Hn}] is taken as ar-
gument of the unconstrained density functionalEDFT, follows because the last part of
eq. (10) vanishes for the self-consistent solution). In order to extract the excited state en-
ergy from eq. (13), a subtraction of the unconstrained-state energy from the constrained
one is needed:

∆E[{ ~Mn}] = ECDFT[{ ~Hn}]− ECDFT[{ ~Hn} = 0] (14)

= Econstr
tot [{ ~Mn}]− E0

tot (15)
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This can be susceptible to numerical errors, as the total energies are large quantities com-
pared to the change in magnetization energy. There is an alternative to that route.10, 11 By
taking advantage of the Helmann-Feynman theorem,

∂ECDFT[ρmin; { ~Mm}]
∂ ~Mn

= ~Hn, (16)

which rests on the variational nature of the energy aroundρmin, the energy difference
can be calculated by an integration along a path from the ground-state moments~MGS

n =
~Mn[{ ~Hm} = 0] to the constrained end-state moments~Mn. Along this path, the Lagrange

multipliers ~Hn[{ ~Mm}] are found by minimization of the constrained energy functional.
We have:

ECDFT[{ ~Hn}]− ECDFT[{ ~Hn} = 0] =
∑

n

∫ ~Mn

~MGS
n

d ~M ′
n · ~Hn[{ ~M ′

m}]. (17)

It should be noted, however, that this method can be numerically more expensive, as a
number of self-consistent calculations are necessary along the path in order to obtain an
accurate integration. In practice, the former method of total energy subtraction usually
works rather well as long as care is taken for good spin-density convergence in the self-
consistent cycle.

5.2 Magnetic force theorem

In principle, to find the excited-state energyEtot
constr[{ ~Mn}] one must perform a self-

consistent calculation for the particular moments configuration{ ~Mn}. This can be com-
putationally expensive. Fortunately, under certain conditions additional self-consistent
calculations can be avoided by virtue of theforce theorem.12, 13 This states that, under
sufficiently small perturbations of the (spin) density, thetotal energy difference can be ap-
proximated by the difference of the occupied single-particle state energies, given by (7).
As a consequence, for the total energy difference between the magnetic ground state and
the magnetic state characterized by rotated moments{ ~Mn}, one has merely to perform a
position-dependent rotation of the ground-state spin density ~m(~r) to a new spin density
~m′(~r) at each atom so that eq. (12) is satisfied, calculate the single-particle energies sum
at this non-self-consistent spin density, and subtract thesingle-particle energies sum of the
ground state:

∆E[{ ~Mn}] ≃ Esp[ρ, ~m′]− Esp[ρ, ~m]. (18)

The calculation ofEsp =
∑

Ei≤EF
Ei requires the solution of eq. (11) (or eq. (2)), where

the potentialsVeff and ~Beff enter explicitly instead of the densitiesρ and ~m. Therefore,
in practice, the magnetic exchange-correlation potentials ~Beff are rotated for the energy
estimation in eq. (18), instead of the spin density~m.

5.3 Reciprocal space analysis: generalized Bloch theorem

The elementary, transverse magnetic excitations in ferromagnetic crystals have, in a semi-
classical picture, the form of spin spirals of wave-vector~q. If the ground-state magnetiza-
tionM0 is oriented along thez-axis, then in the presence of a spin spiral the spin density
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and the exchange-correlation potential at the atomic cell at lattice point ~Rn are given in
terms of a position-dependent angleφn = ~q · ~Rn and an azimuthal angleθ:

~m(~r + ~Rn) = m0(~r)
(

sin θ cos(~q · ~Rn) x̂+ sin θ cos(~q · ~Rn) ŷ + cos θ ẑ
)

(19)

~B(~r + ~Rn) = B0(~r)
(

sin θ cos(~q · ~Rn) x̂+ sin θ cos(~q · ~Rn) ŷ + cos θ ẑ
)

(20)

This implies that the potential has a periodicity of the order of 1/q, thus, for smallq,
the unit cell contains too many atoms to handle computationally. However, there is a
generalized Bloch theorem,14 by virtue of which the calculation can be confined to the
primitive unit cell. The generalized Bloch theorem is validunder the assumption that the
hamiltonianH (or equivalently the potential) obeys the transformation rule

H(~r + ~Rn) = U(~q · ~Rn)H(~r)U†(~q · ~Rn). (21)

with the spin transformation matrixU defined by

U(~q · ~Rn) =

(

e−i~q·~Rn/2 0

0 ei~q·~Rn/2

)

. (22)

This is true if the exchange-correlation potential has the form (20) and if the spin orbit
coupling can be neglected. This transformation rule in spinspace has as a consequence
that the hamiltonian remains invariant under ageneralized translationTn = Tn U(~q · ~Rn)

which combines a translation in real space by the lattice vector ~Rn, Tn, with a rotation in
spin space,U(~q · ~Rn):

TnHT −1
n = H. (23)

As a result of this invariance, using manipulations analogous to the ones that lead to the
well-known Bloch theorem it can be shown that the spinor eigenfunctions are of the form

ψ~k(~r) = ei~k·~r
(
e−i~q·~r α~k(~r)
e+i~q·~r β~k(~r)

)

(24)

whereα~k(~r) andβ~k(~r) are lattice-periodic functions,α~k(~r + ~Rn) = α~k(~r) andβ~k(~r +
~Rn) = β~k(~r). In this way, given a particular spin-spiral vector~q, the calculation is confined
in the primitive cell in real space (and in the first Brillouinzone ink-space) and is thus
made computationally tractable.

In case that the atomic magnetic moments do not change appreciably under rotation,
the energy differences∆E(~q; θ) can be Fourier-transformed15 in order to find the real-
space excitation energies∆E[{ ~Mn}]. This is usually true whenθ is small. Under this
condition, the force theorem is also applicable, so that non-self-consistent calculations are
sufficient to find the dispersion relation∆E(~q; θ) for ~q in the Brillouin zone.

5.4 Real space analysis: Green functions and the method of infinitesimal rotations

For perturbations that are confined in space, the Green function method is most appropriate
for the calculation of total energies. The reason is that it makes use of the Dyson equation
for the derivation of the Green function of the perturbed system from the Green function
of the unperturbed system, with the correct open boundary conditions taken into account
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automatically. As opposed to this, in wave function methodsfor localized perturbations
a solution of the Scrödinger (or Kohn-Sham) equation requires explicit knowledge of the
boundary condition and a complicated coupling procedure inorder to achieve continuity
of the wavefunction and its first derivative at the boundary.

The Green functionG(~r, ~r ′;E) corresponding to the Kohn-Sham hamiltonian of
eq. (2) is a2× 2 matrix in spin space that obeys the equation

(

− ~
2

2m∇2 + Veff(~r) + ~σ · ~Beff(~r)− E
)(

G↑↑(~r, ~r ′;E) G↑↓(~r, ~r ′;E)
G↓↑(~r, ~r ′;E) G↓↓(~r, ~r ′;E)

)

= −
(

1 0
0 1

)

δ(~r − ~r ′).

(25)

The particle density and spin density can be readily calculated fromG as

ρ(~r) = − 1

π
Im

∫ EF

dE Trs G(~r, ~r ′;E) (26)

~m(~r) = − 1

π
Im

∫ EF

dE Trs [~σ G(~r, ~r ′;E)] (27)

whereTrs indicates a trace over spins. More generally, the Green function corresponding
to a hamiltonianH obeys the equation(E −H)G(E) = 1. In case of a perturbation∆V
to a hamiltonianH0, the Green functionG(E) = (E − H)−1 to the new hamiltonian,
H = H0 + ∆V , is related to the initial Green function,G0(E) = (E − H0)

−1, via the
Dyson equationG(E) = G0(E) [1−∆V G0(E)]

−1. In practice, the latter equation is very
convenient to use because it requires a minimal basis set. With some reformulation the
Dyson equation forms the basis of the Korringa-Kohn-Rostoker (KKR) Green function
method for the calculation of the electronic structure of solids16 and impurities in solids.17

Within the KKR method, the Green function is expanded in terms of regular (Rn
s;L(~r;E))

and irregular (Hn
s;L(~r;E)) scattering solutions of the Schrödinger equation for theatomic

potentials embedded in free space. The indexn denotes the atom,L = (l,m) stands for
a combined index for the angular momentum quantum numbers ofan incident spherical
wave, ands is the spin (↑ or ↓). For a ferromagnetic system, where only spin-diagonal
elements of the Green function exist,Gss′ = Gsδss′ in (25), the expansion reads:

Gs(~r + ~Rn, ~r
′ + ~Rn′ ;E) = −i

√

2mE

~2

∑

L

Rn
s;L(~r;E)Hn

s;L(~r ′;E) δnn′

+
∑

LL′

Rn
s;L(~r;E)Gnn′

s;LL′(E)Rn′

s;L′(~r ′;E) (28)

for |~r| < |~r ′| (for |~r| > |~r ′|, ~r and~r ′ should be interchanged in the first term of the
RHS). The coefficientsGnn′

s;LL′(E) are called structural Green functions and are related
to the structural Green functions of a reference system (e.g., free space) via an algebraic
Dyson equation16, 17 which involves the spin-dependent scattering matricestns;LL′(E). In
case of a non-collinear magnetic perturbation in a ferromagnetic system, the method can be
generalized in a straightforward way13, 18 yielding the total energy of the state,E[{ ~Mn}].
However, in the limit of infinitesimal rotations of the moments{ ~Mn}, perturbation theory
can be employed in order to find the change in the density of states, and by application
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of the force theorem, the change in total energy. Of particular interest for our discussion
below is the result for the total energy change in second order when two moments~Mn and
~Mn′ are infinitesimally rotated:19

δ2E

δ ~Mnδ ~Mn′

= − 1

8π | ~Mn| | ~Mn′ |
Im

∫ EF

dE TrL

[

Gnn′

↑ (tn′

↑ − tn′

↓ )Gn′n
↑ (tn

↑ − tn
↓ )
]

(29)
In this formula,Gnn′

s (E) is the structural Green function of spins in form of a matrix
in L,L′, while tn

s (E) are again the scattering matrices.TrL denotes a trace in angular
momentum quantum numbers. The derivatives on the LHS are implied to be taken only
with respect to the angles of~Mn, ~Mn′ , not the magnitude.

6 Correspondence to the Heisenberg Model

The next step of the Multiscale Programme is to establish a correspondence between the
density functional results and the parameters of a phenomenological model hamiltonian
for magnetism. Usually, the classical Heisenberg model is used in order to derive the
magnetism-related statistics up to (and even beyond) the Curie temperature, and we will
focus on this. However, other models can be used for different purposes, such as the
continuum model for micromagnetic or magnetization dynamics calculations. Also, even
on the atomic scale, it is sometimes necessary to extend the Heisenberg model to non-rigid
spins.

The classical Heisenberg hamiltonian for a system of magnetic moments{ ~Mn} is

H = −1

2

∑

nn′

Jnn′ ~Mn
~Mn′ . (30)

The quantitiesJnn′ are called pair exchange constants, and they are assumed to be sym-
metric (Jnn′ = Jn′n), while, by convention,Jnn = 0. The prefactor1/2 takes care of
double-counting. The exchange constants fall off sufficiently fast with distance, so that
only a finite amount of neighboursn′ has to be considered in the sum for eachn. Phys-
ically, it is well known that the exchange interaction results from the change of the elec-
tronic energy under rotation of the moments, not from the dipole-dipole interaction of the
moments.

A correspondence to density functional calculations can bemade due to the observation
that

Jnn′ = − ∂2H
∂ ~Mn∂ ~Mn′

(31)

assuming that, to a good approximation, the constrained DFTenergy can be expanded to
lowest order in the moments’ angles asEconstr

tot [{ ~Mn}]−E0
tot = − 1

2

∑

nn′ Jnn′ ~Mn
~Mn′ +

const. By computingE[{ ~Mn}] within constrained DFT, the RHS can be evaluated, and
Jnn′ can be found. Thus, the step from DFT to the Heisenberg model relies on accepting
the equivalence of the DFT and Heisenberg-model excitationenergies. As an example we
see in fig. 2 the exchange constants of fcc Cobalt as a functionof distance.

Additional terms to the Heisenberg hamiltonian (30) can also be evaluated in a sim-
ilar way. For instance, the magnetocrystalline anisotropyenergy is phenomenologically
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Figure 2. Left: Exchange constants as a function of inter-atomic distance in fcc Co calculated by the method of
infinitesimal rotations. Right: Magnetization (inµB per atom) and susceptibilityχ as functions of temperature,
calculated by a Monte Carlo method using the exchange constants of the left panel. The peak of susceptibility
signals the Curie temperature. In the simulation a supercell of 1728 atoms was used. The experimentally found
Curie temperature is 1403 K.

described by adding the term−K∑n( ~Mn · ζ̂ )2 = −KM∑

n cos2 γn, whereζ̂ is a unit
vector, usually along a high-symmetry crystal axis, andγn is the angle of the magnetic
moment to this axis. The magnetocrystalline anisotropy, which stems from the spin-orbit
coupling, induces the preference of a particular directionfor the magnetic moments (±ζ̂),
if K > 0, or in the plane perpendicular to this direction, ifK < 0. By observing that
K = 1

2M ∂2H/∂γ2|γ=0, the constantK can be harvested by fitting DFT total-energy re-

sults to the second derivative∂2ECDFT[{ ~Mn}]/∂γ2|γ=0. Furthermore, in all cases the
validity of the phenomenological model can also be subjected to verification by DFT cal-
culations.

Having established the correspondence to the Heisenberg model, there are two prac-
tical, widely used ways to calculate the exchange constantsJnn′ . The first, used within
Green function methods (KKR or linearized muffin-tin orbital (LMTO) Green function), is
a direct combination of eqs. (29) and (31). The second, used within hamiltonian methods,
is a Fourier transform of the spin-spiral energy∆E(~q; θ).15 It should be noted, however,
that the assumption of rigid magnetic moment magnitudes, inherent in the Heisenberg
model, is only an approximation. When the moment angles between nearest-neighbour
atoms become large, the moments can change and the Heisenberg hamiltonian is not any
more valid. The extent of this strongly depends on the material, as has been found by
DFT calculations; therefore, the Heisenberg hamiltonian should only be considered as the
lowest order expansion in the moments.

According to these considerations, the method of infinitesimal rotations should be ideal
for calculating theJnn′ , while the Fourier transform of∆E(~q; θ) is accurate only whenθ is
chosen small enough. However, this is not the whole story. Athigh temperatures, close to
the Curie temperature, neighbouring moments can have larger respective angles, perhaps
of the order of 30 degrees or more. Therefore some sort of “intelligent averaging” over
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angles is called for, in order to increase the accuracy of results. The method of infinitesimal
rotations can be systematically amended in this direction,as was proposed by Bruno,20

while for the Fourier-transform method larger anglesθ (perhaps of the order of 30 degrees)
should be considered. We will return to this discussion in Section 8. We should also
mention that the formalism, as it is presented in the presentmanuscript, neglects the orbital
moments and their interaction. Such effects can become important especially for rare earths
and actinides, which are, however, not well-described by local density functional theory
due to the strong electron correlations in these systems.

7 Solution of the Heisenberg Model

Having established the correspondence between DFT resultsand the Heisenberg hamilto-
nian, and having identified the model parameters, a statistical-mechanical method is used
in order to solve the Heisenberg model, if one is interested in thermodynamic properties,
or a dynamical method is used if one is interested in time-dependent properties. In the
former case, the Monte Carlo method, mean-field theory, and the random phase approx-
imation (RPA) are most commonly used. For time-dependent properties we give a brief
introduction to Landau-Lifshitz spin dynamics.

7.1 Thermodynamic properties and the Curie temperature

The Monte Carlo method is a stochastic approach to the solution of the Heisenberg model
(and of course to many other problems in physics). It is basedon a random walk in the
configuration space of values of{ ~Mn}, but with an intelligently chosen probability for
transition from each state to the next. The random walk must fulfill two requirements: (i) it
must be ergodic, i.e., each point of the configuration space must be in principle accessible
during the walk, and (ii) the transition probability between statesA andB, tA→B, must
obey the detailed balance condition, i.e.,P (A) tA→B = P (B) tB→A, whereP (X) =
exp(−E(X)/kBT ) is the Boltzmann probability for appearance of stateX at temperature
T , with E(X) the energy of the state andkB the Boltzmann constant. As long as these
requirements are fulfilled,tA→B is to be chosen in a way that optimizes the efficiency of
the method. The most simple and widely-used way is the Metropolis algorithm,21 in which
tA→B = P (B)/P (A) = exp[(E(A) − E(B))/kBT ] is taken forE(A) < E(B) and
tA→B = 1 otherwise. For further reading on the Monte Carlo method we refer the reader
to the book by Landau and Binder.22

Within the Monte Carlo method, a simulation supercell is considered, which contains
many atomic sites (e.g.,10× 10× 10 for simulating a three-dimensional cubic ferromag-
netic lattice). At each site, a magnetic moment~Mn is placed, subject to interactionsJnn′

with the neighbours. Usually, periodic boundary conditions are taken in order to avoid
spurious surface effects. During a Monte Carlo random walk,thermodynamic quantities
(magnetization, susceptibility, etc.) are sampled and averaged over the number of steps. In
this way it is possible, for instance, to locate the Curie temperatureTC of a ferromagnetic-
paramagnetic phase transition by the drop of magnetizationor by the susceptibility peak.
Since the simulation supercell is finite, the magnetizationdoes not fully disappear, and the
susceptibility peak overestimates somewhatTC. However, there are ways of correcting
for this deficiency, by increasing the supercell size and using scaling arguments.22 As an
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Material TC(K) (exp) TC(K) (RPA) TC(K) (mean-field) Ref.
Fe bcc 1044 950 1414 (a)
Co fcc 1403 1311 1645 (a)
Ni fcc 624 350 397 (a)

NiMnSb 730 900 1112 (b)
CoMnSb 490 671 815 (b)
Co2CrAl 334 270 280 (b)
Co2MnSi 985 740 857 (b)

Table 1. Experimental and calculated Curie temperatures (in Kelvin, within the RPA) of various ferromagnetic
materials. Calculated values taken from: (a): Pajda et al,25 (b): Sasioglu et al.26

example we show in fig. 2 the temperature-dependent magnetization and susceptibility of
fcc Co calculated within the Monte Carlo method.

Mean-field theory is a physically transparent and computationally trivial way of esti-
mating thermodynamic properties, however it lacks accuracy because it neglects fluctua-
tions. As regards the Curie temperature, it is systematically overestimated by mean-field
theory (assuming applicability of the Heisenberg model). Given the exchange interactions
Jnn′ the mean-field result forTC in a monoatomic crystal has the simple form

kB TC =
1

3
M2

∑

n′

Jnn′ . (32)

Another widely used method for estimating the Curie temperature is the random phase
approximation. It yields results much improved with respect to mean-field theory with only
little increase of the computational burden. It is based on the Green function method for the
quantum Heisenberg model, where a decoupling is introducedin the Green function equa-
tion of motion, as proposed by Tyablikov fors = 1

2 systems.23 Further refinements24, 25of
the RPA for higher-spin systems allow the transition to the classical limit by takings→∞.
The Curie temperature in a monoatomic lattice is then given by

1

kB TC
=

3

2

1

N

∑

~q

1

E(~q)
(33)

whereE(~q) is the magnon (or spin-spiral) energy, calculated by a Fourier transform of
Jnn′ or directly by constrained DFT, andN the number of atoms in the system. For multi-
sublattice systems, a modified version of RPA can be used.26

7.2 Time-dependent magnetic properties and Landau-Lifshitz spin dynamics

In case that one is interested in the time dependence of the magnetic moments under the in-
fluence, e.g., of an external field pulse, the method of magnetization dynamics can be used.
The classical equations of motion associated with this method are the Landau-Lifshitz
equations for the moments{ ~Mn},

d ~Mn

dt
= ~Heff

n × ~Mn, (34)

~Heff
n =

∑

n′

Jnn′ ~Mn′ + ~Hext. (35)
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These are first-order equations in time which describe the precession of the magnetic mo-
ment due to external fields (different than an electric dipole, which will rotate towards
the direction of an electric field, the magnetic dipole is essentially an angular momentum
and therefore will precess around a magnetic field). The effective field defined in eq. (35)
comprises the exchange interaction with the neighbours andan externally applied mag-
netic field. However, other terms can be included in~Heff

n , such as the magnetocrystalline
anisotropy or the magnetic field created by the very moments of the material itself—the
latter becomes most important in large ferromagnetic systems, and we discuss in the next
subsection.

As is obvious by taking the dot product of eq. (34) with~Mn, ~Mn · d ~Mn/dt = 0, i.e.,
the Landau-Lifshitz equations conserve the magnitude of the moments. They also conserve
the total energy. However, dissipation effects that lead todamping of the precession can be
taken into account by an additional phenomenological term of the formλ( ~Heff

n × ~Mn) ×
~Mn, where a parameterλ describes the damping strength. Temperature effects can also be

simulated by additional phenomenological terms of stochastic forces, through an approach
similar to Langevin molecular dynamics.27

We should note here the existence of a formalism for fully ab-initio spin dynamics,
i.e., without the assumption of a Heisenberg model.28 (From this formalism the Landau-
Lifshitz equations follow as a limiting case.) However, this approach is computationally
heavy, as it requires self-consistent density functional calculations at each time step of the
system evolution.

7.3 Dipolar field calculation and related multiscale modelling

We now discuss the effect of the dipole-dipole interaction on the magnetic configuration.
By this we mean the interaction of each magnetic dipole (here, atomic magnetic moment)
with the magnetic field created by all other dipoles in the system. It is well-known that
the this type of interaction between two moments~Mn and ~Mn′ , connected by a vector
~Rnn′ = ~Rn − ~Rn′ , has the form

Edip(~R) =
3 ( ~Mn · ~Rnn′)( ~Mn′ · ~Rnn′)− ( ~Mn · ~Mn′)R2

nn′

R5
nn′

(36)

Equivalently, each moment feels a magnetic field, thedipolar field ~Hdip
n , to be included in

~Heff
n in the Landau-Lifshitz equation, of the form

~Hdip
n =

∑

n′ 6=n

3 ~Rnn′( ~Mn′ · ~Rnn′)− ~Mn′ R2
nn′

R5
nn′

(37)

Compared to the nearest-neighbour exchange interactionsJnn′ , the interaction between
two dipoles is weak, but the complication is that the summation (37) cannot be restricted
to a few neighbours only, as it falls off relatively slowly with distance (∼ 1/R3

nn′). Espe-
cially in three-dimensional systems the sum is guaranteed to converge only by finite-size
effects of the sample, i.e., it becomes a meso- or macroscopic property and the sample
boundaries become important.a ~Hdip

n is evidently time-consuming to calculate; particu-
larly a brute-force calculation would be impossible for large systems. There are, however,

aIn large ferromagnetic systems the dipolar field cannot be neglected, as it is responsible for the emergence of
magnetic domains.
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special techniques that allow for a fast, approximate calculation of ~Hdip
n . This is even more

crucial for spin dynamics, as~Hdip
n depends on the moments configuration and has to be

calculated anew at each time step.
One such technique is thefast multipole method, originally introduced to treat the prob-

lem of Coulombic interactions.29 The central idea is to divide space in regions of different
sizes, and treat the collective field from each region by a multipole expansion up to a cer-
tain order. The higher the order, the more accurate and expensive the calculation. Given a
certain expansion order, regions that are far away from the point of field-evaluation can be
large, while regions that are close have to be smaller to maintain accuracy (the criterion of
region size is the opening angleD/R, withD the diameter of the region andR its distance
from the point of field-evaluation). An essential ingredient of the fast multipole method
is the efficient derivation of multipoles of a large region from the multipoles of its sub-
regions. This derivation requires the calculation of multipole expansion and translation
coefficients, which, however, depend only on the geometry and for magnetic systems have
to be evaluated only once (as the magnetic moments are not moving).

A fast evaluation of the dipolar field allows for multiscale simulations in magneto-
statics30 or magnetization dynamics, also in a sense that we have not discussed up to this
point. In such simulations, the transition from the large (mesoscopic or even macroscopic)
scale to the atomic scale is done in a seamless way. The idea isto treat the magneti-
zation as a continuous field by a coarse grained approach in regions where it is relatively
smooth, whereas to gradually refine the mesh, even up to the atomic limit, in regions where
the spatial fluctuations become more violent (e.g. magneticvortex cores, Bloch points,
monoatomic surface step edges, ferromagnet-antiferromagnet interfaces, etc.). In the con-
tinuum limit, however, the Landau-Lifshitz equations (34)must be rewritten in terms of a
continuous magnetization~M(~r) and thespin stiffnessA:

d ~M(~r)

dt
= ~Heff(~r)× ~M(~r) (38)

~Heff(~r) =
2

M2
s

A∇2 ~M(~r). (39)

Ms = | ~M(~r)| is the absolute value of the continuum magnetization (also called satu-
ration magnetization in ferromagnetic samples). The termA∇2 ~M(~r) results from tak-
ing

∑

n′ Jnn′ ~Mn′ to the continuum limit; the spin stiffness is given (in an example of a
monoatomic crystal with atomic momentM and primitive cell volumeVc) in terms of the
exchange constants asA = (1/4Vc)M

2
∑

n J0nR
2
n, with Rn the distance of atomn from

the origin.

8 Back-Coupling to the Electronic Structure

So far we have discussed how the transition from the DFT to theHeisenberg model is
achieved by fitting the Heisenberg model parameters to DFT total energies at and close to
the ground state. However, at higher temperature (close to the Curie temperature, that can
be of the order of 1000 K) the local electronic structure can change. Several mechanisms
can contribute to this: lattice vibrations, single-electron excitations, collective electronic

286



excitations such as magnons, structural phase transitions(such as the hcp to fcc transi-
tion of Cobalt above 700 K) etc. As a consequence, the pair exchange parametersJnn′

calculated from the low-temperature electronic structurecould be significantly altered.
Perhaps the most serious effect can be caused by the non-collinear magnetic configura-

tions at high temperature, in which the angle between first-neighbouring moments can be
of the order of30◦. At such high angles, and depending on the system, the parametrization
of the total energy with respect to the Heisenberg model can be insufficient—recall that, in
principle, the Heisenberg hamiltonian is justified as the lowest-order term in an expansion
with respect to the angle. An often encountered consequenceof an altered local electronic
structure is a change of the atomic moments. Furthermore, asthis angle is not static, but
fluctuating in time, it is no use to simply perform static non-collinear calculations at this
angle and derive theJnn′ by small deviations. We are thus faced with the problem of a
back-coupling of the high-temperature state to the electronic structure; i.e., of approximat-
ing the local electronic properties in the presence of thermal fluctuations.

Two solutions are frequently used to this problem. The first is to go beyond the Heisen-
berg model and perform a more thorough parametrization of the energy as a function of the
moments, including also possible changes in the magnitude of the moments. This method
has been applied, e.g., by Uhl and Kübler.31 The disadvantage is that it can be computa-
tionally expensive, both due to the number of self-consistent constrained-DFT calculations
required for a parametrization of the multi-dimensional space{ ~Mn}, and because of the
more involved Monte Carlo calculations where the change of the moments magnitude has
to be accounted for. There are, however, reasonable approximations that can reduce the
necessary number of parameters, while the Curie temperature can be found within a mod-
ified mean-field theory.31

The second solution is to assume that the Heisenberg model isstill adequate to describe
the phase transition, but with “renormalized” parameters,chosen such that the change of
the local electronic structure is taken into account by an averaging over angles. This solu-
tion is intuitive but certainly not rigorous. It is, however, simple to include within Green
function electronic structure methods, by assuming an analogy of the high-temperature
state with a spin-glass state and employing the coherent potential approximation (CPA).
Spin-glass systems are characterized bydisordered local moment(DLM) states, consisting
of two different magnetic “species” that correspond, say, to the magnetic moment pointing
“up” (A) or “down” (B). These are encountered in a random manner with a probability
1 − x andx, respectively: the DLM state is of the formA1−xBx. Forx = 0 we recover
the ferromagnetic state, while forx = 0.5 we have complete magnetic disorder. (Note that
a DLM state is different than the antiferromagnetic state, in which the speciesA andB are
well-ordered in two sublattices.) Under the assumption of an analogy of high-temperature
states in ferromagnets to DLM systems, the ferromagnet at the Curie temperature is ap-
proximated by the alloyA0.5B0.5.

The CPA is a method for the description of chemical disorder in alloys, and can be ap-
plied here to the magnetic type of alloyA0.5B0.5. Within the CPA, the Green function̄G
and scattering matrix̄t of an effective average medium are sought, such that the additional
scattering of atomsA andB in this medium vanishes on the average. We skip the deriva-
tion, which can be found in many textbooks,32, 33 and give only the final CPA condition
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that has to be fulfilled:

t̄
−1

= (1− x) t−1
A + x t−1

B + (t̄
−1 − t−1

A )(t̄
−1 − Ḡ)−1(t̄

−1 − t−1
B ), (40)

Ḡ = g (1− t̄g)
−1 (41)

with g the free-space structural Green function in the KKR formalism.16 Expression (41)
is the Dyson equation for the Green function of the average medium, which depends on the
average-medium scattering matrixt̄. The latter is determined by Eq. (40), which containst̄

also on the right-hand side (explicitly and also throughḠ), and is solved self-consistently
by iteration. At the end, the Green functions of speciesA andB are projected out from the
average medium Green function again via the Dyson equation

GA,B = Ḡ
(
1− (tA,B − t̄) Ḡ

)−1
(42)

and used for the calculation of the electronic structure of the two atomic species.
Given the CPA Green function for theA0.5B0.5 DLM state, the method of infinitesimal

rotations can be employed to obtain the pair exchange constants. Assuming that the DLM
state represents the magnetic structure at the Curie temperature, the exchange constants
obtained by this method should be more appropriate to use in the Heisenberg hamiltonian
close toTC than the ones obtained from the ground state. However, this is not guaranteed,
especially in view of the fact that the CPA neglects the short-range magnetic order that is
present even atTC.

9 Concluding Remarks

The Multiscale Programme discussed here is widely used today, however, the matter is
surely not closed. Mainly two types of difficulties are present and are the subject of cur-
rent research. First, density functional theory within thelocal spin density or generalized
gradient approximation is not able to describe the ground state properties of every mate-
rial. When electron correlations (on-site electron-electron repulsion and temporal electron
density fluctuations) become particularly strong, these approximations fail. Characteristic
of such problems aref -electron systems, transition metal oxides or molecular magnets.
Improved concepts exist and are applied, such as the LSDA+U or dynamical mean-field
theory, however, at the moment these methods rely on parameters that cannot always be
found without a fit to experiment.

Second, the excited state properties are also not always accessible to density functional
theory. The adiabatic hypothesis, together with constrained DFT, work up to a point, but
effects as the magnon lifetime or frequency-dependent interactions are neglected. Current
work in this direction is done within approximations as theGW or time-dependent DFT,
with promising results. These methods are, however, still computationally very expensive,
and the extent of improvement that they can offer to the calculation of thermodynamical
properties remains unexplored.
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http://www.fz-juelich.de/nic-series/volume31/volume31.html

17. P.H. Dederichs, S. Lounis, and R. Zeller,The Korringa-Kohn-Rostoker (KKR)
Green Function Method II. Impurities and Clusters in the Bulk and on Surfaces, in
Computational Nanoscience: Do It Yourself!, eds. J. Grotendorst, S. Blügel, and
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32. J. Kübler,Theory of Itinerant Electron Magnetism, Oxford University Press, 2000.
33. A. Gonis,Theoretical Materials Science, Materials Science Society, 2000.

290



First-Principles Based Multiscale Modelling of Alloys

Stefan Müller1,2

1 Lehrstuhl für Theoretische Physik 2
Universität Erlangen-Nürnberg

Staudtstrasse 7, 91058 Erlangen, Germany

2 Lehrstuhl für Festkörperphysik
Universität Erlangen-Nürnberg

Staudtstrasse 7, 91058 Erlangen, Germany
E-mail: stefan.mueller@physik.uni-erlangen.de

Although modern computer codes based on density functionaltheory (DFT) allow the reliable
prediction of many surface and bulk properties of solids, they cannot be applied, when the prob-
lem of interest demands a consideration of huge configuration spaces or model systems con-
taining many thousand atoms. Important examples are precipitation and segregation in metal
alloys where substitutional ordering phenomena on a mesoscopic scale are involved. Moreover,
in general first-principles methods based on DFT do not allowfor exchange processes between
atoms and therefore, do not consider configurational enthalpies being a prerequisite for mod-
elling the temperature-dependence of decomposition reactions or segregation phenomena. In
this contribution, recent developments, possibilities and limitations to study ordering phenom-
ena and ground-state properties based on first-principles methods will be discussed. It will
be demonstrated how the combination of DFT calculations with so-called Cluster Expansions
and Monte-Carlo simulations allows for a quantitative prediction of alloy properties from the
miscroscopic up to the meso-, and even macroscale without any empirical parameters.

1 Introduction: The Definition of “Order”

If A- and B-atoms are forced to crystallize on a common lattice, they may either order (AB-
bonds) or cluster (AA- and BB-bonds) depending on whether the occupation of neighbor-
ing lattice sites by identical or different species is energetically favoured. However, the
situation becomes more complex, when temperature comes into play: The temperature-
composition phase diagram of a binary solid state alloy, A1−xBx, may consist of homo-
geneous single-phase regions (such as ordered compoundsAmBn) as well as heteroge-
neous, phase-coexistence regions1. Besides intermetallic compounds, i.e. long-range or-
dered (LRO) phases, which are mostly observed at low temperatures, in many binary metal
systems so-called “solid solutions” exist. Although such solid solutions are often described
by a lattice grid randomly occupied byA andB atoms, more or lessall solid solutions
show substitutional short-range order (SRO). Indeed, SRO may have a tremendous influ-
ence on the energy and stability of this alloy phase. Consequently, the physical properties
of solid solutions must be modelled by adisorderedalloy which is not necessarily arandom
alloy. In fact, SRO makes a quantitative, theoretical description of alloys on a quantum-
mechanical basis rather complex. One may ask, if it is reallynecessary to consider SRO
for a quantitative description of an alloy’s stability. Fo this, we consider the solid solution
of α-brass (Cu-rich Cu-Zn). For this phase, it well-known from experiment2 and theory3

that characteristic SRO occurs. This can be seen in Figure (1) which compares calcu-
lated mixing enthalpies3, ∆Hmix(x, T ), for different temperatures with experimental data
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Figure 1. Calculated mixing enthalpies ofα-brass for different temperatures3, in comparison with experimental
data4 (bold line).

taken from Hultgren’s book4. The mixing enthalpy,∆HDFT
f per atom of configurationσ

is defined as

∆Hmix(σ) =
1

N
Etot(A1−xBx, σ)− xEtot

A (aA)− (1− x)Etot
B (aB) (1)

with N being the total number of atoms in the disordered alloy.Etot(A1−xBx, σ) is the
total energy of the geometrically fully relaxed configurationσ with concentrationx of B-
atoms (0 ≤ x ≤ 1). Furthermore,aA andaB are the equilibrium lattice constants of the
elementsA andB,Etot

A (aA) andEtot
B (aB) are the respective total energies. Since all total

energy values are negative, a positive sign of∆Hmix stands for phase-separation, while a
negative sign of∆Hmix stands for ordering (as in the case ofα-brass). The theoretical cal-
culations in Figure (1) are performed by combining density functional theory with methods
from statistical physics which will be explained in the nextsection: We start with the ran-
dom alloy (T → ∞) and go down to temperatures where short-range order sets in. Figure
1 shows that the calculation neglecting ordering phenomena(T = 105K, corresponding
to a random alloy) leads to much higher mixing enthalpies than in experiment. For higher
Zn concentrations a good agreement between experiment and calculated mixing enthalpies
can only be reached, if ordering phenomena are taken into account.

Before we discuss, how to calculate SRO, we need a a measurehowto quantify it. Zi-
man5 nicely described the difficulty to handle ordered zones in a disordered matrix by Fig.
(2): For the given configuration, we cannot decide, if the atom marked by an arrow belongs
to a “cluster of pure A-atoms” or to a “region of perfect AB-order”. He demonstrated by
applying percolation theory that almost every A-atom belongs to an infinite cluster of A
atoms. Paradoxically, if we are looking for ordered domains(Fig. (2)), then almost every
atom belongs to an infinite domain with perfect AB-ordering.Help comes by introducing
statistical concepts5–7: For a system consisting ofN sites each surrounded byM neigh-
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Per fect AB

Pure A

Figure 2. The dilemma in describing ordering (taken from Ziman5): Does the atom marked by an arrow belong
to “a cluster of pure A-atoms”, or to a “region of perfect AB-order”?

bors, the probability of a bond being of AB-type is given by

PAB = limN→∞

(
NAB

1
2MN

)

(2)

with NAB being the total number of AB-type bonds. The denominator gives the total
number of bonds in the system. If we assume that each site of the system is independently
occupied by an A- or B-atom with probabilityxA or xB (xA + xB = 1), thenPAB would
be2xAxB . Then, the nearest-neighbor correlation parameterΓAB can be defined as

ΓAB =
1

2
PAB − xAxB.

Dividing ΓAB by−xAxB leads to the well-knownWarren-Cowley short-range order pa-
rameter8

αj = 1− P j
AB

2xAxB
. (3)

Here,αj is already extended to arbitrary neighbor distancesj. The sign ofαj indicates
whether atoms in a given distancej prefer AB-ordering (αj < 0) or clustering (αj > 0).
The SRO parameter are normalized such that−1 ≤ αj ≤ +1. Sinceαj can be determined
from diffuse X-ray and neutron diffraction experiments9–11, aquantitativecomparison be-
tween calculation and measurement is possible.

If we wish to describe and understand the properties of different solid phases and their
stability on a quantum-mechanical basis, we have to solve three fundamental problems
(Fig. 3):

(i) The configurations-space problem:In general, first-principles calculations only con-
siders atomic relaxations in the unit cell, but do not allow for exchange processes between
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Figure 3. Comparison between predicted and measured precipitation in Al-rich Al-Li alloys. The theoretical
description demands to overcome the four fundamental problems in materials modelling.

individual atoms. The latter is a prerequisite for an efficient and reliable ground-state
search, i.e. for finding the configuration being lowest in energy for a given concentration.
(ii) The multiscale problem:The quantitative prediction of short-range order phenomena
often requires models with giant unit cells. Model systems containing up to106 atoms
may be demanded, i.e. much more than the about 500 metal atomstreatable by today’s
computers.
(iii) The temperature problem:The temperature-dependence of ordering phenomena must
not be neglected. However, in general, electronic structure theories are constructed to study
T = 0K properties.

In principle, there is a fourth problem, namely the fact thatmany properties of alloys are
not understandable in the framework of thermodynamics. In order to go beyond equilib-
rium properties of the system, kinetic approaches have to beconsidered. As a consequence
the system’s properties becometime-dependent. As will be demonstrated in section 2, it is
not an easy task to transform kinetic simulation results into a real-time scale.

The main aim of this lecture is to study the bulk and surface properties of metal alloys
withoutany experimental parameters as input. As already mentionedin the Introduction,
we use Density Functional Theory (DFT)12, 13 as starting point for our studies. Although
DFT permits one to calculate alloy properties with an accuracy that often allows for a
quantitative comparison with experimental data, it is usually limited to a small subset of
the configuration space. The geometric relaxation of unit cells consisting of more than 100
atoms already becomes extremely difficult, and even impossible for some cases. So, com-
pared to the2N configurations of a binary system containingN atoms, we are restricted
to a very small part of the parameter space. Normally, a set of“intuitive structures” is
chosen and that with the minimal energy is postulated as ground-state configuration. This,
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Figure 4. The concept of cluster expansions: The crystal is separated in characteristic figures (here, shown for
the fcc-lattice). The energy of any configuration can then bewritten as linear combination of the characteristic
energiesJf of the figures.

however, fails to allow for surprises, only one of the choseninput structures can result as
ground-state. In order to circumvent this problem, the accuracy of DFT is extended to
huge configuration spaces by combining DFT with concepts from statistical mechanics.
The basic idea by Sanchez, Ducastelle and Gratias14 is called “Cluster Expansion” (CE),
and sketched in Fig. (4): For a given underlying lattice, thecrystal structure is divided into
characteristic figures such as pairs, triangles, etc. Then,the energy ofanyconfigurationσ
on this lattice can be uniquely written14 as linear combination of the characteristic energies
J of each individual figure. In practice, the only error we makeis that the sum must be
truncated at some point. TheΠf ’s in Fig. (4) are structure-dependent factors and will be
discussed in detail in section 2.2.

2 Methods

2.1 Elastic properties of alloys from density functional theory

Density functional theory (DFT) represents the probably most important many-particle ap-
proach in solid-state physics with respect to applications. Since there exists a number of
excellent review articles (see e.g.15, 16) and books (see e.g.17–19) about DFT, only some
general remarks will be given: DFT is based on the Hohenberg-Kohn-theorem12 stating
that the energy of a system of interacting electrons in an external potential depends only
on the ground state electronic density. In our case, namely the investigation of solid struc-
tures, the external potential is the Coulomb potential caused by the nuclei in a solid. The
ground-state density can in principle be calculated from a variation ansatz, i.e. without any
Schrödinger-equation, however for treating real problems the variational approach is un-
practicable. Help came in 1965 by Kohn and Sham13 who showed that the density wanted
is given by the self-consistent solution of a set of single particle equations, called Kohn-
Sham equations:

[

− ~
2

2m
∇2 + Ve−nuc(r) + VH(r) + VXC(r)

]

Ψi(r) = ǫiΨi(r) (4)

In this Schrödinger-like equation, the first term on the left side represents the kinetic en-
ergy operator,Ve−nuc the Coulomb potential due to the nuclei,VH the Hartree potential,
andVXC is the exchange correlation potential. The latter comes from replacing the kinetic
energy of interacting particles by that of non-interactingparticles (which can be treated
exactly) plus a term containing all correlation and exchange effects (which is unknown,
but small compared to the other energy contributions). Well-known approximations for
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VXC are the Local Density Approximation (LDA)20, 21 and the Generalized Gradient Ap-
proximation (GGA)22 . In LDA, the energy density of the inhomogeneous system is ap-
proximated by the density of thehomogeneouselectron gas which possesses exactly the
same density as the actualinhomogeneoussystem. Although this sounds like a very rough
approximation, especially for systems with strongly varying density, it works astonishing
well for a huge number of problems. In GGA, additionally the gradient of the density is
considered which can be important for systems wheren(r) changes dramatically withr.

In practice, we can distinguish between more or less two different types of strategies:
Methods using complex, but efficient basis sets for the wavefunctions, as the Linearized
Augmented Planewave method (LAPW) and methods based on so-called pseudopotentials
(PP) using plane waves as basis set (for a survey see e.g. the book by Singh23). The con-
cept of pseudopotentials is roughly spoken that most physical properties of a solid are
determined by the valence electron structure. Then, the number of plane waves necessary
to describe the system can be tremendously decreased by replacing core electrons and ionic
potential by a pseudopotential which is energetically muchweaker and corresponds to a
node-free wavefunction. Thereby, the pseudopotential hasto fulfil the conditions that (a)
the scattering properties of the elements are conserved and(b) outside the core-region pseu-
dopotential and pseudo-wavefunction are identical to the corresponding full potential and
wavefunction. Until some years ago, it was a very delicate task to study transition-metals
by “classical”, norm-conserving pseudopotentials24, 25. With the development of ultrasoft
pseudopotentials26, 27and more recently, so-called PAW-potentials (“Projector Augmented
Wave”)28, 29 concepts from LAPW entered in PP-codes and allow for an accurate and fast
treatment of practically all metal-system by a plane wave basis set.

In many cases, results retrieved from DFT calculations are used as input for other nu-
merical and analytic models to describe a certain class of properties of an alloy system.
One important example is the use of the DFT energetics in elasticity theory in order to
calculate the strain behaviour of metal alloys. In Subsection (2.2), we will see, how the
following concept permits one to understand the size versusshape relation of characteristic
microstructures in metal alloys. Since strain is determined by the mechanical behaviour
of the system, we separate the two components by creating an interface in a well-defined
orientation between A- and B-atoms and demand that the wholesystem act as a pseu-
domorphic, epitaxial system, i.e. there are no dislocations at the interface. The idea to
compare a binary alloy with an epitaxial film/substrate system allows to specify two types
of quantities30:
(i) The hydrostatic deformation energy∆Ehydro

A (a) being the energy required to hydro-
statically deform the solid elementA to the lattice constanta of the alloy.
(ii) Theepitaxial strain energy∆Eepi

A (a, Ĝ), representing the energy of the elemental solid
A epitaxially (or, biaxially) deformed to the “substrate” lattice constanta in the two direc-
tions orthogonal tôG andrelaxedalongĜ.
The ratio of these two energies defines theepitaxial softening function30, 31

q(a, Ĝ) =
∆Eepi

A (a, Ĝ)

∆Ehydro
A (a)

. (5)

Since it is always easier to deform a material epitaxially (biaxially) than hydrostatically
(triaxially), q ≤ 1. Small values ofq(a, Ĝ) indicate elastically soft directionŝG. As an
example, Fig. (5)(b) shows calculated softening functions, q(a, Ĝ), for the fcc-elements Al
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Figure 5. (a) Low index crystal orientations of the fcc-lattice indicated by hatched areas. (b) Epitaxial softening
functionq(a, Ĝ), Eq. (5), for Cu and Al calculated via LDA. The shaded areas mark the lattice parameter range
between the two components of the corresponding alloy. Arrows denote the position of the equilibrium lattice
constantaeq of each element. The lines are drawn merely to guide the eye.

and Cu along the crystal directions indicated in Fig. (5)(a). Obviously, the crystallographic
order of elastic softness can change as function of the lattice parameter. For example, an
only 2% compression of Al (Fig. (5)(b)) is softer along (110)than along (100), while at the
equilibrium the opposite is true. This clearly indicates that for a description of strain effects
in metals, not only the direction dependence of strain (anisotropicstrain effects), but also
the dependence of strain on the lattice parameter (anharmonicstrain effects) must be taken
into account32, 33. In the harmonic elasticity theory,q depends only on the direction̂G, but
noton the substrate lattice constanta30, 34, 35:

qharm(Ĝ) = 1− B

C11 + ∆γharm(Ĝ)
(6)

with bulk modulusB = 1
3 (C11+2C12) and anisotropy parameter∆ = C44− 1

2 (C11−C12).
The harmonic constantsC11, C12, andC44 can be easily calculated from first-principles
calculations30 and consequently,∆ andB, too. γharm is a geometric function of the
spherical anglesΘ (polar angle) andΦ (azimuth angle) formed bŷG:

γharm(Φ,Θ) = sin2(2Θ) + sin4(Θ)sin2(2Φ) (7)

=
4

3

√
4π

[

K0(Φ,Θ)− 2√
21
K4(Φ,Θ)

]

Here,Kl is the Cubic harmonic of angular momentl. If anharmonic effects become im-
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Figure 6. Parametric three dimensional presentation of theconstituent strain∆Eeq
CS , Eq. (10), of Al-Cu for

compositions of 10%, 50%, and 90% Al. The distance from the surface to the centre of the cube represents the
amount of the strain energy.

portant as in metal alloys,q additionally depends on the lattice parametera:

γ(a, Ĝ) = γharm(Ĝ) +

lmax∑

l=0

bl(a)Kl(Ĝ). (8)

This equation now also includes higher order cubic harmonics as necessary to go beyond
the harmonic approximation (more details are given by Ozolins et al.32). Then, Eq. (6)
becomes

q(a, Ĝ) = 1− B

C11 + ∆γ(a, Ĝ)
. (9)

With q(a, Ĝ) resulting from DFT calculations as displayed in Fig. (5)(b), the quantity
γ(a, Ĝ) can be taken from Eq. (9) and, in turn, the coefficientsbl(a) results via Eq.
(8). The determination ofbl(a) permits one to generalize calculated epitaxial energies,
∆Eepi

A (a, Ĝ) for a discrete set of directions toarbitrary directionsĜ.
We will apply it to parameterize the equilibriumconstituent(or coherency) strain en-

ergy ∆Eeq
CS(x, Ĝ) which is defined as the strain energy required to maintain coherency

between a “piece” of materialA and a “piece” of materialB along an interface with orien-
tationĜ. This structure represents a so-calledsuperlatticeAnBn along a certain direction
Ĝ with n → ∞. In practice, the calculated elemental epitaxial energiesare used to de-
termine the constituent strain energy that is determined bythe equilibrium value of the
composition-weighted sum of the epitaxial energies ofA andB:

∆Eeq
CS(x, Ĝ) = min

ap

[x∆Eepi
A (ap, Ĝ) + (1− x)∆Eepi

B (ap, Ĝ)] (10)

whereap(x) is the lattice constant that minimizes∆Eeq
CS at each x. The constituent strain

can be illustrated by a three-dimensional parametrizationin terms of a sum of Kubic har-
monics, as shown in Fig (6) for for three different Al-concentrations of the system Al-Cu.
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Here, the distance from the surface to the centre of the cube represents the strain energy
in this crystallographic direction. For Al0.1Cu0.9, we see that this distance is maximal
along the body diagonal (marked by a bold circle), i.e. the crystallographic [111] direction,
whilst the distance is shortest along the square face diagonal (marked by a thin circle),
i.e. the [110] direction. With increasing Al composition the situation changes: Al0.5Cu0.5

owns the smallest constituent strain for [100], while [111]is still the hardest direction. For
90% Al, the figure has a “depression” in the very soft [100] direction, but a protrusion
in the hard [111] direction. As we will see next, the concept of constituent strain is very
important to describe morphological properties of alloys.

2.2 Controlling configuration space and length scales: The UNCLE code

As discussed in Section II, the idea of cluster expansions14 is to express the atomically
relaxed energy,E(σ), of arbitrary lattice configurationsσ on a given, underlying lattice as
linear sum of energies characteristic of geometric figures,such as biatoms, triatoms, etc.
(see Fig. (4)). To realize this idea, we transform the “alloyproblem” to an Ising model.
Each atomi of anA1−xBx alloy is assigned to a spin-valueSi = −1, if i is anA-atom,
and toSi = +1, if i is aB-atom. Then, the energy of each configuration can be expressed
by an Ising-expansion:

E(σ) = J0 +
∑

i

JiSi(σ)+
∑

j<i

JijSi(σ)Sj(σ)+
∑

k<j<i

JijkSi(σ)Sj(σ)Sk(σ)+ ... (11)

The first two terms on the right define the energy of the random alloy (with zero mutual
interactions), the third term contains all pair interactions, the fourth all three-body inter-
actions, etc. This equation can be brought to a compact form by introducing a correlation
functionΠ̄F for each class of symmetry-equivalent figuresF 36:

Π̄F (σ) =
1

NDF

∑

f

Si1(σ)Si2 (σ)...Sim
(σ) (12)

Here,DF gives the number of figures of classF per site. The indexf runs over theNDF

figures in classF andm denotes the number of sites of figuref . Then, Eq. (11) becomes35

E(σ) =
∑

F

DF Π̄F (σ)JF (13)

The coefficientsJF of the cluster expansion are determined by fitting to an inputdatabase.
This input database consists of a set of atomic configurations, whose energy has been deter-
mined, e.g., using ab-initio methods. An efficient cluster expansion method will facilitate
the exchange of structural information between the fitting routines and the first-principles
code. This decreases the amount of user time required and reduces the chances for human
error.

Our new computer code UNCLE (UNiversal CLuster Expansion)37 has been designed
to adapt the output of the pseudopotential code VASP27, 28, 38–40and the FLAPW code
FLAIR41–43. It should be mentioned though, that the source of the input values in the
database can be arbitrary, and do not necessarily have to originate from first-principles
calculations. For every input value in the database, the corresponding structural informa-
tion is given as follows: real-space coordinates of the supercell B, the number of each
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chemical atomic species in the cell, and positions of the basis atoms within the superstruc-
ture. The latter is given either in direct or Cartesian coordinates. Following the structural
information, the corresponding value of the observable to be expanded is given.

After the input structures have been read in, UNCLE checks whether all their basis
atoms lie on the lattice and whether there are symmetry-equivalent structures within the
input list. As trivial as this step may seem, in practice thisbecomes an extremely use-
ful feature; converged cluster expansions typically require around 50–150 input structures,
which tend to contain subsets of similar, though symmetrically-distinct, atomic configura-
tions. This can cause unintentional duplication of input structures, which not only wastes
calculation time, but also falsely overweights the structure during the fitting.

The choice of atomic configurations, from which the effective cluster interactions are
extracted, affects the ECIs. To avoid biasing the input database, and thus the ECIs, we
systematically increase the database. We begin with a hand-chosen set{σ} of usual sus-
pects, small-unit-cell structures derived from the parentlattice, and some quasi-random
structures. The first cluster expansion determined from this initial set makes predictions,
perhaps not accurately, for the ground states and other structures with a “low” enthalpy of
formation. One efficient tool to find structures with important “structure information” for
the determination of the interactions is a ground-state search44, 45 in the early stage of the
construction: For a “starting set” of about 20 DFT energies of arbitrary input-structures,
a CE fit is performed. The resulting interactions are then used to predict the energy ofall
possible structureswith e.g. up to 20 atoms per unit cell (the latter is indeed a very rea-
sonable restriction, since most known stable structures inbinary metal alloys own clearly
less than 20 atoms per unit cell). Such an analysis based on Eq. (13) takes only some
hours on a high-performance PC. Afterwards, the CE energiesof all structures are plotted
as function of composition, and a ground-state line is constructed. This is schematically
shown in Fig. (7): An individual structureσ only contributes to the ground-state line, if the
linear energy average between the stable structures at nexthigher and lower concentration
is energetically less favourable than the energy ofσ. More precisely, for three structures
α, σ andβ with x(α) < x(σ) < x(β) which are the lowest in energy for their individual
concentrations, the structureσ has to fulfil the condition

E(σ) <
x(σ) − x(β)

x(α) − x(β)
E(α) +

x(σ) − x(α)

x(β) − x(α)
E(β) (14)

in order to be the ground-state atx(σ). If Eq. (14) holds, a mixture of the phasesα and
β would be higher in energy than structureσ. With the ground state line constructed,
UNCLE automatically checks for all structures which lie on it, whether they are already
considered as input structures for the CE. If not, their DFT energy is calculated and added
to the input-structure set. This cycle is repeated, as shownin Fig. 8, letting the current
cluster expansion itself pick new structures to add to the database.

In practice, the prediction of the energy (or any other observable) over a system’s con-
figuration space (e.g., ground state searches) by the help ofUNCLE requires only minimal
user input. We have implemented an algorithm46 that automatically generates all possible
atomic configurations within all geometrically possible supercells for an arbitrary number
of basis atoms on a given lattice. The algorithm removes all symmetry-equivalent struc-
tures and still scales linearly with the number of unique configurations. For a ground state
search based on the cluster-expansion Hamiltonian, Eq. (13), the user only has to provide
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Figure 7. Schematic ground-state diagram of a binary alloyA1−xBx. The ground-state line was constructed
from 60 energies of relaxed structures (given by dots) by useof Eq. (14). Besides the pure elemental crystal
the ground-state line is formed by three structuresα, σ, andβ for concentrationsx = 0.25, 0.50, and0.75,
respectively. Ifσ would lie energetically above the dashed tie line betweenα andβ, a mixture ofα andβ would
be more stable thanσ.

(i) the maximum number of basis atoms up to which configurations are to be considered
and (ii) the figure set chosen by a previous genetic algorithmrun, along with the corre-
sponding effective cluster interactionsJ . With this input, UNCLE automatically generates
all possible superstructures (configurations) and determines their energy as predicted by
the cluster expansion. The resulting ground state diagram and convex hull essentially con-
stitute theT = 0 K phase diagram of the system.

We apply a new mathematical formalism to the cluster expansion that considerably
simplifies aspects. Two places where this is particularly useful is in calculating the cor-
relations (needed to perform the sum in Eq. (13)) and in MonteCarlo simulations. The
new formalism works in the “space” of3 × 3 integermatrices and provides an alternative
representation for structures and figures.

Any supercell of the parent lattice is an integer multiple ofthe parent cell. So if the
vectors of the parent lattice are the column vectors of a matrix A, there exists a matrixN ,
with all integer elements, such thatB = AN . The columns ofB are the lattice vectors
of the supercell and the determinant ofN will be the multiplicative factor; that is, if the
supercell has twice the volume of the parent cell, then|N | = 2.

BecauseB = AN , the integer matrixN is an alternative representation for the super-
lattice. Realizing this, we can then map the superlattice and its atomic sites to this alternate
representation, theg-representation, where the calculation of correlations isgreatly sim-
plified. In theg-representation, the atomic sites lie on an integer lattice, Z

3, and the shape
of the supercell is always orthorhombic. This simplifies thealgorithm and thus makes the
code much more efficient, both in time and memory.

Mapping to theg-representation is accomplished by decomposingN into its Smith
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Figure 8. Illustration of the self-consistent “outer loop”, which chooses the input structures of the cluster-
expansion.

normal form (SNF). The SNF is a diagonal form with special properties (for details, see
ref.46, 37). and forms the key for efficient computation of correlation:. The lattice vectors
and lattice points are represented by integers rather than floating point variables. No logic
statements in the loops are required; no comparison of floating point numbers are needed.
This improves both the efficiency and the robustness of the implementation.

Our implementation of UNCLE can be generalized to treat multinary systems. The
treatment of ternary compounds has already been implemented and used. The extension
beyond ternary systems is relatively simple and will be madeas soon as required. To handle
multinary expansions, the correlations must be calculatedover a set of cluster functions.
Formally there is also a set of cluster functions for a binaryexpansion, but there is only
one function in the set and it can be taken to be the occupationitself, that isθ(si) = si.

In the binary case, the correlation is computed merely by taking the product of each
occupation value (±1) over each vertex of a figure:

Π =
k∏

i=1

si (15)

and there is one ECI,J , for each figure. But in the case of an-ary system (n-components
represented byn spin values), the complete description of the correlationsrequires(n−1)
cluster functionsθl. Therefore, a figure withk vertices is no longer connected with a single
correlation function, but instead(n − 1)k correlation functionsΠ(j). The ith entry of the
superscript vector(j), which containsk entries, defines the cluster functionθl, which is to
be applied to theith vertex of the figure

Π(j) =

k∏

i=1

θl=(ji)(si) (16)
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Figure 9. Illustration of the Genetic Algorithm, which helps to safely identify the relevant figures that need to be
included in the CE-sum.

The full set of correlation functions of a figure consists of all the 2k possible vectors(j).
This number can be reduced according to the symmetry of a figure. The general multi-
nary formalism was laid out by Sanchez et al. in14, and later applied by Wolverton and
de Fontaine47. Along the lines of the latter, we use Chebychev polynomialsas cluster
functions in the ternary case, an example for their application is given in section 3.2.

The cluster expansion approach is exact only when all possible figures are included in
the cluster expansion sum, Eq. (13). But including such an (astronomic) number of terms in
the expansion is impractical. To be useful, the expansion must be truncated to a relatively
small number of terms without losing the expansion’s predictive power. Choosing which
figures to retain is the most critical step of the cluster expansion method. Nevertheless,
finding a good selection of figures is a formidable task: Theremay be thousands of figures
to choose from. Selecting a few dozen interactions from a pool of thousands is impossible
to do exhaustively.

So far an evolutionary approach based on a genetic algorithm(GA) has proven to be
the most effective way to choose the figures. The set of figureschosen by the GA results in
a cluster expansion that has better predictive power than ifchosen using other approaches.
The details of the algorithm, which is implemented in UNCLE,have been described in48, 49.
Its basic principle is illustrated in Fig. 9.

The fitness criterion for the selection of figures is aleave-many-outcross validation
score (see e.g.50, 51). This fitness scoreSCV is a measure of the predictive power for a
given choice of figures. Its value is calculated by the following scheme:

1. Randomly chooseN sets{σ}iprediction , (i ∈ {1...N}) of n different structures out of the
total pool of input structures.

2. For each of theN prediction-sets{σ}iprediction , perform a cluster expansion based
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on all input structures except for those contained in{σ}iprediction . The resulting ECIs are
not influenced by the energetics of{σ}iprediction.

3. Use the resulting ECIs to predict the energy of every member of {σ}iprediction and com-
pare it to the energy calculated by density functional theory.

4. Calculate the expectation value of the root-mean-squareerror for all the predicted
structures:

SCV =

√

1

N · n
∑

N

∑

n

|EDFT (σ) − ECE(σ)|2 (17)

Other successful applications of the genetic algorithm within a cluster expansion can
be found, e.g., in Ref.52. The GA has already been compared to the tetrahedron method
proposed in53 and the Variational Cluster Expansion54, 55, and proved to be the most reliable
in finding the choice of figures with the bestSCV.

The determination of Effective Cluster Interactions (ECI)is performed as follows: For
a given choice of figures and a set ofN input structures{σ}, the effective cluster interac-
tionsJ are extracted by minimizing56

∑

N

(

EDFT (σ)−
∑

F

DFJF ΠF (σ)

)2

+
∑

F

tFJF
!
= min , (18)

where the last term is adampingterm, which penalizes figures with large spatial extent (the
spatial extent is determined as the average distance of the vertices from a figure’s center of
mass)rF:

tF = c · (rF)λ (19)

The scaling variablesc andλ are set independently for pair figures and higher-order figures.
They arenotchosen by the user, but optimized within the genetic algorithm.

For the fitting of the interactions according to equation 18,a set of constraints is in-
troduced as proposed by Garbulsky and Ceder57. These constraints maintain the energetic
hierarchy of the input structures within the hierarchy of the predicted energetics:

∆HDFT(σ) − δ1(σ) < ∆HCE(σ) < ∆HDFT(σ) + δ1(σ) (20)

∆HDFT
GSL (σ) − δ2(σ) < ∆HCE

GSL (σ) < ∆HDFT
GSL (σ) + δ2(σ) (21)

∆HDFT
lowest (σ) − δ3(σ) < ∆HCE

lowest(σ) < ∆HDFT
lowest (σ) + δ3(σ) (22)

The first constraint simply requires that the enthalpy∆H(σ) of every structureσ, as cal-
culated by DFT and predicted by the CE, matches within the error barsδ1(σ). Independent
error barsδi(σ) are set up for the energy distance of the enthalpy of a structure to the
value of the ground state line at the respective concentration∆HGSL(σ), as well as for the
energy distance between a structure’s enthalpy and the enthalpy of the energetically low-
est structure at this concentration∆Hlowest(σ). For the actual fitting of Eq. (18) within the
constraints of Eq. (20), an algorithm proposed by Goldfarb and Idnani58 is implemented.

In some cases it may be more important to conserve the energy hierarchy for low-
energy input-structures than for less stable structures. Thus, the error barsδi(σ) defined

304



in equation 20 depend on each structure’s energy differenceto the lowest structure at the
respective concentration∆HDFT

lowest (σ), determined from first principles:

δ{1,2,3}(σ) = δconst

{1,2,3} · exp

(

−∆HDFT
lowest (σ)

kB · T

)

, (23)

The constant partδconst
{1,2,3} is specified at runtime. The Boltzmann-like energy-dependence

can be varied through the termkBT , and effectively turned off if desired.
While the fitting process is automatic, it introduces a set ofnew parameters for the fit

itself (c andλ) as well as the Garbulsky-Ceder constraints. While the variablesc andλ are
optimized automatically within the genetic algorithm,δi(σ) andkBT have to be specified
by the user. Nevertheless, it is simple to make sure that the constraints are set correctly by
checking if the hierarchy predicted by the cluster expansion correctly reflects the hierarchy
as determined by density functional theory. If this is not the case, then the constraints are
lowered until the energetic hierarchy is preserved.

The selection and determination of the effective cluster interactions becomes challeng-
ing for low-symmetry systems such as surfaces. In the case ofa surface, there is a loss of
translationalsymmetry in one dimension. Consequently, the number of independent fig-
ures increases significantly because the ECIs becomelayer dependent. Compared to a bulk
case, a larger number of input structures is necessary in order to determine the ECIs. How-
ever, it is possible to circumvent a part of this problem by treating the surface interactions
as “correction” of the bulk interactions.

Because energies are additive, we may write

∆HCE
f = ∆HV ol

f + ∆HSurf
f . (24)

This ansatz was first applied by Drautz et al. to study the energetics of Ni-rich Ni-Al sur-
faces59. The advantage in treating the surface interactions ascorrectionof the bulk inter-
actions comes from the fact that the DFT calculations for different surface terminations
and segregation profiles do not have to account for an infinitebulk reservoir. We only have
to make sure that the DFT slab model is thick enough that the center layer of the slab is
bulk-like. The energy of a structureσ can then be written as

E(σ) =
N∑

i=1







NF∑

dF ΠF (σ)JF +

N ′
F∑

d′F (Ri)Π
′
F (Ri)δJF (Ri)






. (25)

We see that for the surface part the interactions become sitedependent. Here,Ri defines
the position of the atomi with respect to the alloy surface. So, for an atomi within the
segregation profile, every individual interactionJF to neighboring atoms will be corrected
to JF + δJf (Ri). Naturally, with increasing distance from the alloy surface,δJF → 0 and
consequently the surface term (second term) in Eq. (25) becomes zero. In the case of e.g.
a Pt25Rh75(111) surface it turned outδJF → 0 already by the fourth layer52, 60.

In practice, for more complex surface problems, even this partition of the energy may
be an insufficient strategy. In some cases, finding a sufficiently predictive set of ECIs may
still require an unreasonably large number of DFT calculations. We are currently devel-
oping an additional concept to be implemented in UNCLE that will provide an improved
reference energy as starting point for surface investigation. The mixed space cluster ex-
pansion35, 36 is applied to incorporate strain effects into the referenceenergy part. Next,
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the energies of individual surface configurations are builtfrom fully relaxed1 × 1 sur-
face structures, and, again, added to the reference energy part. We call this the concept of
“structural bricks”. After its implementation, it will be described in detail in Ref.61.

There remains one critical point: As shown by Laks et al.35, any CE in real space
fails to predict the energy of long periodic coherent superlattices. For a given superlattice
AnBn, Eq. (13) predicts a formation enthalpy∆Hf = 0 asn → ∞. This indeed is an
intrinsic fault of any finite CE and easy to understand: If we consider anA atom of an
AnBn superlattice “far” away from theA/B interface so that all figuresf connect theA
atom exclusively to otherA atoms, then the finite CE interprets theA atom as a bulk crystal
atom and consequently,∆Hf = 0. However, as discussed in Section III.A, the formation
enthalpy of an infinite superlattice should be defined as the equilibrium constituent strain
energy, because in the limitn→∞ the superlattice formation enthalpy depends only on its
strained constituents, and not on the interface properties. The problem can be solved36, 35

by transforming a group of interactions to the reciprocal space and adding the constituent
strain term explicitely. This is easiest to do for the pair interactions. For this, we intro-
duce the Fourier transform of real-space pair interactions, Jpair(k) and the structure factor
S(k, σ):

Jpair(k) =
∑

j

Jpair(Ri −Rj) exp (−ikRj) (26)

S(k, σ) =
∑

j

Sj exp (−ikRj) (27)

Then the formation enthalpies for any arbitrary atomicallyrelaxed configurationσ are
expressed by36

∆HCE(σ) =
∑

k
Jpair(k)|S(k, σ)|2 +

∑

F

DFJF Π̄F (σ) + ∆ECS(σ). (28)

This solution was introduced by Zunger and co-workers36, 35 and is calledMixed-Space
Cluster Expansion(MSCE). The first term includes all pair figures ink-space. The second
term represents many-body interactions and runs over symmetry inequivalent clusters con-
sisting of three or more lattice sites. It also includesJ0 andJ1 from Eq. (11).DF again
stands for the number of equivalent clusters per lattice site, andΠ̄F (σ) are the structure-
dependent geometrical coefficients given by Eq. (12). The last term represents the con-
stituent strain energy of the structureσ, ∆ECS(σ), and can be calculated by expanding the
equilibrium constituent strain energy (Eq. (10) ),∆Eeq

CS(x, k̂), as35, 62

∆ECS(σ) =
∑

k
JCS(x, k̂)|S(k, σ)|2 (29)

with

JCS(x, k̂) =
∆Eeq

CS(x, k̂)

4x(1 − x) . (30)

Now, JCS contains the correct long-periodic superlattice limit, namely the constituent
strain energya.

aIt has been found62 that attenuating the constituent strain term can be important in strongly anharmonic, ordering

306



2.3 Extension to finite temperature and time-dependent properties

For finite temperature studies, Eq. (28) can be used in Monte-Carlo simulations. The code
we applied for studying thermodynamic properties is a simple Metropolis algorithm63 al-
lowing for flipping pairs of A and B atoms inarbitrary distance mutual with the aim to
reach the equilibrium configuration as fast as possible. Theprocedure is as follows:

1. Select randomly a pair of A and B atoms.

2. Calculate the energy differenceδE caused by exchanging the two atoms. IfδE < 0,
flip the two spins; ifδE > 0, flip the two spins with a probability ofexp(−δE/kT )
[again,E is obtained from Eq. (28)].

3. Go to 1.

Besides the temperature dependence of the alloy’s free energy, MC simulations can be used
to calculate coherent phase boundaries in the phase diagram. Following the fluctuation-
response theorem64 , the specific heatcv of the system at a certain temperature can be
calculated by the fact thatcv is proportional to the equilibrium fluctuations of the energy,
〈E2〉 − 〈E〉2. Since the energy exhibits a point of inflection for a second-order phase tran-
sition at the transition temperatureTtrans, its response functioncv = (∂E/∂T )v has a
maximum atTtrans (Fig. (10)(a)). Although a phase transition is –strictly spoken– only
defined for aninfinitesystem, one usually also speak from a phase transition of afinitesys-
tem, given by the maximum ofcv at the transition temperature as illustrated in Fig. (10)(a).
If the MC simulations are applied for different concentrationsx, the resultingTtrans val-
ues can be used to construct the coherent phase boundary of a system as displayed in Fig.
(10)(b) for the Al-rich side of the Al-Cu phase diagram65. The open circles are measured
values66. A small piece of the incoherent phase boundary is also shown. Yet, this boundary
cannot be calculated by our method which is restricted tocoherentalloy problems.

Another important application of MC simulations is the prediction the system’s or-
dering. Of special interest are short-range order effects in disordered alloys which can
quantitatively expressed in terms of SRO parameters as introduced in Section 1. For this,
we rewrite Eq. (3) to the equivalent form

αlmn(x) = 1− P
A(B)
lmn

x
(31)

wherePA(B)
lmn is the conditional probability that given anA atom at the origin, there is

aB atom at(lmn). For comparison with experimental data, the so-called “shells” lmn
are introduced which are defined by the distance betweenA andB atoms in terms of
half lattice parameters,(l a2 ,m

a
2 , n

a
2 ), e.g. for an fcc-lattice the nearest-neighbor distance

would be described by the shell(110), the second neighbor distance by(200) and so on.
As already mentioned, the sign ofα indicates whether atoms in a given shell prefer to order
(α < 0) or cluster (α > 0). The SRO parameter may be written in terms of the cluster
expansion pair correlations as32

αlmn(x) =
〈Π̄lmn〉 − q2

1− q2 (32)

type systems. This is realized by an exponential damping function. However, since attenuating the constituent
strain has no significant effect on the systems considered inthis paper, this will be not discussed here.
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Figure 10. (a) Specific heat as function of temperature near asecond-order phase-transition.cv exhibits a max-
imum atTtrans. (b) Calculated coherent phase boundary for Al-rich Al-Cu and comparison to experimental
data66 (open circles).

whereq = 2x − 1 and〈Π̄lmn〉 is the pair correlation function, Eq. (12), for shell (lmn).
In diffraction experiments the diffuse scattering due to SRO is proportional to the lattice
Fourier transform ofαlmn(x)9, 10

α(x, k) =

nR∑

lmn

αlmn(x)ei·k·Rlmn (33)

wherenR stands for the number of real space shells used in the transform. Equation (32)
together with (33) opens the possibility to compare both, experimental and theoretically
predicted diffuse diffraction patterns (reciprocal space) and SRO-parameters (real space).
This concept will be applied in Section 3.1 to understand SROphenomena in binary metal
alloysquantitatively.

Similar to the calculation of the input structures’ correlations for the cluster expan-
sion, the determination of the starting energy of the Monte Carlo cell is done within the
g-representation provided by the Smith normal form. The Monte Carlo cell is thus repre-
sented by the tensorG. Changing the atomic occupation of a site corresponds to changing
the corresponding integer value of one element ofG. In a Monte Carlo simulation, the
calculation of the energy changes due to changes in the occupation (atom swaps) can be
computed efficiently as only the energy contribution of those interactions “touched” by the
swapped sites needs to be evaluated. The tensorG is the only large entity stored at runtime,
requiring onlyone byteper site within the Monte Carlo cell; the correlations donot have
to be stored at runtime. The minimal memory footprint allowsfor Monte Carlo cells of
billions of sites, cpu time, rather than memory, becoming the limiting factor. A parallel
implementation is planned to take advantage of this approach.

Besides the problem of bridging length scales, many materials properties require sim-
ulation times reaching from fractions of a second to weeks. One important example is
the decomposition of an alloy into its constituents by precipitation. Precipitates represent
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Figure 11. Schematic crystal-plane of anA1−xBx alloy with characteristic islands formed byB (black) atoms
during the aging process.

an important part of the microstructure of many alloy systems. Hereby, the dynamic evo-
lution of precipitates takes place on a time scale of severalhours, days or even months
(see e.g.69, 45). The CE Hamiltonian can help to solve this second scaling problem, too, by
using the effective interactions in Kinetic Monte-Carlo (KMC) simulations which is one
of the most successful approaches to describe diffusion, growth and microstructure evolu-
tion in alloy systems67. The combination of CE and KMC simulations can be applied to
simulate the aging of coherent precipitates in binary alloysystems. This decomposition
reaction is sketched in fig. (11) by a simplified two-dimensional presentation: A quenched
solid-solution (left frame) is aged at a given temperature.During this aging process islands
are formed (right frame) which may show a characteristic size- and shape distribution (it
is assumed that islands are formed by blackB-atoms in anA-rich A1−xBx alloy). The
question is whether the distribution of these islands as a function of aging time can be
calculated from first-principles.

The activations barrier for the exchange process can be expressed in terms of the
temperature-dependent diffusion constantD(T ). In order to calculateD(T ) by a first-
principles approach, it is assumed that the exchange of atoms is given by a vacancy-
controlled diffusion. Therefore, in a first step, activation barriers must be calculated as a
function of the structural environment. In the case of precipitation in which the alloy con-
tains only a tiny amount (typically 1-5%) of the precipitating element, one often restricts
the calculation of activation barriers to the case of the dilute limit (atom B in an A crystal)
and the structural environment at the interface between solid-solution and precipitate. Al-
though such activation barriers can -in principle- directly be used in KMC programs, they
do not allow for a consideration of the temperature dependence as well as a transformation
to real time scales. For this purpose, the complete phonon spectra for the relaxed structure
corresponding to the vacancy formation, migration and the final configuration have to be
calculated. This might be used in the framework of a transition state theory to predict the
temperature dependent diffusion constant of the system,D(T ). Following classical dif-
fusion theory the exchange frequency is proportional to thesquare of the atomic distance
divided by the diffusion constant and the number of possible“jump directions” (e.g. six
in a simple cubic lattice). If an exchange process between two certain neighbored atoms
has been already chosen, then, consequently, the frequency1/τ0 for a chosen exchange
process as a function of temperatureT is connected toD(T ) by the relation

τ0(T ) =
a2

nn

Dexp(T )
, (34)

309



E
ne

rg
y

A

B

From MSCE

From Dexp

Figure 12. Basic assumption in our simulations45: While the energy difference between two neighboring atoms
can be easily derived from the MSCE, an average and temperature dependent activation barrier is calculated from
experimental temperature dependent diffusion data.

with ann being the average nearest-neighbor distance between atoms. Now, one can easily
transform KMC steps to real time.

The strength of the CE to control a huge configuration space can now be utilized to
calculate the energy difference forall possible exchange processeseven, if there a millions
of them. This allows to force atoms to move and to calculate the time which corresponds
to this individual exchange process. The more unlikely an exchange process is, the longer
is the corresponding time for this process. The concept is related to the “residence-time
algorithm”68 as discussed in chapter 12. for nearest-neighbor exchange processes only69.

For the analysis of the shape of nanoclusters and precipitates, it is often helpful to apply
the mixed-sace form of the cluster expansion (MSCE), because it allows for a quantitative
separation of chemical and elastic energy parts70. Then, an accepted spin-flip would de-
mand a recalculation ofS(k, σ) in eqn. (28). However, as shown by Lu et al.71, the MSCE
method helps to avoid the necessity of recalculatingS(k, σ) after each atomic movement
by directly calculating thechangein Jpair(k)|S(k, σ)|2 for each movement in real-space71.
In the applied algorithm, a single KMC step is nownot longer a constant real time unit,
but depends on the corresponding probabilityWtot. A single kinetic MC step corresponds
indeed to only a single exchange of oneB atom with oneA atom andnot to one trial-flip
for eachB atom. Since the “flip channel”i is always chosen randomly and usually a large
number ofB atoms (typically103−105) is considered to describe real aging processes, the
probability that the sameB atom is chosen in stepi -when chosen already in step(i− 1)-
is extremely small. Due to the large system size it is not necessary to forbid certain ex-
changes betweenA andB atoms, i.e. we do not have to give up the restriction that the
algorithm should be based on the Markovian process.

3 Applications

3.1 Ground-state search and short-range order

Our notions of the phase stability of compounds rest to a large extent on the experimen-
tally assessed phase diagrams. Long ago, it was assumed thatin the Cu-Pd system for
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Name L12 S1 S2 (LPS 3) S3

Crystal
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ture
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Figure 13. [Color online] The ground state structures S1, S2and S3, all related to L12 directly or to an L12-
superstructure incorporating antiphase boundaries. These structures belong to the space groupP 4

m
mm (i.e.

D1
4h in Schoenflies nomenclature).

xPd ≤ 25% there are at least two phases at high temperature (L12 and a L12-based
superstructure), which evolve into a single, L12-ordered phase at low temperature. By
constructing a first-principles Hamiltonian via the approach described above, a yet undis-
covered Cu7Pd ground state atxPd = 12.5% (referred to as S1 below) and an L12-like
Cu9Pd3 superstructure at 25% (referred to as S2). We find that in the low-temperature
regime, a single L12 phase cannot be stable, even with the addition of anti-sites. Instead
we find that an S2-phase with S1-like ordering tendency will form. Previous short-range
order diffraction data is quantitatively consistent with these new predictions (details can be
found in ref.72, 73). This study exemplifies how even well-established phase phenomena in
classic alloy systems can be challenged via first principlesstatistical mechanics and calls
for further experimental examination of this prototypicalsystem.

Figure 14 shows the energies of≈ 220 ordered configurations and indicates the break-
ing points of the convex hull, i.e. the ground state structures. Figure 13 gives the structural
description of the ground states. We find (a) The Cu7Pd (S1) structure atxPd = 12.5%, (b)
the Cu3Pd (S2 or LPS 3) structure at 25% and (c) the Cu8Pd4 (S3) structure atxPd = 33%.
We find that atxPd = 25% andT = 0 K S2 is considerably stabilized over L12 as ground
state.

Finding (b) is in agreement with Refs.74, 75, 71, 76 ; S2 is predicted as a ground state
at x = 1/4, lower in energy than L12: ∆Hf (S2) = −102.6meV/atom,∆Hf (L12) =
−99.8meV/atom. At 12.5% Luet al.77 predicted the D1 structure, which, though not
identical to S1, is also similar to L12. The S1 ground state is related to the L12 structure
by a simple exchange of Cu and Pd rows along[100] as shown in Fig. 13. Previous studies
(e.g.78–80) that obtained L12 as ground state at≈18% referred to the ANNNI Ising model,
or performed an electronic mean field approach74. However, negligence of S1 in the first-
principles input (Ref.76) will favour interactions that are “blind” for S1.

Given that we predict at an S1 phaseT = 0 K at 12.5% Pd and an S2 phase at 25% Pd,
it is interesting to characterize the phase(s) at intermediate concentrations. In order to
examine the energiesECE(σ) of structures with cells bigger than 20 atoms (Fig. 3), we
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Figure 14. [Color online] Ground state diagram in the Cu-rich regime. Each triangle represents the predicted
energy for one specific crystal structure. The solid line is the convex hull of allO(106) energies. The ground
state structures are depicted in Fig. 13. L12 is not a ground state, but rather the L12-related superstructure S2
(LPS 3).

constructed large 24×24×24 cells and sample their energies via Monte Carlo (vibrational
entropy was not taken into account). Due to the variety of incommensurate superstructures
with non-coherent phase boundaries, we have to restrict ourstudy to low temperatures
b—a more thorough thermodynamic study may not be feasible with Monte Carlo. Never-
theless, the critical temperatureTc ≈ 800 K for the phase transition from A1 to S2 is in
good agreement with experiment (TExp.

c ≈ 780 K). Simulated annealing in the intermedi-
ate region provides indication of a transition from the disordered high temperature phase to
a lower temperature S1-like S2 structure. The latter resembles LPS 3-like ordering, perme-
ated with an S1-like patternc. An investigation of the energetic hierarchies of these phases
supports the hypothesis of the formation of an S1-like S2 structure.

Unfortunately, in the S1-like S2 region, no recent diffraction data are available in order
to directly compare experimental with our calculated results, hence we examine SRO data
from the region of coherency. In Fig. 15 we show our calculations of the SRO parameters
αlmn for 29.8% Pd, where several studies yielded comparable data.

The study above is a characteristic example, how ab-initio based studies can help to
clarify uncertain, low-temperature regions in alloy phasediagrams: Contrary to previous

bIncoherencies, originating from smoothened APB profiles and wetting around the phase transition cannot be
accounted for by our MC simulation, which is restricted to the fcc lattice.
cNarrow regions of two-phase coexistence could not be captured by our MC simulation. However, such two-
phase regions, even if very narrow, due to Gibbs’ phase rule.
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Figure 15. (a) Experimental81 vs. theoretical short-range order for Cu0.702Pd0.298 at T=773 K in reciprocal
space. The SRO exhibits peaks of the fundamental wave vectork = (1, 1/2M, 0) at M = 3, in excellent
agreement to the superstructure period of S2. (b) Real spaceSRO for neighboring pairs separated by [hkl].

assessments, Cu-Pd does not have an L12 ground state, but the Cu3Pd S2 structure is more
stable at 25% composition. Furthermore, a new ground state S1 is predicted at lower
composition with Cu7Pd stoichiometry, hence the features of L12-like ordering observed
experimentally at 17%78 are due to a S2 with S1-like defects, not due to an L12 phase.

3.2 Point-defects at grain boundaries

For the Ni-Al system, it is well known that the ordering of defects plays a fundmental role.
Understanding the defect structure and stability within the NiAl B2 phase and the Ni2Al3
phase is key to understanding the system. In the sense of the cluster expansion lattice, both
phases can be described as bcc-based superstructures. It iswell known82–85 that on the
simple cubic Ni sublattice of the B2 NiAl phase, vacancies are the dominant defect type
in Ni-poor NiAl. Also, if Ni2Al3 is to be described as a decoration of Ni and Al atoms on
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a bcc lattice, then16 of the lattice sites are left vacant. Therefore, in order to study defect
order with NixAl1−x in the concentration range0.4 ≤ x ≤ 0.5, the cluster expansion
needs to explicitly treat vacancies as a third component.

In order to obtain a converged cluster expansion for this system, 129 structures were
calculated using VASP. Based on a total number of 711 figures with up to six vertices, the
genetic algorithm chose a set of figures with a total of 82 ECIJF . Two hundred prediction
sets, each withn = 10 predicted structures, were used to compute the cross-validation-
score, resulting in a CV score ofSCV = 6.0 meV.

Figure 16 shows the resulting ground state diagram as predicted by UNCLE. The
ground state diagram shown in Fig. 16 has been limited to NixAl (1−x) concentrations
0.4 < x < 0.6, as this is the only concentration regime, whithin which bcc-based su-
perstructes are observed experimentally82, 86. Furthermore this investigation exclusively
focused on the description of point defectswithin this concentration regime, which is why
the cluster expansion only required convergence for this concentration range. The con-
figuration space search included all ternary bcc-superstructure with 16 sites or less and
with less than 21% vacancies. The number of unique configurations is nearly 13 million.
To compute these energies of all these configurations using UNCLE requires less than 36
hours on a single 2.8 GHz processor.

Each “�” in Fig. 16 indicates the enthalpy of a structure that was calculated by DFT
and included in the cluster expansion to extract the ECIs. Every “+” in the figure corre-
sponds to the cluster expansion prediction for one atomic configuration. Consistent with
the observed phase diagram, Ni2Al3 and B2 are predicted to be stable atx = 0.4 and
x = 0.5 respectively. The third stable ground state within the converged part of the cluster
expansion is Ni2Al at x = 0.6, which can be observed experimentally to be a metastable

Figure 16. Calculated ground state diagram of all bcc-basedsuperstructures with up to 16 sites occupied by Ni,
Al and less than 21% vacancies.
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state86.
The cluster expansion Hamiltonian corresponding to the ground state diagram of Fig.

16 can also be applied to study the defect order at finite temperature. More than the ground
state search (which holds no surprises), it is in this context that the cluster expansion is
useful for the Ni-Al system. As one example, Fig. 17 providesa view into the ordering of
B2-NiAl for T ≈ 4900K (left) and room temperature (right) resulting from Monte Carlo
modelling. The (100) plane shown in the figure is one layer of aMonte Carlo cell consisting
of one million lattice sites. The concentration of the threeconstituents have been fixed to
50% Ni, 45% Al and 5% vacancies.

In full global thermodynamic equilibrium, a Monte-Carlo cell containing 50% of both
Ni and Al should exhibit a single B2-ordered domain. Thus a cut along a (100) plane would
only contain either Ni- or Al-atoms, depending on whether itlies within the Ni- or the Al-
sublattice. Fig. 17 shows that the (100)-plane consists of both Ni- and Al-domains. These
regions of Ni and Al belong to different B2-domains, which coexist within the Monte Carlo
cell. By changing the external parameters of the simulation, the Monte-Carlo cell can be
brought into thermal equilibrium and the different domainsvisible in Fig. 17 merge into
a single B2-domain. While strongly increasing the requiredcalculation time, this does
not add any new scientific insight, as the presence of the anti-phase boundaries between
different B2 domains does not interfere with the observation of short-ranged vacancy order
in the bulk of the respective B2-domains. The important point is to note, that Fig. 17
shows B2-domains with a stacking fault in between them andnot domains of pure Ni or
Al. This allows us to observe Al-subplanes of the B2-structure (light-grey domain) and the
Ni-subplanes (dark-grey domains) within a single cut along(100).

For the high temperature case the formation of different B2-domains (dark and light
gray) on the lattice can already be observed. The vacancies (white) occupy nearly random
sites within Ni- and Al-subplanes. At room temperature the formation of the different B2-
domains is complete and the vacancies form diagonal chains within the Ni-subplanes of

Figure 17. B2-NiAl with 5% vacancies: Cut along the (100) orientation through a100×100×100 Monte-Carlo
cell forT = 4936 K (left) andT = 294 K. It can be seen that for lower temperatures all vacancies (white) short
range order in the Ni-domains (black).
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the B2-phase only. These chains can be interpreted a starting growth of the Ni2Al3 phase,
where the vacancies are ordered in the same way. Thereby suchsimulations allow for a
quantitative analysis of the phase stability of these alloyphases. A detailed interpretation
and evaluation of the structural properties can be found in reference87.

3.3 Surface Segregation

As known from experimental studies on Pt25Rh75(111)88, 89, this surface possesses a char-
acteristic segregation profile: While the top layer shows a Pt enrichment, Pt depletion is
found for the layer underneath. The existence of an equilibrium segregation profile is
manifested by chemically resolved STM images88, Low Energy Ion Scattering (LEIS) and
quantitative Low Enery Electron Diffraction (LEED) analyses89. These studies unambigu-
ously show that for annealing temperatures above∼ 1000 K the observed segregation
profile does not longer depend on the experimentally chosen annealing temperature of the
sample.

Considering the energetics of the alloy system Pt-Rh, the pronounced segregation pro-
file appears to be a surprise, because formation enthalpies of intermetallic compounds are
all between 0 and about -20 meV/atom, i.e. smaller thankT at room temperature. This
is in agreement with the bulk phase diagram of this binary system which does not show
any long-range ordered structures in the experimentally accessible temperature regime. In-
stead, a fcc-based solid solution is stable for all concentrations. As a consequence of this
small heterogeneous bonding, all constructed effective cluster interactionsJF for bulk and
surface are unusually small, possessing energy values muchsmaller than 20 meV per atom,
and cannot explain the characteristic segregation profile found for the (111) surface. How-
ever, there is one relevant deviation between the energeticproperties of the bulk and the
surface: Due to the symmetry break the onsite energies of individual atomic sites which are
defined byJ0 andJ1 in Eq.(11) are different for the near-surface layers compared to the
bulk. For only weakly ordering systems as the Pt25Rh75(111) surface these onsite energies
represent a good measure for the segregation behaviour. Actually, it turns out that the top
layer shows a tremendous tendency for an enrichment with Pt atoms reflected by an energy
gain of about 0.2 eV per atom! Interestingly the opposite is true for the layer underneath:
Here, the onsite energy speaks for a Pt depletion and clustering of Rh atoms.

In order to predict the segregation profile quantitatively,Monte-Carlo simulations were
performed. As displayed in Fig. 18(left) our constructed cluster expansion is able to repro-
duce the experimental segregation profile determined via quantitative LEED analysis89. It
turns out that for this surface system already a40×40 atom cell per layer was sufficient for
a quantitative description of the segregation profile as well as the substitutional ordering.
For the latter, fig. 18(right) compares an STM image with atomic and chemical resolution88

with our predicited one. It can be seen that there is an excellent (quantitative) agreement
between experiment and theory.

4 Concluding Remarks

With the program package UNCLE, we present a tool that makes the cluster expansion
more accessible to non-specialists and applicable to a widevariety of physical problems.
Several extensions of the formalism were presented: Use of theg-representation simplifies
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Figure 18. Left: Experimentally determined and predicted segregation profile for Pt25Rh75(100) (Tanneal =
1400K). Right: Corresponding short range-order behaviour as found by STM and predicted by our CE approach.

and automates the “chores” of setting up and constructing a cluster expansion, performing
ground state searches, and using the ECIs in Monte Carlo simulations. By automating
much of the cluster expansion construction and use, problems arising from user errors are
less likely, resulting in more robust predictions. The treatment of surface alloys and related
systems is made possible through the separation of the cluster expansion Hamiltonian into
a bulk and surface part.

Since the approach used is only a few years old, its application potential is by no means
already reached. There are a number of solid properties which may be treated via DFT,
CE, and MC after some further development, as e.g. nucleation processes or cluster from
the gas phase. Since the approach allows to describe the behaviour of real alloy systems, a
strong interplay with experimental groups is highly desirable.
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33. V. Ozoliņš, C. Wolverton, and A. Zunger, Phys. Rev. B,57, 6427, 1998.
34. D. J. Bottomeley and P. Fons, J. Cryst. Growth,44, 513, 1978.
35. D. B. Laks, L. G. Ferreira, S. Froyen, and A. Zunger, Phys.Rev. B,46, 12587, 1992.
36. A. Zunger, in: NATO ASI on: Statics and Dynamics of Alloy Phase Transformations,

P. E. A. Turchi and A. Gonis, (Eds.), p. 361, Plenum Press, NewYork. 1994.
37. D. Lerch, O. Wieckhorst, G. L. W. Hart, R. W. Forcade, and S. Müller, submitted to

Modelling Simul. Mater. Sci. Eng.
38. Georg Kresse and Jürgen Hafner, Phys. Rev. B,47, 558, 1993.
39. Georg Kresse and J. Furthmüller, Phys. Rev. B,54, 11169, 1996.
40. Georg Kresse and J. Furthmüller, Comp. Mat. Sci,6, 15, 1996.
41. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B,24, no. 2,

864–875, Jul 1981.
42. M. Weinert, J. Math. Phys.,22, no. 11, 2433, Nov 1981.
43. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B,26, no. 8, 4571–4578, Oct

1982.
44. L. G. Ferreira, S.-H. Wei, and A. Zunger, J. Supercomp. Appl., 5, 34, 1991.
45. S. Müller, J. Phys.: Cond. Matter,15, 2003.

318



46. Gus L. W. Hart and Rodney W. Forcade, Phys. Rev. B,77, no. 22, 224115, 2008.
47. C. Wolverton and D. de Fontaine, Phys. Rev. B,49, no. 13, 8627, 1994.
48. Volker Blum, Gus L. W. Hart, Michael J. Walorski, and AlexZunger, Phys. Rev. B,

72, no. 16, 165113, 2005.
49. G. L. W. Hart, V. Blum, J. Walorski, and A. Zunger, Nature Materials,4, no. 5, 391,

2005.
50. A. van de Walle and G. Ceder, Journal of Phase Equilibria,23, 348, 2002.
51. K. Baumann, Trends in Analytical Chemistry,22, 395, 2003.
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We have developed a parallel computing framework for large spatiotemporal-scale atomistic
simulations of materials, which is expected to scale on emerging multipetaflops architectures.
The framework consists of: (1) an embedded divide-and-conquer (EDC) framework to de-
sign linear-scaling algorithms for high complexity problems; (2) a space-time-ensemble paral-
lel (STEP) approach to predict long-time dynamics while introducing multiple parallelization
axes; and (3) a tunable hierarchical cellular decomposition (HCD) parallelization framework
to map theseO(N) algorithms onto a multicore cluster. The EDC-STEP-HCD framework
has achieved: (1) inter-node parallel efficiency well over 0.95 for 218 billion-atom molecular-
dynamics (MD) and 1.68 trillion electronic-degrees-of-freedom density functional theory-based
quantum-mechanical simulations on 212,992 IBM BlueGene/Lprocessors; (2) high intra-node,
multithreading and single-instruction multiple-data parallel efficiency; and (3) nearly perfect
time/ensemble parallel efficiency. The spatiotemporal scale covered by MD simulation on a
sustained petaflops computer per day (i.e. petaflops•day of computing) is estimated asNT
= 2.14 (e.g.N = 2.14 million atoms forT = 1 microseconds). Results of multimillion-atom
reactive MD simulations on nano-mechano-chemistry revealvarious atomistic mechanisms for
enhanced reaction in nanoenergetic materials: (1) a concerted metal-oxygen flip mechanism at
the metal/oxide interface in thermites; (2) a crossover of oxidation mechanisms in passivated
aluminum nanoparticles from thermal diffusion to ballistic transport at elevated temperatures;
and (3) nanojet-catalyzed reactions in a defected energetic crystal.

1 Introduction

Fundamental understanding of complex system-level dynamics of many-atom systems is
hindered by the lack of validated simulation methods to describe large spatiotemporal-
scale atomistic processes. The ever-increasing capability of high-end computing platforms
is enabling unprecedented scales of first-principles basedsimulations to predict system-
level behavior of complex systems.1 An example is large-scale molecular-dynamics (MD)
simulation involving multibillion atoms, in which interatomic forces are computed quan-
tum mechanically to accurately describe chemical reactions.2 Such simulations can couple
chemical reactions at the atomistic scale and mechanical processes at the mesoscopic scale
to solve broad mechano-chemistry problems such as nanoenergetic reactions, in which re-
active nanojets catalyze chemical reactions that do not occur otherwise.3 An even harder
problem is to predict long-time dynamics, because the sequential bottleneck of time pre-
cludes efficient parallelization.4, 5
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The hardware environment is becoming challenging as well. Emerging sustained
petaflops computers involve multicore processors,6 while the computer industry is facing
a historical shift, in which Moore’s law due to ever increasing clock speeds has been sub-
sumed by increasing numbers of cores in microchips.7 The multicore revolution will mark
the end of the free-ride era (i.e., legacy software will run faster on newer chips), resulting
in a dichotomy—subsiding speedup of conventional softwareand exponential speedup of
scalable parallel applications.

To address these challenges, we have developed key technologies for parallel comput-
ing with portable scalability. These include an embedded divide-and-conquer (EDC) algo-
rithmic framework to design linear-scaling algorithms forbroad scientific and engineering
applications (e.g. equation solvers, constrained optimization, search, visualization, and
graphs involving massive data) based on spatial locality principles.8 This, combined with
a space-time-ensemble parallel (STEP) approach9 to predict long-time dynamics based on
temporal locality10 and a tunable hierarchical cellular decomposition (HCD) parallelization
framework, maximally exposes concurrency and data locality, thereby achieving reusable
”design once, scale on new architectures” (or metascalable) applications.11, 12 It is expected
that such metascalable algorithms will continue to scale onfuture multicore architectures.
The ”seven dwarfs” (a dwarf is an algorithmic method that captures a pattern of computa-
tion and communication) have been used widely to develop scalable parallel programming
models and architectures.6 We expect that the EDC-STEP-HCD framework will serve as
a ”metascalable dwarf” to represent broad large-scale scientific and engineering applica-
tions.12

We apply the EDC-STEP-HCD framework to a hierarchy of atomistic simulation
methods. In MD simulation, the system is represented by a setof N point atoms whose
trajectories are followed to study material properties.4, 13, 14 Quantum mechanical (QM)
simulation further treats electronic wave functions explicitly to describe chemical reac-
tions.15–17 To seamlessly couple MD and QM simulations, we have found it beneficial to
introduce an intermediate layer, a first principles-based reactive force field (ReaxFF) ap-
proach,18, 19 in which interatomic interaction adapts dynamically to thelocal environment
to describe chemical reactions. The ReaxFF is trained by performing thousands of small
QM calculations.

The metascalable simulation framework is enabling the study of a number of exciting
problems, in particular, how atomistic processes determine material properties. Exam-
ples include the mechanical properties of nanocomposite materials and nanoindentation on
them,20 oxidation of nanoenergetic materials,21 hypervelocity impact damage,22 and frac-
ture.23, 24 We also study both colloidal25 and epitaxial26 quantum dots, and their interface
with biological systems. It is noteworthy that experimentalists can now observe these phe-
nomena at the same resolution as our simulations. For example, experimentalists perform
nano-shock experiments using focused laser beams27 and nano-fracture measurements us-
ing atomic force microscopy.28 This lecture note focuses on one application related to
nano-mechano-chemistry, i.e., enhanced reaction mechanisms in nanostructured energetic
materials.

The lecture note is organized as follows. Section 2 describes our metascalable comput-
ing framework for large spatiotemporal-scale simulationsof chemical reactions based on
spatiotemporal data-locality principles. Results of nano-mechano-chemistry simulations
are given in section 3, and section 4 contains conclusions.
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2 A Metascalable Dwarf

2.1 Embedded Divide-and-Conquer (EDC) Algorithmic Framework

In the embedded divide-and-conquer (EDC) algorithms, the physical system is divided into
spatially localized computational cells.2 These cells are embedded in a global field that is
computed efficiently with tree-based algorithms (Fig. 1).

Figure 1. Schematic of embedded divide-and-conquer (EDC) algorithms. The physical space is subdivided into
spatially localized cells, with local atoms constituting subproblems, which are embedded in a global field solved
with tree-based algorithms.

Within the EDC framework, we have designed a number ofO(N) algorithms (N is
the number of atoms). For example, we have designed a space-time multiresolution MD
(MRMD) algorithm to reduce theO(N2) complexity of theN -body problem toO(N).13

MD simulation follows the trajectories ofN point atoms by numerically integrating cou-
pled ordinary differential equations. The hardest computation in MD simulation is the
evaluation of the long-range electrostatic potential atN atomic positions. Since each eval-
uation involves contributions fromN −1 sources, direct summation requiresO(N2) oper-
ations. The MRMD algorithm uses the octree-based fast multipole method (FMM)29, 30 to
reduce the computational complexity toO(N) based on spatial locality. We also use mul-
tiresolution in time, where temporal locality is utilized by computing forces from further
atoms with less frequency.31

We have also designed a fast ReaxFF (F-ReaxFF) algorithm to solve theO(N3) vari-
ableN -charge problem in chemically reactive MD inO(N) time.19 To describe chemical
bond breakage and formation, the ReaxFF potential energy isa function of the positions of
atomic pairs, triplets and quadruplets as well as the chemical bond orders of all constituent
atomic pairs.18 To describe charge transfer, ReaxFF uses a charge-equilibration scheme, in
which atomic charges are determined at every MD step to minimize the electrostatic energy
with the charge-neutrality constraint. This variableN -charge problem amounts to solving
a dense linear system of equations, which requiresO(N3) operations. The F-ReaxFF algo-
rithm uses the FMM to perform the matrix-vector multiplications withO(N) operations. It
further utilizes the temporal locality of the solutions to reduce the amortized computational
cost averaged over simulation steps toO(N). To further speed up the solution, we use a
multilevel preconditioned conjugate gradient (MPCG) method.21, 32 This method splits the

323



Coulomb interaction matrix into far-field and near-field matrices and uses the sparse near-
field matrix as a preconditioner. The extensive use of the sparse preconditioner enhances
the data locality, thereby increasing the parallel efficiency.

To approximately solve the exponentially complex quantumN -body problem inO(N)
time,33, 34 we use an EDC density functional theory (EDC-DFT) algorithm.17, 35 The DFT
reduces the exponential complexity toO(N3), by solvingNel one-electron problems self-
consistently instead of oneNel-electron problem (the number of electrons,Nel, is on the
order ofN ). The DFT problem can be formulated as a minimization of an energy func-
tional with respect to electronic wave functions. In the EDC-DFT algorithm, the physical
space is a union of overlapping domains,Ω =

∑

α Ωα (Fig. 1), and physical proper-
ties are computed as linear combinations of domain properties that in turn are computed
from local electronic wave functions. For example, the electronic densityρ(r) is calcu-
lated asρ(r) =

∑

α p
α(r)

∑

n f(ǫαn)|ψα
n (r)|2, where the support functionpα(r) vanishes

outside domainΩαand satisfies the sum rule,
∑

α p
α(r) = 1, andf(ǫαn) is the Fermi dis-

tribution function corresponding to the energyǫαn of then-th electronic wave function (or
Kohn-Sham orbital)ψα

n(r) in Ωα . For DFT calculation within each domain, we use a
real-space approach based on high-order finite differencing,36 where iterative solutions are
accelerated using the multigrid preconditioning.37 The multigrid is augmented with high-
resolution grids that are adaptively generated near the atoms to accurately operate atomic
pseudopotentials.17 The numerical core of EDC-DFT thus represents a high-order stencil
computation.38, 39

2.2 Space-Time-Ensemble Parallelism (STEP) for Predicting Long-Time Dynamics

A challenging problem is to predict long-time dynamics because of the sequential bottle-
neck of time.4, 5 Due to temporal locality, however, the system stays near local minimum-
energy configurations most of the time, except for rare transitions between them. In such
cases, the transition state theory (TST) allows the reformulation of the sequential long-time
dynamics as computationally more efficient parallel searchfor low activation-barrier tran-
sition events.10, 40 We also introduce a discrete abstraction based on graph datastructures,
so that combinatorial techniques can be used for the search.40 We have developed a direc-
tionally heated nudged elastic band (DH-NEB) method,9 in which a NEB consisting of a
sequence ofS states,41 Rs ∈ ℜ3N (s = 0, ..., S − 1,ℜ is the set of real numbers, andN is
the number of atoms), at different temperatures searches for transition events (Fig. 2(a)):

M
d2

dt2
Rs = Fs −Mγs

d

dt
Rs (1)

whereM ∈ ℜ3N×3N is the diagonal mass matrix andγs is a friction coefficient. Here, the
forces are defined as

Fs =

{

− ∂V
∂Rs
|⊥ + Fspr

s |‖
− ∂V

∂Rs

(2)

whereV (R) is the interatomic potential energy,Fspr
s are spring forces that keep the states

equidistance, and⊥ and ‖ denote respectively the projections of a 3N -element vector
perpendicular and parallel to the tangential vector connecting the consecutive states.
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We use an ensemble consisting ofB bands to perform long-time simulation—
molecular kinetics (MK) simulation–in the framework of kinetic Monte Carlo simulation.9

Here, our space-time-ensemble parallel (STEP) approach combines a hierarchy of
concurrency, i.e., the number of processors is

P = BSD : (3)

(1) spatial decomposition within each state (D is the number of spatial subsystems, see
section 2.3); (2) temporal parallelism acrossS states within each band; and (3) ensemble
parallelism overB bands (Fig. 2(b)).

Figure 2. Schematic of the space-time-ensemble parallel (STEP) approach. (a) A nudged elastic band consists of
a sequence ofS states (gray parallelograms),Rs (s = 0,...,S − 1), where each state consists ofN atoms (white
spheres),i = 1,...,N . Corresponding atoms in consecutive states interact via harmonic forces represented by wavy
lines. (b) Tree-structured processor organization in the STEP approach. An ensemble consists ofB bands, each
consisting ofS states; each state in turn containsD spatial domains.

2.3 Tunable Hierarchical Cellular Decomposition (HCD) for Algorithm-Hardware
Mapping

To map theO(N) EDC-STEP algorithms onto parallel computers, we have developed a
tunable hierarchical cellular decomposition (HCD) framework.

Massively distributed scalability via message passing—Superscalability: Our par-
allelization in space is based on spatial decomposition, inwhich each spatial subsystem
is assigned to a compute node in a parallel computer. For large granularity (the num-
ber of atoms per spatial subsystem,N/D > 102), simple spatial decomposition (i.e.,
each node is responsible for the computation of the forces onthe atoms within its sub-
system) suffices, whereas for finer granularity (N/D ∼ 1), neutral-territory5, 42 or other
hybrid decomposition schemes4, 43–45can be incorporated into the framework. Our paral-
lelization framework also includes load-balancing capability. For irregular data structures,
the number of atoms assigned to each processor varies significantly, and this load imbal-
ance degrades the parallel efficiency. Load balancing can bestated as an optimization
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problem.46–48 We minimize the load-imbalance cost as well the size and the number of
messages. Our topology-preserving spatial decompositionallows message passing to be
performed in a structured way in only 6 steps, so that the number of messages is mini-
mized. To minimize the load imbalance cost and the size of messages, we have developed
a computational-space decomposition scheme.49 The main idea is that the computational
space shrinks in a region with high workload density, so thatthe workload is uniformly dis-
tributed. The sum of load-imbalance and communication costs is minimized as a functional
of the computational space using simulated annealing. We have found that wavelets allow
compact representation of curved partition boundaries andthus speed up the optimization
procedure.50

Multicore scalability via multithreading—Nanoscalablit y: In addition to the mas-
sive inter-node scalability, ”there is plenty of room at thebottom,” as Richard Feynman
noted. At the finest level, EDC algorithms consist of a large number of computational cells
(Fig. 1), such as linked-list cells in MD13 and domains in EDC-DFT,17 which are readily
amenable to parallelization. On a multicore compute node, ablock of cells is assigned to
each thread for intra-node parallelization. Our EDC algorithms are thus implemented as
hybrid message passing + multithreading programs. Here, weuse the POSIX thread stan-
dard, which is supported across broad architectures and operating systems. In addition, our
framework2 includes the optimization of data and computation layouts,51, 52 in which the
computational cells are traversed along various spacefilling curves53 (e.g. Hilbert or Mor-
ton curve). To achieve high efficiency, special care must be taken also to make the mul-
tithreading free of critical sections. For example, we havedesigned a critical section-free
algorithm to make all interatomic force computations in MRMD independent by reorgani-
zation of summation of atomic pair and triplet summations.12 Our multithreading is based
on a master/worker model, in which a master thread coordinates worker threads that actu-
ally perform force computations. We use POSIX semaphores tosignal between the master
and worker threads to avoid the overhead of thread creation and joining in each MD step.
There are two check points at each MD time step, where all worker threads wait a signal
from the master thread: (1) before the two-body force calculation loop, which also con-
structs the neighbor-lists, after atomic coordinates are updated; and (2) before three-body
force calculation, after having all atoms complete neighbor-list construction. We have also
combined multithreading with single-instruction multiple-data (SIMD) parallelism based
on various code transformations.39 Our SIMD transformations include translocated state-
ment fusion, vector composition via shuffle, and vectorizeddata layout reordering (e.g.
matrix transpose), which are combined with traditional optimization techniques such as
loop unrolling.

Long-time scalability via space-time-ensemble parallelism (STEP)—Eon-
scalability: With the spatial decomposition, the computational cost scales asN/D,
while communication scales in proportion to(N/D)2/3.13 For long-range interatomic
potentials used in MD simulations, tree-based algorithms such as the fast multipole
method (FMM)29, 30 incur anO(logD) overhead, which is negligible for coarse grained
(N/D ≫ D) applications.30 The communication cost of the temporal decomposition is
O(N/D) for copying nearest-neighbor images along the temporal axis, but the prefactor
is negligible compared with the computation. Ensemble decomposition duplicates the
band calculation, each involvingSD processors,B times onP = BSD processors.
It involves O((N/D) log(BS)) overhead to multicast the new initial state among the
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processors assigned the same spatial domain, i.e., those with the samep modD.9 Here,
p = bSD + sD + d is the sequential processor ID, where processorp is assigned thed-th
spatial subsystem of thes-th state in theb-th band. The multicast cost at the beginning of
each molecular-kinetics (MK) simulation step is greatly amortized over103 − 104 MD
steps performed for the DH-NEB method per MK iteration.9

Intelligent tuning: The hierarchy of computational cells provides an efficient mecha-
nism for performance optimization as well we make both the layout and size of the cells
as tunable parameters that are optimized on each computing platform.2 Our EDC-STEP
algorithms are implemented as hybrid message-passing + multithreading programs in the
tunable HCD framework, in which the numbers of message passing interface (MPI) pro-
cesses and POSIX threads are also tunable parameters. The HCD framework thus maxi-
mally exposes data locality and concurrency. We are currently collaborating with compiler
and artificial intelligence (AI) research groups to use: (1)knowledge-representation tech-
niques for expressing the exposed concurrency; and (2) machine-learning techniques for
optimally mapping the expressed concurrency to hardware.54

2.4 Scalability Tests

The scalability of our EDC-STEP-HCD applications has been tested on various high-end
computing platforms including 212,992 IBM BlueGene/L processors at the Lawrence Liv-
ermore National Laboratory and 131,072 IBM BlueGene/P processors at the Argonne Na-
tional Laboratory.

Inter-node (message-passing) spatial scalability:Figure 3 shows the execution and
communication times of the MRMD, F-ReaxFF and EDC-DFT algorithms as a function of
the number of processorsP on the IBM BlueGene/L and P. Figure 3(a) shows the execution
time of the MRMD algorithm for silica material as a function of P . We scale the problem
size linearly with the number of processors, so that the number of atomsN = 2,044,416P .
In the MRMD algorithm, the interatomic potential energy is split into the long- and short-
range contributions, and the long-range contribution is computed every 10 MD time steps.
The execution time increases only slightly as a function ofP on both BlueGene/L and P,
and this signifies an excellent parallel efficiency. We definethe speed of an MD program
as a product of the total number of atoms and time steps executed per second. The isogran-
ular speedup is the ratio between the speed ofP processors and that of one processor. The
weak-scaling parallel efficiency is the speedup divided byP , and it is 0.975 on 131,072
BlueGene/P processors. The measured weak-scaling parallel efficiency on 212,992 Blue-
Gene/L processors is 0.985 based on the speedup over 4,096 processors. Figure 3(a) also
shows that the algorithm involves very small communicationtime. Figure 3(b) shows the
execution time of the F-ReaxFF MD algorithm for RDX materialas a function ofP , where
the number of atoms isN = 16,128P . The computation time includes 3 conjugate gradient
(CG) iterations to solve the electronegativity equalization problem for determining atomic
charges at each MD time step. On 212,992 BlueGene/L processors, the isogranular paral-
lel efficiency of the F-ReaxFF algorithm is 0.996. Figure 3(c) shows the performance of
the EDC-DFT based MD algorithm for 180P atom alumina systems. The execution time
includes 3 self-consistent (SC) iterations to determine the electronic wave functions and
the Kohn-Sham potential, with 3 CG iterations per SC cycle torefine each wave function
iteratively. On 212,992 BlueGene/L processors, the isogranular parallel efficiency of the
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EDC-DFT algorithm is 0.998 (based on the speedup over 4,096 processors). Our largest
benchmark tests include 217,722,126,336-atom MRMD, 1,717,567,488-atom F-ReaxFF,
and 19,169,280-atom (1,683,216,138,240 electronic degrees-of-freedom) EDC-DFT cal-
culations on 212,992 BlueGene/L processors.

Figure 3. Total execution (circles) and communication (squares) times per MD time step as a function of the
number of processorsP of BlueGene/L (open symbols) and BlueGene/P (solid symbols) for three MD simulation
algorithms: (a) MRMD for 2,044,416P atom silica systems; (b) F-ReaxFF MD for 16,128P atom RDX systems;
and (c) EDC-DFT MD for 180P atom alumina systems.

Intra-node (multithreading) spatial scalability: We have tested the multithreading
scalability of MRMD on a dual Intel Xeon quadcore platform. Figure 4 shows the speedup
of the multithreaded code over the single-thread counterpart as a function of the number
of worker threads. In addition to the speedup of the total program, Fig. 4 also shows the
speedups of the code segments for two-body and three-body force calculations separately.
We see that the code scales quite well up to 8 threads on the 8-core platform. We define
the multithreading efficiency as the speedup divided by the number of threads. The effi-
ciency of two-body force calculation is 0.927, while that for three-body force calculation
is 0.436, for 8 threads. The low efficiency of the three-body force calculation may be due
to the redundant computations introduced to eliminate critical sections. Nevertheless, the
efficiency of the total program is rather high (0.811), sincethe fraction of the three-body
calculation is about one third of the two-body force calculation. This result shows that the
semaphore-based signaling between master and worker threads is highly effective. In a test
calculation for a 12,228-atom silica system, the running time is 13.6 milliseconds per MD
time step.

Time/ensemble scalabilityScalability of the STEP-MRMD algorithm (note that the
STEP approach can be combined with any of the MRMD, F-ReaxFF and EDC-DFT al-
gorithms to compute interatomic forces) is tested on a cluster of dual-core, dual-processor
AMD Opteron (at clock frequency 2 GHz) nodes with Myrinet interconnect. We define the
speed of a program as a product of the total number of atoms andMK simulation steps ex-
ecuted per second. The speedup is the ratio between the speedof P processors and that of
one processor. The parallel efficiency is the speedup divided byP . We first test the scala-
bility of temporal decomposition, where we fix the number of bandsB = 1 and the number
of domains per stateD = 1. We vary the number of states per bandS = 4 to 1024. Here, the
simulated system is amorphous SiO2 consisting ofN = 192 atoms, and we perform 600
MD steps per MK simulation step. The test uses all four cores per node. Figure 5(a) shows
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Figure 4. Speedup of the multithreaded MRMD algorithm over asingle-threaded counterpart for the total pro-
gram (circles), the two-body force calculation (diamonds), and three-body force calculation (squares). The solid
line shows the ideal speedup.

the speedup of the STEP-MRMD program (we normalize the speedup on 4 processors as
4). The measured speedup on 1,024 processors is 980.2, and thus the parallel efficiency is
0.957. Next, we test the scalability of ensemble decomposition, where we fix the number
of states per bandS = 4 and the number of spatial domains per stateD = 1. The number of
bands per ensemble is varied fromB = 1 to 256. The simulated system is amorphous SiO2

consisting ofN = 192 atoms. Although multiple events are generated independently by
different processor groups, the parallel algorithm involves sequential bottlenecks such as
the selection of an event that occurs, and accordingly the parallel efficiency does degrade
for a larger number of processors. Figure 5(b) shows the speedup of the STEP-MRMD
program on the Opteron cluster as a function of the number of processors (normalized to
be 4 on 4 processors). On 1,024 processors, the measured speedup is 989.2, and thus the
parallel efficiency of ensemble decomposition is 0.966, which is slightly higher than that
of temporal decomposition on the same number of processors.

Figure 5. (a) Speedup of temporal decomposition in the STEP-MRMD algorithm (normalized so that the speedup
is 4 forP = 4) as a function of the number of processorsP (P = 4-1024) for a 192-atom amorphous SiO2 system
on dual-core, dual-processor AMD Opteron nodes, where we fixB =D = 1. The circles are measured speedups,
whereas the solid line denotes the perfect speedup. (b) Speedup of ensemble decomposition in the STEP-MRMD
algorithm as a function of the number of processorsP (= 4,...,1024) for silica material (N = 192 atoms). Here,
we fix the number of states per bandS = 4 and the number of spatial domains per stateD = 1, while the number
of bands is varied fromB = 1 to 256.
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3 Nano-Mechano-Chemistry Simulations

Recent advances in the integration of nanowires and nanoparticles of energetic ma-
terials into semiconducting electronic structures have opened up the possibility of
”nanoenergetics-on-a-chip (NOC)” technology, which has awide range of potential appli-
cations such as micropropulsion in space and nano-airbags to drive nanofluidics.55 Most
widely used energetic materials for device integration arethermites, which are composites
of metals and oxides. These materials have enormous energy release associated with the
highly exothermic reduction/oxidation (redox) reactionsto form more stable oxides. For
example, arrays of Fe2O3 and CuO nanowires embedded in an Al matrix have been de-
posited on solid surfaces.56 Another example of thermite nanostructures is self-assembly
of an ordered array of Al and Fe2O3 nanoparticles.57

The integration of nanoenergetic materials into electronic circuits requires fundamental
understanding and precise control of reaction rates and initiation time. The reactivity of
nanoenergetic materials is known to differ drastically from their micron-scale counterparts.
For example, experimental studies on the combustion of nanothermites, such as Al/Fe2O3,
have shown that flame propagation speeds approach km/s when the size of Al nanoparticles
is reduced to below 100 nm, in contrast to cm/s for traditional thermites.58 Another exam-
ple is the two-stage reaction of Al/CuO-nanowire thermite,in which the first reaction takes
place at 500◦C followed by the second reaction at 660◦C (i.e., Al melting temperature).56

Such peculiar reactive behaviors of nanothermites cannot be explained by conventional
mechanisms based on mass diffusion of reactants, and thus various alternative mechanisms
have been proposed. An example is a mechano-chemical mechanism that explains the fast
flame propagation based on dispersion of the molten metal core of each nanoparticle and
spallation of the oxide shell covering the metal core.59 Another mechanism is accelerated
mass transport of both oxygen and metal atoms due to the largepressure gradient between
the metal core and the oxide shell of each metal nanoparticle.21, 60 In addition, defect-
mediated giant diffusivity is important for fast reactionsat the nanometer scale.24, 61, 62

The above mechanisms are by no means exhaustive, and some unexpected ones could
operate in NOCs. It is therefore desirable to study the reaction of nanoenergetic materials
by first-principles simulations. However, this poses an enormous theoretical challenge,
where quantum-mechanical accuracy to describe chemical reactions must be combined
with large spatial scales to capture nanostructural effects. Recent developments in scalable
reactive MD simulations as described in the previous section have set the stage for such
large first-principles MD simulations.

We have performed embedded divide-and-conquer (EDC) density functional theory
(DFT) based MD simulations to study the thermite reaction atan Al/Fe2O3 interface (Fig.
6).63 The results reveal a concerted metal-oxygen flip mechanism that significantly en-
hances the rate of redox reactions. This mechanism leads to two-stage reactions—rapid
initial reaction due to collective metal-oxygen flips followed by slower reaction based on
uncorrelated diffusive motions, which may explain recent experimental observation in ther-
mite nanowire arrays.56

Here, we simulate a stack of Al and Fe2O3 layers involving 1,152 (144 Fe2O3 + 432
Al) atoms with periodic boundary conditions. The hematite (Fe2O3) crystal, cut along
(0001) planes to expose Fe planes, is placed in the supercellwith the (0001) direction par-
allel to the z direction (Fig. 6(a)). The Fe planes of the hematite are attached to (111)
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Figure 6. (a) Atomic configuration of Al/Fe2O3 interface. The green, red and grey spheres show the positions
of Fe, O and Al atoms, respectively. Yellow meshes show the non-overlapping cores used by the EDC-DFT
method. (b) Enhanced diffusion at the metal-oxide interface. Mean square displacements of O atoms along the
z direction are plotted as a function of time. The solid and dashed curves are for O atoms in the interfacial and
Fe-side regions, respectively. (c) Concerted metal-oxygen flip at the Al/Fe2O3 interface. (d) Negative correlation
associated with concerted Al and O motions at the interface.Correlation functions between displacements of O
and Al atoms along thez direction are shown as a function of time. The solid and dashed curves are obtained in
the interfacial and Al-side regions.

planes of the face-centered cubic Al crystal at the two interfaces. Simulation results show
enhanced mass diffusivity at the metal/oxide interface (Fig. 6(b)). To understand the mech-
anism of the enhanced diffusivity at the interface, we have examined the time evolution of
the atomic configuration in the interfacial region and founda concerted metal-oxygen flip
mechanism (Fig. 6(c)). That is, O atoms switch their positions with neighboring Al atoms
while diffusing in the z direction. Careful bond-overlap population analysis shows that the
switching motion between O and Al atoms at the interface is triggered by the change of
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chemical bonding associated with these atoms. To quantify the collective switching motion
between O and Al atoms, we calculate the correlation function between the displacements
of atoms along the z direction. The results in Fig. 6(d) (solid curve) reveal negative cor-
relation fort > 0.5 ps, which reflects the collective switching motion between O and Al
atoms at the interface as shown in Fig. 6(c). Such negative correlation does not exist on
the Al side (the dashed curve in Fig. 6(d)), indicating independent diffusive motions of Al
and O atoms.

Reactivity of nanoenergetic materials is often enhanced drastically from their micron-
scale counterparts, which cannot be explained by conventional mechanisms based on mass
diffusion of reactants. We have studied atomistic mechanisms of oxidation of an aluminum
nanoparticle under extreme environment using multimillion atom reactive (ReaxFF) MD
simulations, where the aluminum nanoparticle is coated with crystalline alumina shell and
is ignited by heating the aluminum core to high temperatures, as is done in recent laser
flash-heating experiments (Fig. 7).27 The metallic aluminum and ceramic alumina are
modeled by embedded atom model and many-body ionic-covalent potential form, respec-
tively, which are interpolated with a bond-order based scheme validated quantum mechan-
ically.

Figure 7. (a) Time variation of kinetic energy per aluminum atom during explosion with different initial temper-
aturesT=3,000K (blue), 6,000K (green), and 9,000K (red), respectively. (b) Snapshot of nanoparticle at 100 ps
(T=3,000K). (c) Snapshot of nanoparticle at 100 ps (T=9,000K). Core Al atoms (yellow) jet out through holes
on the nanoparticle shell (red).

Simulation results reveal a transition of the reaction mechanism from thermody-
namic to mechano-chemical regime, resulting in faster oxidation reaction of the aluminum
nanoparticle, at elevated temperatures (Fig. 7(a)). The breakdown of the shell and the
change of shell’s morphology and composition during oxidation are found to play an im-
portant role for the transition. Specifically, we have identified three major changes of the
shell, which are related to three mechanisms of atom migration: Diffusion (Fig. 7(b)),
ballistic transport followed by diffusion, and ballistic transport followed by coalescing of
atoms into few-atom clusters (Fig. 7(c)).

Mechanical stimuli in energetic materials initiate chemical reactions at shock fronts
prior to detonation. Shock sensitivity measurements provide widely varying results, and
quantum mechanical calculations are unable to handle systems large enough to describe
shock structure. Recent developments in ReaxFF-MD combined with advances in parallel
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computing have paved the way to accurately simulate reaction pathways along with the
structure of shock fronts. Our multimillion-atom ReaxFF-MD simulations of 1,3,5-trinitro-
1,3,5-triazine (RDX) (Figs. 8(a) and (b)) reveal that detonation is preceded by a transition
from a diffuse shock front with well ordered molecular dipoles behind it to a disordered
dipole distribution behind a sharp front.3

Figure 8. (a) An RDX molecule with carbon (yellow), hydrogen(white), oxygen (red), and nitrogen (blue)
atoms. (b) The unit cell of an RDX crystal contains 8 RDX molecules, which are colored blue and red depending
on whether the NO2 groups faces away from (group1) or faces towards (group2) the shock plane. (c) Distribution
of molecular vibrational temperature around the void at a particle velocity of 3 km/s. A red dotted-line represents
the position of shock front. (d) Number of molecular fragments near the void surface. As the void collapses, two
distinct reaction regimes are observed. From the arrival ofthe shock wave until the void closure (∼ 2.6 ps), a
rapid production of NO2 is observed. Shortly after that, when molecules strike the downstream wall (2.6 – 3.9
ps), various chemical products such as N2, H2O and HONO are produced.

Nanofluidics of chemically reactive species has enormous technological potential and
computational challenge arising from coupling quantum-mechanical accuracy with large-
scale fluid phenomena. We have performed multimillion-atomReaxFF-MD simulation
of shock initiation of an RDX crystal with a nanometer-scalevoid (Fig. 8(c)).64 The
simulation reveals the formation of a nanojet that focuses into a narrow beam at the void.
This, combined with the excitation of vibrational modes through enhanced intermolecular
collisions by the free volume of the void, catalyzes chemical reactions that do not occur
otherwise (Fig. 8(d)). We also observe a pinning-depinningtransition of the shock wave
front at the void at increased particle velocity and the resulting localization-delocalization
transition of the vibrational energy. More recently, we have simulated nanoindentation
of the (100) crystal surface of RDX by a diamond indenter.65 Nanoindentation causes
significant heating of the RDX substrate in the proximity of the indenter, resulting in the
release of molecular fragments and subsequent ”walking” motion of these molecules on
the indenter surfaces.
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4 Conclusions

In summary, we have developed high-end reactive atomistic simulation programs to en-
compass large spatiotemporal scales with common algorithmic and computational frame-
works based on spatiotemporal data-locality principles. In fact, our ”metascalable dwarf”
extends far beyond atomistic simulations: Diverse applications, which encompass all of the
original seven dwarfs, can be reduced by common techniques of embedding and divide-
and-conquer to a highly scalable form. According to the scalability tests presented in this
lecture note, they are likely to scale on future architectures beyond petaflops. The sim-
ulation algorithms are already enabling million-to-billion atom simulations of mechano-
chemical processes, which have applications in broad areassuch as energy and environ-
ment.

Figure 9. Spatiotemporal scalesNT accessible by direct molecular-dynamics (white background) and approxi-
mate accelerated-dynamics (gray) simulations with a petaflops•day of computing. The lines are theNT achieved
per petaflopsday of computing for MD (MRMD), chemically reactive MD (F-ReaxFF), and quantum-mechanical
MD (EDC-DFT) simulations, respectively.

A critical issue, however, is the time scale studied by MD simulations. We define the
spatiotemporal scale,NT , of an MD simulation as the product of the number of atomsN
and the simulated time spanT . On petaflops computers, direct MD simulations can be per-
formed forNT = 1–10 atomseconds (i.e. multibillion-atom simulation forseveral nanosec-
onds or multimillion-atom simulation for several microseconds). More specifically, a day
of computing on a sustained petaflops computer (i.e. one petaflops•day of computing)
achievesNT = 2.14 (e.g. 1 million atoms for 2.14 microseconds) (Fig. 9),according to the
benchmark test in section 2 (i.e., extrapolated from the measured MRMD performance on
the BlueGene/L, which is rated as 0.478 petaflops according to the Linpack benchmark).12

Accelerated-dynamics simulations10 such as STEP molecular-kinetics simulations9 will
push the spatiotemporal envelope beyondNT = 10, but they need to be fully validated
against direct MD simulations atNT = 1–10. Such large spatiotemporal-scale atomistic
simulations are expected to advance scientific knowledge. This work was supported by
NSF-ITR/PetaApps/EMT, DOE-SciDAC/BES, ARO-MURI, DTRA, and Chevron-CiSoft.
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In this lecture we give an overview of simulation approachesto soft matter systems. We explain
important properties of soft matter, in particular of polymeric materials. We introduce different
methods and levels of resolution in soft matter simulations, focusing on particle-based classical
methods. Finally, we show the principles of multiscale simulation methods, the concept of scale
bridging and methods used to systematically devise coarse grained simulation models.

1 Introduction – Soft Matter Systems

Soft matter systems – as opposed to hard matter such as minerals – are characterized by a
comparatively low energy density and the relevant energy scale of the order of the thermal
energy. As a consequence the properties of these materials are very much dominated by
thermal fluctuations, i.e. entropic contributions. This importance of thermal fluctuations
has a big impact on the molecular simulation methods that areappropriate for soft matter
systems, as will be explained in detail below. Typical examples for soft matter are classical
synthetic polymers, biological systems such as biopolymers and biological membranes,
complex fluids, colloidal suspensions etc.

In the present lecture we focus mostly on theory and simulation of macromolecular
systems, i.e. molecules that may contain many thousands of atoms. In this context classi-
cal synthetic polymers are a prototypical class of systems,as their molecular structure in
most cases is simpler than those of typical biopolymers. In the simplest case a polymer is
a long chain molecule of identical repeat units (beads or monomers), and the bulk (melt or
solution) system constituted by these molecules is in the easiest case amorphous, homoge-
neous, and isotropic. Obviously this is a simplification andmodern polymer chemistry has
produced a variety of complex structures and materials. Nevertheless many characteristic
problems and methods to solve them by computer simulations can be illustrated very well
already for these simple (generic) model systems.

For this reason we structure this lecture as follows: first, we will briefly introduce a few
general concepts of the statistics of dense polymeric systems to lay a foundation to later
understand better the results and properties obtained in computer simulation of soft matter
systems. In the subsequent section we will introduce the different simulation methods and
scales used, again with a strong emphasis on models used in polymer simulation. In the last
section we will show, how – in a multiscale simulation approach – the different simulation
scales can be combined into a powerful tool that can address avariety of complex soft
matter problems.
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1.1 Polymers – chain statistics, scaling laws etc.

Dense polymer systems such as melts, glasses and crosslinked melts or solutions (networks
such as rubber and gels) are very complex materials. Besidesthe local chemical interac-
tions and density correlations, which are common to all liquids and disordered solids the
global chain conformations and the chain connectivity playa decisive role for many phys-
ical properties. Local interactions determine the liquid structure on the scale of a feẘA or
at most a fewnm. To study such local properties the chemical details of the chains have
to be taken into account in the simulations and atomistically detailed melts are considered.
However, if we look at the dynamics of a polymer chain in such amelt, local interactions
do determine the packing and the bead friction but they affect generic properties only in
a rather indirect way1. It is the main focus of the present contribution to discuss generic
aspects common to all polymers and then later on go back to thequestion to what extent
chemistry specific aspects play a role or make a difference. The consequences of the latter
are also termed as structure property relations (SPR) in more applied research1, 2.

To stick to simple situations we consider polymer melts or networks where the chains
are all identical. They can be characterized by an overall particle densityρ and a number
of monomersN per chain. The overall extension of the chains is well characterized by the
properties of random walks3–5. With ℓ being the average bond length we then have (for
N >> 1) for the mean square end to end distance

〈R2(N)〉 = ℓKℓ(N − 1) ≈ ℓKℓN (1)

and 〈R2
G(N)〉 = 1

6 〈R2(N)〉 for the radius of gyration, which is the mean squared
distance of the beads from the center of mass of the chain, respectivelya. ℓK is the Kuhn
length and a measure for the stiffness of the chain. This gives an average volume each
chain covers of

V ∝ 〈R2(N)〉3/2 ∼ N3/2 (2)

leading asymptotically to a vanishing self density of the chains in a melt. In order
to pack beads at a monomer densityρ, which is a typical density of a molecular liquid,
0(N1/2) other chains share the very same volume of the chain and theirconformations
strongly interpenetrate each other. These other chains effectively screen the long range
excluded volume interaction, since the individual monomercannot distinguish, whether a
non-bonded neighbor monomer belongs to the same chain or not. This leads to the above
mentioned random walk structure, unlike dilute solutions,where the chains are more ex-
tended and display the so called self avoiding walk behaviorwith different scaling expo-
nents3. This general property is firmly established by experiment and many simulations6.

On length scales much larger thanR2
G polymers diffuse as a whole and the motion

is well described by standard diffusion. However over distances up to the order of the
chain size, the motion of a polymer chain is more complex, even though hydrodynamic
interactions are screened and do not play a role. On smaller length scales, the random
diffusive motion of a monomer is constrained by the chain connectivity and the interac-
tion with other monomers. To a very good first approximation,the other chains can be

aIn dilute solution the situation is somewhat different. In the case of a good solvent the chains are more expanded
and〈R2〉 ∝ N2ν with ν close to 3/5
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viewed as providing a viscous background and a heat bath. This certainly is a drastic over-
simplification, which ignores all correlations due to the structure of the surrounding. The
advantage of this simplification is that the Langevin dynamics of a single chain of point
masses connected by harmonic springs can be solved exactly7. This was first done in a
seminal paper by Rouse8 and about the same time in a similar fashion by Bueche9. In this
model, which is commonly referred to as the Rouse model, the diffusion constant of the
chainD ∼ N−1, the longest relaxation timeτd ∼ N2 and the viscosityη ∼ N . This
describes the dynamics of a melt of relatively short chains,meaning molecular weights of
e.g. M ≤ 20 000 for polystyrene [PS, Mmon=104] orM ≤ 2000 for polyethylene [PE,
Mmon=14], both qualitatively and quantitatively almost perfectly, though the reason is still
not well understood. Only recently some deviations have been observed10. The effects are
rather subtle and would require a detailed discussion beyond the scope of this lecture. For
longer chains, the motion of the chains are observed to be significantly slower. Experi-
ments show a dramatic decrease in the diffusion constant11, D ∼ N−2.4, and an increase
of the viscosity7 towardsη ∼ N3.4. The time-dependent elastic modulusG(t) exhibits a
solid or rubber-like plateau at intermediate times before decaying completely. Since the
properties for all systems start to change at a chemistry- and temperature-dependent chain
lengthNe or molecular weightMe in the same way, one is led to the idea that this can only
originate from properties common to all chains, namely the chain connectivity and the fact
that the chains cannot pass through each other.

Such dynamics as well as the previously mentioned static properties are the same for
all polymers. This gives rise to the assumption that indeed the most simple polymer mod-
els, which are ideal test systems for simulations, should besufficient to investigate these
properties. Indeed, as was shown by de Gennes in a famous workon the relation between
critical phenomena and macromolecules, one can view the inverse chain length1/N as the
normalized temperature distanceT−Tc

Tc
from the critical point in a special ferromagnetic

model (n → 0 model). This means that for largeN , i.e. close toTc, all scaling properties
and ratios of the related prefactors are universal and independent of chemical or model
details. This finding is the theoretical foundation of the very successfully studied simple,
generic models which we describe in the next section. Beforethat however, we first look
more closely at local nonuniversal aspects.

2 Simulation of Soft Matter – A Wide Range of Resolution Levels

Properties and questions concerning soft matter systems cover a large range of length and
time scales. Both local chemically specific interactions (e.g. specific attraction of certain
units to surfaces, hydrogen bonding in aqueous environments and many, many more) as
well as mesoscale effects such as hydrodynamic interactions or the formation of meso-
scopic superstructures determine the behavior and the material properties of soft matter
systems. For this reason, an equally wide range of simulation methods at different lev-
els of resolution and consequently including a different amount of degrees of freedom is
employed to study them. In this section we will give a very brief overview of the differ-
ent individual simulation scales, show for which types of systems, questions, properties,
length scales, time scales and types and number of degrees offreedom they are typically
used. The basics of the methods we refer to in this chapter, namely molecular dynamics
(MD) and monte carlo (MC) simulations, have been covered already in the lectures by
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Sutmann and Kratzer.

2.1 QM methods

We will only very briefly linger with quantummechanical (QM)methods. Quantumme-
chanical simulation approaches include electronic degrees of freedom, providing different
levels of approximations to solve the Schrödinger equation. They provide the most de-
tailed picture of the system, while being at the same time very limited in terms of system
sizes and time scales available. These methods by themselves consist of a large variety
of methodologies with very different levels of approximation and consequently accuracies
concerning the electronic structures and energies provided. Overviews of several different
QM approaches are given in other lectures at this school (Hättig, Zeller, Thiel, Reuter, etc.)

QM methods provide electronic energies of the systems studied, they are however lim-
ited in the sampling of thermal/statistical fluctuations, conformations etc. For this reason
these methods are ideally suited for the simulation of hard matter systems such as minerals
or metals. In the case of soft matter, where energy differences typically are in the order
of thermal energies and consequently fluctuations, statistical sampling and entropy argu-
ments play a decisive role, QM methods alone are often not sufficient to study structures
and properties of the respective systems. However, QM methods are extremely valuable to
provide interaction energies etc. as parameters for interaction functions in classical simula-
tion methods (see below). In addition, QM methods are frequently used in mixed QM/MM
(quantum/classical) approaches.

2.2 Classical atomistic simulations

Classical atomistic simulation models do not include electronic degrees of freedom. In
the corresponding approaches atoms are treated as classical particles that interact via a
set of interaction potentials called a forcefield. Typically these forcefields consist of
intramolecular, covalent (also often denoted as bonded) interactions, i.e. corresponding
to bonds, angles, torsions etc and nonbonded interactions (including also electrostatics).
Forcefield parameters are usually determined either by making use of quantummechanical
reference calculations (frequently used for example to determine parameters for bonded
potentials and atomistic partial charges), or by parameterization such that experimental
data (densities, diffusion constants, dielectric properties, solvation thermodynamics etc.)
are reproduced12–16.

In the case of soft matter simulations, classical atomisticatomistic models are typ-
ically used in cases, where specific interactions play an important role, for example in
biomolecular systems17, in cases where explicit solvent degrees of freedom are important
(this applies of course also for biomolecules), or for example in the case of liquid mixtures
(in particular if one wants to compute thermochemical data such as free energies for such
systems18), but also if one wants to study local monomer packing or local dynamics.

2.3 Coarse grained particle-based models

In the introduction the interplay of different length and time scales has been mentioned.
In order to make a quantitative comparison to specific experiments in most cases one has

340



to be both chemistry specific and asymptotic (scaling) aspects are equally important and
have to be considered accordingly. The combination of both aspects will be discussed in
the section onMultiscale Simulation. This led to a powerful methodology, which now can
be used for rather different polymer species and the systematic extension to complicated
macromolecules such as multiblock copolymers, gels or proteins is an important current
research topic. On the other hand both force filed simulations or rather small systems and
rather short times or the simulation of most simple generic models can by itself contribute
in many ways to our understanding of material properties, ashas been illustrated for the
case of force fields in the previous section of this chapter.

Simple generic models are perfectly suited to study scalingproperties of macromolecu-
lar systems as they reduce the computational complexity to the absolute minimum, namely
connectivity and excluded volume plus some specific interactions, if needed. This allows
for extremely efficient algorithms allowing for much longereffective time and lengths
scales and much smaller error bars than in more detailed simulations. This leads to a first
important message of this chapter, namely that one generally should use the most simple
model, which is able to capture the essential physics and chemistry under study. Though
this statement is not new at all, this still holds even for most modern computers.

There are many different possibilities to study idealized particle-based polymer models
on a computer. They range from simple lattice models, which can be treated by a variety of
different Monte Carlo methods to continuum models. Continuum models have both been
studied by Monte Carlo and Molecular Dynamics simulations.Especially for questions not
requiring a high particle density the stochastic Monte Carlo method can be computationally
advantageous and has been used extensively to study both static and dynamic properties.
In the present contribution we confine ourselves to Molecular Dynamics simulations. For
a comparison to MC we refer refer the reader to the literature19, 20.

2.3.1 Bead-spring models

Models where the individual polymer chain is modelled by mass points which repel each
other and which are connected along the chain by a spring are the most elementary MD
models. The repulsion produces the excluded volume constraint and the spring takes care
of the connectivity.

A quite commonly used model is that of Kremer and Grest21–23. We consider beads
with a unit mass. All beads interact via a purely repulsive Lennard-Jones (WCA Weeks
Chandler Anderson) potential, to model the excluded volumeinteraction.

U r
LJ =

{
4ǫ
{
(σ/r)12 − (σ/r)6 + 1

4

}
r ≤ rc

0 r ≥ rc (3)

with a cutoffrc = 21/6σ. The beads are connected by a finite extensible non-linear
elastic potential (FENE)

U
(r)
FENE =

{
−0.5R2

okℓn(1− (r/Ro)
2) r ≤ Ro

∞ r > Ro
(4)

in addition to the Lennard Jones Potential. In melt simulations the parameters are usu-
ally taken ask = 30ǫ/σ2, Ro = 1.5σ. This choice of parameters ensures, that the chains
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never cut through each other in the course of a simulation. The temperatureT = ǫ/kB and
the basic unit of time isτ = σ(m/ǫ)1/2. Volume and temperature are usually kept con-
stant. The temperature is kept constant by coupling the motion to a Langevin thermostat24.
An alternative, which does not screen hydrodynamics would be a DPD (dissipative particle
dynamics) thermostat. The average bond length with these parameters is〈ℓ2〉1/2 = 0.97σ.
In addition a bending stiffness can be introduced via an effective three body interaction.
With cosΘi = (r̂i,i−1 · r̂i,i+1), with r̂i,i−1 = (ri − ri−1)/ | ri − ri−1 | and accordingly
r̂i,i+1 the bending potential readsUbend(Θ) = kΘ(1 − cosΘ). By variation ofkΘ the
model can be tuned from very flexible to very stiff.

While models along this line have also been employed for solutions, the main area of
application is the study of dense polymer melts, mixtures and networks. For this model in a
melt of densityρ = 0.85σ−3 with kΘ = 0 one findsc∞l2 = llk = 1.7σ2. With the param-
eters given above a chain crossing is essentially impossible, i.e. forbidden by a Boltzmann
factor of aboutexp(−70), which means that it never happens during a simulation. Thus
crucial problems as illustrated in Fig 1 can be easily studied.

Figure 1. (a) Illustration of two topologically different states of rings, which are very difficult to separate analyti-
cally when calculating partition functions of an ensemble.(b) Illustration of ”many chain” effects for topological
constraints in a melt or network. Taking out the blue chain also releases all constraints between the red and the
black chain.

Since in these models there are no torsional barriers, the monomer packing relaxes
quickly and the simulations is very efficient. The packing locally depends very sensitively
on the ratio of bond length to effective excluded volume of the beads25. However the lo-
cal equilibration of the sphere packing is not sufficient forthe overall equilibrium. The
local packing only characterizes an equilibration on the smallest length scale considered
and very small systematic deviations on that scale can lead to significant deviations from
equilibrium at the large length scales on the order of the chain extension. We thus have to
ensure proper equilibration on all lengths scales. One way would be to run a conventional
MD simulation until all length scales are properly relaxed and in equilibrium.This how-
ever however quite often requires a prohibitively large amount of computer time. A well
working strategy for many model systems is as follows23:

• Simulate a melt of many short, but long enough chains (Nℓ ≫ ℓK) into equilibrium
by a conventional method

• Use this melt to construct the master curve or target function for the melts of longer
chains of all internal distances.
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• Create non reversal random walksb of the correct bond length, which match the target
function closely. They have to have the anticipated large distance conformations.
Introduce, if needed beyond the intrinsic stiffness of the bonds, stiffness via a suitable
second neighbor excluded volume potential along the chain.(This might be a bit
larger than the one of the full melt!)

• Place these chains as rigid objects in the system and move them around by a Monte
Carlo procedure (shifting, rotating, inverting..., butnot manipulating the conforma-
tion itself) to minimize density fluctuations

• Use this state as starting state for melt simulations

• Introduce slowly but not too slowly the excluded volume potential by keeping the
short range intra chain interactions, taking care that in the beginning the chains can
easily cross through each other

• Run until the excluded volume potential is completely introduced. Control internal
distances permanently to check for possible overshoots, deviations from the master
curve.

• Eventually support long range relaxation by so called end bridging26, 27 or double
pivot moves23

Independent on the details of the procedures, it is important to continuously monitor
the actual structure to the master or target curves. If one isstuck with this approach and
deviations from the master curve occur and stay, one has to start all over again. Ref.23 also
demonstrates some typical deviations from the master curveas they can occur and which
should be avoided during the set up.

Following such a procedure for melts or at least monitoring the internal distances i.e.
for networks assures that the simulations start out from well defined equilibrium states.

These models have been used quite frequently to study the dynamics of short and long
chain polymer melts as well as relaxation properties of elastomers, cross linked polymer
melts. For the latter we just illustrate the importance of the noncrossability for an ideal
model network. The network is built like a diamond crystal, where the bonds are replaced
by polymer chains. This has the advantage that many properties within the classical rub-
ber elasticity models can be calculated exactly. In order toobtain network strands of zero
or at least low tension, they have to obey random walk statistics, just like corresponding
chains in a melt. This means that such a diamond lattice network is not space filling and
thus we need randomly interpenetrating networks where the strands are random walk like
and simultaneously melt density is reached. As a consequence the only source of frozen
disorder comes from random links between network loops of different sublattices. A direct
way to visualize this is to stretch such a network and ”measure” the tension of the strands.
While this can be done quantitatively to demonstrate the relevance of entanglements for
networks, we here stick to a graphical illustration. Fig. (2) gives the result of such a vi-
sual inspection of the stress distribution in a network. Those network strands, which are

bNon reversal random walks are RWs, which do not immediately fold back in themselves. By this the length
scale correlations along the backbone of the chains are properly reproduced even though there is no excluded
volume
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linked topologically to other strands, lead to shorter paths connecting through the whole
network. These short paths carry most of the stress under strong elongation and are the
first to break. In experiment of course a combination of shortchemical and topological
connections through the network exist. Their breaking is a reason for the fact that in a
typical elastomer the elastic modulus after the first strongextension is a bit smaller than
right after the crosslinking reaction.

Figure 2. Elongated diamond lattice networks, where the only source of disorder are random links between
network loops. The strands are shown due to their stretching(similar to the stress they carry) from small stretching
(thin) to strong stretching (thick). From Ref28

Starting out from a polymer network, one can ask the question, what would happen, if
the strandsNS between crosslinks are made extremely large. Experiments show that the
elastic modulus of the network decreases asG0(NS) ∝ 1/NS, but only up to a charac-
teristic length, which varies with chemistry. For longer chains the modulus stays constant.
The second important observation is that the time dependentmodulusG(t) first decays
like in a liquid and then levels of toG0(NS). This observation actually also holds for
melts without any crosslinks over many orders of magnitude in time as well, if the chains
are much longer than a characteristic chain lengthNe orMe, the entanglement molecular
weight. The longest relaxation time in such a melt scales asτd ∝ N3.4, the disengagement
timec. This time can be macroscopically large that a melt is almostindistinguishable from
a network. Fig. (3) illustrates the idea which explains thisphenomenon in a way, that for
very long chains inner parts for intermediate times do not ”know” whether the ends are
crosslinked or not. As a consequence the chains have to diffuse along their own contour
and the lateral movement is constrained to an effective tube. This is the essence of the
so called reptation model of deGennes and Edwards. The backbone of the tube is called

cThe theoretical prediction for the asymptotic behavior of very long chains actually isτd ∝ N3/Ne
7
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Figure 3. Sketch of the historical development of the tube constraint and reptation concept. Starting from a
network Edwards in 1967 defined the confinement to the tube, while deGennes in 1971 realized that for long
chains the ends only play a small role for intermediate times.

primitive path and the entanglement lengthNe corresponds to an unperturbed melt chain,
which just fits into the tube. This model and its consequenceshave been studied exten-
sively by theory, simulation and experiment and it is by now well established29, 30. Despite
this effort it was very difficult to predictNe from the chemical structure or static properties
of the polymers. Here computer simulations offer an interesting approach by determining
the contour length of the primitive pathLPP . This can be achieved in a simulation by
contracting the chains as much as possible, while keeping the end to end distance fixed.
By this all existing constraints are conserved, while simultaneously many chain effects are
automatically taken into account. This actually is a modernversion of the original idea of
Edwards from 196731, 32, who defined the primitive path in a network as the shortest path
between the endpoints of a chain, which does not violate any topological constraint. With
the ansatz

LPP = aPPN/Ne (5)

aPP = (lkNe)
1/2 (6)

Ne can directly be read off the simulation result.aPP is the step length of the primitive
path. This leads to a direct prediction of one of the central rheological quantities for poly-
mer melts and networks just from the conformational properties. The outcome of such
simulations can now be compared to experiment via a recent scaling theory. If the lo-
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cal packing of the chains leads to the primitive path, it should be possible to estimate the
plateau modulusG0 of such a melt as a function of the length scales, which determine the
overall conformations. These two lengths scales are the Kuhn length of the chains,lk, as
introduced before, and the packing lengthp = N/(ρ〈R2(N)〉). While lk is a measure for

the chain stiffness, p gives the typical lateral distance between the strandsd. ρ is the bead
density in the simulation. With this information and the expression for the modulus based
on the reptation theory

G0(Ne) =
4

5

ρkBT

Ne
(7)

we can plot the dimensionless modulusG0(Ne)kbT/l
3
k versus the ratiolk/p. Here,

kbT is the thermal energy which is the natural energy scale for soft matter. The result is
shown in Fig. (4).33–35

Figure 4. Dimensionless plateau moduliG0
N l

3
K/kBT as a function of the dimensionless ratiolK/p of Kuhn

lengthlK and packing lengthp33,34. The figure contains (i) experimentally measured plateau moduli for polymer
melts36 (∗ Polyolefins,× Polydienes, + Polyacrylates and⊲miscellaneous), (ii) plateau moduli inferred from the
normal tensions measured in computer simulation of bead-spring melts37 (�) and a semi-atomistic polycarbonate
melt38 (♦) under an elongational strain, and (iii) predictions of thetube model Eq. 7 based on the results of our
PPA for bead-spring melts (�), and the semi-atomistic polycarbonate melt (�). The line indicates the best fit to
the experimental melt data for polymer melts by Fetters et.al 39. Errors for all the simulation data are smaller than
the symbol size.

The agreement is excellent showing the overall consistencyof the previous discussion.
Meanwhile Everaers and coworkers have extended this kind ofanalysis to semi flexible
(bio)polymers such as dense solutions of DNA or actin filaments, where the random walk
assumption of the for the chain on the scale of the tube diameter does not hold anymore.
There extension now gives a consistent picture in the scaledmodulus for 12 decades!35

dActually these two lengths are not independent of each other. For present discussion however we stick to the
assumption that they can be treated as independent. Also there are some ambiguities in the definition oflk in
entangled solutions, which we do not discuss here
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Current research in this field, besides the topics discussedbelow, mostly deals either
with the problem of tube deformation under shear, gels of semi flexible polymers, branched
systems and situations, where one tries to temporary prevent chain entanglements in order
to improve the processibility of such materials, the latterbeing very important for many
every day plastics but also high tech applications.

2.4 Beyond (purely) particle-based

In the case of (semi-)dilute polymer solutions hydrodynamic effects play a major role,
which are completely screened in dense polymer systems. Hydrodynamic interactions act
on a mesoscopic length and time scale which is hardly accessible to the purely particle
based approaches discussed above. The corresponding theoretical concepts and numeri-
cal methods (for example the Lattice Boltzmann method, where the solvent fluid is not
represented by explicit particles by via a grid) are discussed in a separate lecture by B.
Dünweg.

Also for the computation of many material properties such asmechanical properties of
composite materials, particle-based methods provide a toomicroscopic picture. For these
properties, other numerical methods (continuum representations which for example make
use of finite element solvers) have been developed (see for example the lecture of ...).

3 Multiscale Simulation / Systematic Development of Coarse
Grained Models

”Multiscale simulation” refers to methods where differentsimulation hierarchies are com-
bined and linked to obtain an approach that simultaneously addresses phenomena or prop-
erties of a given system at several levels of resolution and consequently on several time and
length scales. Multiscale simulation approaches can operate in different ways of combining
the individual levels of resolution: the easiest way to combine different simulation models
on different scales is to treat them separately and sequentially by simply passing informa-
tion (structures, parameters, energies etc.) from one level of resolution to the next. In the
case of hybrid simulations, different levels of resolutionare present simultaneously. This
is more complex than the sequential approach since interactions between particles/entities
at different levels of resolutions have to be devised. An even more sophisticated multiscale
approach allows to adaptively switch between resolution levels for individual molecules
on the fly – for example depending on their spatial coordinates. This is more complex
since the exchange needs to be carefully conducted to adhere/conserve statistical mechan-
ical principles (conservation laws, prevent fluxes, etc.).For details on adaptive resolution
multiscale methods see the lecture by Delle Site and Junghans.

Irrespective of the method to combine the individual scalesit is an important property
of a ”true” multiscale simulation approach that the individual models on different levels of
resolution are systematically linked. This scale bridgingrequires systematic development
of the individual models such that they are thermodynamically and structurally consis-
tent.40–46,

Many different approaches have been followed to obtain systematically linked simula-
tion models on different levels of resolution, both from theQM to the classical level and
from the classical all-atom level to a coarse grained description. In particular for the latter
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case, one can distinguish between several distinct approaches: in the energy-based coarse
graining approach the interaction potentials between the coarse grained particles are de-
rived such that energies or free energies obtained at the atomistic level are reproduced40, 46.
In the force matching method, the forces in the CG system are determined such that they are
mapped to the sum of the forces on the corresponding atomistic system43. The structure-
based CG methods provide CG interactions that reproduce a pre-defined target structure –
often described by a set of radial distributions functions obtained from all-atom molecular
simulations47–49. Note that there is currently much research being carried out to investigate,
whether – and if yes how – it is possible to derive coarse grained potentials that are both
thermodynamically as well as structurally consistent withthe underlying higher-resolution
description.

In the following we will focus on the structure-based coarsegraining methodology
which was originally developed in the field of polymer simulation. We will illustrate the
different steps that need to be taken to develop a coarse grained model (most of which are
in spirit of course not limited to structure-based coarse graining), we will show examples
both from the original scope of amorphous polymer melts to more complex systems, where
chemically specific/thermodynamic aspects start to play anincreasing role.

The subsequent section is organized along the sequence of steps in the coarse graining
process: first, a mapping scheme is formulated that relates the coordinates in the atomistic
description with the coarse grained ones. Second, one has todecide on a strategy con-
cerning bonded and nonbonded interactions. This distinction is based on the assumption
that the total potential energyUCG can be separated into bonded/covalent and nonbonded
contributions

UCG =
∑

UCG
B +

∑

UCG
NB . (8)

In the methodology followed here, non-bonded (intermolecular) and bonded (covalent,
intramolecular) interactions are separated as clearly as possible and derived sequentially.
In particular for nonbonded interactions, several approaches have been developed to derive
interaction potentials between coarse grained particles.We focus here on the structure-
based coarse graining methodology which will be discussed in detail below. After one has
obtained mesoscale structures and long-time trajectoriesof the CG system by MD simula-
tions, the last step consists of reintroducing atomistic details (“back-mapping” or inverse
mapping) into the CG simulation trajectory. This also belongs to the coarse graining proce-
dure in the sense that it provides a crucial link between the atomistic and the coarse grained
level of resolution.

In the course of the following sections, we will illustrate the above steps along sev-
eral examples: (i) BPAPC (only briefly)25, and (ii) polystyrene being typical examples for
amorphous polymeric systems50, 51. With (iii) the low molecular weight liquid crystalline
compound 8AB8 we show how the recipes from the polymer world can be extended to
systems, where chemically specific nonbonded interactionsplay an increasingly important
role49. As a last step we will give with (iv) a dipeptide (diphenylalanine) in aqueous envi-
ronment an outlook to show how the methodology can be extended to systems where the
complexity compared to homogeneous isotropic polymer melts is increased52, 53. Figure 5
shows the chemical structure of the named compounds.
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BPA−PC PS

Di−Phe

8AB8

Figure 5. Chemical structure and mapping schemes of the discussed CG examples: BPA-PC, Polystyrene (PS),
8AB8, diphenylalanine (Di-Phe)

3.1 Mapping scheme

The mapping scheme relates the atomistic coordinates of a structure with the bead positions
in the CG model. Here, we only consider CG centers with spherically isotropic potentials.
Even though there is no unique way to map a given set of atoms onto a coarser descrip-
tion25, there exist empirical criteria for a good choice of mappingpoints which depend
on the specific properties under investigation. A very important criterion for a mapping
scheme is its ability to decouple internal degrees of freedom so that the intramolecular
(bonded) potentials can be cleanly factorized into bond, angle and torsion terms. For ex-
ample for the liquid crystalline compound 8AB8, which can undergo a transition from a
rod-like extended (trans) structure to a V-shaped bent (cis) structure, one needs a clear
distinction between the two states since they are crucial for the phase behavior of the com-
pound. The most convenient way to capture the geometry change of the AB unit upon pho-
toisomerization is to position a “linker bead” in the centerof the azo group. Consequently,
the centers of the two phenyl groups appear to be logical nextCG centers. With these
CG phenyl beads we can later on also compare the applicability of universally (re-)usable
CG phenyl parameters based on liquid benzene with parameters derived specifically for
azobenzene.

Another example for the importance of the mapping scheme chosen is BPAPC. Here
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the at first counterintuitive effect occurs that a coarser mapping scheme which reduces
the number of beads in the system can nevertheless effectively lower the computational
efficiency compared to a scheme with more CG particles. This is because in the latter case
the polymer appears to be moretube likewhich leads to a reduced friction in the system
and effectively speeds up the dynamics in the simulation54.

3.2 Bonded interaction potentials

Bonded interactions derived such that the conformational statistics of a single molecule is
represented correctly in the CG model. The general strategyis to use Boltzmann inver-
sion to convert distributions of conformational properties such as interparticle distances or
angles into potentials.

Intramolecular bonded interactions of the CG model are determined by sampling the
distributions of (CG) conformational degrees of freedom ofan isolated molecule in atom-
istic resolution (determined here by MD simulations using astochastic thermostat to en-
sure proper equilibration). These conformational distributionsPCG are in general char-
acterized by specific CG bond lengthsr between any pair of CG beads, anglesθ be-
tween any triple of beads and torsionsφ between any quadruple of beads respectively,
i.e. PCG(r, θ, φ, T ). If one assumes that the different CG internal degrees of freedom
are uncorrelated,PCG(r, θ, φ, T ) factorizes into independent probability distributions of
bond, angle and torsional degrees of freedom

PCG(r, θ, φ, T ) = PCG(r, T ) PCG(θ, T ) PCG(φ, T ) . (9)

This assumption has to be carefully checked (it is not uncommon that coarse grained DOFs
are correlated, for example that certain combinations of CGbonds, angles and torsions are
“forbidden” in the distributions obtained from the “real” atomistic chain), and is an impor-
tant test of the suitability of a mapping scheme. A mapping scheme containing complex
multi-parameter potentials is computationally rather inefficient. The individual probabil-
ity distributionsPCG(r, T ), PCG(θ, T ), andPCG(φ, T ) are then Boltzmann inverted to
obtain the corresponding potentials:

UCG(r, T ) = −kBT ln (PCG(r, T )/r2) + Cr (10)

UCG(θ, T ) = −kBT ln (PCG(θ, T )/ sin(θ)) + Cθ (11)

UCG(φ, T ) = −kBT ln PCG(φ, T ) + Cφ . (12)

Note that these potentials are in fact potentials of mean force, ergo free energies and con-
sequently temperature dependent (not only due to the prefactor kBT ). This means they
can strictly be only applied at the temperature (state point) they were derived at, requir-
ing a reparametrization at each temperature. In practice, one needs to test the width of
this applicability range for each CG model individually. Experience shows that typical
temperature ranges are of the order of±10% (if no phase transition is within that range).
Technically, the Boltzmann inversions (equations 10-12) and the subsequent determina-
tion of the derivatives can be carried out numerically, resulting in tabulated potentials and
forces. Another option is to determine analytical potentials that reproduce the probability
distributionsPCG(r, T ), PCG(θ, T ), andPCG(φ, T ), for example by fitting the (multi-
peaked) bond and angle distributions by a series of Gaussianfunctions which can then be
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inverted analytically resulting in smooth potentials and forces55. This latter method was
used for 8AB8.

The approach of strictly separating into bonded and nonbonded CG potentials as out-
lined here is in contrast to other approaches, where the CG internal degrees of freedom
are determined based on the distributions obtained from an atomistic simulation of the
melt/liquid phase48. In the latter case one obtains potentials for bonded and nonbonded
interactions simultaneously based on the same melt, consequently they are interdependent,
i.e. there is no clear separation between covalent and nonbonded interaction potentials.
For amorphous polymeric systems, we achieve this separation by deriving bond, angle and
torsional distributions from the conformations of the single chain in vacuo. When generat-
ing these distributions, the inclusion of nonbonded interactions has to be taken with some
care to avoid “double counting” of long range intra-chain interactions. For example in the
case of 8AB8, we simulated a single 8AB8 molecule with MD using a stochastic thermo-
stat and we excluded all intra-chain nonbonded interactions beyond the distance of three
CG bonds (i.e.≡ a torsion), since the interaction between these beads will be covered by
non-bonded interactions in the CG simulations. Note that inanalogy short range bead-bead
interactions along a chain are covered by bond, angle and torsion potentials, which means
for these bead pairs nonbonded interactions need to be excluded in the CG simulations.

The above clear separation by simulation of a single molecule in vacuo can only be
successful, it the conformational sampling of the moleculein vacuo and in the bulk (or
solution) phase does not differ substantially. In biomolecular systems due to the peculiar
nature of aqueous solutions (i.e. the presence of hydrogen bonds) this assumption gets
problematic, as can be seen for the dipeptide diphenylalanine52.

3.3 Nonbonded interaction potentials

In the structure-based nonbonded interaction potentials between coarse grained beads are
derived based on the structure of isotropic liquids of smallmolecules (in the case of more
complex molecules such as 8AB8, fragments of the target molecule are used).

In structure-based coarse graining approaches nonbonded interaction potentials are de-
rived such that structural properties of the liquid or melt are reproduced. In this case,
radial distribution functions of the atomistically simulated liquids are used as targets for
the parametrization process. For the CG potentials and their optimization there are two
principal options: the first option is to adjust the parameters of analytical potentials such as
Lennard-Jones to closely reproduce the structure of the atomistic melt/liquid. The second
option is to use numerically derived tabulated potentials which are designed such that the
CG melt exactly reproduces the atomistic melt structure.

In the first case the standard Lennard-Jones 12-6 potential has turned out to be too
strongly repulsive, i.e. too “hard”, for CG particles whichare rather large and soft. Softer
Lennard-Jones-type of potentials (e.g. 9-6 or 7-651), or Morse potentials have proven to be
more useful. In the present study, we used Morse potentials

UCG
NB,morse(r) = ǫ (1− e−α (r−σM ))2 for r < σM and 0 for r ≥ σM . (13)

In the present form they are purely repulsive potentials in the spirit of the Weeks-Chandler-
Andersen (WCA) model56, shifted upwards and truncated in the minimum atr = σM . To
adjust the parameters a simplex algorithm can be used57, 58 to search the optimal set of
parameters to reproduce a given melt structure.
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In the second scheme, the iterative Boltzmann inversion method47, 59 can be used to
generate numerically a tabulated potential that exactly reproduces a given melt structure,
i.e. a given radial distribution functiong(r). This method relies on an initial guess for
a nonbonded potentialUCG

NB,0. Usually the Boltzmann inverse of the targetg(r), i.e. the
potential of mean force,

UCG
NB,0 = −kBT ln g(r) , (14)

is used, with which one then performs a coarse grained simulation of the liquid. The
resulting structure of this first step will not match the target structure as the potential of
mean force is – due to multibody interactions – only in the limit of very high dilution a
good estimate for the potential energy. However, using the following iteration scheme

UCG
NB,i+1 = UCG

NB,i + kBT ln(
gi(r)

g(r)
) , (15)

the original guess can be self-consistently refined until the desired structure is obtained.
For complex molecules with a large number of different CG beads or more impor-

tantly in the case of liquid crystalline molecules with anisotropic structures the procedure
to determine nonbonded interaction functions is more complicated. In these cases it is
advantageous to split the target molecule into fragments sothat the nonbonded interac-
tions between different bead types can be determined based on the structure ofisotropic
liquids of these fragment molecules. A potential error thatcould be introduced by this
fragment-based approach is that different conformations or relative orientations between
molecules might contribute differently to the structure ofthe fragment liquids than to the
target liquid or melt. Consequently these conformations would be misrepresented in the
CG potentials. One example are relative weights of paralleland perpendicular orientations
between anisotropic molecules such as phenyl rings, that might differ in liquid benzene
compared to molecules where the rings are embedded into a longer chain. This and other
aspects of transferability of CG potentials60, 61, for example transferability between differ-
ent compositions of liquid/liquid mixtures or the transferability of CG potentials between
thetransandcis isomers of azobenzene need to be tested and will be more thoroughly dis-
cussed in the Results section. After careful testing and keeping in mind, that in principle
all CG potentials are state dependent, the procedure to derive them from chain fragments
and low molecular weight liquids opens up the possibility toreuse certain CG potentials
for reoccurring building blocks (such as alkyl or phenyl groups).

3.4 Reintroduction of atomistic details (“back-mapping”)

The “back-mapping” or inverse mapping problem, i.e. the task to reintroduce atomistic
coordinates into coarse grained structures, has in generalno unique solution since every
CG structure corresponds to an ensemble of atomistic microstates. Thus, the task is to find
a representative structure from this ensemble which displays the correct statistical weight
of those degrees of freedom not resolved in the CG description, e.g. ring flips etc. Multiple
strategies to reintroduce atomistic details into a CG structure have been presented62, 63, 50.
The strategy was first to use reasonably rigid all-atom chainfragments – corresponding
to a single or a small set of CG beads – which were taken from a correctly sampled dis-
tribution of all-atom chain structures. These fragments were fitted onto the CG structure,
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the resulting all-atom structure was relaxed by energy minimization and a short equilibra-
tion62, 63, 50. In the case of more flexible low-molecular weight molecules(e.g. 8AB8 or
diphenylalanine) a slightly different strategy was chosento avoid the atomistic structure
to deviate too strongly from the CG reference. Atomistic coordinates were inserted into
the CG structure (either using presampled fragments or random coordinates) such that the
constraint was applied that the atomistic coordinates haveto satisfy the “mapping condi-
tion”, i.e. the atomistic coordinates have to yield back theCG structure if one applied the
mapping scheme. The resulting structure was then relaxed (energy minimized and equili-
brated by molecular dynamics simulations), while at the same time always applying this
“mapping condition”. Practically, this was done by restraining the atomistic coordinates
(with an additional external potential) to the CG mapping points. This procedure results in
a perfectly equilibrated set of atomistic coordinates thatalmost (depending on the strength
of the restraining potential) exactly reproduces the CG structure.

The combination of CG simulation with an efficient backmapping methodology is a
powerful tool to efficiently simulate long time-scale and large length-scale soft matter pro-
cesses where in the end one can obtain well-equilibrated atomistic structures. The resulting
structures can be directly compared to experimental data63 or they can be used in further
computations, for example to determine free-energy data (e.g. the permeabilities of small
molecules in large polymeric systems64).

Additionally, the combination of coarse grained simulations with a CG model based
on an underlying atomistic description with a backmapping procedure can be further em-
ployed to validate the atomistic forcefield – on time and length scales not accessible to
atomistic simulations alone due to sampling problems.

3.5 Time mapping

Within CG models length scales are usually well defined through the construction of the
coarse graining itself. In most dynamic CG simulations reported in the literature little
attention is paid however to the corresponding “coarse graining” of the time unit. From
polymer simulations of both simple continuum as well as lattice models it is known that
such simulations reproduce the essential generic featuresof polymer dynamics; that is, the
crossover from the Rouse to the entangled reptation regime,qualitatively and to a certain
extent quantitatively29. While such previous studies concern motion distances on scales
well above a typical monomer extension and provide quantitative information on charac-
teristic time ratios, this still leaves a number of open questions. These refer to the predictive
quantitative modeling of diffusion, viscosity, rates, andcorrelation times, etc. of dynamic
events as well as to the question of minimal time and length scales CG simulations apply
to. Particle mass, size, and energy scale, which are all welldefined within a CG model, of
course trivially fix a time scale, and it is indeed this time scale that is most often reported in
MD simulations of CG systems. However, it does not usually correspond to the true phys-
ical time scale of the underlying chemical model, because part of the friction experienced
by a (sub)molecule (in the atomistic representation) is lost in the CG representation, caus-
ing the CG system to evolve faster. (Note that this is in principle also the case for atomistic
simulations that make use of so-called united atoms where aliphatic hydrogen atoms are in-
corporated into the carbon atoms.) In other words, the fluctuating random forces of atomic
DOFs, which are integrated out in the CG model, contribute toa “background friction” that
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must be considered in order to obtain a realistic time scale in the CG dynamics simulation.
The physical origin of the dynamic speedup in comparison with all-atom models and real-
life experimental systems is that the barriers (e.g. for diffusional motion) are lower because
CG interparticle potentials are softer and more smoothly varying with distance.

In order to determine the speedup in CG simulations due to these enhanced dynamics,
CG dynamic quantities can in some cases be mapped directly onto the corresponding quan-
tity obtained from detailed MD simulations or from experiments. For example, a diffusion
coefficient in the coarse systemDCG can be mapped onto the diffusion coefficient in the
atomistic systemDAT , effectively introducing a dimensionless scaling constant between
the CG time unit and the actual time unit of the chemical system. This scaling factor can
then also be used to estimate the actual speedup factor whichfor the present systems is
about104. Alternatively, the CG mean squared displacement curve canbe superimposed
with the atomistic curve at (for atomistic simulations) long times. This approach was used
to study entangled polycarbonate (BPA-PC) melts of up to 20 entanglement lengths. The
CG simulations provided truly quantitative information onthe different measures of the
entanglement molecular weight (from displacements, scattering functions, modulus and
topological analysis) and the ratios of the different crossover times.
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Figure 6. Diffusion constant of polystyrene chains in a meltof identical chains for molecular weights between
MW = 1000 and aboutMW = 50000. The simulation data, obtained from a hierarchy of allatom, united
atom and coarse grained simulation, do not contain any fitting parameter. The full symbols are from different
experiments. For details see65.
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Figure 7. Segmental relaxation times of polystyrene as measured by NMR spectroscopy for different molecular
weights as a function of temperature. Simulation data from CG runs for one temperature where the timescaling
is the same as for the previous figure demonstrating the overall consistency of the approach66.
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62. W. Tschöp, K. Kremer, J. Batoulis, T. Burger, and O. Hahn, Simulation of polymer
melts. I. Coarse-graining procedure for polycarbonates, Acta Polym.,49, no. 2-3, 61
– 74, 1998.

63. B. Hess, S. Leon, N. van der Vegt, and K. Kremer,Long time atomistic polymer tra-
jectories from coarse grained simulations: bisphenol-A polycarbonate, Soft Matter,
2, no. 5, 409 – 414, 2006.

64. B. Hess, C. Peter, T. Ozal, and N. F. A. van der Vegt,Fast growth thermodynamic
integration: solubilities of additive molecules in polymer microstructures, Macro-
molecules,41, 2283–2289, 2008.

65. V. A. Harmandaris and K. Kremer, in preparation.
66. V.A. Harmandaris and K. Kremer,Dynamics of Polystyrene Melts through Hierarchi-

cal Multiscale Simulations, Macromolecules,42, no. 3, 791–802, 2009.

358



Adaptive Resolution Schemes

Christoph Junghans, Matej Praprotnik †, and Luigi Delle Site

Max Planck Institute for Polymer Research
Ackermannweg 10, 55128 Mainz, Germany

E-mail: dellsite@mpip-mainz.mpg.de

The Adaptive Resolution Scheme (AdResS) is a simulation method, which allows to perform
Molecular Dynamics (MD) simulations treating different regions with different molecular res-
olutions. The different scales are coupled within a unified approach by changing the number
of degrees of freedom on the fly and preserving the free exchange of particles between regions
of different resolution. Here we describe the basic physical principles of the algorithm and
illustrate some of its relevant applications.

1 Introduction

Multiscale techniques are becoming standard procedures tostudy systems in condensed
matter, chemistry and material science via simulation. Thefast progress of computer tech-
nology and the concurrent development of novel powerful simulation methods has strongly
contributed to this expansion. This led to the result that detailed sequential studies (mod-
eling) from the electronic scale to the mesoscopic and even continuum are nowadays rou-
tinely performed (see e.g.1–8). However, sequential approaches still do not couple scales
in a direct way. Their central idea is to employ results from one scale to build simplified
models in a physically consistent fashion, keeping the modeling approximations as much as
possible under control; next, in a separate stage, a larger scale is considered. A step beyond
these sequential schemes is represented by those approaches where the scale are coupled in
a concurrent fashion within a unified computational scheme.Problems as edge dislocation
in metals or crack of materials where the local chemistry effects large scale material prop-
erties and vice versa, are typical examples where the idea ofconcurrent scale methods has
been applied. In this case quantum based methods are interfaced with classical atomistic
and continuum approaches within a single computational scheme9–11. A further example is
the Quantum Mechanics/Molecular Mechanics (QM/MM) scheme12; mainly used for soft
matter systems it is based on the idea that a fixed subsystem isdescribed with a quantum
resolution while the remainder of the system is treated at classical atomistic level. A typi-
cal example of application of the QM/MM method is the study ofthe solvation process of
large molecules; for this specific example the interesting chemistry happens locally within
the region defined by few solvation shells and thus it is treated at a quantum level while
the statistical/thermodynamical effect of the fluctuatingenvironment (solvent) far from the
molecules is treated in a rather efficient way at classical level. In the same fashion there
are several more examples (see e.g. Refs.13, 14). All of these methods, although computa-
tionally robust, are characterized by a non-trivial conceptual limitation, i.e. the region of
high resolution is fixed and thus the exchange of particles among the different regions is
not allowed. While this may not be a crucial point for hard matter, is certainly a strong lim-
itation for soft matter, i.e. complex fluids, since relevantdensity fluctuations are arbitrarily
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suppressed. The natural step forward to overcome this problem is the design of adaptive
resolution methods which indeed allow for the exchange of particles among regions of dif-
ferent resolution. In general, in such a scheme a molecule moving from a high resolution
region to a lower one, would gradually lose some degrees of freedom (DOFs) until the
lower resolution is reached and yet the statistical equilibrium among the two different re-
gions is kept at any instant. Recently some schemes based on this idea, for classical MD,
have been presented in literature15–19. They are based on different conceptual approaches
regarding the way the scales are coupled and the way the equilibrium of the overall system
is assured. For the quantum-classical case there are instead several conceptual problems
to be solved before a proper scheme can be designed; this is briefly discussed in the next
section.

2 Classical and Quantum Schemes

As stated before, many problems in condensed matter, material science and chemistry are
multiscale in nature, meaning that the interplay between different scales plays the funda-
mental role for the understanding of relevant properties asreported in the examples above.
An exhaustive description of the related physical phenomena requires in principle the si-
multaneous treatment of all the scales involved. This is a prohibitive task not only because
of the computational resources but above all because the large amount of produced data
would mostly contain information not essential to the problem analyzed and may over-
shadow the underlying fundamental physics or chemistry of the system. A solution to this
problem is that of treating in a simulation only those DOFs, which are strictly required by
the problem. In this lecture, in particular, we will illustrate the basic physical principles of
the Adaptive Resolution Scheme (AdResS) method, where the all-atom classical MD tech-
nique will be combined with the coarse grained MD one (for a general discussion about
coarse graining see the contribution of C. Peter and K. Kremer), and briefly discuss the
difference with other methods. In the AdResS method the combination of all-atom classi-
cal MD and coarse grained MD leads to a hybrid scheme where themolecule can adapt its
resolution, passing from an all-atom to a coarse grained representation when going from
the high resolution region to the lower one (and vice versa),and thus changing in a con-
tinuous manner the number of DOFs on the fly. In this way the limitation of the all-atom
approach in bridging the gap between a wide range of length and time scales is overcome
by the fact that only a limited region is treated with atomistic DOFs (where high resolution
is necessary) while the remaining part of the system is treated in the coarse grained rep-
resentation and thus loses the atomistic (chemical) details but retains those DOFs relevant
to the particular property under investigation. This meansthat one can reach much longer
length and time scales and yet retain high resolution where strictly required. In principle
the same concept may be applied for quantum-classical hybrid adaptive schemes. Here for
quantum is meant that the nuclei are classical objects but their interaction is determined
by the surrounding electrons obeying the Schrödinger equation. In this case, however the
level of complexity is by far much higher than the hybrid all-atom/coarse grained case.
In fact it involves not only a change of molecular representation but also of the physical
principles governing the properties of the system. One of the major obstacles is that of
dealing with a quantum subsystem where the number of electrons changes continuously
in time, that is the wavefunction normalization varies in time. In this case one deals with
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a different Schrödinger problem at each step unless one introduces some artificial creation
and annihilation terms in the Hamiltonian in order to allow acontinuous fluctuation of the
electron number in a consistent way. Although not trivial, this may still be feasible but
the physics of the system could be dramatically modified by the presence of such technical
artifacts. One should be also careful in not confusing a proper adaptive scheme, where
the DOFs (classical and quantum) change continuously on thefly, with the straightforward
approach of running a QM/MM-like simulation and ateach stepmodify the size of the
quantum region. In this case one has a brute force, by-hand adaptivity which does not
allow the system to properly relax both the classical and quantum DOFs. A possible solu-
tion to the problems above may be that of treating the electron in a statistical way within
a macrocanonical ensemble where their number is allowed to fluctuate, along the same line
of thinking of Alavi’s theory in the Free Energy MD scheme20, or by mapping the quan-
tum problem of the subsystem into a classical one in a path integral quantum mechanical
fashion (see e.g.21) so that the idea of adaptivity can be applied between two (effective)
classical descriptions. A possible further approach may bealong the lines of coupled
quantum-classical MD schemes where the classical bath provides the average environment
for a quantum evolution of a subsystem via the use of Wigner transformations22. How-
ever at this stage these are only speculations and up to now noproper quantum-classical
procedures where the adaptivity occurs in a continuum smooth way have been proposed.

3 AdResS: General Idea

The driving idea of the AdResS is to develop a scheme where theinterchange between
the atomistic and coarse level of description is achieved onthe fly by changing the molec-
ular DOFs. In order to develop this idea a test model for the molecule has been built.
Fig. 1 gives a pictorial representation of the tetrahedral molecule used and its correspond-
ing spherical coarse grained representation, derived in a way that it reproduces chosen
all-atom properties. The tetrahedral molecule consists offour atoms kept together by
a spring-like potential with a Lennard-Jones intermolecular potential; specific technical
details of the model as well as of the coarse grained procedure for the spherical represen-
tation are reported in Appendix. As Fig. 1 shows, the atomistic molecule when passing to
the coarse grained region, slowly loses its vibrational androtational DOFs, passing through
different stages of hybrid atomistic/coarse grained representation and finally reducing its
representation to a sphere whose DOFs are solely the translational ones of the center of
mass with a proper excluded volume. A crucial point to keep inmind is that the different
resolutions do not mean that the molecules are of differentphysicalspecies. The basic un-
derlying physics is in principle the same in all region and thus the process of exchange has
to happen in condition of thermodynamical and statistical equilibrium which means pres-
sure balanceP atom = P cg, thermal equilibriumT atom = T cg, and no net molecular flux
ρatom = ρcg. This conditions must be preserved by the numerical scheme and thus repre-
sent the conceptual basis of the method17, next the effective dynamical coupling between
the scales must be specified; this is reported in the next section.

3.1 Scale coupling

Once the effective potential is derived on the basis of the reference all-atom system (see
Appendix 8) then the atomistic and the coarse grained scalesare coupled via a position
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(a) On-the-fly interchange of a molecule (b) Snapshot of the simulation box

Figure 1. (a) The on-the-fly interchange between the atomic and coarse grained levels of description. The middle
hybrid molecule is a linear combination of a fully atomistictetrahedral molecule with an additional center-of-
mass particle representing the coarse grained molecule. (b) Snapshot of the hybrid atomistic/mesoscopic model at
ρ∗ = 0.1 andT ∗ = 1 (LJ units). The red molecules are the explicit atomistically resolved tetrahedral molecules,
while the blue molecules are the corresponding one-particle coarse grained molecules. (Figure was taken from
Ref.15)

dependent interpolation formula on the atomistic and coarse grained force15, 16:

Fαβ = w(Xα)w(Xβ)Fatom
αβ + [1− w(Xα)w(Xβ)]F

cg
αβ (1)

whereα andβ labels two distinct molecules,Fatom
αβ is derived from the atomistic potential

where each atom of moleculeα interacts with each atom of moleculeβ, andFcg
αβ is ob-

tained from the effective (coarse grained) pair potential between the centers of masses of
the coarse grained molecules. In the region where a smooth transition from one resolution
to another takes place, a continuous monotonic ”switching”functionw(x) is defined as
in Fig. 2 (whereXα, Xβ are thex-coordinates of the centers of mass of the molecules
α andβ). A simple way to think about the functionw(x) is the following:w(x) is equal
to one in the atomistic region and thus the switchable DOFs are fully counted, whilew(x)
is zero in the coarse grained region and thus the switchable DOFs are turned off, while
in between takes values between zero and one and thus provides (continuous) hybrid rep-
resentations of such DOFs (i.e. they count only in part). In general, Eq. 1, allows for
a smooth transition from atomistic to coarse grained trajectories without perturbing the
evolution of the system in a significant way. More specifically the formula of Eq. 1 works
in such a way that when a molecule passes from the atomistic tothe coarse grained re-
gion, the molecular vibrations and rotations become less relevant until they vanish so that
w(x) smoothly “freezes” the dynamical evolution of these DOFs and their contributions
to the interaction with the other molecules. Vice versa, when the molecules goes from the
coarse grained region to the atomistic one,w(x) smoothly ”reactivates” their dynamics and
their contributions to the intermolecular interactions. In the case of tetrahedral molecules,
being characterized by pair interactions, we have that all the molecules interacting with
coarse grained molecules interact as coarse grained molecules independently of the region
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Figure 2. The weighting functionw(x) ∈ [0, 1]. The valuesw = 1 andw = 0 correspond to the atomistic and
coarse grained regions of the hybrid atomistic/mesoscopicsystem with the box lengtha, respectively, while the
values0 < w < 1 correspond to the interface layer. The vertical lines denote the boundaries of the interface
layers. (Figure was taken from Ref.15)

where they are (the coarse grained molecule does not have anyatomistic detail, thus the
other molecule can interact with this molecule only via the center of mass), two atomistic
interact as atomistic, while for the other couplings, the interactions are governed by the
w(Xα)w(Xβ) combination. A very important point of Eq. 1 is that, by construction, the
Newton’s Third Law is preserved. The diffusion of moleculesbetween regions with dif-
ferent resolution must not be perturbed by the resolution change. Thus the conservation of
the linear momentum dictated by the Newton’s Third Law is crucial in adaptive resolution
MD simulations.

3.2 Thermodynamical equilibrium

Eq. 1 cannot be derived from a potential and thus a scheme based on it, would not have
an energy to conserve. The natural subsequent question is how to then control the ther-
modynamic equilibrium. The conceptual problem for an adaptive scheme is that the free
energy density is formally not uniform since the number of DOFs varies in space, however
being the system uniform by construction (and being theunderlying physical nature of
the molecules the same everywhere), this would be only an artifact of the formalism used.
This non uniformity leads to a non-physical preferential direction of the molecular flux. In
fact, as numerical tests show, there is a preferential tendency of the atomistic molecules
to migrate into the coarse grained region and change resolution in order to lower the free
energy of the system (the free energy is an extensive quantity, that is proportional to the
number of DOFs). A simple qualitative way to picture this diode-like aspect is the follow-
ing: when a molecule goes from an atomistic to a coarse grained region it loses vibrational
and rotational DOFs and thus in its interactions with the neighboring (coarse grained)
molecules it must accommodate only its excluded volume (i.e. find space). This becomes
more complicated if a coarse grained molecules moves into anatomistic region, in this
case the molecule acquires rotational and vibrational DOFsand tries to enter into a region
where other molecules are already locally in equilibrium. This means that in order to en-
ter this region, the molecules should accommodate both rotational and vibrational DOFs

363



according to the neighboring environment. Most likely the molecule would enter with vi-
brational and rotational motions which does not fit the localenvironment and this would
lead to a perturbation of the local equilibrium. This means that for such a molecule the
way back to the coarse grained region is more convenient, and thus this free energy barrier
works as a closed door (probabilistically) for the coarse grained molecules and opened
door for the atomistic ones so that a preferential molecularflux from the atomistic to the
coarse grained region is produced. In thermodynamic terms,as an artifact of the method,
the different regions are characterized by a different chemical potential, however, since
this aspect does not stem from the physics of the system but only from the formalism,
we have to amend for this thermodynamical unbalance. This means that the use of Eq. 1
alone cannot assure thermodynamical equilibrium and further formal relations, linking the
variables of the problem, should be determined in order to obtain equilibrium. This can be
obtained, as shown in the next sections, by analyzing the meaning of the process of varying
resolution in statistical and thermodynamical terms.

4 Theoretical Principles of Thermodynamical Equilibrium i n
AdResS

In this section we analyze the idea of describing thermodynamical equilibrium for a system
where, formally, the number of DOFs is space dependent and yet the molecular properties
are uniform in space.

4.1 The principle of geometrically induced phase transition

The space dependent change of resolution can be seen, to havesome similarities to a physi-
cal phase transition, as a fictitious geometrically inducedphase transition. In simple words,
the concept of latent heat is similar to that of a molecule which, for example, goes from
the liquid to the gas phase and in doing so needs a certain energy (latent heat) to activate
those vibrational states that makes the molecules free fromthe tight bonding of the liquid
state. In the same way, a molecule in the adaptive scheme thatpasses from a coarse grained
to an atomistic resolution, needs a latent heat to formally (re)activate the vibrational and
rotational DOFs and to reach equilibrium with the atomisticsurrounding. Vice versa the
heat is released when the molecule goes from gas to liquid andso the bond to the other
molecules becomes tighter, in the same way in the adaptive scheme, the molecule passing
from atomistic to coarse grained, formally releases DOFs and thus automatically the asso-
ciated heat. This concept can be formalized as:µatom = µcg+φ, whereµcg is the chemical
potential calculated with the coarse grained representation,µatom that of the atomistic one,
andφ is the latent heat23, 17. Possible procedures for a formal derivation of an analyticor
numerical form ofφ and how to use it in the AdResS scheme is still a matter of discussion
and subject of work in progress and will be briefly discussed later on. For the time being,
a simpler and practical solution is used, that is the system is coupled to a thermostat (see
Appendix 8) which automatically, as a function of the position in space, provides (or re-
moves) the required latent heat assuring stability to the algorithm and equilibrium to the
system. The coupling of the system to a thermostat leads to the natural question of how
to define the temperature in the region of transition where the number of DOFs is space
dependent.
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4.2 Temperature in the transition region

In the atomistic and coarse grained region the temperature can be defined without a prob-
lem employing the equipartition theorem:T atom/cg= 2<Katom/cg>

natom/cg , where< Katom/cg> is
the average kinetic energy of the atomistic/coarse grainedregion andnatom/cg is the total
average number of DOFs. In the atomistic/coarse grained region, such a quantity is a well
defined number, however it is not so in the transition region wherentrans = n(x). The ques-
tion arising is how to defineT trans and above all what< K trans> means. To address this
question we make the following observations: the switchingprocedure implies that a DOF,
in calculating average statistical quantities,fully counts in the atomistic region, which
formally means that an integral over its related phase spaceis performed (

∫
....dq; q being

a generic switchable DOF). On the other hand in the coarse grained region,q is not relevant
to the properties of the system and thus itdoes not count at all, that is no integration over
its related phase space is required. In the transition region the situation is something in
between and thus by switching on/off the DOFq we effectively change the dimensionality
(between zero and one) of its related phase space, that is of its domain of integration. In
simple wordsq in the transition region contributes to statistical averages with a weight.
The mathematical tool which allows to formalize this idea isprovided by the technique of
the fractional calculus, where for a fixed resolutionw the infinitesimal volume element is
defined as26:

dVw = dwq Γ(w/2)/2πw/2Γ(w) = |q|w−1dq/Γ(w) = dqw/wΓ(w) (2)

with Γ(w) the well-knownΓ function. Employing such a formalism to calculate the aver-
age energy for quadratic DOFs one obtains:

< Kq >w=

∫∞
0 e−βq2

qw+1dq
∫∞
0 e−βq2qw−1dq

. (3)

The solution of Eq. 3 is found to be26:

< Kq >w=
w

2
β−1. (4)

This is nothing else than the analog of the equipartition theorem for non integer DOFs.
Here< Kq >w is the average kinetic energy of the switchable DOFq for the fixed res-
olutionw. One can then think to usew as a continuous parameter and thus obtaining the
definition of kinetic energy for the switchable DOFs in the transition region. A further
point needs to be explained, that is, we have implicitly useda Hamiltonian to perform the
ensemble average and this would contradict the statement ofthe previous section about
the non existence of an energy within the coupling scheme used. To clarify this aspect we
have to say that the coupling formula on the forces is not directly related to the derivation
of the statistical average performed here. Here we have interpreted the process of chang-
ing resolution as the process of partially counting a DOF contribution into the statistical
determination of an observable, under the hypothesis that the underlying Hamiltonian is
the same all over the system. This is justified by the fact thatthe underlying physics is
in principle the same all over the system but the formal representation and thus the anal-
ysis of the DOFs of interest and their contributions differs. This in practical terms means
that the derivation of the temperature and the principle of coupling of forces via spatial
interpolation are two aspects of the same process but one cannot formally derive both from
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a single general principle so that the connection between them, at this stage, must be in-
tended as only qualitative. However, we will use the numerical tool of simulation where
both Eq. 1 and Eq. 4 are employed in connection to each other toprove that they are nu-
merically consistent. At this point the obvious question arises about why to choose the
approach based on the interpolation of the forces and not to choose the more natural one
based on the smooth interpolation of the potential. This problem is treated in the next
section.

5 Coupling the Different Regimes via a Potential Approach

The coupling scheme analog of Eq. 1 using potentials insteadof forces would be:

Uαβ = w(xα)w(xβ)Uatom
αβ + [1− w(xα)w(xβ)]U cg

αβ . (5)

This approach leads to a series of problem whose solution is not trivial. In particular if one
derives the forces from Eq. 5 obtains an extra term, which here we will namedrift force ,
of the following form:

Fdrift = Uatom∂w

∂x
+ U cg∂w

∂x
(6)

There are two options at this point, one accepts this force asa result of a definition of
a new force field in Eq. 5, or one tries to remove it by a specific choice ofw(x) or by
modifyingUαβ in Eq. 5. In the first case one has to be aware that, because the derivative
of w(x) enters into the equations of motion, the evolution of the system becomes highly
sensitive to the choice of the form ofw(x). This means that different functionsw(x) may
lead to complete different results, and being the choice ofw(x) made on empirical basis,
the dynamic becomes arbitrary and thus, most likely, unphysical. The limitation above
applies in principle to the approach proposed by Heyden and Truhlar19, where the scales
are coupled by an interpolation of Lagrangians via a space dependent function. Moreover,
the force obtained from Eq. 5 does not preserve the third Newton’s law23, 26.

Instead if one tries to follow the second possibility, that is removingFdrift, one en-
counters heavy mathematical difficulties24, 25since the conditionFdrift = 0 leads to a sys-
tem of partial differential equations of first order:

U cg∂f(Xα, Xβ)

∂Xα
+ Uatom

∂g(Xα, Xβ)

∂Xα
= 0

U cg∂f(Xα, Xβ)

∂Xβ
+ Uatom

∂g(Xα, Xβ)

∂Xβ
= 0. (7)

Heref(x) andg(x) are the most general switching functions one can think of. For the sys-
tem of Eqs. 7 each equation is characterized by two boundary conditions, thus the system
is overdeterminedand thus in general a solutiondoes not exist. This is valid also if one
tries to generalize Eq. 5 as:

U coupling = f(Xα, Xβ)U cg + g(Xα, Xβ)Uatom+ Φ. (8)

The extra potentialΦ does not improve the situation because in this case the overdetermi-
nation is shifted fromf andg to Φ. These sort of problems, in principle, occur for the
conserving energy method proposed by Ensinget al.18, where the difference between the
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Figure 3. (a) Center-of-mass radial distribution functions for all molecules in the box of the all-atom ex and
hybrid atomistic/mesoscopic ex-cg systems atρ∗ = 0.1 andT ∗ = 1. Shown are also the corresponding center-
of-mass radial distribution functions for only the explicit molecules from the explicit region ex-cg/ex and for
only the coarse grained molecules from the coarse grained region ex-cg/cg . The width of the interface layer is
2d∗ = 2.5. (b) The corresponding average numbers of neighborsnn(r∗) of a given molecule as functions of
distance. The different curves are almost indistinguishable. (Figure was taken from Ref.15)

true (full atomistic) energy of the system and the one of the hybrid scheme is provided
during the adaptive run via a book keeping approach while theforces are calculated with
a scheme similar to that of AdResS. The problem of the overdetermination reported above
in this case would mean that the conserved energy is not consistent with the dynamics of
the system. In comparison, the AdResS method has the limitation of not even attempting
to define an energy but on the other hand the overall scheme is robust enough to keep the
dynamics and the essential thermodynamics under control without the problem of energy
conservation. The next step consists of using the information gained so far and apply the
principles of the previous section in a numerical experiment to prove the validity of the
scheme.

6 Does the Method Work?

In order to prove that such a computational approach with thetheoretical framework pre-
sented so far is robust enough to perform simulations of chemical and physical systems we
have carried on studies for the liquid system of tetrahedralmolecules where the results of
the AdResS approach are compared with the results obtained with full atomistic simula-
tions. First we have shown that global and local structure can be reproduced. This means,
we have determined the center of mass-center of mass radial distribution function for the
whole system (global), and for only the atomistic part and only for the coarse grained
part (local) and compared it with the results obtained in a full atomistic simulation. This
comparison for a medium dense liquid are reported in Fig. 3; the agreement is clearly satis-
factory since the various plots are all on top of each other. However the radial distribution
function is based on an average over the space, this means that cannot describe possible
local and instantaneous fluctuations due to some possible artifact of the method. These
latter may not be negligible but, by compensating each other, they would not appear in the
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Figure 5. Time evolution of diffusion profiles for the molecules that are initially, at timet∗ = 0, localized at
two neighboring slabs of the mid-interface layer with2d∗ = 2.5 (n is the number of these molecules with the
center-of-mass position at a given coordinatex∗). The width of the two slabs isa∗/10. The vertical lines denote
the boundaries of the interface layer. (a) The diffusion profile, averaged over 500 different time origins, att∗ = 0,
t∗ = 10, andt∗ = 50 for the molecules that are initially localized at the slab onthe coarse grained side of the
interface region. (b) The same as in (a) but for the moleculesthat are initially localized at the slab on the atomistic
side of the interface region. (Figure was taken from Ref.15)

plot of Fig. 3. In this sense the study above is not sufficient to infer about the validity of
the method. Therefore, we also studied the evolution of the number of DOFs as a function
of time. This should make us aware of possible non-negligible artificial fluctuations of the
system. Fig. 4 shows that the number of DOFs is conserved at any time during the run
and thus there is no net flux through the border of the two regions. Again, this study is not
sufficient to prove the validity of the scheme, because stillone should prove that indeed
there is a true exchange of particles from one region to another. In fact it may happen
that the equilibrium among the different regions is due to a reflection mechanism without
exchange of particles between them. Fig. 5 shows that indeeda sample of molecules from
the atomistic region diffuses into the coarse grained one and vice versa a sample from the
coarse grained region diffuse into the atomistic one. It is however only a coincidence that
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Figure 6. A schematic plot of a solvated generic bead-springpolymer. The solvent is modeled on different levels
of detail: solvent molecules within a certain radius from the polymer’s center of mass are represented with a high
atomistic resolution while a lower mesoscopic resolution is used for the more distant solvent. The high resolution
sphere moves with the polymer’s center of mass. The polymer beads are represented smaller than the solvent
molecules for presentation convenience; for details see text. (Figure was taken from Ref.27)

this happens in a symmetric way, because the system in question has basically the same
diffusion constant in the atomistic and coarse grained representation. In general the profile
is not symmetric. To remove this unphysical effect the system is coupled with a position
dependent thermostat to match the diffusion constants of the atomistic and coarse grained
molecules (see Appendix 8). The data reported in the plots above are for a medium dense
liquid15, but the same satisfactory agreement was found for high density liquid16.

7 Further Applications

7.1 Solvation of a simple polymer in the tetrahedral liquid

An extension of the approach above to a solvation of an ideal bead and spring polymer
in tetrahedral liquid was then performed in Ref.27. Here the solvation shell is defined as
the atomistic region, and outside the solvent is represented with its coarse grained spheres.
The solvation shell, centered at the center of mass of the polymer is always large enough
that the polymer is contained in it. This region can diffuse around with the polymer and
all the molecules entering the solvation area become atomistic and those leaving the re-
gion become coarse grained. As for the cubic box before, between the atomistic and the
coarse grained regions there is a transition region (see Fig. 6). Two examples of compari-
son with a full atomistic simulation are reported, these arethe calculation of the static form
factor (left panel Fig. 7) and the shape of the solvation region as a function of the distance
from the center (of the region) in terms of particle density (right panel Fig. 7). These two
plots show very good agreement with the full atomistic simulation and thus prove that the
method is indeed robust for such a kind of system.

7.2 Liquid water

The first application to a real chemical and physical system is that to liquid water. Several
new technical issues arise, the most relevant of which are the presence of the charges and
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Figure 7. (a) The static structure factor of the polymer withN = 30 in the Kratky representation for all three
cases studied: the fully explicit, the AdResS scheme with and without the interface pressure correction. (b) The
correlation hole for the same systems as in (a) . (Figure was taken from Ref.27)

the different diffusion coefficients in the atomistic and coarse grained representations (see
Fig. 8)28, 29. These technical problems have been solved and the approachused is reported
in the appendix, here we report only the results showing thatindeed the adaptive simulation
can reproduce in a satisfactory way the results of the full atomistic ones. This is shown in
the right panel of Fig. 8(b), where several radial distribution functions calculated in the full
atomistic simulation and in the adaptive case (for the atomistic region) are plotted . More-
over, not shown here, results of the study show that the system remains indeed uniform.
Several other properties were calculated showing the robustness of such an approach for
liquid water and they are reported in Refs.28, 29.

7.3 Triple-scale simulation of molecular liquids

Recently we succeeded in developing a triple scale approachwhere the atomistic is in-
terfaced with the coarse grained description and the latterwith the continuum30, 31. This
multiscale approach was derived by combining two dual-scale schemes: our particle-based
AdResS, which links the atomic and mesoscopic scales withina molecular dynamics (MD)
simulation framework, and a hybrid flux-exchange based continuum-MD scheme (Hy-
bridMD) developed by Delgado-Buscalioniet al.32, 33. The resulting triple-scale model
consists of a particle-based micro-mesoscale MD region, which is divided into a central
atomistic and a surrounding mesoscopic domain, and a macroscopic region modeled on
the hydrodynamic continuum level as schematically presented in Fig. 9 for the example of
the tetrahedral liquid. The central idea of the triple-scale method is to gradually increase
the resolution as one approaches to the atomistic region, which is the “region of interest”.
The continuum and MD region exchange information via mass and momentum fluxes,
which are conserved across the interface between continuumand MD regions (for details
see Refs.32, 33). The combined approach successfully solves the problem oflarge molecule
insertion in the hybrid particle-continuum simulations ofmolecular liquids and at the same
time extends the applicability of the particle-based adaptive resolution schemes to simulate
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(a) Mapping scheme (b) Radial distribution functions

Figure 8. (a) On-the-fly interchange between the all-atom and coarse grained water models. Top: the explicit
all-atom water molecule is represented at the right, and thecoarse grained molecule at the left. The middle hybrid
molecule interpolates between the two (see text). Bottom: aschematic representation of the full system, where
a hybrid region connects the explicit and coarse grained levels of description. All the results presented in the paper
were obtained by performing N V T simulations using ESPResSo34 with a Langevin thermostat, with a friction
constantζ = 5ps−1 and a time step of0.002ps atTref = 300K andρ = 0.96g/cm−3 (the density was obtained
from an NPT simulation withPref = 1bar). Periodic boundary conditions were applied in all directions. The box
size is 94.5Å in the x direction and 22̊A in the y and z directions. The width of the interface layer is18.9Å in
the x direction. (b)The center-of-mass, OH and HH RDFs for the explicit region in the hybrid system dots, and
bulk line systems. (Figures were taken from Refs.28 and29)

open systems in the grand-canonical ensemble including hydrodynamic coupling with the
outer flow.

8 Work in Progress: Towards an Internally Consistent Theoretical
Framework

The AdResS method has been shown to be numerically rather robust, however further de-
velopments of the theoretical framework, on which the method is based, would be highly
desirable in order to improve the structure and the flexibility of the algorithm. One rele-
vant point regards the concept of latent heat introduced viathe theoretical analysis about
the meaning of changing resolution in thermodynamical terms. This has been so far im-
plemented numerically by using a thermostat; such an approach is numerically very con-
venient to stabilize the algorithm and drive the system to equilibrium but at the same time
does not permit the detailed control of the physical processoccurring while the change of
resolution happens. To this aim we are making an effort to formalize the concept of latent
heat on the basis of a physical ground by employing first principles of thermodynamics
or statistical mechanics. In this way an explicit analytic or semi-analytic description of
the latent heat, would allow to avoid the use of a stochastic thermostat and automatically
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Figure 9. The triple-scale model of the tetrahedral liquid.The molecular particle-based region is embedded
in the hydrodynamics continuum described by Navier-Stokesequations (solved by the finite volume method).
The molecular region is divided into the central explicit atomistic region with all-atom molecules (red tetrahe-
dral molecules) sandwiched in between two coarse grained domains with the molecules represented on a more
coarse grained level of detail (one particle blue molecules). (Figure was taken from Ref.30)

provide thermodynamic equilibrium. With that the dynamicsand the essential thermody-
namics can be taken explicitely under control and provide equilibrium despite the fact that
still we do not define an energy as in standard simulation schemes. For this purpose we
reformulate the problem of the latent heat in terms of an additional thermodynamic force.
Such a thermodynamic force is represented by the gradient ofa scalar field whose task is
that of assuring the balance of the chemical potential in allregions. Such a field can be
derived by calculating numerically the chemical potentialor the free energy density in the
various region of different resolution. Numerical as well as analytic work on this subject
is in progress.

Appendix A: Tetrahedral Fluid

In the atomistic representation every molecule of this model fluid consist of 4 atom. All of
these have the same massm0 and interact via purely repulsive Lennard-Jones potential:

Uatom
LJ (rαiβj) =







4ǫ

[(
σ

rαiβj

)12

−
(

σ
rαiβj

)6

+ 1
4

]

: rαiβj ≤ 21/6σ

0 : rαiβj > 21/6σ
, (9)

whererαiβj is the distance between theith atom in theαth molecule and thejth atom in
theβth molecule, note that we also consider the Lennard-Jones interactions between the
atoms of the same molecule. Additionally the atoms in one molecule are bonded by FENE
potential

Uatom
FENE(rαiαj) =







− 1
2kR

2
0 ln

[

1−
(

rαiαj

R0

)2
]

: rαiαj ≤ R0

∞ : rαiαj > R0

, (10)

with a divergence lengthR0 = 1.5σ and stiffnessk = 30ǫ/σ2.
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Appendix B: Mapping Scheme/Coarse Grained Potentials

In coarse grained representation we replace a molecule by a bead located at the position of
the center of mass of the atomistic molecule. The interaction between the coarse grained
beads is determined by the iterative Boltzmann inversion35 and it is such that the radial
distribution function (RDF) of the coarse grained system fits the RDF of the atomistic
system. In summary this procedure works as follows (for a detailed presentation see the
lecture of C. Peter and K. Kremer). After starting with an initial guess of the pair interaction
V0(r), the interaction of the(i+ 1)th step is given by:

Vi+1(r) = Vi(r) + kBT ln

[
gi(r)

gtarget(r)

]

, (11)

wheregtarget(r) is the RDF we want to fit, usually given by atomistic simulation andgi(r)
is the RDF of theith step. Commonly the potential of mean force is used as an initial
guess:

V0(r) = −kBT ln gtarget(r) (12)

Appendix C: Interface Correction

In the switching region the density profile is not uniform, instead it is characterized by
some evident fluctuations. Such fluctuations are due to the fact that for hybrid interactions
the corresponding effective potential is not the same as thefull coarse grained one for
matching the structure and the pressure of the atomistic system. Technically this means that
we need to derive first an effective potential between hybridmolecules with a fixed weight,
which reproduces the RDF and the pressure of the atomistic one, and then, in order to
suppress the density fluctuations, use it for an interface correction. Here we report the case
w = 0.5, however the extension to other weights (and other points) is straightforward. The
newly derived effective potential withw = 0.5, V ic,0.5(Rαβ) is determined via the iterative
Boltzmann procedure (as before, see Appendix 8). Then, one replaces the forces between
the coarse grained beads by16:

Fic
αβ = s[w(Rα)w(Rβ)]Fcg(Rαβ) + (1 − s[w(Rα)w(Rβ)])Fic,0.5(Rαβ) , (13)

whereFic,0.5(Rαβ) is the force coming from the potentialV ic,0.5(Rαβ) and

s[x] = 4(
√
x− 0.5)2 , (14)

is a functions ∈ [0, 1], which is zero for both weights being 0.5 (s[(0.5)2] = 0) and one
for the product of the two weights being 0 or 1 (s[0]=s[1]=0);this means that one has the
”exact” force when both molecules havew = 0.5. For other weights the force is smoothly
interpolated between the corrected and the standard coarsegrained force, and thus one
obtains an improvement at the interface. In principle if onerepeated this procedure for
each combinations ofw(Rα)w(Rβ), in the switching region one would have always the
exact force. We have noticed that numerically is enough to have a correction for the worst
case (w = 0.5).
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Appendix D: Charged Molecules

Electrostatic interactions are long-ranged and must be calculated over several periodical
images of the simulation box. This leads to some problems in the adaptive resolution
method because, on one hand, molecules become uncharged in their coarse grained rep-
resentation and on the other hand the long-ranged characterof electrostatic interactions
leads to self interaction of all periodical images, for example the interaction of the explicit
regions of two image boxes. Additionally, standard approaches like particle mesh Ewald
or P3M will always lead to an all-with-all interaction of themolecules, due the involved
Fourier transformation, and thus making the switching of the degrees of freedom not pos-
sible.

Luckily, in the case of dense and homogeneous fluids (like water) one can use the reac-
tion field approach36. The latter assumes that outside a sphere with radiusrcut the charges
are distributed homogeneously, and thus it makes it possible to replace the interactions
outside the sphere with that of a continuum with a dielectricconstantǫrf. This scheme
has been frequently used for liquid water37, and, in this case, it allows to treat charged
molecules in the adaptive resolution method, where one deals with pair interactions:

U(r) =

{
qiqj

4πǫ0ǫ1

[
1
r − Br2

2r3
c
− 2−B

2rc

]

: r ≤ rc
0 : r > rc

(15)

with B = 2(1− ǫ1 − ǫrf)/(ǫ1 + 2ǫrf). The ǫrf is the dielectric constant outside the cut-
off. rc, which can be estimated from a particle mesh Ewald calculation or determined in
a recursive manner.

Appendix E: Thermostat

In general a thermostat is always needed to perform a NVT simulation. Specifically, in
the case of the adaptive resolution scheme the thermostat isalso needed to compensate
for the switch of the interaction between the molecules, since it ensures that the atoms of
a molecule have the correct velocity distribution when entering the switching region from
the coarse grained side. We use the Langevin idea or stochastic dynamics38 to ensure the
correct ensemble by adding a random and a damping force

ṗi = −∇iU + FD
i + FR

i (16)

The damping force is Stokes-like force

FD
i = −ζi/mi pi (17)

To compensate for this friction one adds a random force

FR
i = σiηi(t) , (18)

whereηi is a noise with zero mean (< ηi(t) >= 0) and certain correlation properties
(< ηi(t)ηj(t

′) >= δijδ(t− t′). And ζi, σi are the friction and the noise strength. The
corresponding Fokker-Planck operator39 for the stochastic part of the Langevin equation
(Eq. 16) is given by:

LSD =
∑

i

∂

∂pi

[

ζi
∂H
∂pi

+ σ2
i

∂

∂pi

]

, (19)
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where the sum goes over all particles. By assuming that the equilibrium distribution is
a Boltzmann distribution, one has:

LSD exp(−H/kBT ) = 0 (20)

and from that one obtains:

σ2
i = kBTζi , (21)

which is also known as the Fluctuation-Dissipation theorem(FDT)39. At this point we are
left with one free parameter to choose, namely the friction strengthζi. The drawback
of this thermostat is its lack of Galilei invariance and the strong dependence of the dy-
namics from the friction strength. Therefore, it is in many cases more appropriate to use
the Galilei invariant and hydrodynamics conserving DPD thermostat40, which leaves the
dynamic nearly unchanged for wide range ofζ.

Applying the thermostat in AdResS

To obtain the FDT from Eq. 20 a Hamiltonian is needed and, as discussed above, in the
AdResS method it is not possible to define a Hamiltonian. For this reason one has to cou-
ple the thermostats acting on the explicit and coarse grained molecules. One could make,
for example, a linear combination of the thermostat forces (as in Eq. 1 for the deterministic
forces). However, this would violate the FDT because the ratio of “random force squared
to damping force” would not be conserved (see Eq. 21). Consequently, the temperature
would not be correctly defined. Another possibility is to apply the linear scaling to the
friction coefficient of the damping force (from the atomistic friction coefficient at the all-
atom/transition regime interface to the coarse grained oneat the transition/coarse grained
boundary) and adjust the noise strengthσ to satisfy the FDT29, 30 (see also the next sec-
tion). The thermostat is then applied to the explicit particles in the atomistic and transition
regions and to the center of mass interaction sites in the coarse grained regime. In ad-
dition, the explicit atoms of a given molecule, which entersthe transition regime from
the coarse grained side, are also assigned rotational/vibrational velocities corresponding to
atoms of a random molecule from the atomistic region (where we subtract the total lin-
ear momentum of the latter molecule). By doing this we ensurethat the kinetic energy is
distributed among all DOFs according to the equipartition theorem. For practical reasons,
the thermostat can act always on the underlying explicit identity of the molecules even if
they are in the coarse grained region (keeping a double resolution)15. The explicit forces
are then added up to determine the force acting on the center of mass of the coarse grained
molecules. In this way the coarse grained particles have thecorrect velocity distribution.

Diffusive processes

The application of the AdResS method as reported in the previous sections may lead to the
fact that one has different diffusion constants in the atomistic and in the coarse grained re-
gion. This will lead to an asymmetric diffusion profile for molecules whose coarse grained
representation is much simplified with respect to the atomistic one (for example for water).
However, while a faster dynamics of the coarse grained molecules may even be an advan-
tage for sampling purposes, for dynamical analysis this is not ideal. A way to circumvent
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Figure 10. Top figure: The upper curve indicates the dependency of the friction coefficient as a function of the
particle identityw when a position-dependent thermostat is used. The straight(lower) curve shows the constant
value of the friction coefficient when a regular thermostat is used. Bottom figure: The dots at the upper part
indicate the diffusion of the molecules when the regular thermostat is used. The dots of the lower part indicate
the diffusion of the molecules when the position-dependentthermostat is used. (Figure was taken from Ref.29)

this problem is that of slowing down the dynamics of the faster coarse grained molecules.
The Langevin thermostat (see above) allows for the changingof the dynamics (and the dif-
fusion constant) by modifying the strength of the frictionζ. As the Langevin thermostat is
a local thermostat one can easily make the friction space dependent (or weight dependent).
In this case one has to simply tuneζ(w) in a way that the diffusion constant is the same all
over the system. This has been done for the tetrahedral fluid (see Fig. 10).

Recently41 the DPD thermostat has been extended to change the dynamics of the sys-
tem; the basic idea is to add an additional friction (and noise) to the transversal degrees of
freedom, which allows to conserve hydrodynamics keeping Galilei invariance.
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Computer Simulations of Systems
with Hydrodynamic Interactions:

The Coupled Molecular Dynamics –
Lattice Boltzmann Approach

Burkhard Dünweg
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Ackermannweg 10, 55128 Mainz, Germany

E-mail: duenweg@mpip-mainz.mpg.de

In soft–matter systems where Brownian constituents are immersed in a solvent, both thermal
fluctuations and hydrodynamic interactions are important.The article outlines a general scheme
to simulate such systems by coupling Molecular Dynamics forthe Brownian particles to a lattice
Boltzmann algorithm for the solvent. As an application, thecomputer simulation of colloidal
electrophoresis is briefly discussed.

1 Introduction

Remark:The present contribution intends to just give a very brief overview over the subject
matter. The author has recently, together with A. J. C. Ladd,written a 76–page review
article1, to which the interested reader is referred. Detailed explanations and derivations,
as well as an extended reference list, can be found there. —

Many soft–matter systems are comprised of Brownian particles immersed in a solvent.
Prototypical examples are colloidal dispersions and polymer solutions, where the latter, in
contrast to the former, are characterized by non–trivial internal degrees of freedom (here:
the many possible conformations of the macromolecule). Fundamental for these systems is
the separation of length and time scales between “large and slow” Brownian particles, and
“small and fast” solvent particles. “Mesoscopic” simulations focus on the range of length
and time scales which are, on the one hand, too small to allow adescription just in terms of
continuum mechanics of the overall system, but, on the otherhand, large enough to allow
the replacement of the solvent by a hydrodynamic continuum.This latter approximation
is much less severe than one would assume at first glance; detailed Molecular Dynamics
simulations have shown that hydrodynamics works as soon as the length scale exceeds a
few particle diameters, and the time scale a few collision times.

To simulate such systems consistently, one has to take into account that the length and
time scales are so small that thermal fluctuations cannot be neglected. The “Boltzmann
number”Bo (a term invented by us) is a useful parameter for quantifyinghow important
fluctuations are. Given a certain spatial resolutionb (for example, the lattice spacing of
a grid which is used to simulate the fluid dynamics), we may askourselves how many
solvent particlesNp correspond to the scaleb. On average, this is given byNp = ρb3/mp,
whereρ is the mass density andmp the mass of a solvent particle (and we assume a three–
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dimensional system). The relative importance of fluctuations is then given by

Bo = N−1/2
p =

(
mp

ρb3

)1/2

. (1)

It should be noted that for an ideal gas, where the occupationstatistics is Poissonian,Bo is
just the relative statistical inaccuracy of the random variableNp. In soft–matter systems,b
is usually small enough such thatBo is no longer negligible.

Furthermore,hydrodynamic interactionsmust be modeled. In essence, this term refers
to dynamic correlations between the Brownian particles, mediated by fast momentum
transport through the solvent. The separation of time scales can be quantified in terms
of the so–called Schmidt number

Sc =
ηkin

D
, (2)

whereηkin = η/ρ is the kinematic viscosity (ratio of dynamic shear viscosity η and mass
densityρ) of the fluid, measuring how quickly momentum propagates diffusively through
the solvent, andD is the diffusion constant of the particles. Typically, in a dense fluidSc ∼
102 . . . 103 for the solvent particles, while for large Brownian particlesSc is even much
larger. Finally, we may also often assume that the solvent dynamics is in the creeping–flow
regime, i. e. that the Reynolds number

Re =
ul

ηkin
, (3)

whereu denotes the velocity of the flow andl its typical size, is small. This is certainly
true as long as the system is not driven strongly out of thermal equilibrium.

These considerations lead to the natural (but, in our opinion, not always correct) con-
clusion that the method of choice to simulate such systems isBrownian Dynamics2. Here
the Brownian particles are displaced under the influence of particle–particle forces, hydro-
dynamic drag forces (calculated from the particle positions), and stochastic forces repre-
senting the thermal noise. However, the technical problemsto do this efficiently for a large
numberN of Brownian particles are substantial. The calculation of the drag forces involves
the evaluation of the hydrodynamic Green’s function, whichdepends on the boundary con-
ditions, and has an intrinsically long–range nature (such that all particles interact with each
other). Furthermore, these drag terms also determine the correlations in the stochastic dis-
placements, such that the generation of the stochastic terms involves the calculation of the
matrix square root of a3N×3N matrix. Recently, there has been substantial progress in the
development of fast algorithms3; however, currently there are only few groups who master
these advanced and complicated techniques. Apart from this, the applicability is somewhat
limited, since the Green’s function must be re–calculated for each new boundary condition,
and its validity is questionable if the system is put under strong nonequilibrium conditions
like, e. g., a turbulent flow — it should be noted that the Green’s function is calculated for
low–Re hydrodynamics.

Therefore, many soft–matter researchers have rather chosen the alternative approach,
which is to simulate the system including the solvent degrees of freedom, with explicit
momentum transport. The advantage of this is a simple algorithm, which scales linearly
with the number of Brownian particles, and is easily parallelizable, due to its locality. The
disadvantage, however, is that one needs to simulate many more degrees of freedom than
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those in which one is genuinely interested —andto do this on the short inertial time scales
in which one is not interested either. It is clear that such anapproach involves essentially
Molecular Dynamics (MD) for the Brownian particles.

Many ways are possible how to simulate the solvent degrees offreedom, and how to
couple them to the MD part. It is just the universality of hydrodynamics that allows us to
invent many models which all will produce the correct physics. The requirements are rather
weak — the solvent model has to just be compatible with Navier–Stokes hydrodynamics
on the macroscopic scale. Particle methods include Dissipative Particle Dynamics (DPD)
and Multi–Particle Collision Dynamics (MPCD)4, while lattice methods involve the direct
solution of the Navier–Stokes equation on a lattice, or lattice Boltzmann (LB). The latter
is a method with which we have made quite good experience, both in terms of efficiency
and versatility. The efficiency comes from the inherent easeof memory management for
a lattice model, combined with ease of parallelization, which comes from the high degree
of locality: Essentially an LB algorithm just shifts populations on a lattice, combined with
collisions, which however only happen locally on a single lattice site. The coupling to the
Brownian particles (simulated via MD) can either be done viaboundary conditions, or via
an interpolation function that introduces adissipativecoupling between particles and fluid.
In this article, we will focus on the latter method.

2 Coupling Scheme

As long as we view LB as just a solver for the Navier–Stokes equation, we may write down
the equations of motion for the coupled system as follows:

d

dt
~ri =

1

mi
~pi, (4)

d

dt
~pi = ~F c

i + ~F d
i + ~F f

i , (5)

∂tρ+ ∂αjα = 0, (6)

∂tjα + ∂βπ
E
αβ = ∂βηαβγδ∂γuδ + fh

α + ∂βσ
f
αβ . (7)

Here,~ri, ~pi andmi are the positions, momenta, and masses of the Brownian particles,
respectively. The forces~Fi acting on the particles are conservative (c, i. e. coming from
the interparticle potential), dissipative (d), and fluctuating (f ). The equations of motion for
the fluid have been written in tensor notation, where Greek indexes denote Cartesian com-
ponents, and the Einstein summation convention is used. Thefirst equation describes mass
conservation; the mass fluxρ~u, where~u is the flow velocity, is identical to the momentum
density~j. The last equation describes the time evolution of the fluid momentum density.
In the absence of particles, the fluid momentum is conserved.This part is described via
the stress tensor, which in turn is decomposed into the conservative Euler stressπE

αβ , the

dissipative stressηαβγδ∂γuδ, and the fluctuating stressσf
αβ . The influence of the particles

is described via an external force density~fh.
The coupling to a particlei is introduced via an interpolation procedure where first the

flow velocities from the surrounding sites are averaged overto yield the flow velocity right
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at the position ofi. In the continuum limit, this is written as

~ui ≡ ~u(~ri) =

∫

d3~r∆(~r, ~ri)~u(~r), (8)

where∆(~r, ~ri) is a weight function with compact support, satisfying
∫

d3~r∆(~r, ~ri) = 1. (9)

Secondly, each particle is assigned a phenomenological friction coefficientΓi, and this
allows us to calculate the friction force on particlei:

~F d
i = −Γi

(
~pi

mi
− ~ui

)

. (10)

A Langevin noise term~F f
i is added to the particle equation of motion, in order to com-

pensate the dissipative losses that come from~F d
i . ~F f

i satisfies the standard fluctuation–
dissipation relation

〈

F f
iα

〉

= 0, (11)
〈

F f
iα (t)F f

jβ (t′)
〉

= 2kBTΓiδijδαβδ (t− t′) , (12)

whereT is is the absolute temperature andkB the Boltzmann constant. While the con-
servative forces~F c

i conserve the total momentum of the particle system, as a result of
Newton’s third law, the dissipative and fluctuating terms (~F d

i and ~F f
i ) do not. The associ-

ated momentum transfer must therefore have come from the fluid. The overall momentum
must be conserved, however. This means that the force term entering the Navier–Stokes
equation must just balance these forces. One easily sees that the choice

~fh(~r) = −
∑

i

(

~F d
i + ~F f

i

)

∆(~r, ~ri) (13)

satisfies this criterion. It should be noted that we use thesameweight function to interpo-
late the forces back onto the fluid; this is necessary to satisfy the fluctuation–dissipation
theorem for the overall system, i. e. to simulate a well–defined constant–temperature en-
semble. The detailed proof of the thermodynamic consistency of the procedure can be
found in Ref. 1.

We still need to specify the remaining terms in the Navier–Stokes equation. The vis-
cosity tensorηαβγδ describes an isotropic Newtonian fluid:

ηαβγδ = η

(

δαγδβδ + δαδδβγ −
2

3
δαβδγδ

)

+ ηvδαβδγδ, (14)

with shear and bulk viscositiesη andηv. This tensor also appears in the covariance matrix
of the fluctuating (Langevin) stressσf

αβ :
〈

σf
αβ

〉

= 0, (15)
〈

σf
αβ (~r, t)σf

γδ (~r′, t′)
〉

= 2kBTηαβγδδ (~r − ~r′) δ (t− t′) . (16)
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Finally, the Euler stress

πE
αβ = pδαβ + ρuαuβ (17)

describes the equation of state of the fluid (p is the thermodynamic pressure), and convec-
tive momentum transport.

3 Low Mach Number Physics

At this point an important simplification can be made. The equation of state only matters
for flow velocitiesu that are comparable with the speed of soundcs, i. e. for which the
Mach number

Ma =
u

cs
(18)

is large. In the low Mach number regime, the flow may be considered as effectively in-
compressible (although no incompressibility constraint is imposed in the algorithm). The
Mach number should not be confused with the Reynolds numberRe, which rather mea-
sures whether inertial effects are important. Now it turns out that essentially all soft–matter
applications “live” in the low–Ma regime. Furthermore, largeMa is anyways inaccessi-
ble to the LB algorithm, since it provides only a finite set of lattice velocities — and these
essentially determine the value ofcs. In other words, the LB algorithm simply cannot re-
alistically represent flows whose velocity is not small compared tocs. For this reason, the
details of the equation of state do not matter, and thereforeone chooses the system that is
by far the easiest — the ideal gas. Here the equation of state for a system at temperatureT
may be written as

kBT = mpc
2
s. (19)

In the D3Q19 model (the most popular standard LB model in three dimensions, using
nineteen lattice velocities, see below) it turns out that the speed of sound is given by

c2s =
1

3

b2

h2
, (20)

whereb is the lattice spacing andh the time step. Therefore the Boltzmann number can
also be written as

Bo =

(
mp

ρb3

)1/2

=

(
3kBTh

2

ρb5

)1/2

. (21)

4 Lattice Boltzmann 1: Statistical Mechanics

The lattice Boltzmann algorithm starts from a regular grid with sites~r and lattice spacing
b, plus a time steph. We then introduce a small set of velocities~ci such that~cih connects
two nearby lattice sites on the grid. In the D3Q19 model, the lattice is simple cubic, and
the nineteen velocities correspond to the six nearest and twelve next–nearest neighbors,
plus a zero velocity. On each lattice site~r at timet, there are nineteen populationsni(~r, t).
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Each population is interpreted as the mass density corresponding to velocity~ci. The total
mass and momentum density are therefore given by

ρ(~r, t) =
∑

i

ni(~r, t), (22)

~j(~r, t) =
∑

i

ni(~r, t)~ci, (23)

such that the flow velocity is obtained via~u = ~j/ρ. The number of “lattice Boltzmann
particles” which correspond toni is given by

νi =
nib

3

mp
≡ ni

µ
, (24)

wheremp is the mass of a lattice Boltzmann particle, andµ the corresponding mass density.
It should be noted thatµ is a measure of the thermal fluctuations in the system, since,
according to Eq. 21, one hasBo2 = µ/ρ.

If we now assume a “velocity bin”i to be in thermal contact with a large reservoir of
particles, the probability density forνi is Poissonian. Furthermore, if we assume that the
“velocity bins” are statistically independent, but take into account that mass and momen-
tum density are fixed (these variables are conserved quantities during an LB collision step
and should therefore be handled like conserved quantities in a microcanonical ensemble),
we find

P ({νi}) ∝
(
∏

i

ν̄νi

i

νi!
e−ν̄i

)

δ

(

µ
∑

i

νi − ρ
)

δ

(

µ
∑

i

νi~ci −~j
)

. (25)

for the probability density of the variablesνi. This must be viewed as the statistics which
describes the local (single–site) equilibrium under the condition of fixed values of the hy-
drodynamic variablesρ and~j. The parameter̄νi is the mean occupation imposed by the
reservoir, and we assume that it is given by

ν̄i = aci
ρ

µ
, (26)

whereaci > 0 is a weight factor corresponding to the neighbor shell with speedci.
From normalization and cubic symmetry we know that the low–order velocity moments

of the weights must have the form
∑

i

aci = 1, (27)

∑

i

aciciα = 0, (28)

∑

i

aciciαciβ = σ2 δαβ , (29)

∑

i

aciciαciβciγ = 0, (30)

∑

i

aciciαciβciγciδ = κ4 δαβγδ + σ4 (δαβδγδ + δαγδβδ + δαδδβγ) , (31)

386



whereσ2, σ4, κ4 are yet undetermined constants, whileδαβγδ is unity if all four indexes
are the same and zero otherwise.

Employing Stirling’s formula for the factorial, it is straightforward to find the set of
populationsneq

i which maximizesP under the constraints of givenρ and~j. Up to second
order inu (low Mach number!) the solution is given by

neq
i = ρaci

(

1 +
~u · ~ci
σ2

+
(~u · ~ci)2

2σ2
2

− u2

2σ2

)

. (32)

The low–order moments of the equilibrium populations are then given by
∑

i

neq
i = ρ, (33)

∑

i

neq
i ciα = jα, (34)

∑

i

neq
i ciαciβ = ρc2sδαβ + ρuαuβ. (35)

The first two equations are just the imposed constraints, while the last one (meaning that
the second moment is just the hydrodynamic Euler stress) follows from imposing two
additional conditions, which is to choose the weightsaci such that they satisfyκ4 = 0 and
σ4 = σ2

2 . From the Chapman–Enskog analysis of the LB dynamics (see below) it follows
that the asymptotic behavior in the limit of large length andtime scales is compatible
with the Navier–Stokes equation only if Eq. 35 holds, and this in turn is only possible
if the abovementioned isotropy conditions are satisfied. Together with the normalization
condition, we thus obtain a set of three equations for theaci . Therefore at least three
neighbor shells are needed to satisfy these conditions, andthis is the reason for choosing
a nineteen–velocity model. For D3Q19, one thus obtainsaci = 1/3 for the zero velocity,
1/18 for the nearest neighbors, and1/36 for the next–nearest neighbors. Furthermore, one
findsc2s = σ2 = (1/3)b2/h2.

For the fluctuations around the most probable populationsneq
i ,

nneq
i = ni − neq

i , (36)

we employ a saddle–point approximation and approximateu by zero. This yields

P ({nneq
i }) ∝ exp

(

−
∑

i

(nneq
i )

2

2µρaci

)

δ

(
∑

i

nneq
i

)

δ

(
∑

i

~ci n
neq
i

)

. (37)

We now introduce normalized fluctuations via

n̂neq
i =

nneq
i√
µρaci

(38)

and transform to normalized “modes” (symmetry–adapted linear combinations of theni,
see Ref. 1)̂mneq

k via an orthonormal transformation̂eki:

m̂neq
k =

∑

i

êkin̂
neq
i , (39)
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k = 0, . . . , 18, and obtain

P ({mk}) ∝ exp



−1

2

∑

k≥4

m2
k



 . (40)

It should be noted that the modes number zero to three have been excluded; they are just
the conserved mass and momentum densities.

5 Lattice Boltzmann 2: Stochastic Collisions

A collision step consists of re-arranging the set ofni on a given lattice site such that both
mass and momentum are conserved. Since the algorithm shouldsimulate thermal fluctu-
ations, this should be done in a way that is (i) stochastic and(ii) consistent with the de-
veloped statistical–mechanical model. This is straightforwardly imposed by requiring that
the collision is nothing but a Monte Carlo procedure, where aMonte Carlo step transforms
the pre–collisional set of populations,ni, to the post–collisional one,n⋆

i . Consistency with
statistical mechanics can be achieved by requiring that theMonte Carlo update satisfies the
condition of detailed balance. Most easily this is done in terms of the normalized modes
m̂k, which we update according to the rule (k ≥ 4)

m̂⋆
k = γkm̂k +

√

1− γ2
krk. (41)

Here theγk are relaxation parameters with−1 < γk < 1, and therk are statistically
independent Gaussian random numbers with zero mean and unitvariance. Mass and mo-
mentum are automatically conserved since the corresponding modes are not updated. Com-
parison with Eq. 40 shows that the procedure indeed does satisfy detailed balance. The
parametersγk can in principle be chosen at will; however, they should be compatible with
symmetry. For example, mode number four corresponds to the bulk stress, with a relax-
ation parameterγb, while modes number five to nine correspond to the five shear stresses,
which form a symmetry multiplet. Therefore one must chooseγ5 = . . . = γ9 = γs. For
the remaining kinetic modes one often usesγk = 0 for simplicity, but this is not necessary.

6 Lattice Boltzmann 3: Chapman–Enskog Expansion

The actual LB algorithm now consists of alternating collision and streaming steps, as sum-
marized in the LB equation (LBE):

ni(~r + ~cih, t+ h) = n⋆
i (~r, t) = ni(~r, t) + ∆i {ni(~r, t)} . (42)

The populations are first re–arranged on the lattice site; this is described by the so–called
“collision operator”∆i. The resulting post–collisional populationsn⋆

i are then propagated
to the neighboring sites, as expressed by the left hand side of the equation. After that, the
next collision step is done, etc.. The collision step may include momentum transfer as a
result of external forces (for details, see Ref. 1); apart from that, it is just given by the
update procedure outlined in the previous section.
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A convenient way to find the dynamic behavior of the algorithmon large length and
time scales is a multi–time–scale analysis. One introducesa “coarse grained ruler” by
transforming from the original coordinates~r to new coordinates~r1 via

~r1 = ǫ~r, (43)

whereǫ is a dimensionless parameter with0 < ǫ ≪ 1. The rationale behind this is the
fact that any “reasonable” value for the scaler1 will automatically forcer to be large. In
other words: By considering the limitǫ→ 0 we automatically focus our attention on large
length scales. The same is done for the time; however, here weintroducetwoscales via

t1 = ǫt (44)

and

t2 = ǫ2t. (45)

The reason for this is that one needs to consider both wave–like phenomena, which happen
on thet1 time scale (i. e. the real time is moderately large), and diffusive processes (where
the real time isverylarge). We now write the LB variables as a function of~r1, t1, t2 instead
of ~r, t. Since changingǫ at fixed~r1 changes~r and thusni, we must take into account that
the LB variables depend onǫ:

ni = n
(0)
i + ǫn

(1)
i + ǫ2n

(2)
i +O(ǫ3). (46)

The same is true for the collision operator:

∆i = ∆
(0)
i + ǫ∆

(1)
i + ǫ2∆

(2)
i +O(ǫ3). (47)

In terms of the new variables, the LBE is written as

ni(~r1 + ǫ~cih, t1 + ǫh, t2 + ǫ2h)− ni(~r1, t1, t2) = ∆i. (48)

Now, one systematically Taylor–expands the equation up to order ǫ2. Sorting by order
yields a hierarchy of LBEs of which one takes the zeroth, first, and second velocity mo-
ment. Systematic analysis of this set of moment equations (for details, see Ref. 1) shows
that the LB procedure, as it has been developed in the previous sections, indeed yields the
fluctuating Navier–Stokes equations in the asymptoticǫ → 0 limit — however only for
low Mach numbers; in the high Mach number regime, where termsof orderu3/c3s can no
longer be neglected, the dynamics definitely deviates from Navier–Stokes.

In particular, this analysis shows that the zeroth–order populations must be identified
with neq

i , and that it isnecessarythat this “encodes” the Euler stress via suitably chosen
weightsaci . Furthermore, one finds explicit expressions for the viscosities:

η =
hρc2s

2

1 + γs

1− γs
, (49)

ηb =
hρc2s

3

1 + γb

1− γb
. (50)
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Figure 1. (From Ref. 5) Velocity autocorrelation function of a single colloidal sphere, normalized by the initial
value, in thermal equilibrium. The velocity is here defined as the center–of–mass velocity of the particles which
form the sphere.

˙

v2
¸

, i. e. thet = 0 value of the unnormalized function, is therefore given by the equipartition
theorem of statistical mechanics. For larger times, the surface particles become more and more coupled to the
fluid inside the sphere, and thus the effective mass of the sphere increases. This is the reason for the first initial
decay before a plateau is reached. After that, the function decays according to the famoust−3/2 long–time tail.
Finally, the particle becomes coupled to the whole fluid in the whole simulation box and the behavior becomes
dominated by this finite–size effect. For comparison, the figure also shows the decay of the colloid velocity in a
deterministiccomputer experiment, where the noise amplitude for both theparticle dynamics and the LB degrees
of freedom has been set to zero, and the particle was “kicked”at t = 0. This function has been normalized by
the initial value, too. According to linear response theory, both curves must coincide, which they do.

7 Example: Dynamics of Charged Colloids

The coupling scheme that has been described in this article is particularly useful for im-
mersed particles with internal degrees of freedom, like flexible polymer chains, or mem-
branes. It can also be applied to systems whose immersed particles are “hard” (for example,
colloidal spheres), although the alternative approach by Ladd (see Ref. 1) that models the
particles as rigid bodies interacting with the LB fluid via boundary conditions is probably
slightly more efficient. Nevertheless, for reasons of easy program development it makes
sense to use the same scheme for both flexible and rigid systems. In what follows, some
results for a colloidal system shall be presented, in order to demonstrate that and how the
method works.

In Ref. 5 we have developed the so–called “raspberry model” for a colloidal sphere.
Since the model is intended for charged systems with explicit (salt and counter) ions, it
should take into account (at least to some degree) the size difference between colloids
and ions. Therefore the colloid is, in terms of linear dimension, roughly 6–7 times larger
than the small particles. The LB lattice spacing is chosen asidentical to the small ion
diameter. This is combined with a linear force interpolation to the nearest neighbor sites.
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A larger lattice spacing would result in a rather coarse description of the hydrodynamic
interactions, while a yet smaller spacing would result in a large computational overhead.
In this context, it should be noted that one would obtain an ill–defined model with infinite
particle mobility if one would let the lattice spacing tend to zero, while sticking to the
nearest–neighbor interpolation scheme1. This is due to the fact that the effective long–time
mobility that results from the dissipative coupling is not given by1/Γ, but rather by

1

Γeff
=

1

Γ
+

1

gησ
, (51)

whereσ is the range of the interpolation function andg a numerical prefactor. Therefore,
one needs to keep the range of the interpolation function constant, which would involve
more and more effort if one would insist onb→ 0. Within limits, it is of course possible to
compensate the effects of a change ofσ by suitably re–adjustingΓ — only the long–time
valueΓeff is of real physical significance.

In principle, it would therefore be possible to model a colloidal sphere by a particle
which exhibits a suitably chosen excluded–volume interaction for the other (small or large)
particles, plus a suitably adjusted large value of the interpolation rangeσ, which essentially
plays the role of a Stokes radius. However, such a model wouldnot describe the rotational
degrees of freedom, and these are important. For this reason, we rather model the colloid as
a large sphere, around which we wrap a two–dimensional network of small particles (same
size as the ions) which are connected via springs. Only the surface particles are coupled
dissipatively to the LB fluid. Figures 1 and 2 show that the model behaves exactly as one
would expect from hydrodynamics and linear response theory. Figure 1 shows the particle
velocity autocorrelation function, from which one obtains, via integration, the translational
(or self) diffusion coefficientDS :

DS =
1

3

∫ ∞

0

dt 〈~v(t) · ~v(0)〉 . (52)

In an infinite hydrodynamic continuum, Stokes’ law results in the predictionDS =
kBT/(6πηR) for a sphere of radiusR. Indeed, this is what one finds in that limit. How-
ever, for (cubic) simulation boxes of finite linear dimension L, the diffusion constant is
systematically smaller, as a result of the hydrodynamic interactions with the periodic im-
ages:

DS =
kBT

6πηR
− 2.837

kBT

6πηL
. (53)

This is an analytic result, where higher–order terms in theL−1 expansion have been ne-
glected. Figure 2 shows that this prediction is nicely reproduced. Furthermore, the rota-
tional diffusion constant, which can be obtained by integrating the angular–velocity auto-
correlation function,

DR =
1

3

∫ ∞

0

dt 〈~ω(t) · ~ω(0)〉 , (54)

exhibits a similar1/L finite size effect; the asymptotic valuekBT/(8πηR
3) is only

reached for infinite system size. As Figure 2 shows, this prediction is reproduced as well.
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Figure 2. (From Ref. 5) Translational (DS ) and rotational (DR) diffusion coefficient, normalized by the asymp-
totic infinite–system value, as a function of inverse systemsize1/L. The straight line is a fit forDR, while it is
the analytical prediction (see text) forDS .

Electrokinetic phenomena can be investigated by supplyinga charge to the central col-
loidal sphere, and by adding ions such that the total system is charge–neutral. We have
studied the electrophoretic mobility, i. e. the response toan external electric fieldE:

µ =
v

eE
, (55)

wherev is the colloid drift velocity ande the elementary charge. The simplest case is to
simulate just a single colloid with chargeZe in a cubic box, and to addZ monovalent
counterions to compensate the colloidal charge (i. e. no further salt ions are added). This
corresponds to a system with a finite volume fraction (one colloid per box). It should be
noted that one shouldnot consider the limit where this system is being put into largerand
larger boxes: In that case, the ions would simply “evaporate”, and one would obtain a
trivial value forµ that is just given by Stokes’ law.

Usually the mobility is given in dimensionless units: The so–called reduced mobility
µred is obtained by normalizing with a Stokes mobility, using theBjerrum lengthlB as the
underlying length scale:

µred = 6πηlBµ, (56)

lB =
e2

4πεkBT
, (57)

whereε is the fluid’s dielectric constant.
Fortunately,µ is subject to a much smaller finite size effect than the diffusion constant.

This has been checked by simulations, see Fig. 3. The reason for this behavior is the
fact that the electric field does not exert a net force on the overall system, due to charge
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Figure 3. Reduced electrophoretic mobility as a function ofinverse system size1/L. In order to keep conditions
constant (i. e. constant colloidal volume fraction, and constant ion concentration), the box size was systematically
increased, while at the same time more and more colloids (up to eight), together with their compensating ions,
were put into the box. Within our resolution, no finite size effect could be detected.

neutrality. In other words: The field induces two electric currents in opposite direction.
These currents, in turn, induce hydrodynamic flows. These flows, however, cancel each
other exactly in leading order. Therefore the hydrodynamicinteractions with the periodic
images are weak. This should be contrasted with the diffusion constant, which corresponds
to the response to an external gravitational field. The latter doesexert a net force on the
overall system, and hence one obtains a large–scale flow decaying like the inverse distance
from the colloid. This1/r flow field is exactly the reason for the1/L finite–size effect in
the diffusion constant as shown in Fig. 2.

The electrophoretic mobility may be obtained by either applying an electric field, and
measuring the drift velocity, or by Green–Kubo integration6, where a system in strict ther-
mal equilibrium is studied:

kBTµ =
1

3

∑

i

zi

∫ ∞

0

dt 〈~vi(0) · ~v0(t)〉 , (58)

where the indexi denotes particle numberi, andzi is its valence. Particle number zero is
the colloid whose response to the electric field is considered. The nonequilibrium approach
is hampered by the fact that, for reasonable electric field values, the response is quite typi-
cally in the nonlinear regime (mainly as a result of charge–cloud stripping). Therefore, one
needs to extrapolate to zero driving. In contrast, the Green–Kubo value is,per definition,
the linear–response result. Figure 4 shows that the two approaches yield the same result.

Further results that have been obtained with this model include a study of the concen-
tration dependence ofµ, both in terms of colloid volume fraction of a salt–free system, and
in terms of salt concentration at fixed colloid concentration. Without going into further de-
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Figure 4. (From Ref. 6) Reduced electrophoretic mobility for the single–colloid system described in the text, as
a function of the colloid’s chargeZ, comparing nonequilibrium with Green–Kubo integration (GKI) results. The
mobility first increases, since the force is proportional tothe charge. However, for largerZ values it saturates,
indicating that more and more ions condense at the colloid’ssurface, such that the effective charge does not
change. ForeE = 0.2, nonlinear effects lead to an increased mobility, whileeE = 0.1 is still in the linear–
response regime, as demonstrated by the comparison with theequilibrium data.

tails, it should just be mentioned that the reduced–mobility data can be nicely rationalized
in terms of a scaling theory6 which then allows a favorable comparison with experimental
results7.

Of course, this is not the only example where the coupled MD–LB approach has helped
to understand the dynamics of soft matter. Other examples include the dynamics of poly-
mers and neutral colloids in both equilibrium and nonequilibrium situations; these have
been outlined in Ref. 1. Further simulations will follow in the future, and it seems that the
method is gaining popularity in the soft–matter community.
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Proteins constitute a major part of the machinery of all cellular life. While sequence information
of many proteins is readily available, the determination ofprotein three-dimensional structure
is much more involved. Computational methods increasinglycontribute to elucidate protein
structure, conformational change and biological function. Simulations also help us understand,
why naturally occurring proteins fold with high precision into a unique three-dimensional struc-
ture, in which they can perform their biological function. Here we summarize recent results of
a free-energy approach to simulate protein large-scale conformational change and folding with
atomic precision. In the free-energy approach, which is based on Anfinsen’s thermodynamic
hypothesis, the conformational ensemble can be sampled with non-equilibrium methods, which
accelerates the search of the high-dimensional protein landscape and permits the study of larger
proteins at the all-atom level.

1 Introduction

Proteins are the workhorses of all cellular life. They constitute the building blocks and the
machinery of all cells. Proteins perform a variety of roles in the cell: structural proteins
constitute the building blocks for cells and tissues, enzymes, like pepsin, catalyze com-
plex reactions, signaling proteins, like insulin, transfer signals between or within the cells.
Transport proteins, like hemoglobin, carry small molecules or ions, while receptor pro-
teins like rhodopsin generate response to stimuli. The mechanisms of all these biophysical
processes depend on the precise folding of their respectivepolypeptide chains1.

From the work of C.B. Anfinsen and co-workers in the 1960s we know that the amino
acid sequence of a polypeptide chain in the appropriate physiological environment can
fully determine its folding into a so-called native conformation2. Unlike man-made poly-
mers of similar length, functional proteins assume unique three-dimensional structures un-
der physiological conditions and there must be rules governing this sequence-to-structure
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transition. Protein structures can be determined experimentally, by X-ray crystallography3

or NMR methods4, but these experiments are still challenging and do not workfor all pro-
teins. From the theoretical standpoint it is still not possible to reliably predict the native
three-dimensional conformation of most proteins given their amino acid sequence alone5–8.

The triplet genetic code by which the DNA sequence determines the amino acid se-
quence of polypeptide chains is well understood. However, unfolded polypeptide chains
lack most of the properties needed for their biological function. The chain must fold into
its native three dimensional conformation in order to perform its function9. Despite much
research in this direction and the emergence of novel folding paradigms during the last
decade, much of the mechanism by which the protein performs this auto-induced folding
reaction is still unclear6.

Therefore it would be very helpful to develop methods for protein structure prediction
on the basis of the amino acid sequence alone. Even if this goal it is not fully realized,
methods that can complete partially resolved experimentalprotein structures would be
very helpful to determine the structure of proteins where neither theoretical methods nor
experimental techniques alone can succeed10. For the trans-membrane family of proteins,
present day experimental methods fail, which is responsible for the entire communication
of the cell with its environment11. Theoretical methods would be very helpful to investigate
these proteins. There are large number of related questions, for instance regarding the
interactions of a given protein with a large variety of otherproteins, where theoretical
methods could also contribute to our understanding of biological function.

Related to the question of protein structure prediction is the question of how the pro-
teins attain their final conformation - the so called proteinfolding problem. It remains
one of the astonishing mysteries responsible for the evolution of life how these complex
molecules can attain a unique native conformation with suchprecision. No man-made
polymer of similar size is able to assemble into a predetermined structure with the preci-
sion encountered in the proteins that have evolved in nature.

Given its complexity it is not surprising that the protein folding process occasionally
fails, and many of such failures are related to cellular disfunction or disease12, 13. Therefore
it is important not only to be able to predict the final structure of proteins but also very
desirable to understand the mechanisms by which proteins fold.

Many theories and computational methods have been developed to understand the fold-
ing process. Simplified models have been applied to understand its physical principles14.
Lattice based methods were among the first models that allowed efficient sampling of con-
formational space15–17. The lattice models, either 2D square or 3D cubic, were used to
study protein folding and unfolding, but they were too simplified for protein structure pre-
diction. Subsequently “Go-Models” were developed, where only native contacts interact
favorably18, and were useful to characterize some aspects of the foldingof small proteins.
Further development led to statistically obtained knowledge based potentials19–21. These
potentials were obtained and parameterized on the structures available from the Protein
Data Bank. The knowledge based potentials are mostly used for fold recognition or pro-
tein structure prediction.

With the increase in computational resources and speed, all-atom molecular dynam-
ics simulations of protein folding have been undertaken. For most proteins, it is still not
feasible to determine the protein structure from extended conformations using a single
molecular dynamics simulation. This is due to the fact that at the all-atom level, the typical
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time step in a molecular dynamics simulation is about 1-2 femtoseconds while the pro-
tein folding occurs at millisecond timescale. A single suchsimulation would need years
to complete. Replica exchange MD simulations have been successful in folding proteins
from extended conformations, but are still limited to the size of 20-30 amino acids22–26.

In this review we explore an alternative approach for protein structure prediction and
folding that is based on the Anfinsen’s hypothesis2 that most proteins are in thermody-
namic equilibrium with their environment in their native state. For proteins of this class
the native conformation corresponds to the global optimum of the free energy of the pro-
tein. We know from many problems in physics and chemistry that the global optimum of a
complex energy landscape can be obtained with high efficiency using stochastic optimiza-
tion methods27–29. These methods map the folding process found in nature onto afictitious
dynamical process that explores the free-energy surface ofthe protein. By construction
these fictitious dynamical processes not only find the conformation of lowest energy, but
typically characterize the entire low-energy ensemble of competing metastable states.

This review is structured as follows: The second section introduces the protein the
protein free-energy forcefield PFF02 and methods to efficiently explore the protein free-
energy surface with stochastic simulation methods. In the next section, we review all-atom
folding simulations for various proteins with the free-energy approach. The key results of
these investigations and opportunities for further work are outlined in the last section.

2 Free-Energy Forcefields and Simulation Methods

2.1 The free-energy forcefield PFF02

We have recently developed an all-atom (with the exception of apolar CHn groups) free-
energy protein forcefield (PFF01) that models the low-energy conformations of proteins
with minimal computational demand.9,14 The forcefield parameterizes the internal free
energy of a particular protein backbone conformation, excluding backbone entropy and
thus makes different discrete conformational states directly comparable with regard to their
stability. The effect of backbone entropy of a particular state can be assessed with Monte
Carlo simulations at a finite temperature.

PFF02 contains the following non-bonded interactions:

V
(

{→ri}
)

=
∑

ij

Vij

[(
Rij

rij

)12

− 2
(

Rij

rij

)6
]

+
∑

ij

qiqj

εg(i)g(j)rij

+
∑

i

σiAi +
∑

hbonds

Vhb + Vtor

Here rij denotes the distance between atoms i and j and g(i) the type ofthe amino acid
i. The Lennard Jones parameters (Vij ,Rij) for potential depths and equilibrium distance)
depend on the type of the atom pair and were adjusted to satisfy constraints derived from
a set of 138 proteins of the PDB database.18−20 The non-trivial electrostatic interactions
in proteins are represented via group-specific and positiondependent dielectric constants
εg(i)g(j) , depending on the amino-acids to which the atoms i and j belong. Interactions
with the solvent were first fit in a minimal solvent accessiblesurface model21 parame-
terized by free energies per unit areaσj to reproduce the enthalpies of solvation of the
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Gly-X-Gly family of peptides22. Aj corresponds to the area of atom i that is in contact
with a fictitious solvent.

Hydrogen bonds are described via dipole-dipole interactions included in the electro-
static terms and an additional short range term for backbone-backbone hydrogen bonding
(CO to NH) which depends on the OH distance, the angle betweenN, H and O along the
bond and the angle between the CO and NH axis.9 In comparison to PFF01, the force-
field PFF02 contains an additional term that differentiatesbetween the backbone dipole
alignments found in different secondary structure elements (included in the electrostatic
potential between atoms i and j belonging to the backbone NH or CO groups via the di-
electric constantsεg(i)g(j))

23 and a torsional potential for backbone dihedral angles Vtor,
which gives a small contribution (about 0.3 kcal/mol) to stabilize conformations with di-
hedral angles in the beta sheet region of the Ramachandran plot.14,24

2.2 Stochastic Simulation Methods

Proteins assume unique three dimensional structures afterbeing synthesized into a linear
chain of amino acids. In the free-energy approach this native conformation corresponds to
the global optimum of the free-energy forcefield. In order tofold proteins with free-energy
methods, we need to use efficient sampling methods to reliably locate the associated global
minima of the free-energy surface. The low-energy region ofthe free-energy landscape of
proteins is extremely rugged due to the close packing of the atoms in the native conforma-
tion. Sampling this surface efficiently is therefore the central cogmputational bottleneck of
this approach.

2.2.1 Monte Carlo

Most stochastic methods originate from the Monte Carlo method that explores the energy
landscape by random changes in the geometry of the molecule.In this way large regions
of the configurational space can be searched in finite time, without regard of the kinetics
of the process. A Monte Carlo simulation is composed of the following steps:

1. Specify the initial coordinates (R0).

2. Generate new coordinates by random change to initial coordinates (R
′

).

3. Compute transition probabilityT (R0, R
′

).

4. Generate a uniform random numberRAN in range [0,1].

5. If T (R0, R
′

) < RAN , then discard the new coordinates and goto step 2.

6. Otherwise accept the new conformation and goto step 2.

The most popular realization of the Monte Carlo method for molecular systems is the
Metropolis method (see flowchart in Figure 1), which usesT (R0, R

′

) = e−∆V/kT if
∆V > 0, and unit probability otherwise.

In Monte Carlo simulations, the system has no “memory” between two steps,i.e., the
probability that the system might revert to its previous state is as probable as choosing any
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Figure 1. Schematic representation of Metropolis method.

other state. As a result of the stochastic simulation a largenumber of configurations is ac-
cumulated, which can be used to calculate thermodynamic properties of the system. Monte
Carlo is not a deterministic method (as molecular dynamics), but gives rapid convergence
of the thermodynamic properties30.

2.2.2 Improved Sampling Techniques

Due to its popularity a large number of modifications and improvements of the Monte
Carlo technique have been suggested and many of them have been used in the context of
protein simulations:

• Simulated annealing: In this approach31 barriers in the simulation are avoided by
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starting the simulation at some high temperature and slowlylower the temperature
of the simulation until the target temperature is reached. At high temperature the
exploration of the phase space is very rapid, while near the end of the simulation the
true thermodynamic probabilities of the system are sampled.

• Stochastic tunneling: Here a potential energy surface is transformed by using a non-
linear transformation to suppress the barriers which are significantly above the present
best energy estimate32. The transformed energy surface which is used for exploration
of global minimum is given by

ESTUN = ln(x+
√

x2 + 1)

with x = γ(E − E0), where E is the present energy,E0 is best estimation so far and
γ the transformation parameter, which controls the rate of rise for the transformation.

• Parallel tempering: This method is Monte Carlo implementation of the replica ex-
change molecular dynamics method described. A modified version of this method,
which uses an adaptive temperature control and replicationstep, has been employed
for exploration of protein energy surfaces33.

• Basin hopping technique (BHT): In this scheme the original potential energy surface
is simplified by replacing the energy of each conformation with the energy of a nearby
local minimum34. The minimization is carried out on the simplified potential(see
section 2.2.3).

• Evolutionary strategy: This scheme is a multi-process extention of the BHT. Several
concurrent simulations are carried out in parallel on a population. The population is
evolved towards a global optimum of energy with a set of ruleswhich enforce energy
improvement and population diversity (see section 2.2.4).

2.2.3 Basin Hopping Technique

BHT35 employs a relatively straightforward approach to eliminate high-energy transition
states of the free-energy surface: The original free-energy surface is simplified by replacing
the energy of each conformation with the energy of a nearby local minimum. In many
applications the additional effort for the minimization step is more than compensated by
the improved efficiency of the stochastic search. This process leads to a simplified potential
on which the simulations search for the global minimum. Thisreplacement eliminates
high-energy barriers in the stochastic search that are responsible for the freezing problem
in simulated annealing. A one dimensional schematic representation of BHT is shown in
Figure 2. Every basin hopping cycle (minimization step) tries to locate a local minima and
thus it simplifies the original potential energy surface (PES) (black curve) into an effective
PES (blue curve) which is then searched for the global minima.

The basin hopping technique and its derivatives have been used previously to study the
potential-energy surface of model proteins and polyalanines using all-atom models36–39.
Here we replace the gradient-based minimization step used in many prior studies with a
simulated annealing run31, because local minimization generates only very small steps on
the free energy surface of proteins. In addition, the computation of gradients for the SASA

402



Figure 2. Schematic representation of Basin Hopping technique. The modified potential is obtained by replacing
every point on the curve to its neared local minimum.

(Solvent Accessible Surface Area) is computationally prohibitive. Within each simulated
annealing simulation, new configurations are accepted according to the Metropolis crite-
rion, while the temperature is decreased geometrically from its starting to the final value.

The starting temperature and cycle length determine how farthe annealing step can de-
viate from its starting conformation. The final temperaturemust be chosen small compared
to typical energy differences between competing metastable conformations, to ensure con-
vergence to a local minimum. The annealing protocol is thus parameterized by the starting
temperatureTS, the final temperatureTF , and the number of steps. We investigated vari-
ous choices for the numerical parameters of the method but have always used a geometric
cooling schedule. At the end of one annealing cycle the new conformation is accepted if its
energy difference to the current configuration was no higherthan a given threshold energy
ǫT , an approach recently proven optimal for certain optimization problems40. We typically
used a threshold acceptance criteria of 1-3 kcal/mol.

2.2.4 Evolutionary Algorithms

The popular BHT method41, 34 for global optimization eliminates high-energy potential-
energy surface (PES) by replacing the energy of each conformation with the energy of a
nearby local minimum. For protein folding we have replaced the original local minimiza-
tion by simulated annealing(SA). In the course of our folding studies, we find that indepen-
dent BHT simulations often find identical structures corresponding to same local(global)
minimum. As a result, each independent simulation reconstructs the full folding path in-
dependently. It would be very desirable to develop methods,where several concurrent
simulations exchange information tolearn from each other. For a PES having many local
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Figure 3. A flowchart illustrating the population update. See the text for an explanation

minima, independent simulations limit the efficient exploration of the PES. Also, occa-
sionally BHT simulations go astray, ending the search in a wrong energy basin of the PES.
We have developed agreedyversion of BHT42 which overcome these problems to a certain
extent.

We have therefore generalized the BHT approach to a population of size N which is
iteratively improved by P concurrent dynamical processes33. The population is evolved
towards a optimum of the free energy surface with a ES that balances the energy im-
provement with population diversity. In the ES, conformations are drawn from theactive
population and subjected to an annealing cycle. At the end ofeach cycle the resulting con-
formation is either integrated into the active population or discarded. The algorithm was
implemented as a master-client model in which idle clients request a task from the master.
The master maintains theactiveconformation of the population and distributes the work
to the clients. Each step in the algorithm has three phases:
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1. Selection: A conformation is drawn randomly from theactivepopulation. We have
used a uniform probability distribution with population of20 conformers.

2. Annealing cycle: We use a simulated annealing schedule with Tstart drawn from
an exponential distribution andTend fixed at 2K. The number of steps per cycle is
increased as105 ×√cycle.

3. Population update: We have adjusted the acceptance criterion for newly generated
conformations to balance the population diversity and energy enrichment. We define
the two structures assimilar if they have bRMSD less than 3̊A to each other. We
define anactivepopulation as the pool containing mutually different lowest energy
conformers. The master finds number of similar structures(nc) and then performs one
of the following operations on complete population.

(a) Add: If the new conformation is notsimilar to any structure(nc=0) in the popu-
lation, we add it to the population, provided its energy is less than the energy of
conformation with highest energy(Eworst)

(b) Replace: If the new conformation (with energyEnew) is similar to oneexisting
structure in the population (with energyEold), it replaces that structure provided
Enew < Eold + ∆ (see below).

(c) Merge: If the new conformation hasseveral similarstructures, it replaces this
group of structures provided its energy is less than the bestone of the group
Ebest plus an acceptance threshold∆.

A flowchart illustrating the population update tasks of the master is shown in Fig. 3.
In our first BHT/ES simulations we have used a fixed energy threshold (∆) acceptance
criterion. Here we have implemented avariableenergy threshold which we define as
∆ = A× tanhD , where

D =
Enew − Ebest

A
,

where A is the energy threshold (3kcal/mol), Enew is energy of the new structure,
Ebest is the lowest energy structure in the population. This choice of the energy
criterion ensures that the conformation with the best energy is never replaced, while
conformations higher in energy are more easily replaced in the secure knowledge that
they are far from optimal. The rules for thereplaceand mergeoperations ensure
the structural diversity of the population and its continued energetic improvement (on
average).

3 Folding Simulations

3.1 Helical Proteins

3.1.1 The tryptophan cage miniprotein

Tryptophan cage or trp-cage protein43 has been the subject of various theoretical stud-
ies and it has been of great scientific interest. It had been reported to fold using replica
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(a) Overlay

(b) Cβ -Cβ matrix

(c)

Figure 4. 1L2Y: Overlay of predicted (red) structure to experimental (green) structure. Cβ -Cβ distance overlay
matrix and Energy vs. RMSD plot.

exchange MD and a variety of other simulations44, 27, 45–47, 29, 48. We performed 20 inde-
pendent basin hopping simulations starting with the completely extended conformations in
PFF02 with 100 cycles. The starting conformation had a RMSD of 12.94Å to the native
conformation and was completely extended manually (by setting all backbone dihedral an-
gles except proline to 180◦). The starting temperatures were chosen from a distribution
of exponentially distributed temperatures and the number of steps increased with the BHT
cooling cycle by104√nm wherenm is the number of minimization cycles.

The lowest energy structure converges to a native like conformation with RMSD of
3.11Å to the native conformation. For the sake of uniformity in case of NMR resolved
experimental structures, we compare the RMSD to the first model in the protein data bank
file. The lowest energy structure had an energy of -23.4 Kcal/mol. Figure 4(c) shows
the scatter plot of the conformations visited by the basin hopping simulations on the free
energy surface. The overlay of native conformation (green)with the lowest energy confor-
mation (red) is shown in Figure 4(a) and the corresponding Cβ-Cβ overlay matrix is shown
in Figure 4(b). The Cβ-Cβ overlay matrix quantifies the tertiary alignment along withsec-
ondary structure formation by taking the difference between all Cβ distances of predicted
and native conformation. Black regions indicate excellentagreement in the formation of
native contacts while white regions indicate larger deviations.
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(a) Overlay

(b) Cβ -Cβ matrix

(c)

Figure 5. 1ENH: Overlay of predicted (red) structure to experimental (green) structure. Cβ -Cβ distance overlay
matrix and Energy vs. RMSD plot.

3.1.2 The engrailed Homeodomain - 1ENH

The 54 amino acid engrailed homeodomain protein49 is a three helical orthogonal bun-
dle protein which has been subjected to detailed molecular dynamics simulations50, 51. It
was not possible to fold this protein using basin hopping technique due to the previously
described freezing problem in the basin hopping simulations.

Here we studied the folding of engrailed homeodomain in PFF02 using the evolution-
ary algorithm with a maximum population of 64 conformationsand 512 processors52. The
lowest energy structure converges to 4.28Å to the native conformation with the energy of
-170.95 Kcal/mol. 1ENH has a unstructured tail at the N-terminus; after excluding this
seven amino acid region, the RMSD reduces to only 3.4Å.

The scatter plot of conformations visited during the simulation are shown in
Figure 5(c). Seven out of the total population of 64 structures are less than 4.5̊A RMSD
to the native conformation. The overlay of the lowest energyconformation (red) with the
native conformation (green) is shown in Figure 5(a) and the corresponding Cβ-Cβ overlay
matrix is shown in Figure 5(b). There are also competing conformations (within 2 Kcal/-
mol) with large RMS deviations encountered in the simulations. One such conformation is
shown in Figure 6). These conformations have the same secondary structure, but a differ-
ent tertiary structure alignment. The Cβ-Cβ overlay matrix for the misfolded conformation
also confirms that all the three helices are properly predicted but their tertiary arrangement
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(a) (b) (c)

Figure 6. 1ENH: Overlay of misfolded (orange) structure to experimental (green) structure and Cβ -Cβ distance
overlay matrix.

is completely different. This indicates that various conformations exist in the low energy
region of the 1ENH which are similar in secondary structure content.

No two helices in the misfolded conformation are in agreement with the respective
helices in the native state. Independently, helix-1 (E8-E20), helix-2 (E26-L36) and helix-3
(A40-K43) are nearly perfectly predicted and have RMS of only 0.56, 0.42 and 0.47̊A
respectively.

As about 10% of the population is native-like and the misfolded conformations we can
conclude that the folding is reproducible.

3.2 Hairpins

Hairpins are the simplest beta sheet structures with only two strands in antiparallel direc-
tions that are connected together with a turn. Hydrogen bonding and the packing of the
protein itself plays a crucial role here in the folding of such small polypeptides. There are
not many hairpin proteins that are not stabilized by external interaction with ions or with
the formation of disulphide bridges.

3.2.1 trp-zippers

The tryptophan zippers are small monomeric stableβ-hairpins that adopt an unique tertiary
fold without requiring metal binding, unusual amino acids,or disulfide crosslinks53. We
were able to fold various tryptophan zippers using PFF02 andbasin hopping technique (not
shown here).

We studied the folding of 1LE0 with EA using 128 processors onMarenostrum cluster
at the Barcelona supercomputer center starting from completely extended conformations.
We performed twenty cycles of evolutionary algorithm. The lowest energy conformation
reached in the simulation had a RMSD of only 1.5Å to the native conformation with the
energy of -29.97 Kcal/mol.

The scatter plot of the conformations visited during the simulations is shown in
Figure 7(c). The scatter plot shows that the native-like conformations lie significantly be-
low any other conformation. Twelve out of the 64 conformations from the final population
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Figure 7. 1LE0: Overlay of predicted (red) structure to experimental (green) structure. Cβ-Cβ distance overlay
matrix and Energy vs RMSD plot.

are less than 3.0̊A to the native conformation. The protein folds in less than 90 minutes
using 128 processors in parallel by means of the twenty cycles of evolutionary algorithm
amounting to77× 106 function evaluations or about 9 CPU days.

The overlay of the predicted conformation (red) with the native conformation (green) is
shown in Figure 7(a) and the corresponding Cβ-Cβ overlay matrix is shown in Figure 7(c).
Large black regions in the Cβ-Cβ overlay matrix indicates the agreement of native contacts
between the two conformations.

As hydrogen bonding plays an important role in the formationand topology ofβ-sheet
structures, it is important to compare the hydrogen bondingpattern in the lowest energy
conformations as twoβ-sheet conformations might look very similar to the eye, butthey
might have completely different topology resulting from shifting of backbone hydrogen
bonds.

The pattern of backbone hydrogen bonds is shown in Table 1 forthe native and the
predicted conformation. These were calculated with MOLMOLusing the standard def-
initions (Distance=2.4̊A and angle=35◦). Four out of the five backbone hydrogen bonds
of the native structure are predicted correctly in the lowest energy structure found in the
simulations.

As about 20% of the population converged to native-like conformations with much
lower energies, we conclude the folding of tryptophan zipper as reproducible and predic-
tive.

409



Hydrogen bond Native Predicted
03 THR HN −→ 10 THR O X X
05 GLU HN −→ 08 LYS O X X
07 ASN HN −→ 05 GLU O X
10 THR HN −→ 03 THR O X X
12 LYS HN −→ 01 SER O X X

Secondary Structure RMSD (̊A )
Native CEEECSSSEEEC -
Predicted CEEEETTEEEEC 1.52

Table 1. 1LE0: Backbone hydrogen bond pattern of the native and predicted conformations and secondary struc-
ture information.

3.2.2 HIV-1 V3 loops

We studied the folding of 14 amino acid HIV-1 V3MN loop 1NIZ54 in PFF02 using a greedy
version of the basin hopping technique55.

In basin hopping simulations there is a threshold energy acceptance criterion at the end
of every basin hopping cycle. In our previous simulations, we have used this threshold
acceptance criterion of 1-3 Kcal/mol depending upon this size of the protein. In the greedy
version of basin hopping the threshold energy is varied depending upon the best energy
found so far in the simulation. Here we calculated the threshold as (ǫS − ǫB)/4, whereǫS
is the starting energy andǫB is the best energy found so far in the simulation. This choice
implies that the conformation with the best energy is never replaced with a conformation
that is higher in energy and thus introduces a “memory effect” in the simulation. For
the simulations that are higher in energy, the increased threshold value implies a higher
acceptance probability of conformations with higher energy.

We did 200 cycles of greedy basin hopping simulations in PFF02. The simulations
were started with completely extended conformation that had the RMSD of 12Å to the
native state. The lowest energy structure found in the simulation had the RMSD of only
2.04Å to the native state.

Hydrogen bond Native Predicted
02 ARG HN −→ 13 THR O X X
04 HIS HN −→ 11 PHE O X X
06 GLY HN −→ 09 ARG O X
08 GLY HN −→ 06 GLY O X
11 PHE HN −→ 03 HIS O X X
13 THR HN −→ 01 ARG O X X

Secondary Structure RMSD (Å )
native CEEEECSSCEEEEC -
predicted CEEEECSSCEEEEC 2.04

Table 2. 1NIZ: Backbone hydrogen bond pattern between native and predicted conformations and secondary
structure information.
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Figure 8. 1NIZ: Overlay of predicted (red) structure to experimental (green) structure. Cβ -Cβ distance overlay
matrix and Energy vs. RMSD plot.

The scatter plot of the conformations visited during the simulations is shown in
Figure 8(c). The scatter plot shows a single downhill folding funnel for this hairpin. Eight
out of the ten independent simulations converged to less than 3.5Å RMSD to the native
conformation.

The overlay of the lowest energy conformation (red) with thenative conformation
(green) is shown in Figure 8(a) and the corresponding Cβ-Cβ distance matrix is shown
in Figure 8(c). Large black regions in the Cβ-Cβ overlay matrix indicates the agreement
of native contacts between the two conformations.

Again, we did the backbone hydrogen bond analysis. Four out of the five backbone hy-
drogen bonds of the native structure were correctly predicted in the lowest energy structure
found in the simulations. The pattern of the backbone hydrogen bonds is shown in Table 2.
The secondary structure of the predicted and native conformation is also shown in Table 2.
The letters in the secondary structure correspond to DSSP definitions.

As eight of the ten simulations converged to the native-likeconformation without any
competing metastable conformations, the folding is concluded as reproducible and predic-
tive.
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3.3 A mixed secondary structure protein

Zinc fingers are among the most abundant proteins in eukaryotic genomes and occur in
many DNA binding domains and transcription factors56. They participate in DNA recog-
nition, RNA packaging, transcriptional activation protein folding and assembly and apop-
tosis. Many zinc fingers contain aCys2His2 binding motif that coordinates the Zn-ion in
αββ -framework57–59 and much effort is towards the engineering of novel zinc fingers60.
A classical zinc finger motif binding DNA is illustrated in Fig. 9.

Figure 9. A classicalCys2His2 zinc finger motif with Zn-ion(orange) and DNA (magenta).

The reproducible folding of such proteins with mixed secondary structure, however,
remains a significant challenge to the accuracy of the all-atom forcefield and the simulation
method61. We use the all-atom free-energy forcefield PFF02 to predictively fold the 23-51
amino-acid segment of the N-terminal sub-domain of ATF-2 (PDBID 1BHI)62, a 29 amino
acid peptide that contains the basic leucine zipper motif . 1BHI folds into the classical
TFIIIa conformation found in many zinc-finger like sub-domains. The fragment contains
all the conserved hydrophobic residues (PHE25, PHE36, LEU42) of the classical zinc
finger motif and the CYS27, CYS32, HIS45, HIS49 zinc binding pattern.

Starting from a completely unfolded conformation with no secondary structure (16̊A
backbone RMSD (bRMSD) to native) we performed 200 cycles of the evolutionary algo-
rithm. The distribution of bRMSD versus energy of all accepted conformations during the
simulation (Fig. 10) demonstrates that the simulation explores a wide variety of confor-
mations, with regard to their free-energy and their deviation from the native conformation.

Among the ten energetically lowest conformations (see Table 3) six fold into near-
native conformations with bRMSDs of 3.68-4.28Å, while four fold to conformations with
a larger bRMSD. The three energetically best conformationsare all near-native in char-
acter. An overlay with the experimental conformation (leftpanel of Fig. 11) illustrates
that the helix, beta-sheet and both turns are correctly formed. The hydrophobic residues,
which determine the packing of the beta-sheet against the helix, are illustrated in blue in
the figure. The helical section (GLU39-GLU50) and the beta-sheet (PHE25-LEU26 and
ARG35-PHE36) deviate individually by 1.6̊A and 2.4Å bRMSD from their experimental
counterparts, respectively.
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Figure 10. Free energy versus bRMSD of all accepted conformations in the simulation. The best 10 structures
are highlighted as: red circles(native-like), green squares(non-native). The folding intermediate is denoted by
blue diamond

The overall difference between the experimental and the folded conformations stems
from the relative arrangement of the beta-sheet with respect to the helix, which is dom-
inated by unspecific hydrophobic interactions. All conserved hydrophobic sidechains
are also buried in the folded structure. The zinc-coordinating cysteine residues
(CYS27,CYS32) are within 2̊A of their native positions and available association with
the Zn-ion.

Fig. 12 shows the convergence of the energy. After about 120 attempted updates
per population member (3.5 × 108 function evaluations) the population converged to the
native ensemble. According to the funnel paradigm for protein folding63, tertiary structure
forms as the protein slides downhill on the free-energy surface from the unfolded ensemble
towards the native conformation. Each annealing cycle generates a small perturbation on
the existing conformation, which averages to a 0.5Å bRMSD change (max 3̊A initially).
As new low-energy conformations replace old conformations, the population slides as a
whole down the funnel of the free energy landscape.

Ensemble averages as a function of time over the moving population are thus associated
with different stages of the structure formation process. In the lower panels of Fig. 12, we
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Figure 11. Left: Overlay of the native (green) and folded (magenta) conformations. The conserved hydrophobic
residues are shown in blue and Zn binding cysteines are shownin yellow. Right: The intermediate conformation
with partially formed helix andβ sheet.

plot the average helical content and the number of beta-sheet H-bonds as a function of the
cycle number. Following a rapid collapse to a compact conformation, the helix forms first,
followed by the formation of the beta sheet. The analysis of the folding funnel upwards in
energy illustrates that the lowest energy metastable conformations correspond to a partial
unzipping of amino acids PHE25-ARG35, while the conserved cysteine residues are still
buried. Even much higher on the free energy funnel (blue diamond in Fig. 10), we find
many structures that have much residual structure, but essentially not long-range native
contacts.

The preformed sheet-region is stabilized by the hydrogen bonds (LEU26-CYS27,
ARG35) and packs at the right angle to the helix, the hydrophobic residues are only par-
tially buried. This conformational freedom may be relevantin DNA binding, where the
helical part of the zinc finger packs into the major groove of the DNA.

De novo folding of the zinc finger domain permits a direct sampling of the relevant
low-energy portion of the free-energy surface of the molecule as the first step towards the
elucidation of the structural mechanisms involved in DNA binding64. We find that much
of the structure of the zinc finger is formed even in the absence of the metal ion that is
ultimately required for the stabilization of the native conformation. Because the algorithm
tracks the development of the population it is possible to reconstruct a folding pathway by
reconstructing the sequence of events starting with converged conformation and moving
backwards to the completely unfolded conformation.

We have thus demonstrated predictive all-atom folding of the DNA binding zinc-finger
motif in the free-energy forcefield PFF02. This investigation offers the first unbiased char-
acterization of the low-energy part of the free-energy surface of the zinc finger motif, which
is unattainable in coarse grained, knowledge-based models. We find that the helix forms
first along the folding path and acts as a template against which a variety of near-native
beta-sheet backbone arrangements can pack. There are many zinc fingers with bRMSD
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Figure 12. Top: Average (solid line) and best (dashed line) energies as functions of the number of the simulation
cycle for the Zinc Finger, Middle: number of amino acids (nh) in a helical conformation (as computed by DSSP)
and Bottom: number of hydrogen bones (nhb) as function of the ES cycle number

# Energy bRMSD Secondary Structure
kcal/mol Å

E01 -64.94 4.25 CCEECTTTTSCCEESSCHHHHHHHHHHH C
E02 -62.84 3.88 CCEECTTTTSCCEESSCHHHHHHHH STTC
E03 -61.05 3.83 CCEECTTTTCCCEESSCHHHHHHHH STTC
E04 -60.51 6.85 CCEECTTTTSCCEECSCHHHHHH SCCCCC
E05 -60.40 5.44 CCBBCTTTTCCCBCCSCHHHHHHH CCCBC
E06 -57.93 6.12 CCEECTTTTSCCEECSCHHHHHH SCCCCC
E07 -56.21 4.25 CCEEEECSSSSCEEEESCHHHHHHHHHH C
E08 -55.44 5.61 CCSSSCSSCCSSCCCSCHHHHHHHH TTTC
E09 -55.18 4.27 CCCCEECTTSSCEECSHHHHHHHHH CSCC
E10 -55.02 -4.29 CCCCBTTTTBTTCCCSSHHHHHHHHHHH C

Table 3. Energy, bRMSD and secondary structures of the 10 lowest energy structures

of less than 2Å to 1BHI62. Thus, this investigation provides one important step in the
theoretical understanding of zinc-finger formation and function.
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4 Summary

These investigations demonstrate that the free-energy approach is able to predict the native
state of a wide range of proteins at the global minimum of their free energy surface27, 65–71.
Protein folding with free energy methods is much faster thanthe direct simulation of the
folding pathway by kinetic methods such as molecular dynamics. Using just standard PCs
we can fold a simple hairpin with fifteen to twenty amino acidsin a matter of hours, at
most in a day69. Unfortunately even for free energy methods the computational cost rises
steeply with the system size.

The second ingredient in protein folding studies, aside from the force field, are there-
fore the simulation protocols, which ultimately determinewhether the global optimum of
the forcefield is determined accurately and reliably. We have reviewed key aspects of such
methods, e.g. the stochastic tunneling or the basin hoppingtechnique, which had proven
successful in folding studies for small proteins. One of thekey limitations of these methods
is that they map the global optimization problem onto a single fictitious dynamical process,
while in principle, many concurrent processes can be used28, 29, 65.

We have therefore also discussed an evolutionary algorithm72 for massively parallel
architectures, such as the BlueGene architecture, which keeps a diverse population on the
master, while the clients sample the protein landscape simultaneously. This algorithm
scales very well with the number of processors used (up to 4096 tested on the IBM Blue-
Gene). Using this algorithm we folded various proteins suchas 40 amino acid HIV acces-
sory protein (1F4I) and 54 amino acid engrailed homeodomainprotein (1ENH) in a single
day. The folding of the engrailed homeodomain protein was carried out in a single day
using 512 processors on the Barcelona Mare Nostrum Supercomputer, the current largest
supercomputer in Europe. Folding of the tryptophan zipper protein (1LE0) was possible in
only 14 minutes using 128 processors69.

To date we have succeeded to develop methods to find the nativestate of various pro-
teins by locating the global minimum of the free energy surface28. There are, however, a
large number of questions that remain to be addressed. Fortunately there are complemen-
tary methods, which in combination with the free-energy methodology developed here,
can address these problems. For example, we have neglected the details of the kinetics of
protein folding in our approach. As stated earlier, its important to study kinetics of folding
to understand protein folding mechanism and to predict folding rates. Because free-energy
methods sample exhaustively the low-energy conformationsof the protein that are accessi-
ble under physiological conditions it may be possible to reconstruct the folding kinetics on
the basis of that ensemble of conformations. This can be achieved by a dynamical analysis
of the low energy region by using master equations assuming diffusive processes between
similar conformations.

With the development of the all-atom protein forcefield (PFF02) we have made a sig-
nificant step towards a universal free-energy approach to protein folding and structure pre-
diction68. The massively parallel simulation methods developed in the last few years now
permit the protein folding of medium-size proteins from random initial conformations.
This work thus lays the foundations to further explore the mechanism of protein folding, to
understand protein stability and ultimately develop methods forde novoprotein structure
prediction.
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Computational methods for the description of chemical events in biological structures have to
take into account the key features of bio-molecular molecules, their high degree of structural
flexibility and the long-range nature of electrostatic forces. In the last decade, a multitude of
approaches have been developed to combine computational methods that span different length-
and time-scales. These multiscale approaches incorporatea quantum mechanical description of
the actives site in combination with an empirical force fieldmethod for the immediate protein
environment and a continuum treatment of the regions further away. To study reactive events,
efficient sampling techniques have to be applied, which can become computationally intense
and therefore requires effective quantum methods. In this contribution, we describe the various
options to combine different methods, where the specific combination depends very much on
the nature of the problem in hand.

1 Introduction

The simulation of structure and dynamics of biological systems can nowadays be rou-
tinely performed using empirical force fields, which have become robust and reliable tools
over the last decades1, 2. These Molecular Mechanics (MM) force fields3, 4 model chem-
ical bonds by harmonic springs, i.e. they describe the energy of a chemical bond using
harmonic (or Fourier) potentials for the bond length, bond angle and dihedral angle. In ad-
dition to these bonded terms, the force fields contain non-bonded contributions, modeled
by the interaction of fixed atomic point charges and van der Waals interactions, usually de-
scribed by the 12-6 Lennard-Jones potential. Polarizable force fields5 that allow the partial
charges to vary depending on their environment have also been developed, although their
applications have been much more limited due to the higher computational expense.

Biological structures host a multitude of chemical events like chemical reactions (bio-
catalysis), photochemical processes, long range proton transfers (e.g., in bioenergetics),
electron and energy (excitation) transfers, which can onlybe described using quantum me-
chanical (QM) techniques and not with MM. The description ofthese processes is very
challenging for computational chemistry due to the large size of biological systems and
the presence of multiple time-scales. Indeed, biological structures take the middle ground
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between solids and more disordered materials like polymers. On the one hand, they have
a highly ordered structure from a functional perspective; e.g., specific functional amino
acids with pre-organized orientations are found in the immediate vicinity of the active site,
which is one important reason that chemical events in the enzyme active site are more ef-
ficient than the corresponding processes in solution6. On the other hand, biomolecules are
highly flexible and entropic contributions to the reaction free energy can be as important as
potential energy contributions. Therefore, to model chemical events in biological systems
requires both accurate potential functions and access to sufficient conformational sampling
and long time-scales.

None of the existing methods alone is up to the task in general. For example, standard
QM methods like Hartree-Fock (HF), Density-Functional (DFT) or Semi-Empirical (SE)
Theory alone can not handle several thousands of atoms with sufficient sampling. As a
consequence, many studies in the past focused only on small parts of the system, such as
the active site of the protein where the reaction occurs. This however, has been shown to be
insufficient due to the long range nature of the electrostatic forces and steric interactions
of the active site with the environment6–8. The development of linear scaling methods
extended the applicability of QM significantly. However, their application to large systems
is still costly, not viable for many interesting systems with 10,000-100,000 atoms and not
helpful when dynamical or thermodynamical properties are required, which is the case in
many biological applications. Evidently, methods from different computational levels have
to be combined effectively, which has been explored for the past few decades.

In the quantum chemistry community, efforts have largely been focussed on the combi-
nation of QM methods with continuum electrostatic theories, starting from Born & Onsager
theories that aimed at computing the solvation free energy of charges in a polar environ-
ment. These methods have been refined over the years and can now give a reasonable
description of solvation properties in an isotropic and homogeneous medium9, 10. In this
context, MM force field methods have also been combined with continuum electrostatics
methods11, 12 since the number of water that has to be included in explicit solvent simula-
tions with the periodic boundary condition often far exceeds the number of atoms in the
biological molecule itself. Most of these methods are basedon the Poisson-Boltzmann
theory13 and the Generalized Born model14, although more sophisticated integral equation
and density functional theories13 have also been explored for small biomolecules.

These continuum models (CM), however, are by no means appropriate to represent
the electrostatic and steric interactions of the structured environment with the active site.
Therefore, Warshel and Levitt15 proposed in 1976 to combine QM methods for the active
site with MM methods for the remainder of the system. An appropriate QM-MM coupling
term describes the polarization of the QM region by the charges on the MM atoms and
mediate the steric interactions via covalent bonds and van der Waals contacts. Up to now,
such QM/MM methods have been developed to combine many QM methods (post-HF, HF,
DFT, SE) with various force fields (e.g., CHARMM, AMBER, GROMOS, ...) and have
become a powerful tool for analyzing chemical events in biomolecules.

It has long been envisioned that a multiscale model can be developed for complex
molecular systems in which QM/MM methods are further augmented by a continuum
electrostatic model. Indeed, although efficient Ewald summation has been implemented
with QM/MM potential function16, 17, the high cost and sampling challenge associated
with explicit solvent simulations also becomes more transparent for QM/MM simula-
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tions, especially those using high level QM methods. Practical implementations that in-
tegrate QM/MM potential with continuum electrostatics models, however, only have be-
come available in recent years18–20. The major focus of this review is to summarize the key
components of such QM/MM/CM models and to discuss a few relevant examples that best
illustrate their value and limitations.

2 QM/MM Methods

The development of QM/MM methods in recent years has turned them into powerful pre-
dictive tool and many research groups are involved in the process; most of the recent devel-
opments have been nicely summarized in a comprehensive review21 (see the contribution
of W. Thiel). There is not one single QM/MM method, and the multitude of different
implementations can be characterized by several main distinctions:

• Additive and subtractive methods: Subtractive models22 apply the QM method to
the active site and the MM method to the entire system, also including the active site.
Since the active site region is treated by both methods, the MM contribution for the
active site has to be subtracted out:

E = Etot
MM + Eactive site

QM − Eactive site
MM (1)

The advantage of this method is that it allows in a simple way to also combine two
different QM methods in a QM/QM’ scheme or multiple methods in a QM/QM’/MM
scheme, where high (e.g., DFT) and low level (SE) QM methods are combined23, 24.
The disadvantage is that the MM has to treat also the active site, which may not be
straightforward when the active site has complex electronic structure (e.g., transi-
tion metal centers). The additive scheme25, by contrast, only applies the MM to the
environment of the active site, and the two regions are then coupled by a QM/MM
coupling term:

E = Eactive site
QM + Eenvironement

MM + EQM/MM (2)

Here, no force field parameters are needed for the active site, but the description of
the boundary is conceptionally more involved.

• The treatment of the QM/MM boundary: In many applications, this boundary dis-
sects a covalent bond. In the simplestlink atomapproach25, the dangling bond of
the QM region is saturated by an additional hydrogen. Other approaches avoid the
introduction of this artificial hydrogen. Thepseudoatom/bondapproach26 treats the
frontier functional group as a pseudo-atom with an effective one-electron potential.
In most cases, a C-C single bond has to be cut and the CH2 at the QM boundary is
then substituted by a parametrized (using a pseudo-potential) pseudo-Fluorine, which
models the properties of the C-C bond. The hybrid-orbital approach27 does not sub-
stitute the boundary CH2 group but freezes the occupation of the orbital, which rep-
resents the dangling bond. These are the most common approaches to deal with the
QM/MM boundary and various variants have also been proposed28. Systematic stud-
ies indicate that most schemes give comparable results as far as the charges at the
QM/MM boundary are carefully treated29–31.
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• Mechanical, electrostatic and polarizable embedding:This concerns the QM/MM
coupling term and the nature of the force field. In the mechanical embedding22, 23,
the MM point charges are not allowed to polarize the QM region. The interaction of
the QM and MM regions is simply given by the Coulomb and van derWaals inter-
actions32 between the QM and MM subsystems and the interactions at the boundary,
thus the QM density isnot perturbed by the MM charges. Since biological systems
are often highly charged, this method should not be used for biological applications.
The electrostatic embedding25 includes the MM charges as external point charges in
the determination of the QM charge density, i.e., the QM region is polarized by the
MM charges. This sounds conceptually simple, but can be an intricate matter in prac-
tice. First of all, the QM density can become too delocalizeddue to interactions with
the point charges, which is referred to as the “spill out problem”, in particular when
large basis sets of plane wave bases are used. This problem can be alleviated by
using a modification of the1/r interaction at short distances33. Further, large point
charges close to the QM region can overpolarize the QM density due to the artificial
concentration of the MM charge at one point. Here, a charge smearing scheme can be
used28. Finally, in thepolarizable embeddingscheme a polarizable force field instead
of the fixed point charge model is used. In some cases, polarization effects from the
environment can have a significant impact on the result as shown, for example, by the
calculation of excitation energies in retinal proteins34, 35(see below).

3 Sampling Reactive Events

For chemical reactions, the calculation of free energy changes and activation free energies
is of ultimate interest and is still a challenge. There are several categories of techniques
available.

• Direct MD The most straightforward way is to perform MD simulations byintegrat-
ing Newton’s equation of motion with either the microcanonical or canonical ensem-
bles.36. The common computational technology and algorithms, however, put severe
limitations in the accessible time scales. As a rule of thumb, HF and DFT methods
allow to perform MD simulations in the ps regime (≈ 10-50ps for ‘small’ QM regions
of 10-50 atoms), while SE methods allow for simulation timesroughly three orders
of magnitude longer (≈ 10-100ns for ‘small’ QM regions). Therefore, direct MD
simulations only allow overcoming small free energy barriers of severalkBT , such
as sampling of various conformers of very short peptides in water (see below). Many
chemical reactions of interest have barriers on the order of10-25 kcal/mol, and can
not be meaningfully addressed with direct MD simulations, even with SE methods.
Direct MD simulations, therefore, are mostly useful for equilibrating configurations
of protein active sites and qualitative exploration of the structural features relevant to
chemistry, such as water distributions along potential proton transfer pathways.

• Reaction path techniquesThese methods determine the Minimum Energy Path
(MEP)37 between a reactant and product state, in particular they locate the transition
state (saddle point on the potential energy surface). For enthalpy driven processes,
this path contains most relevant information for describing the chemical reaction of
interest, in particular the relative energies of reactant,product and transition state. As
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a starting point, reactant and product states have to be available. For simple reactions,
an approximate MEP can be determined by the adiabatic mapping procedure38, when
a reaction coordinate is chosen and partial optimizations are carried out with the re-
action coordinate set to a number of values; e.g., consider aproton transfer from an
oxygen atom to a nitrogen, denote the O-H distance byd1, the H-N distance byd2, a
reaction coordinated = d1 − d2 can then be used to describe the reaction. For more
complex reaction processes that actively involve many degrees of freedom, however,
more sophisticated techniques are required. One techniqueavailable in CHARMM is
called the Conjugate Peak Refinement (CPR,39), which starts by a straight line inter-
polation between reactant and product. At the line search maximum, all degrees of
freedom perpendicular (‘conjugate’) to the initial searchdirection are optimized, until
a minimum is found. This minimum is then connected to the reactant and product and
the optimization process is iterated. A popular alternative is the Nudged elastic band
method (NEB40), where images of the system are distributed along the search line be-
tween reactant and product and are connected by springs; therelated dimer method41

is also widely used, though more in solid state and surface physics communities.

For enthalpy driven processes, MEP based techniques can provide valuable mecha-
nistic information. The limitations of the methods, however, are also obvious. First,
the straight line interpolation does not assure to find the pathway with lowest en-
ergya. Therefore, chemical intuition is necessary to include various different inter-
mediate states, as illustrated in our study of the first proton transfer event in Bacteri-
orhodopsin42 (see below). Moreover, entropic contributions are completely neglected.
For example, Klähn et al.43 showed for the reaction of a phosphate ion in the Ras-
GAP complex that the total energies of reactant and product fluctuate on the order of
30 kcal/mole and the reaction barrier on the order of 6 kcal/mol, when using different
protein conformations generated by classical MD simulations. In other words, the
thermal motion of the protein environment makes the use of total energies in the MEP
framework meaningless, which highlights the point that pursuing a high accuracy in
the QM method may not be the bottleneck for meaningful QM/MM studies of many
biological problems.

• Free energy computations along reaction pathOne approach for improving upon
MEP results is to calculate the free energy (potential of mean force) along the MEP.
For example, the MM free energy contribution along the MEP can be estimated using
free energy perturbation calculations in which the QM region is frozen (or treated in
a harmonic fashion) while the MM region samples the proper thermal distribution or-
thogonal to the MEP44. In the more elaborate scheme developed recently45, the path
itself can be refined based on the derivatives of the potential of mean force, which
ultimately converges to a minimum free energy path. The costof such calculations,
however, can be rather high especially if high-level QM methods are used; one prac-
tical approximation is to replace the QM region by effective(or even polarizable)
charges when sampling the MM degrees of freedom46.

• Umbrella sampling and meta-dynamicsWhen the reaction can be described by a

aImagine connecting Munich and Milano by a rope, which will arrange along the valleys connecting Munich and
Milano: however, depending on the initial placement of the rope, different pathways can be found.
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number of pre-chosen “reaction coordinates”, umbrella sampling techniques47 can be
used to generate the relevant potential of mean force curve/surface. The most basic
technique is to add harmonic umbrella potentials at a discrete set of reaction coordi-
nate values to overcome barriers on the potential energy surface, and various schemes
have been proposed to make the process automated (adaptive)and converge quickly.
For example, meta-dynamics methods48 are adaptive umbrella sampling methods
where successive Gaussians are added to avoid revisiting configurations during the
sampling and therefore speeds up the convergence; the widthand height of the added
Gaussian functions as well as the frequency of adding the Gaussian functions can be
optimized for optimal convergence49–51. Finally, energy can be used as a collective
reaction coordinate to enhance sampling when it is difficultto determinea priori a set
of geometrical parameters that describe the reaction52–54.

• Other advanced techniquesFinally, there are transition path sampling (TPS) tech-
niques that aim to directly sample the reactive trajectory ensembles55. These are in
principle the most rigorous framework for understanding reaction mechanisms in the
condensed phase and generally do not require specifyinga priori the reaction coor-
dinates; it is well known that environmental degrees of freedom can be essential part
of the kinetic bottleneck for many reactions in solution andbiological systems. TPS
has been applied in several studies of enzyme reactions56, 57, and the cost of such cal-
culations highlights the importance of developing accurate SE methods. It should be
noted that the TPS techniques in principle can also suffer from sampling issues in the
path space and therefore can also benefit from using different initial guesses.

4 Semi-Empirical Methods

While the adiabatic mapping calculations can be readily applied in conjunction with HF
and DFT methods, more elaborate reaction path techniques and most free energy and TPS
techniques overstretch the possibilities ofab initio methods and are mostly applied using
SE methods. The great promise of DFT methods on the one hand and the lower accu-
racy and limited transferability of the SE type methods, like MNDO, AM1 or PM3 on the
other hand, seemed to devalue the latter type of methods; in the late 1990’s they were to
become obsolete in the eyes of many quantum chemist’s. However, the limitations and
quite involved empirical parametrization process of modern DFT methods changed also
the view onto the SE methods58. The desire to study increasingly complex (bio)molecules
and the importance of entropic contribution and sampling instudying soft matter brought
a renewed interest into SE methods, especially if they can bemade more robust and trans-
ferable.

Most SE methods are derived from the Hartree-Fock theory by applying various ap-
proximations resulting in, for example, the Neglect of Differential Diatomic Overlap
(NDDO) type of methods; the most well-known ones being the MNDO, AM1 and PM3
models59. In these methods certain integrals are omitted and the remaining are treated as
parameters, which are either pre-calculated from first principles or fitted to experimental
data. SE methods usually have an overall accuracy lower thanDFT, although this can
be reversed for specific systems. In the so called specific reaction parametrization (SRP)
scheme60, a SE method (e.g., PM3) is specifically re-parametrized forthe particular sys-
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tem under study, which may provide a very accurate description for the reaction of inter-
est at a level even unmatched by popular DFT methods. However, parameterization of a
SRP that works well for condensed phase simulations is not asstraightforward as for gas-
phase applications and a large number of carefully constructed benchmark calculations are
needed61–63. Therefore, it remains an interesting challenge to developgenerally robust SE
methods that properly balance computational efficiency andaccuracy. Some of the more
recent models include the inclusion of orthogonalization corrections in the OMx model59,
the PDDG/PM3 model64, and the NO-MNDO model, which all generated encouraging
improvements over traditional NDDO methods.

SE methods can also be derived from DFT, a development that wehave focussed on
over the last decade. The so called Self-Consistent Charge Density Functional Tight Bind-
ing (SCC-DFTB) method65, 66 is derived by expanding the DFT total energy functional up
to second order with respect to the charge density fluctuations δρ around the reference
densityρ0

66 (ρ′0 = ρ0(~r
′),
∫ ′

=
∫
d~r′ ):

E =

occ∑

i

〈Φi|Ĥ0|Φi〉+
1

2

∫∫ ′
(

1

|~r − ~r ′| +
δ2Exc

δρ δρ′

∣
∣
∣
∣
ρ0

)

δρ δρ′

− 1

2

∫∫ ′ ρ′0ρ0

|~r − ~r ′| + Exc[ρ0]−
∫

Vxc[ρ0]ρ0 + Ecc (3)

Ĥ0 = Ĥ[ρ0] is the effective Kohn-Sham Hamiltonian evaluated at the reference densityρ0

and theΦi are Kohn-Sham orbitals.Exc andVxc are the exchange-correlation energy and
potential, respectively, andEcc is the core-core repulsion energy (an extension up to third
order has been presented recently67, 68).

The (artificial) reference densityρ0 is chosen as a superposition of densitiesρα
0 of the

neutral atomsα constituting the molecular system,

ρ0 =
∑

α

ρα
0 (4)

and a density fluctuationδρ, also built up from atomic contributions

δρ =
∑

α

δρα, (5)

in order to represent the ground state density

ρ = ρ0 + δρ. (6)

Approximations to the three energy contributions in eq. 3 result in the final expression
of the SCC-DFTB model66:

E =
occ∑

iµν

ciµc
i
ν < ηµ|Ĥ0|ην > +

1

2

∑

α,β

Uαβ(Rαβ) +
1

2

∑

αβ

∆qα∆qβγαβ (7)
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SCC-DFTB has been tested in detail for atomization energies, geometries and vibra-
tional frequencies using a large set of molecules69–71. In terms of atomization energies,
the modern NDDO type methods like PDDG/PM2 or OM2 have bee shown to be superior
to SCC-DFTB, while SCC-DFTB is excellent in reproducing geometries and also predicts
reasonable vibrational frequencies. It is worth emphasizing again that the SE methods are
likely less accurate than modern DFT-functionals on average, although this situation can
be reversed in specific cases.b Moreover, as discussed above, the errors introduce by ne-
glecting the effects of dynamics and entropy can become larger than the intrinsic error of
the respective electronic structure method. Nanoseconds of MD simulations are readily
feasible with SE methods, while impossible with HF and DFT. Therefore, SE methods can
be used in various ways to improve the quality of the computational model: (i) They can
be applied as the main QM method for the initial exploration of possible reaction mecha-
nisms after careful testing/refinement for relevant model systems; (ii) they can be used to
estimate the entropic contributions of a particular mechanism while the accurate potential
energy is evaluated at a higher level method77; (iii) they can be used as the lower level QM
in either an ONIOM type multi-level23, 24scheme or to guide the sampling in a multi-level
free energy calculations.

5 The Continuum Component

While continuum approaches applied in computational materials science mostly model
mechanical properties, those applied in biological simulations mainly model the dielectric
response of the environment to the charge distribution of the moleculec. Most popular con-
tinuum electrostatics models in the biological context arebased on the Poisson-Boltzmann
framework.11, 13. The Poisson equation allows to compute the electrostatic potential and
electrostatic free energy for the charge distribution of the solute in the presence of a dielec-
tric continuum (representing the dielectric response fromthe solvent molecules). The PB
equation further includes the mobile charge distribution originating from the surrounding
ions, which respond to and modulate the electrostatic potentials of the solute charges:

−∇ǫ(x)∇φ(x) −
N∑

k=1

ckqke
−qkφ(x)−Vk(x) =

4πe2

kT
ρ(x) (8)

ρ(x) describes the solute charge distribution,qk the charge of the mobile ion species
k, Vk(x) the steric interaction of the solute with the mobile ion species k,ǫ(x) the space-
dependent dielectric function andφ(x) the resulting electrostatic potential. As discussed
extensively in the literature13, the correlation between the mobile ions is ignored in the
PB approach, thus PB is most reliable for monovalent ions, which fortunately fits most
biological applications.

bEven well established methods like the hybrid DFT method B3LYP show deficiencies, which may not be widely
recognized, e.g., problems with the description of extended electronicπ systems72,73, dispersion interactions74

or electronically excited states with significant charge-separation75,76. These examples show that careful testing
are obligatory before application to new systems, even for DFT methods.
cGenerally, the work for cavity formation and the van der Waals interactions at the surface, the ‘apolar’ compo-
nents of the solute-solvent interaction, need to be included as well, see78.
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In the most straightforward conceptual scheme, the QM/MM/CM treats the active site
with QM, the entire biomolecule with MM and the solvent with CM. In many practical
applications, however, it is sufficient to treat atoms very close to the active site (e.g., within
20 Å) with discrete MM degree of freedom that are fully flexible during the simulation;
this would include explicit solvent molecules in or near theactive site, which helps allevi-
ate some of the limitations of continuum electrostatics models at the solute/solvent inter-
face. To properly and efficiently deal with protein atoms in the continuum region, we have
adapted the Generalized Solvent Boundary Condition (GSBP)scheme developed by Roux
and co-workers for classical simulations79. Briefly, if we refer the discrete QM/MM region
as the inner region while the continuum as the outer regions,the total effective potential
(potential of mean force) of the system can be written as,

WGSBP = U (ii) + U
(io)
int + U

(io)
LJ + ∆Wnp + ∆W

(io)
elec + ∆W

(ii)
elec, (9)

whereU (ii) is the complete inner-inner potential energy,U
(io)
int andU (io)

LJ are the inner-outer
internal (bonds, angles, and dihedrals) and Lennard-Jonespotential energies, respectively,
and∆Wnp is the non-polar confining potential. The last two terms in Eq.9 are the core
of GSBP, representing the long-range electrostatic interaction between the outer and inner
regions. The contribution from distant protein charges (screened by the bulk solvent) in the
outer region,∆W (io)

elec , is represented in terms of the corresponding electrostatic potential

in the inner region,φ(o)
s (rα),

∆W
(io)
elec =

∑

α∈inner

qαφ
(o)
s (rα) (10)

The dielectric effect on the interactions among inner region atoms is represented through a
reaction field term,

∆W
(ii)
elec =

1

2

∑

mn

QmMmnQn (11)

whereM andQ are the generalized reaction field matrix and generalized multipole mo-
ments, respectively, in a basis set expansion.79

The advantage of the GSBP method lies in its ability to include these contributions
explicitly while sampling configurational space of the reaction region during a simulation
at minimal additional cost. The static field potential,φ

(o)
s (r), and the generalized reaction

field matrixM are computed only once based on PB calculations and stored for subsequent
simulations. The only quantities that need to be updated during the simulation are the
generalized multipole moments,Qn,

Qn =
∑

α∈inner

qαbn(rα) (12)

wherebn(rα) is thenth basis function at nuclear positionrα.
As described in Ref.18, the implementation of GSBP into a combined QM/MM frame-

work is straightforward, and involves the QM-QM and QM-MM reaction field, and the
QM-static field terms. For the GSBP combined with SCC-DFTB, these terms take on a
simple form becauseρQM (r) is expressed in terms of Mulliken charges.66 Although the
formulation of GSBP is self-consistent, the validity of theapproach depends on many fac-
tors especially the size of the inner region and the choice ofthe dielectric “constant” for
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the outer region. Therefore, for any specific application, the simulation protocol has to be
carefully tested using relevant benchmarks such aspKa of key residues17, 80.

An economic alternative to the GSBP approach is the charge-scaling protocol, where
the partial charges for charged-residues in the MM region are scaled down based on the
electrostatic potentials calculated (with PB) when the biomolecule is in vacuum vs. solu-
tion; the scaled partial charges are then used in the QM/MM simulations with the system
in vacuum. In the end, PB calculations are carried out with scaled and full partial charges
to complete the thermodynamic cycle. The charge-scaling approach has been successfully
used in several QM/MM studies7, 81, 82, although several numerical issues (e.g., treatment
of residues very close to the QM region and cancellation of large contributions) render the
protocol less robust than GSBP.

6 Polarizable Force Field Models

Continuum electrostatic approaches take into account a majority of the dielectric responses
of the solute. The electronic polarization of the environment to changes in the QM density
during chemical reaction, however, is missing when non-polarizable force fields are used
as MM. This electronic polarization may give significant contributions when electrons or
ions are transported over long distances and for excitationenergies, where the dipole mo-
ment of the QM region changes significantly upon excitation.In the last decade, many
research groups have been actively developing polarizableforce fields, for which several
good overviews are available (see a thematic issue that followsJ. Chem. Theory Comput.
2007, 3, 1877).

Common approaches to describe electronic polarization effects use models based on
atomic polarizabilities, a method that we have implementedto estimate the protein polar-
ization effects on electronic excitation energies35. Here, the Coulomb interaction is de-
scribed using atomic chargesqA and atomic polarizabilitiesαA, where the induced atomic
dipolesµA can be calculated as:

µA = αA

(
∑

B

TABqB +
∑

C

TACµC

)

(13)

The first term contains the Coulomb interaction with the fixedatomic point charges,
which lead to the induced dipoles. The second term describesthe interaction between
the induced dipoles. Note that the induced dipole moments appear on both sides of the
equation. For small systems, these equations can be solved by matrix inversion techniques,
for large systems they are usually solved iteratively. The tensorsT contain a damped
Coulomb interaction since for small distances the bare Coulomb1/r and1/r3 terms for the
charge-charge and charge-dipole interactions would lead to over-polarization. Effectively,
this damping is induced by smearing out the charges, i.e., bydescribing the atomic charge
with an exponential charge distribution. A new parameter, the width ‘a’ of this charge
distribution is therefore introduced and has to be determined during the fitting procedure.

Atomic polarizabilities can be calculated or taken from experiment; we have used val-
ues from the literature35, where typical parameters are around 0.5Å−3 for H and about 0.8-
1.5Å−3 for first row atoms C, N and O. However, to gain high accuracy atomic parameters
have been taken to be dependent on the atomic hybridization state, e.g., the parameters for
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sp2 and sp3 carbon differ by about 0.5̊A−3. This allows to account for the different po-
larizabilities of sp3 carbon structures, like alkanes compared to aromatic molecules, like
polyenes or benzene.

Common force charge models are parametrized in order to account for the effects of
solvation implicitly. This can be done by fitting the chargesto experimental data, or by cal-
culating them using HF/6-31G*, which is known to overestimate the magnitude of charges,
thereby implicitly taking the effect of solvent polarization into account. Therefore, as a first
step a new charge model has to be developed in order to be consistent with an explicit treat-
ment of polarization. We computed ‘polarization free’ charges by performing B3LYP/6-
311G(2d,2p) calculations and fitting the charges to producethe electrostatic potential at
certain points at the molecular boundary (RESP)35. d These ‘polarization free charges’ are
computed for certain molecular fragments in gas phase, i.e.for certain chemical groups
like amino acid side chains. The charges therefore already contain the mutual polarization
within these fragments. Therefore, the polarization modelis also restricted interactions
between these fragments and not applied within one region toavoid double counting.

Critical tests include the calculation of polarizability tensors of amino acid side chains
in comparison with DFT and MP2 data, and the evaluation of thepolarization energy of
such side chains due to a probe charge in the vicinity. The polarization model is able to re-
produce the QM data with high precision35, allowing therefore for meaningful calculations
on larger systems like entire proteins.

7 Applications

In this section, we discuss three applications, to illustrate the various methodologies dis-
cussed above.

7.1 Direct QM/MM MD with periodic boundary conditions: Dyna mics of peptides
and proteins

The conformation of peptides and proteins depend sensitively on the proper inclusion of
solvent. The conformations of small peptides in the gas phase are very different from
those in solution and it is challenging to use a QM description of the peptide augmented
with an implicit solvent model to model those properly. One possible approach is to in-
clude the first solvation shell explicitly83, although finite temperature effects still need to
be included, which can be problematic with a small “microsolvation” model. A physically
more transparent model is to surround the peptide, treated with QM, by a box of MM water
molecules and to apply periodic boundary conditions84. The main degrees of freedom in
these peptides are the backbone torsions (φ, ψ) , which exhibit rotational barriers of a few
kcal/mol (Fig.1). To sample the energy landscape of such systems, MD simulations in the
order of 10-100 nano-seconds have to be performed, which is clearly only possible using
SE methods. This also illustrates the limits of direct MD simulations, which can handle
only systems with small barriers of a few kcal/mol. Linear scaling methods in combination
with SE methods allow to simulate the dynamics of small proteins over several 100 ps85.

dDiffuse basis functions should be avoided, since those would allow the charge density into regions far away
from the molecule, which are not accessible in the condensedphase due to the environment.
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However, this is still quite costly and there are not too manyapplications where a QM
treatment of the entire protein is necessary and the dynamics on these short time-scales are
the quantities of key interest.

Figure 1. The lowest energy conformationCeq
7 of the alanine dipetide model in the gas phase. The main degrees

of freedom consist of thephi andpsi dihedral angles, i.e., rotations around the central C-C andC-N single bonds.

7.2 Proton transfer

Proton transfer reactions are involved in many key biological problems, most notably in
acid-base catalysis and bioenergetics processes. The breaking and formation of many
chemical bonds in these problems and the significant reorganization of the environment in
response to the transport of charges pose great challenges to theoretical studies. Although
more specialized techniques such as MS-EVB can be extremelyvaluable in the study of
certain proton transfer problems86, a QM/MM framework is required to introduce more
flexibility in the potential energy surface, especially when the reaction involves species of
complex electronic structures (e.g., transition metal ion). The diversity of proton transfer
reactions also makes them ideal for illustrating the value and limitation of various QM/MM
techniques.

7.2.1 Bacteriorhodopsin (bR): MEP results

For relatively localized proton transfers, for which the entropic contribution is likely small,
reaction path methods can be applied. An example is the first proton transfer step in bacte-
riorhodopsin, where the active site involves well connected hydrogen bonding network as
shown in Fig.2. It is known from experiment that entropy doesnot contribute to this step,
therefore, we have simulated the process using SCC-DFTB QM/MM in combination with
the CPR approach discussed above42, 87. The computed barriers of 11.5-13.6 kcal/mol for
different low-energy pathways are in good agreement with the experimental value of 13
kcal/mol. However, to understand this properly one has to beaware of the intrinsic error
compensation in these calculations: as discussed in detailin Ref.88, popular DFT methods
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tend to underestimate proton transfer barriers by 1-4 kcal/mole. On the other hand, the
inclusion of nuclear quantum effects like zero point energies would lower proton transfer
barriers by roughly this amount, therefore, these two effects tend to cancel each other for a
wide range of proton transfer systems.

Figure 2. The active site of bacteriorhodopsin in its groundstate. The first proton transfer occurs between the
retinal Schiff base and the side chain Asp85.

7.2.2 Carbonic Anhydrase II : MEP vs. PMF

For many long-range proton transfers in biomolecules, however, the MEP results are likely
very sensitive to the protein structure used in the calculation. More severely, the collective
structural response in the protein is likely missing in the MEP calculations, which may
lead to qualitatively incorrect mechanistic conclusions.A useful example in this context is
the long-range proton transfer in carbonic anhydrase II (CAII), where the rate-limiting step
of the catalytic cycle is a proton transfer between a zinc-bound water/hydroxide and the
neutral/protonated His64 residue close to the protein/solvent interface. Since this proton
transfer spans at least 8-10Å, the transfer is believed to be mediated by the water molecules
in the active site89 (see Fig.3). Since there are multiple water wires of different length in the
active site that connect the donor/acceptor groups (zinc-bound water, His 64), a question of
interest is whether specific length of water wire dominates the proton transfer or all wires
have comparable contributions.

First, a large number of MEPs have been collected starting from different snapshots
collected from equilibrium MD simulations at the SCC-DFTB/MM level. Since essentially
a positive charge is transferred over a long-distance, it was expected that the MEP energet-
ics depend sensitively on the starting structure, which wasindeed observed. For example,
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when the starting structure came from a CHOH (zinc-bound water, neutral His64) trajec-
tory, the proton transfer from the zinc-water to His64 is largely endothermic(on average
by as much as∼ 13 kcal/mol). By contrast, when the starting structure camefrom a COHH
(zinc-bound hydroxide, protonated His64) trajectory, thesame proton transfer reaction was
found largelyexothermic. As an attempt to capture the “intrinsic barrier” for the proton
transfer reaction, which is known to be close to be thermoneutral experimentally,90 we
generated configurations from equilibrium MD simulations in which protons along a spe-
cific type of water wire were restrained to be equal distance from nearby heavy atoms (e.g.,
oxygen in water orNǫ in His 64). In this way, the charge distribution associated with the
reactive components is midway between the CHOH and COHH states, thus the active-site
configuration was expected to facilitate a thermoneutral proton transfer process, which was
indeed confirmed by MEP calculations using such generated configurations as the starting
structure. An interesting observation is that the barriersin such “TS-reorganized” MEPs
showed a steep dependence on the length of the water wire; it was small (∼ 6.8±2.2 kcal/-
mol) with short wires but substantially higher than the experimental value (∼ 10 kcal/mol)
with longer water wires (e.g., 17.4±2.0 kcal/mol for four-water wires).

Figure 3. The active site of CAII rendered from the crystal structure (PDB ID: 2CBA89). All dotted lines cor-
respond to hydrogen-bonding interactions with distances≤3.5 Å. The proton acceptor, His64, is resolved to
partially occupy both the “in” and “out” rotameric states.

This steep wire-length dependence is in striking contrast with the more rigorous PMF
calculations.91, 92 In the PMF calculations, a collective coordinate93 was used to monitor
the progress of the proton transfer without enforcing specific sequence of events involving
individual protons along the wire; the use of a collective coordinate is important because
this allows averaging over different water wire configurations, which is proper since the
life-time of various water wires is on the pico-second time scale,18, 20 much faster than
the time scale of the proton transfer (µs).90 In the PMF calculations, the wire-length de-
pendence was examined by comparing results with different His 64 orientations (“in” and
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“out”, which is about 8 and 11̊A from the zinc, respectively); both configurations were
found to involve multiple lengths of water wires but different relative populations. The
two sets of PMF calculations produced barriers of very similar values, which suggested
that the length of the water wire (or orientation of the acceptor group) is unlikely essential
to the proton transfer rate. Further analysis of the configurations sampled in the MEP sim-
ulations suggested that the MEP results artificially favored the concerted proton transfers,
which correlate to significant distance dependence. As discussed above, to generate the
“TS-reorganized” configurations, all transferring protons along the wire were constrained
to be half-way between the neighboring heavy atoms; therefore, such sampled protein/-
solvent configurations would favor a concerted over step-wise proton transfers. Although
all atoms in the inner region are allowed to move in the MEP searches, the local nature of
MEPs does not allow collective reorganization of the activesite residues/solvent molecules
thus the “memory” of the sampling procedure is not erased.

Therefore, the CAII example clearly illustrates that care must be exercised when us-
ing MEP to probe the mechanism of chemical reactions in biomolecules, especially when
collective rearrangements in the environment are expected(e.g., reactions involving charge
transport). Along the same line, the GSBP based QM/MM/CM framework was found to be
particularly attractive in the CAII studies for maintaining the proper solvent configurations
and sidechain orientations in the active site, as compared to Ewald based SCC-DFTB/MM
simulations18, 80, at a faction of the computational cost. Ignoring the bulk solvation effect,
for example, was found to lead to unphysical orientations ofthe functionally important
His64 residue.

7.2.3 Membrane proteins

A particularly exciting area for which the multiscale QM/MM/CM approach is suited con-
cerns proton translocation across membrane proteins, where a proper and efficient treat-
ment of the heterogeneous protein/solvent/membrane environment is particularly impor-
tant, such as in bacteriorhodopsin and cytochrome c oxidase. The GSBP framework also
allows one to incorporate the effect of membrane potential94, which plays a major role
in bioenergetics, in a numerically efficient manner. Using the SCC-DFTB/MM/GSBP
protocol with a relatively small inner region (∼ 30Å×30Å×50Å) and dielectric mem-
brane model93, we were able to reproduce the water wire configurations in the interior of
aquaporin in good agreement with the much more elaborate MD simulations using four
copies of aquaporin embedded in an explicit lipid bilayer. Ignoring the GSBP contribu-
tions, however, led to very different water distributions,which highlights the importance
and reliability of the multiscale framework. In a recent study95, the same framework was
also found semi-quantitatively successful in predictingpKa of titritable groups in the inte-
rior of bacteriorhodopsin and cytochrome c oxidase, which are extremely challenging and
relevant benchmark for studying proton transfer systems ingeneral96. Finally, the SCC-
DFTB/MM/GSBP studies of the proton release group (PRG) in bacteriorhodopsin97 led to
the key insight that the PRG is not a protonated water clusteras proposed in a series of
recent IR studies98, 99; rather, the PRG is a pair of conserved Glutamate bonded together
with a delocalized proton (see Fig.4), and it is the delocalization of this “intermolecular
proton bond” that leads to the unusual IR signature found in experiments98, 99.
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Figure 4. SCC-DFTB/MM-GSBP simulations indicate that the stored proton in the proton pump bacteri-
orhodopsin is delocalized (green spheres) between a pair ofconserved glutamate residues rather than among
the active site water molecules.

7.3 Excited states properties

The accurate determination of excited states properties isa challenging task for quantum
chemical methods in general. This holds true in particular for the chromophore in retinal
proteins (like bR), a polyene chain linked via a Schiff-base(NH) group to the protein back-
bone76, 73, 100(see Fig.5). Due to its extended and highly-correlatedπ-electron system, reti-
nal is highly polarizable and undergoes a large change in dipole moment upon excitation,
therefore, protein polarization effects may become important for an accurate description of
excited state properties.

Standard QM/MM calculations using only an electrostatic embedding scheme do not
take the (electronic) polarization response of the proteinenvironment into account, which
is different for ground and excited states due to the change of the dipole moment upon
excitation.e In the case of retinal, the dipole in the excited state is about 10 Debye larger
than in the ground state, therefore, MM polarization stabilizes the excited state more than
the ground state, leading to an effective red-shift in excitation energies.

Indeed, QM/MM electrostatic embedding calculations tend to overestimate the excita-
tion energy. While the experimental absorption maximum is at 2.18 eV, MRCI QM/MM
calculations estimate it to be 2.34 eV, other methods predict even more blue shifted val-
ues73. There are many factors that contribute to the computational uncertainty, one of
which being the intrinsic accuracy of the applied QM method.Other factors are related
to the QM/MM coupling and the electrostatic treatment of theenvironment. For example,

eThey of course can take the ‘ionic’ response into account, i.e., the relaxation of the protein structure, which also
leads to a change in the electrostatic field from the MM environment.
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different force field models (like AMBER and CHARMM) use different point charge mod-
els, which can lead to differences in the excitation energies on the order of 0.05 eV35. In
many applications, only the protein is included in the MM treatment, the larger environ-
ment including membrane and bulk water is neglected. This effect can be estimated with a
linearized version of the Poisson Boltzmann equation 8 in the charge scaling81 approach as
discussed above. Estimating excitation energies with and without charges scaling results
again in differences of about 0.05 eV.

Figure 5. The retinal chromophore in the all-trans conformation, as in the bR ground state. The blue color
indicates the Schiff base (NH) group, from which the proton is transferred in the first step to Asp85.

Using a polarizable model, the ground state charge distribution in the MM region is
determined using eq. 13. The resulting charges may be different from those in the regular
force field models, because they are computed in response to the actual electrostatic field
of the protein with retinal in the ground state. This charge distribution leads to vertical
excitation energies about 0.07 eV red-shifted compared to those from the CHARMM force
field35. In the same way, a different set of MM charges can be determined for the case
where retinal is in its excited state. This change in the electrostatic environment leads to a
further red shit of 0.07 eV, which is due to the different MM polarization in the ground and
excited states. The total red-shift with respect to the CHARMM charges is 0.14eV, showing
that protein polarization can have a significant impact on excitation energies in those cases,
where the dipole moment of the chromophore changes significantly upon excitation.

A different approach to estimate the effect of polarizationis to use a low level QM
method instead of the polarizable MM region. We have used such a QM/QM’/MM ap-
proach, applying charge scaling, a MRCI method for the QM region containing the retinal
chromophore and a DFT methods for 300 atoms around the chromophore in the QM’
region to benchmark the polarizable MM model34. This study showed that the well-
calibrated polarizable MM model gives nearly the same results as the QM’ region. How-
ever, the 300 atom QM’ region leads only to roughly 50% of the red-shift, showing that a
large MM region contributes to the polarization effect.

8 Summary

In the last decade, many variants of multiscale methods havebeen developed to study
chemical events in complex environments in materials science, chemistry and biology.
The specific design of such methods depends very much on the properties of the investi-
gated system and the problem in hand. Biological systems arecharacterized by their high
degree of structural flexibility and the long-range nature of the electrostatic forces, which
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are essential to the understanding of biological functions. Therefore, the main emphasis
in methods development in the biological context lies in theaccurate representation of
electrostatics and algorithms to tackle the sampling problem. In this article, we have dis-
cussed QM/MM algorithms embedded into an implicit electrostatic environment, which is
modeled based on the Poisson-Boltzmann equation. For many applications, the representa-
tion of the MM environment by fixed point charges may be appropriate, however, in cases
where the electrostatic properties in the QM region change significantly, a polarizable MM
representation is likely required. Thermal fluctuations, on the other hand, can lead to a
significant contribution to the free energies that characterize the chemical reaction. Ac-
cordingly, expensive QM methods often have to be substituted by more efficient, although
less accurate ones. We have described applications using various approximations for the
QM region. For the determination of excitation energies, high level QM methods have
to be applied, while for the study of proton transfer events,DFT and approximate SCC-
DFTB can lead to a balanced treatment allowing to draw meaningful conclusions about
the reaction mechanism and energetics. In some cases, the neglect of thermal fluctuations
would even lead to much larger errors than the use of lower accuracy QM methods. There-
fore, studying biological systems requires applying a multitude of methods and calculating
multiple experimental observables to reach reliable mechanistic conclusions.
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Because many systems of biological interest operate on timeand/or length scales that are inac-
cessible to atomistic molecular dynamics simulations, simplified representations of biomolec-
ular systems are often simulated, a practice known as coarse-graining. We review two modern
techniques for coarse-graining biomolecular systems, anddescribe several example systems
where each of these techniques has been successfully applied. Promising avenues for future
work on refining coarse-graining methods are also discussed.

1 Introduction

A vast array of problems currently addressed by computer simulations, including biologi-
cal systems, involve the analysis of properties on long timeand length scales derived from
simulations on relatively short time and length scales1. Although these techniques can
provide a great deal of insight on the processes under study,traditional simulations of this
type are limited in scope by their computational costs, which impose an upper limit on the
time scale that can be studied (currently in the nanosecond range, for biological systems2).
This limitation has lead to the development of a wide varietyof techniques attempting to
provide longer time and length scale information than traditional (usually atomistic) sim-
ulations, many of which fall into the category of coarse graining. In the broadest possible
sense, the term “coarse graining” (CG) can be used to refer toany simulation technique
in which a simulated system is simplified by clustering several subcomponents of it into
one component, thus effectively reducing the computational complexity by removing both
degrees of freedom and interactions from the system. The fundamental assumption behind
such techniques is that by eliminating insignificant degrees of freedom, one will be able
to obtain physically correct data on the properties of a system over longer time scales than
would otherwise be achievable3.

A wide variety of coarse graining methods for biological systems currently exist, rang-
ing in some sense from united-atom models to elastic networkmodels. We focus on the
principles and applications of two classes of biological coarse graining, namely residue-
based and shape-based coarse graining. Residue-based CG isa broad family of methods

∗Reprinted from Peter L. Freddolino, Anton Arkhipov, Amy Y. Shih, Ying Yin, Zhongzhou Chen, and Klaus
Schulten. Application of residue-based and shape-based coarse graining to biomolecular simulations. In Gregory
A. Voth, editor, Coarse-Graining of Condensed Phase and Biomolecular Systems, chapter 20, pp. 299-315.
Chapman and Hall/CRC Press, Taylor and Francis Group, 2008.
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in which clusters of 10-20 covalently bonded atoms are represented by one bead; it is a
fairly natural and common method for coarse graining when a speedup of 1-2 orders of
magnitude over all-atom simulations is required. Shape-based CG is a method recently
developed in our group which uses a neural network algorithmto assign CG beads to do-
mains of a protein, efficiently reproducing the shape of the protein with a minimal number
of particles. Interactions between beads are then parameterized from all-atom simulations
of the bead components. In this chapter we present a summary of both methods, along
with exemplary applications of residue-based CG to two lipid-protein systems involving
large-scale conformational changes, and of shape-based CGto the mechanical properties
of polymeric systems.

2 Residue-Based Coarse Graining

The most natural (and frequently used) method for coarse-graining a biological system is
to assign sections of each biological molecule (or monomer,in the case of a biopolymer)
with similar chemical properties and spatial location to a “bead”, and then treat the coarse
grained system as an ensemble of beads. This type of description is henceforth referred to
as “residue-based coarse graining”. For example, in one possible description of a protein
each amino acid residue would be represented by two beads, one representing the backbone
atoms and a second (different for each residue type) representing the side chain atoms4, 5.
An example of residue-based coarse graining is shown in Figure 1.

Figure 1. Structure of the polypeptide ESAYV in all-atom (left) and residue-based CG (right) representations.

While in principle similar to the united-atom models commonin the early stages of
molecular dynamics6, modern residue-based CG methods are generally geared toward
much longer timescales, and are thus coarser. The strategy of making a cluster of con-
nected heavy atoms the unit particle, rather than atoms or heavy atoms, permits a longer
timestep and thereby yields a larger reduction in computational effort than united atom
models, but obviously carries a commensurate loss of detail. Recent interest in residue-
based coarse graining has emerged in the field of lipid simulations, where several groups
have developed CG lipid models either by attempting to reconstruct the forces observed
in all-atom MD7–11 or by using a created potential with parameters tuned to match ex-
perimental thermodynamic data12–14. In both of these cases, the coarse graining process
maps approximately 10 atoms to one coarse grained particle (“bead”), and the resultant
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CG model reproduced both the physical properties and (to theextent that they are experi-
mentally known) assembly mechanisms of bilayers, micelles, and other lipid aggregates on
microsecond timescales. Similar efforts have recently been extended to proteins, including
simulation of protein-lipid assemblies4, 15 and protein folding16.

2.1 Interaction potentials for residue-based CG

In the broadest sense, the forcefields used in residue-basedCG models tend to fall into one
of two categories, either being derived phenomenologically or through MD-based param-
eterization. The former approach, exemplified by the lipid-water forcefields of Marrink
and co-workers12–14 and by the more recent MARTINI forcefield17, involves partitioning
clusters of atoms into abstract “types” based on their physical properties (for example,
polarity and ability to hydrogen bond); the interactions between beads are then parame-
terized to reproduce experimental data such as partition energies13. The latter approach is
a direct analogue of parameterization of all-atom MD modelsfrom quantum mechanical
calculations; here, all-atom simulations are performed onsome system including the CG
beads whose interactions are to be parameterized, and the results are used to construct an
effective potential between the beads. Both approaches have been successfully applied to
a number of systems, but potentials derived from all-atom MDsimulations carry the added
benefit of improved miscibility of all-atom and CG components, which is likely to become
increasingly important as mixed all-atom/CG simulations18–21become more common.

MD-based parameterization can be carried out in a variety ofways, depending on the
scope and intended use of the parameter set in question. Given an all-atom simulation
including the components whose interactions are to be parameterized, an effective inter-
action potential between CG beads can be constructed by attempting to match the forces
present between the beads in the all-atom description as a function of distance22–24, 18or
through a process such as Boltzmann inversion25, 26, which is described in more detail in
the following sections. Note that although the example given below is for shape-based CG,
the same techniques can be applied to determine interactions for residue-based CG models.

Both in the case of MD-based and phenomenological parameterization, the resulting
potentials may either be fitted to an existing potential form(for example, the Lennard-
Jones potential for nonbonded interactions) or used directly (for example, in the form of an
energy/force lookup table). While making use of an existingpotential form has long been
preferred because it allows the use of existing MD packages without further modification,
the use of tabulated potentials allows more control over theexact potential form being used,
and is increasingly supported in common MD packages such as DL-POLY and NAMD.

2.2 Reverse coarse graining and resolution switching

Coarse grained MD simulations have proven quite useful for obtaining data on the behavior
of systems where the relevant time or length scales (or both)are inaccessible to all-atom
MD. However, even heavier use of CG simulations could be madeif coarse graining could
be used as an accelerator, with atomic detail either maintained in regions of interest or
recoverable from snapshots in the CG trajectory. Recent progress has been made along
both these fronts recently, in the form of mixed CG-all atom simulations18 and simulations
involving dynamic switching of components between CG and all-atom descriptions20, 21.
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The primary new challenges faced in either of these cases liein deriving accurate potentials
for interactions between CG and all-atom components, and ineffectively mapping CG
conformations to all-atom conformations. The latter challenge is particularly significant
both because any given conformation of CG particles can be taken to represent an ensemble
of conformations of the corresponding all-atom system (anyset of states where the centers
of mass of the component atoms for each bead correspond to theCG bead positions), and
because switching to the all-atom system will almost certainly cause a change in the energy
of the system due to the introduction of new interactions.

Early efforts in switching of scales have focused on building a method allowing true
mixed-scale dynamics, either by allowing particles to transition between all-atom and CG
representations while passing through a specific region in space20 or by allowing exchange
between low-resolution and high-resolution replicas of a system being simulated in paral-
lel21. Outgrowths of these methods will likely be quite useful in the future, although both
face the difficulty that deterministically mapping a given CG conformation to an all-atom
conformation may be insufficient for more complex beads (such as beads representing an
amino acid sidechain or significant fraction thereof) and that the free energy discontinu-
ities experienced during scale-switching may become prohibitively high if a poor initial
all-atom conformation is chosen during exchange.

In some cases where a CG model is used to accelerate sampling,there is no need to
repeatedly switch between CG and all-atom descriptions; itis sufficient to sample the con-
formational space of the system using the CG model and then analyze the results in terms
of a consistent all-atom model. This is the case, for example, in the studies of nanodiscs
presented below, where all-atom conformations had to be extracted from various snapshots
of the CG simulation for comparison with experimental data.In this case, it proved suffi-
cient to reverse coarse grain the system by superimposing the all-atom components of the
system on the CG structure such that the center of mass of eachcluster of atoms is located
on the corresponding CG bead, and then minimizing and annealing the resulting all-atom
structure with the center of mass of each atom cluster constrained to the bead location (see
Fig. 2). This can be conceptually interpreted as sampling the conformational space of the
all-atom structure in the region consistent with the CG structure being converted. While
this method is far too time-consuming to use when rapid switching of all-atom and CG
representations is desired, and does not preserve the dynamic or thermodynamic properties
of the CG system, it is sufficient for recovering an all-atom snapshot from a CG simu-
lation, and some conformational sampling scheme similar tothat used here is likely to
become necessary in resolution exchange for cases where mapping the CG conformation
to an all-atom conformation is nontrivial.

2.3 Application to nanodiscs and HDL

High-density lipoproteins (HDL) are lipid-protein particles which function in the body
to remove cholesterol from peripheral tissues and return them to the liver for processing.
These particles, which occur in a wide variety of shapes and sizesin vivo, are known to play
an important role in protecting the body from heart disease27. HDL particles are known
to be composed of a disc-shaped patch of membrane enclosed bytwo or more copies of
apolipoprotein A-I (ApoA-I). In addition to their medical importance, a truncated form
of the protein component of HDL particles has recently been used to assemble homoge-
neous protein-lipid particles known as nanodiscs28, 29, which can incorporate membrane
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Figure 2. Reverse coarse graining procedure for a short segment of protein. a) Coarse grained representation
after simulation. b) Initial all-atom conformation generated through superposition of the all-atom components on
the beads. c) Final reverse coarse grained conformation after refinement through constrained dynamics.

Figure 3. Schematic of the consensus double-belt model for nanodiscs and HDL, showing the position of the
ApoA-I proteins wrapped around a lipid disc.

proteins and thus be used to study them in an environment morerealistic than micelles or
liposomes30–36.

The conditions needed to cause nanodiscs to assemble arounda protein, however, are
very dependent on the protein itself, and different conditions are required to efficiently
incorporate different proteins37, 38, 35. Obtaining information on the structure and assembly
of nanodiscs would thus be useful in the rational design of nanodisc assembly protocols,
and would additionally provide data on HDL assembly and characteristics. Unfortunately,
no high-resolution structure has been obtained for a complete HDL particle or nanodisc,
although a consensus model is emerging for the general layout of the proteins and lipids in
the particle, shown in Fig. 339–45.

Unfortunately, nanodisc assembly takes place on a timescale of µs to ms, far longer
than can be treated using all-atom molecular dynamics simulations. The nature of the type
of data sought – relatively coarse data on important stages of nanodisc assembly and factors
affecting it – is in principle appropriate for a residue-based CG model. In addition, the fact
that hydrophobic interactions and the properties of a lipidpatch are the primary features
likely to drive the simulation meant that the bulk of the forcefield in this case could be
taken from the lipid-water model of Marrink and coworkers13, a phenomenological model
which had shown excellent results in the assembly and physical properties of micelles and
bilayers. For the protein component of the system, the bead types of Marrink’s forcefield
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Figure 4. Snapshots from an assembly simulation in which 160DPPC lipids and two Apo A-1 proteins were
assembled from a random mixture over 10µs. CG water is present in all cases but omitted from images for
clarity.

were assigned to protein components according to their properties, with each amino acid
residue represented by a backbone bead (the same type for each residue) and a side chain
bead4. A very similar model was proposed by Bond and coworkers in their simulations of
the bacterial membrane protein OmpA15. The use of a CG model on the nanodisc provides a
factor of 500 speedup compared with all-atom simulations, due to the use of 50 fs timesteps
and reduction in number of particles by a factor of 104.

Simulation of the components of a single nanodisc beginningfrom a random mixture
with water, over a period of 10µs, revealed a complete pathway for the assembly of nan-
odiscs from their components, as shown in Fig. 4. Further simulations from other starting
points showed both similar assembly pathways and mechanisms4, 5, 46. Analysis of the en-
ergetics of assembly illustrated that it occurs as a three step process. First, nucleation of
assembly occurs as the lipids form pseudo-micelles, which are roughly spherical in shape;
at this point, the hydrophobic face of the Apo A-I proteins (each of which contains a set
of amphipathicα-helices) binds to the pseudo-micelle in a random conformation (Fig. 4b).
After this initial aggregation, the proteins reorient along the surface to bring themselves
into more favorable contact with each other, eventually forming a series of salt bridges that
force the double belt orientation (Fig. 4e) to form.

Although no high-resolution structural data on formed nanodiscs or HDL are available,
the assembly mechanism and final structure obtained from CG simulations could still be
compared to low resolution information from SAXS studies47. Theoretical SAXS curves
can be calculated from an all-atom structure using the program CRYSOL48; however, ob-
taining a SAXS curve from CG simulations first requires reverse coarse graining of CG
snapshots. Because there was no need to significantly continue the simulations after re-
verse coarse graining in this case, a fairly simple scheme was used, in which the centers
of mass of the all-atom components of each bead were aligned with this bead, and then
the system annealed with the center of mass of the componentsof each bead constrained,
allowing the structure to relax while remaining consistentwith the CG snapshot. A com-
parison of the SAXS curve obtained from the assembled CG nanodisc with experimental
results is shown in Fig. 5, and a time course of the SAXS curve observed during the CG
assembly process in Fig. 6. The excellent agreement betweenexperimental and theoretical
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Figure 5. Comparison of SAXS curves between experimental results for DPPC nanodiscs (1), DMPC nanodiscs
(2), an ideal all-atom model of a double-belt nanodisc (3), and the final structure from a 10µs ns CG assembly
simulation (4). Note that the curves are separated vertically for clarity.

Figure 6. Theoretical SAXS curves obtained through a CG assembly trajectory; timepoints a-f correspond to 0
ns, 150 ns, 850 ns, 1µs, 4µs, and 10µs, respectively. Curves are vertically offset from each other for clarity.

results illustrates both the success of the CG model in reproducing the nanodisc assembly
process and structure, and the utility of even fairly simplereverse coarse graining methods.

2.4 Application to the BAR domain

BAR domains constitute a ubiquitous type of protein, found in many organisms and per-
forming the function of driving the formation of tubulated and vesiculated membrane struc-
tures inside cells49. BAR domains involve a conserved protein motif and are involved in a
variety of cellular processes including fission of synapticvesicles, endocytosis, and apop-
tosis50. Structurally, BAR domains form crescent-shaped dimers (see Fig. 7) with a high
density of positively charged residues on their concave face. The shape and charge dis-
tribution suggest that BAR domains induce membrane curvature by binding to negatively
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charged lipids51, 52. However, the common molecular mechanism underlying membrane
sculpting by BAR domains remains largely unknown.

Recently, all-atom simulations52 have demonstrated that a single BAR domain induces
membrane curvature. The all-atom study required a simulation of up to 700,000 atoms on
the time scales of∼50 ns. The next demanding question after the discovery of themem-
brane bending by a single BAR domain is how multiple BAR domains work together to
bend membranes. All-atom simulations of this process are too challenging at present, since
one would have to consider millions of atoms in each simulation. However, the residue-
based CG method appears to be a good option for this application, and, thus, we have
performed CG simulations of systems with multiple BAR domains, in order to determine
how the cooperative interaction of the latter with the membrane induces global membrane
curvature.

The residue-based CG model5, 4 described above is ideally suited to describe the mem-
brane remodeling by BAR domains since it has demonstrated its power before on the tasks
where lipids assemble, disassemble, and re-shape membranes5, 4, 13. The only difficulty is
that the residue-based protein CG model has not been developed to work for proteins of
arbitrary shapes. In particular, the model has not been designed to maintain tertiary struc-
ture of proteins, which is determined by the protection of hydrophobic side groups in the
protein amino acid sequence from solvent (well described bythe residue-based CG mode),
but also, to a large extent, by atomic level interactions that the residue-based CG model
does not capture. Indeed, when the model was applied to the BAR domain, the tertiary
structure was not preserved. Accordingly, we added harmonic bonds and angles connect-
ing protein beads that conserve protein shape and flexibility. A minimal set of bonds and
angles was selected for this purpose. The strength of these bonds and angles was chosen
to reproduce the tertiary structure flexibility as observedin the all-atom simulations. As
a result, the protein was not heavily constrained, but the tertiary structure (the BAR do-
main’s crescent shape) was maintained well. This feature has been implemented through a
NAMD53 functionality that allows one to add extra bonded interactions to simulations.

In our previous residue-based CG simulations5, 4, 13, a relative dielectric constantε of
20 was employed. In the case of the BAR domain simulations we choseε = 1. Such
low ε-value is necessary for membrane curvature to be induced by BAR domains, which
is driven by short-range electrostatics, when charged groups from the protein’s concave
surface interact at close range with charged lipid heads. Interactions at larger distances
should be screened by water requiring in principle higher values ofε. However, the elec-
trostatic interactions at large distances appear to be relatively weak in the present case such
thatε = 1 has no adverse effect on long-range electrostatics in case of the BAR domain
simulations.

The rather rough CG model of the BAR domain and lipid membrane, described above,
has been applied to study the behavior of multiple BAR domains54, as shown in Fig. 7. The
all-atom simulations with a single BAR domain52, from other groups as well as our own,
have been reproduced well by the residue-based CG simulations (not shown), in terms of
both membrane curvature and protein structure. Six BAR domains interacting with a patch
of membrane were then simulated. Two rows of three BAR domains each were placed in
parallel (shifted with respect to each other) on top of a planar membrane, composed of
electrostatically neutral DOPC lipids mixed with negatively charged DOPS lipids (30 %
DOPS). BAR domains produced a global bending mode54, exhibiting a radius of curvature
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Figure 7. Membrane curvature induced by BAR domains. Upper panel: top view of the initial arrangement (four
periodic cells along the vertical axis); lower panel: side view after 50 ns.

of 30 nm within 50 ns (comparable to experimental values for the curvature51). This result
suggests how BAR domains generate quickly membrane curvature, as possibly occurs in
cells during the formation of sub-cellular membrane structures50.

3 Shape-Based Coarse Graining

The shape-based CG55, 56method offers a higher degree of coarse graining than the residue-
based method, but a the price that the biopolymers describedare restricted in their motion
to elastic vibration around a morphology. The method is available through the molecular
visualization software VMDa57.

3.1 Selection of bead arrangement and potentials

Biomolecules, and proteins in particular, assume a varietyof shapes, often featuring both
compact domains and elongated tails, the compact regions and tails often being equally
important. To our knowledge, all existing CG methods assignCG beads to represent a
fixed group of atoms, but this is not efficient for the coarse graining of molecules with
complex shapes, because with such an approach either the tails are misrepresented, or

ahttp://www.ks.uiuc.edu/Research/vmd/
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too many CG beads are used for the compact domains. With the shape-based CG, one
addresses the task of representing shapes with as few CG beads as possible by so-called
topology conserving maps58.

Consider a molecule consisting ofNa atoms with coordinatesrn and massesmn, n =
1, 2, ..., Na. One seeks to reproduce the shape of the molecule withN CG beads. The mass
distributionpn = mn/M (M =

∑

nmn) is used as a target probability distribution for the
evolving map. CG beads are assigned their initial positionsrandomly; then, the beads are
considered as nodes of a network58, on whichS adaptation steps are performed. At each
step the following procedures are carried out. First, then-th atom is chosen randomly,
according to the probability distributionpn; its coordinatesrn = v are used to adapt the
neural network (see Eq. 1). Second, for each CG beadi (i = 1, 2, ..., N ), one determines
the numberki of CG beadsj, obeying the condition|v −Rj | < |v −Ri|, whereRj is
the position of thej-th bead. Third, positions of the beads are updated (i = 1, 2, ..., N ),
according to the rule

Rnew
i = Rold

i + ǫe−ki/λ(v −Rold
i ). (1)

Parametersǫ and λ are adapted at each step according to the functional formfs =
f0(fS/f0)

s/S , wheres is the current step,λ0 = 0.2N , λS = 0.01, ǫ0 = 0.3, and
ǫS = 0.05. We useS = 200N ; typical adaptation steps are shown in Fig. 8. Once
beads are placed, an all-atom “domain” is found for each bead(the domain includes all
atoms closer to this bead than to any other bead). The total mass and charge of a domain
is assigned to the respective bead. Since the shape of a molecule is reproduced by this CG
model, the method is termed shape-based CG. The molecular graphics program VMD57,
through its shape-based CG pluginb, can also build CG models from volumetric data, such
as density maps obtained from cryo-electron microscopy.

Currently, two ways of establishing bonds between CG beads are implemented. In one
case, a bond is established if the distance between two beadsis below a cutoff distance
(chosen by the researcher). Another possibility is to establish a bond between two CG
beads if their respective all-atom domains are connected byprotein or nucleic backbone
trace; in the latter case, the topology of the molecular polymeric chain is reproduced better.

Interactions between beads are described by a CHARMM-like force-field59, i.e.,
bonded interactions are represented by harmonic bond and angle potentials (no dihedral
potentials). The non-bonded potentials include 6-12 Lennard-Jones (LJ) and Coulomb
terms

V =
∑

bonds i

Ki

2
(Ri − Li)

2 +
∑

angles k

Mk

2
(θk −Θk)2 +

∑

m,n

4ǫmn

[(
σmn

rmn

)12

−
(
σmn

rmn

)6
]

+
∑

m,n

qmqn
4πεε0rmn

, (2)

whereRi andθk are the distance and angle for bondi and anglek, Ki andMk are the
force constants,Li andΘk are the equilibrium bond length and angle;rmn is the distance
between beadsm andn, ǫmn andσmn are the LJ parameters,qm is the charge of themth
bead, and the sum overm andn runs over all pairs of CG beads. The constantε0 is the
vacuum dielectric permittivity;ε is a relative dielectric constant.

bhttp://www.ks.uiuc.edu/Research/vmd/plugins/cgtools/
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Figure 8. Shape-based coarse graining algorithm assigningCG beads. The CG beads (spheres) are the nodes of
the network; their positions are updated throughout the learning steps (3400 steps for 17 beads in this example).
As a result, the shape of a protein (here, the capsid unit protein of brome mosaic virus) is reproduced with a
small number of beads (chosen prior to starting the algorithm). After the assignment converged, the beads are
connected by bonds. The algorithm is of a neural network typedescribed in58.

Bonded parametersKi, Li, ǫmn, etc., can be extracted from all-atom MD simula-
tions of the considered system. For each CG bond and angle, one follows the distances
between the centers of mass of corresponding atomic domains; CG force-field parame-
ters are chosen so that in the CG simulation of a protein unit,the mean distances (an-
gles) and respective root mean square deviations (rmsd) reproduce those found in an
all-atom simulation. This procedure can be illustrated by the simple example of a one-
dimensional harmonic oscillator, with a particle moving along thex coordinate in the
potentialV (x) = f(x − x0)

2/2. With the system in equilibrium at temperatureT , the
average position〈x〉 is equal tox0, and the rmsd is given bykBT/f (kB is the Boltzmann
constant). Using an MD simulation, one can compute〈x〉 and the rmsd, thus obtainingx0

andf .
In all-atom simulations, LJ radiusσmn for a pairm,n is usually approximated by

σmn = (σm + σn)/2, whereσm is the LJ radius of them-th atom. We use the same
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approach for CG beads;σm for them-th bead is calculated as the radius of gyration of
its all-atom domain, increased by 2̊A (an average LJ radius of an atom in the CHARMM
force-field). The LJ well depthǫmn is set to a uniform value for all pairsm − n; usually,
we usedǫmn = 4 kcal/mol. This choice forσmn and ǫmn was supported by all-atom
simulations of pairs of protein segments about 500 atoms each (roughly representing a
single CG bead in one of our applications). Several such simulations were performed, for
about 10 ns each. The effective potential of interaction between two segments was obtained
for every pair using the Boltzmann inversion method25, 26: assuming that the distribution
of the distance between the segmentsx is given byρ(x) = e−V (x)/(kBT ), whereV (x) is
the potential, one computesρ(x) from the simulation and finds the potential asV (x) =
−kBT ln[ρ(x)] + const. The potentials computed from all-atom simulations were similar
to a LJ potential in shape, and for each pair the well depth wasabout 4 kcal/mol; the
LJ radius was well represented using the procedure (radius of gyration + 2Å) described
above56.

An effect of the solvent model is modeled implicitly, by reproducing three basic fea-
tures of water, namely, viscosity, fluctuations due to Brownian motion, and dielectric per-
mittivity. The relative dielectric constantε is set to 80 everywhere (the experimental value
for liquid water). Frictional and fluctuating forces are introduced through the Langevin
equation that describes the time evolution of the CG system for each bead

mr̈ = F−mγṙ + χψ(t). (3)

Here,r is the position of the bead,F is the force acting on the bead from other beads
in the system,γ is a damping coefficient,ψ(t) is a univariate Gaussian random pro-
cess, andχ is related to the frictional forces through the fluctuation-dissipation theorem,
χ =

√

2γkBT/m, with m being the bead’s mass. WithF = 0, Eq. 3 describes free dif-
fusion, whereγ is related to the diffusion constantD, D = kBT/(mγ). In principle,γ
can be computed from all-atom simulations by calculatingD for the molecule under study
(although the force fields used in such simulations might be not good enough to reproduce
the water viscosity), but a much better approach is to use an experimental value ofD if
available, e.g.,D for a molecule of similar size. Contrary to the extraction ofD from
all-atom simulation, which is often difficult due to insufficient sampling,γ can be easily
tuned in CG simulations to give the appropriate value ofD for a given molecule, since
one achieves sampling for the center of mass displacements much faster in CG simulations
than in all-atom simulations. Based on estimates from the all-atom simulations and exper-
imental data for various proteins, the appropriate values of γ for 500 atoms per CG bead
should be in the range 3-15 ps−1.

The dynamics of the CG system is realized through MD simulations using NAMD53.
For the case of 500 atoms per CG bead the coarse graining allows one to simulate systems
500 times larger than possible in all-atom representation.As water often accounts for∼
80% of atoms in biomolecular simulations, and since the solventis treated implicitely, the
real gain is even higher, typically 2,000-3,000 times. Due to slower motions of CG beads
in comparison with atoms, one can use a time step of∼500 fs to integrate the equations of
motion, instead of 1 fs common for all-atom simulations. As aresult, the shape-based CG
with a typical ratio of 500 atoms per bead allows one to simulate dynamics of micrometer-
sized objects on time scales of 100µs using just 1-3 processors, while all-atom simulations
even with 1,000 processors are limited now to∼20 nm in size and 100 ns in time. Of
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course, this gain comes at the price of limited resolution.

3.2 Application to Structural Dynamics of Viruses

Shape-based CG was successfully applied to study the structural dynamics of viruses.
A virus60, 61 is a macromolecular complex, normally 10-100nm across, consisting of a
genome enclosed in a protein coat (capsid); usually, the capsid is a symmetric assem-
bly, often an icosahedron, formed by multiple copies of a fewproteins. Other accessory
molecules can be contained inside the capsid; additional proteins and a lipid bilayer enve-
lope are also found on the surface of some viruses. The viral replication cycle starts with
the delivery of the viral genome into a host cell, a step usually involving capsid disintegra-
tion. Then, the host cell replicates the viral genome and produces viral proteins, often at
the cost of reducing the cell’s normal functionality. Finally, the newly produced parts of
the virus assemble into viral particles and leave the host cell, which is usually destroyed
as a result. Outside of the host cell a viral particle has to bestable and relatively rigid to
protect the genome, but it also has to become unstable when virulence factors need to be
released into the host cell. In order to determine the stability of viral capsids and transitions
between stable and unstable structures, we performed MD simulations of several viruses,
both in all-atom62 and CG representations55.

Employing the shape-based CG method55, we were able to study large viral capsids (up
to 75 nm in diameter, see Fig. 9) on 1.5-25µs time scales. Most of the simulations were
performed on a single processor, but parallel simulations on up to 48 processors were also
carried out; the latter exhibited good parallel scaling similar to that of all-atom simulations
with NAMD53.

First55, we performed CG simulations of satellite tobacco mosaic virus (STMV), found
in good agreement with previous all-atom simulations62. STMV is one of the smallest and
simplest viruses, only 17 nm in diameter (Fig. 9), yet, to describe it using all-atom simu-
lations required dealing with a one-million-atom system. MD simulations on the complete
STMV showed that it is perfectly stable on a time scale of 10 ns. The STMV capsid with-
out genome, in contrast, was unstable, showing a remarkablecollapse over the first 5-10 ns
of simulation. The CG simulation of STMV reproduced the patterns and timescales of the
collapse observed for the STMV capsid in all-atom simulations. For both complete STMV
and the capsid alone, several other quantities computed in CG simulations, such as the
average capsid radius, were within a fewÅ from those in the all-atom study.

CG simulations of capsids of several more viruses were then carried out (Fig. 9), of the
satellite panicum mosaic virus (SPMV), the satellite tobacco necrosis virus (STNV), the
brome mosaic virus (BMV), the poliovirus, the bacteriophageφX174, and reovirus. In CG
simulations, the empty capsids of STMV, SPMV, and STNV collapsed. The reovirus core,
the bacteriophageφX174 procapsid, and the poliovirus capsid were stable, and indeed, it is
known experimentally that these are stable even without their respective genetic material.
For BMV, empty capsids have been observed experimentally, while a cleavage of the N-
terminal tails of the unit proteins makes the capsid unstable63. In agreement with that, the
BMV capsid was stable in our simulations, although very flexible, but when the N-terminal
tails were removed, the capsid collapsed.

Thus, results of CG simulations agree with all-atom studiesand experimental data,
where available. The simulations provide also new quantitative information about viral
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Figure 9. CG simulations of viral capsids. The initial and final structures for each simulation are shown (all
particles are drawn to scale). The ratio of∼200 atoms per CG particle is used. All capsids are simulated without
gene content, i.e., empty, except in case of satellite tobacco mosaic virus, in which case both empty and full
capsids were simulated. From55.

dynamics. Perhaps the main finding in this regard is that someof the capsids (STMV,
SPMV, and STNV) cannot maintain their structural integrityin the absence of the genome.
This suggests a specific self-assembly pathway for these viruses: it must be the RNA, and
not the protein, which nucleates assembly of the complete virus. Probably, the RNA forms
a spherical particle, and then capsid proteins attach to itssurface. It is known for some
viruses that they assemble ”capsid first”61, the genome being pulled into the pre-formed
capsid. Our simulations and emerging experimental evidence63, 64 suggest that this might
be different for some viruses. Related to what determines the stability, we found that the
stability and flexibility of viral capsids is closely correlated with the strength of interactions
between capsid subunits. Larger capsids, such as the reovirus core, have proteins that
intricately intertwine with each other, featuring even a “thread and needle” arrangement.
For STMV, SPMV, and STNV, unit proteins only touch each otherby the edges. With more
contacts between the protein units, a capsid has more hydrogen bonds and salt bridges per
area unit (reflected in the CG model by generalized non-bonded LJ and Coulomb forces),
and the frictional force between the capsid faces rises. These factors enhance the stability.
Our simulations suggest that viruses like STMV, SPMV, and STNV have relatively few
contacts between the capsid subunits and only their genomesrender the capsids stable.
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3.3 Application to the bacterial flagellum

The shape-based CG method has recently been applied also to study the molecular basis of
bacterial swimming. Many types of bacteria propel themselves through liquid media using
whip-like structures known as flagella. The bacterial flagellum is a huge (severalµm long,
∼20 nm wide), multiprotein assembly built of three domains: abasal body, fixed in the
cell body below the outer membrane and acting as a motor; a filament, which grows out
of the cell, making up the bulk of the length of the flagellum and interacting with solvent
to propel the bacterium; and a hook, connecting basal body and filament and acting as a
joint transmitting the torque from the former to the latter.Depending on the direction of
the torque applied by the basal body, the filament assumes different helical shapes. Under
counter-clockwise rotation (as viewed from the exterior ofthe cell), several flagella form a
single helical bundle which propels the cell along a straight line (running mode)65. Under
clockwise rotation, the individual flagella dissociate from the bundle and form separate
right-handed helices, causing the cell to tumble. Varying the duration of running and tum-
bling, bacteria can move up or down a gradient of an attractant or repellent by a biased
random walk.

One of the unresolved questions about the flagellum is how thereversal of torque ap-
plied by the motor results in a switching between the helicalshapes of the flagellar fila-
ment. This switching is a result of polymorphic transitionsin the filament, when individual
protein units slide against each other66, but its molecular mechanism remains poorly un-
derstood. Trying to answer this question, we performed CG MDstudies of the flagellar
filament56, which is formed by thousands of copies of a single protein, flagellin. Flagellin
was coarse grained with∼500 atoms per CG bead (vs.∼200 for viruses), as shown in
Fig. 10. Segments of the filament (1,100 flagellin unit, or∼0.5 µm long) were rotated
clockwise and counter-clockwise, with a constant rotationspeed one turn in 10µs applied
to 33 protein units at the bottom of the segment. The simulations covered 30µs each.

The filament is built by the helical arrangement of flagellin units, eleven per turn. A
thread of units each separated by one turn is called “protofilament” (see Fig. 10); eleven
protofilaments comprise the filament. In the CG simulations,the filament segments re-
mained stable when rotated, but protofilaments rearranged dramatically (though it must be
noticed that the toque applied to the model flagellum exceeded by far the one arising under
native conditions). In the straight filament, which was the starting structure, the protofil-
aments form a right-handed helix with large helical period.When the torque is applied
counterclockwise (as viewed from the base to the tip), the protofilaments remain arranged
in right-handed helices, but the pitch of the helices rises;when the torque is opposite, the
helices become left-handed. The filament also forms a helix as a whole. For the rotation
corresponding to the running mode, the filament forms a left-handed helix, whereas for
the tumbling mode it becomes a right-handed helix. The same difference in handedness
between these helices is found in living bacteria67.

Running and tumbling modes of bacterial swimming are determined by structural tran-
sitions in the flagellar filament, depending on the directionof the applied torque. Clearly,
interactions between protein units play an important role in enabling this transition. How-
ever, flagella act in solvent (water), and, curiously, the role of the solvent has not been
analyzed much before. Using the simple description by meansof Eq. 3, where viscosity is
governed by a single parameterγ, one can investigate the effect of solvent56. It was found
that without friction due to solvent, flagella rotate as a rigid body, i.e., the mutual positions
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Figure 10. Coarse graining of the flagellar filament. Unit proteins are represented by 15 CG beads (a). In (b), the
flagellar filament viewed from the side and from the top is shown in all-atom (left) and CG (right) representations.
A filament segment (1,100 monomers) is shown in CG representation in (c). A single helix turn of eleven unit
proteins is highlighted in black.

of monomers are frozen, both for running and tumbling mode. With the solvent’s fric-
tion present, the protofilaments rearrange as explained above, in agreement with structural
changes in the flagellum suggested by experimental studies.Thus, the solvent (friction)
plays a crucial role in the switching between the arrangements of protofilaments and, con-
sequently, in producing supercoiling along the entire filament, or running and tumbling
modes of motion.

4 Future Applications of Coarse Graining

Due to growing interest in large biomolecules and systems biology, coarse grained simu-
lations have grown increasingly common over the past few years as a means of accessing
time and size scales that cannot be reached with all-atom molecular dynamics. Recent
advances such as more reliable forcefields for residue-based coarse graining17, 68, mixed
CG and all-atom simulations18, 20, and low resolution shape-based CG models55, 56 have
improved the accuracy, flexibility, and potential scope of CG simulations. Since, however,
coarse grained simulations will never offer the same level of accuracy as all-atom simula-
tions, it seems likely that CG simulations will naturally evolve in directions allowing closer
links to atomistic descriptions. Both the aforementioned techniques of dynamic changes
of scale and mixing CG and all-atom descriptions serve as useful and distinct models for
how this can be accomplished, with the former using coarse graining as an accelerant to
improve sampling and then using all-atom simulations to flesh out the details of the sam-
pled states, and the latter allowing less important parts ofa system (such as bulk solvent)
to be treated with a lower resolution than the regions of interest.

The utility of further development and application of thesetechniques can be seen,
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for example, through consideration of the bacterial flagellum. Coarse grained simulations
have been used to investigate both the large-scale behaviorof the flagellar filament dur-
ing supercoiling56 and solvent dynamics around the supercoiled flagellum69; at the same
time, large-scale all-atom simulations have offered a potential atomic-scale mechanism for
differential supercoiling70. The remaining challenge for theory is to fully link the CG and
atomistic descriptions to provide a coherent and fully testable model for filament supercoil-
ing; the most likely path for developing such a model is to userotation of a shape-based
CG filament to develop an ensemble of conformations at different points along the flagel-
lum, which can then be simulated and perturbed in an all-atomrepresentation to understand
what interactions and structural transitions are important for the supercoiling process. A
similar scale-switching approach could be applied to othersystems, including viral capsids
(allowing the study of assembly intermediates obtained from shape-based coarse graining).

The shape-based CG methods should be further developed in a few important direc-
tions. Our present shape-based CG methodology55, 56allows one to simulate proteins. De-
spite initial successes, the protein model remains relatively rough and needs to be further
refined, in particular with respect to the interaction potentials employed. These potentials
can be improved using systematic all-atom parameterizing simulations for target systems.
The same is true for the solvent model, which should be further developed along the lines
of a true implicit solvent model, such as the generalized Born approach71–73. The CG
method should also be extended to biomolecules other than proteins; to that end, we have
recently started the development of a shape-based CG membrane model54. In this model,
each leaflet of a lipid bilayer is represented by a collectionof two-bead “molecules” (two
beads connected by a spring), held together by non-bonded interactions tuned to mimic
the bilayer stability, thickness, and area per lipid. This approach is somewhat similar to
previous attempts of CG membrane simulations, such as in74. However, in our model each
two-bead “molecule” represents a patch of a leaflet (not necessarily an integer number of
lipid molecules), rather than a single lipid. Using the model, we have been able to simulate
bilayer self-assembly and reproduce the results of all-atom and residue-based CG simula-
tions of BAR domains (see above); much larger BAR domain simulations using the new
model are under way. The shape-based CG model describing proteins and lipids will be
very useful for simulations of sub-cellular processes, where multiple proteins interact with
each other and with cellular membranes on long timescales.

Future residue-based CG simulations of nanodiscs will continue to further our under-
standing of HDL assembly and maturation, as well as aiding inthe use of synthetic nan-
odiscs as protein scaffolds. HDL particles actingin vivo absorb esterified cholesterol for
transport27; understanding the structural transitions involved in this process will be a key
step in the overall goal of characterizing HDL function. This absorption process can be
studied through residue-based CG simulations designed to observe how the structure of
a nanodisc adjusts to the presence of esterified cholesterol. Ongoing simulations of nan-
odiscs will also be used to refine reverse coarse graining methods for residue based CG
models to move from the snapshot-only reversal described above to a thermodynamically
correct method for changing from all-atom to residue-basedCG models.

The continued development and application of coarse graining, along with ongoing im-
provements in generally available computational resources, promises to enable biomolec-
ular simulations to treat many systems which were previously inaccessible. The increasing
application of all-atom and CG simulations to the same system should greatly increase
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the impact of coarse graining by allowing the acceleration of coarse grained simulation
to be obtained without sacrificing atomic detail. At the sametime, pure CG simulations
also continue to be useful for understanding the behavior oflarge systems over very long
timescales, and this utility will only increase with continuing improvements to CG poten-
tials.
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We treat multigrid methods for the efficient iterative solution of discretized elliptic boundary
value problems. Two model problems are the Poisson equationand the Stokes problem. For
the discretization we use standard finite element spaces. After discretization one obtains a large
sparse linear system of equations. We explain multigrid methods for the solution of these linear
systems. The basic concepts underlying multigrid solvers are discussed. Results of numerical
experiments are presented which demonstrate the efficiencyof these method. Theoretical con-
vergence analyses are given that prove the typical grid independent convergence of multigrid
methods.

1 Introduction

In these lecture notes we treat multigrid methods (MGM) for solving discrete ellip-
tic boundary value problems. We assume that the reader is familiar with discretization
methods for such partial differential equations. In our presentation we apply on finite ele-
ment discretizations. We consider the following two model problems. Firstly, the Poisson
equation

−∆u = f in Ω ⊂ R
d,

u = 0 on ∂Ω,
(1)

with f a (sufficiently smooth) source term andd = 2 or3. The unknown is a scalar function
u (for example, a temperature distribution) onΩ. We assume that the domainΩ is open,
bounded and connected. The second problem consists of the Stokes equations

−∆u +∇p = f in Ω ⊂ R
d,

div u = 0 in Ω,

u = 0 on ∂Ω.

(2)

The unknowns are the velocity vector functionu = (u1, . . . , ud) and the scalar pressure
functionp. To make this problem well-posed one needs an additional condition onp, for
example,

∫

Ω
p dx = 0. Both problems belong to the class ofelliptic boundary value prob-

lems. Discretization of such partial differential equations using a finite difference, finite
volume or finite element technique results in alarge sparse linear system of equations.
In the past three decades the development ofefficient iterative solversfor such systems of
equations has been an important research topic in numericalanalysis and computational en-
gineering. Nowadays it is recognized that multigrid iterative solvers are highly efficient for
this type of problems and often have “optimal” complexity. There is an extensive literature
on this subject. For a thorough treatment of multigrid methods we refer to the monograph
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of Hackbusch1. For an introduction to multigrid methods requiring less knowledge of
mathematics, we refer to Wesseling2, Briggs3, Trottenberg et al.4. A theoretical analysis of
multigrid methods is presented in Bramble5. In these lecture notes we restrict ourselves to
an introduction to the multigrid concept. We discuss several multigrid methods, heuristic
concepts and theoretical analyses concerning convergenceproperties.

In the field of iterative solvers for discretized partial differential equations one can
distinguish several classes of methods, namelybasic iterative methods(eg., Jacobi, Gauss-
Seidel),Krylov subspace methods(eg., CG, GMRES, BiCGSTAB) andmultigrid solvers.
For solving a linear systemAx = b which results from the discretization of an elliptic
boundary value problem the first two classes need as input (only) the matrixA and the
righthand sideb. The fact that these data correspond to a certain underlyingcontinuous
boundary value problem isnotused in the iterative method. However, the relation between
the data (A andb) and the underlying problem can be useful for the development of a fast
iterative solver. Due to the fact thatA results from a discretization procedure we know,
for example, that there are other matrices which, in a certain natural sense, are similar to
the matrixA. These matrices result from the discretization of the underlying continuous
boundary value problem on other grids than the grid corresponding to the given discrete
problemAx = b. The use of discretizations of the given continuous problem on sev-
eral grids with different mesh sizes plays an important rolein the multigrid concept. Due
to the fact that in multigrid methods discrete problems on different grids are needed, the
implementation of multigrid methods is in general (much) more involved than the imple-
mentation of, for example, Krylov subspace methods. We alsonote that for multigrid
methods it is relatively hard to develop “black box” solverswhich are applicable to a wide
class of problems. In recent years so-calledalgebraic multigrid methodshave become
quite popular. In these methods one tries to reduce the amount of geometric information
(eg., different grids) that is needed in the solver, thus making the multigrid method more
algebraic. We will not discuss such algebraic MGM in these lecture notes.

We briefly outline the contents. In section 2 we explain the main ideas of the MGM us-
ing a simple one dimensional problem. In section 3 we introduce multigrid methods for
discretizations ofscalar elliptic boundary value problems like the Poisson equation(1).
In section 4 we present results of a numerical experiment with a standard multigrid solver
applied to a discrete Poisson equation in 3D. In section 5 we introduce the main ideas for
a multigrid method applied to a (generalized) Stokes problem. In section 6 we present
results of a numerical experiments with a Stokes equation. In the final part of these notes,
the sections 7 and 8, we present convergence analyses of these multigrid methods for the
two classes of elliptic boundary value problems.

2 Multigrid for a One-Dimensional Model Problem

In this section we consider a simple model situation to show the basic principle behind the
multigrid approach. We consider the two-point boundary value model problem

{
−u′′(x) = f(x), x ∈ Ω := (0, 1).
u(0) = u(1) = 0 .

(3)

We will use a finite element method for the discretization of this problem. This, however, is
not essential: other discretization methods (finite differences, finite volumes) result in dis-
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crete problems that are very similar. The corresponding multigrid methods have properties
very similar to those in the case of a finite element discretization.

For the finite element discretization one needs a variational formulation of the boundary
value problem in a suitable function space. We do not treat this issue here, but refer to the
literature for information on this subject, eg. Hackbusch6, Großmann7. For the two-point
boundary value problem given above the appropriate function space is the Sobolov space
H1

0 (Ω) := { v ∈ L2(Ω) | v′ ∈ L2(Ω), v(0) = v(1) = 0 }, wherev′ denotes aweak
derivative ofv. The variational formulation of the problem (3) is: findu ∈ H1

0 (Ω) such
that

∫ 1

0

u′v′ dx =

∫ 1

0

fv dx for all v ∈ H1
0 (Ω).

For the discretization we introduce a sequence of nested uniform grids. Forℓ = 0, 1, 2, . . . ,
we define

hℓ = 2−ℓ−1 (“mesh size”), (4)

nℓ = h−1
ℓ − 1 (“number of interior grid points”), (5)

ξℓ,i = ihℓ , i = 0, 1, ..., nℓ + 1 (“grid points”) , (6)

Ωint
ℓ = {ξℓ,i | 1 ≤ i ≤ nℓ} (“interior grid”) , (7)

Thℓ
= ∪{ [ξℓ,i, ξℓ,i+1] | 0 ≤ i ≤ nℓ } (“triangulation”) . (8)

The space oflinear finite elementscorresponding to the triangulationThℓ
is given by

Vℓ := { v ∈ C(Ω) | v|[ξℓ,i,ξℓ,i+1] ∈ P1 , i = 0, . . . , nℓ, v(0) = v(1) = 0 }.
The standard nodal basis in this space is denoted by(φi)1≤i≤nℓ

. These functions satisfy
φi(ξℓ,i) = 1, φi(ξℓ,j) = 0 for all j 6= i. This basis induces an isomorphism

Pℓ : R
nℓ → Vℓ , Pℓx =

nℓ∑

i=1

xiφi. (9)

The Galerkin discretization in the spaceVℓ is as follows: determineuℓ ∈ Vℓ such that
∫ 1

0

u′ℓv
′
ℓ dx =

∫ 1

0

fvℓ dx for all vℓ ∈ Vℓ.

Using the representationuℓ =
∑nℓ

j=1 xjφj this yields a linear system

Aℓxℓ = bℓ , (Aℓ)ij =

∫ 1

0

φ′iφ
′
j dx, (bℓ)i =

∫ 1

0

fφi dx. (10)

The solution of this discrete problem is denoted byx∗
ℓ . The solution of the Galerkin dis-

cretization in the function spaceVℓ is given byuℓ = Pℓx
∗
ℓ . A simple computation shows

that

Aℓ = h−1
ℓ tridiag(−1, 2,−1) ∈ R

nℓ×nℓ .

Note that, apart from a scaling factor, the same matrix results from a standard discretization
with finite differences of the problem (3).
Clearly, in practice one should not solve the problem in (10)using an iterative method (a
Cholesky factorizationA = LLT is stable and efficient). However, we do apply a basic
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iterative method here, to illustrate a certain “smoothing”property which plays an important
role in multigrid methods. We consider the damped Jacobi method

xk+1
ℓ = xk

ℓ −
1

2
ωhℓ(Aℓx

k
ℓ − bℓ) with ω ∈ (0, 1] . (11)

The iteration matrix of this method, which describes the error propagationek+1
ℓ = Cℓe

k
ℓ ,

ek
ℓ := x∗

ℓ − xk
ℓ , is given by

Cℓ = Cℓ(ω) = I− 1

2
ωhℓAℓ .

In this simple model problem an orthogonal eigenvector basis ofAℓ, and thus ofCℓ, too,
is known. This basis is closely related to the “Fourier modes”:

wν(x) = sin(νπx), x ∈ [0, 1], ν = 1, 2, ... .

Note thatwν satisfies the boundary conditions in (3) and that−(wν)′′(x) = (νπ)2wν(x)
holds, and thuswν is an eigenfunction of the problem in (3). We introduce vectors zν

ℓ ∈
R

nℓ , 1 ≤ ν ≤ nℓ, which correspond to the Fourier modeswν restricted to the interior grid
Ωint

ℓ :

zν
ℓ :=

(
wν(ξℓ,1), w

ν(ξℓ,2), ..., w
ν (ξℓ,nℓ

)
)T

.

These vectors form an orthogonal basis ofR
nℓ . Forℓ = 2 we give an illustration in Fig. 1.

0 1

: z1
2

: z4
2

o

o

o

o

o

o

o

x

x

x
x

x

x

x
x

o

Figure 1. Two discrete Fourier modes.

To a vectorzν
ℓ there corresponds a frequencyν. Forν < 1

2nℓ the vectorzν
ℓ , or the corre-

sponding finite element functionPℓz
ν
ℓ , is called a “low frequency mode”, and forν ≥ 1

2nℓ

this vector [finite element function] is called a “high frequency mode”. The vectorszν
ℓ are

eigenvectors of the matrixAℓ:

Aℓz
ν
ℓ =

4

hℓ
sin2(ν

π

2
hℓ)z

ν
ℓ ,
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and thus we have

Cℓz
ν
ℓ = (1 − 2ω sin2(ν

π

2
hℓ))z

ν
ℓ . (12)

From this we obtain

‖Cℓ‖2 = max1≤ν≤nℓ
|1− 2ω sin2(ν π

2hℓ)|

= 1− 2ω sin2(π
2hℓ) = 1− 1

2ωπ
2h2

ℓ +O(h4
ℓ) .

(13)

From this we see that the damped Jacobi method is convergent (‖Cℓ‖2 < 1), but that the
rate of convergence will be very low forhℓ small.

Note that the eigenvalues and the eigenvectors ofCℓ are functions ofνhℓ ∈ [0, 1]:

λℓ,ν := 1− 2ω sin2(ν
π

2
hℓ) =: gω(νhℓ) , with (14a)

gω(y) = 1− 2ω sin2(
π

2
y), y ∈ [0, 1]. (14b)

Hence, the size of the eigenvaluesλℓ,ν can directly be obtained from the graph of the
functiongω. In Fig. 2 we show the graph of the functiongω for a few values ofω.

-1

1

ω = 1
3

ω = 1
2

ω = 2
3

ω = 1

Figure 2. Graph ofgω.

From the graphs in this figure we conclude that for a suitable choice of ω we have
|gω(y)| ≪ 1 if y ∈ [ 12 , 1]. We chooseω = 2

3 (then |gω(1
2 )| = |gω(1)| holds). Then

we have|g 2
3
(y)| ≤ 1

3 for y ∈ [ 12 , 1]. Using this and the result in (14a) we obtain

|λℓ,ν | ≤
1

3
for ν ≥ 1

2
nℓ .

Hence:

the high frequency modes are strongly damped by the iteration matrixCℓ.
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From Fig. 2 it is also clear that the low rate of convergence ofthe damped Jacobi
method is caused by the low frequency modes(νhℓ ≪ 1).

Summarizing, we draw the conclusion that in this example thedamped Jacobi method
will “smooth” the error. This elementary observation is of great importance for the
two-grid method introduced below. In the setting of multigrid methods the damped Jacobi
method is called a “smoother”. The smoothing property of damped Jacobi is illustrated in
Fig. 3. It is important to note that the discussion above concerning smoothing is related to

0 1

Graph of a starting error.

0 1

Graph of the error after one damped Jacobi
iteration (ω = 2

3 ).

Figure 3. Smoothing property of damped Jacobi.

the iteration matrixCℓ, which means that theerror will be made smoother by the damped
Jacobi method, but not (necessarily) the new iterantxk+1.

In multigrid methods we have to transform information from one grid to another.
For that purpose we introduce so-calledprolongationsandrestrictions. In a setting with
nested finite element spaces these operators can be defined ina very natural way. Due to
the nestedness the identity operator

Iℓ : Vℓ−1,→ Vℓ, Iℓv = v,

is well-defined. This identity operator represents linear interpolation as is illustrated for
ℓ = 2 in Fig. 4. The matrix representation of this interpolation operator is given by

pℓ : R
nℓ−1 → R

nℓ , pℓ := P−1
ℓ Pℓ−1. (15)

A simple computation yields

pℓ =


















1
2 ∅
1
1
2

1
2
1
1
2

. . .
1
2
1

∅ 1
2


















nℓ×nℓ−1

. (16)
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Figure 4. Canonical prolongation.

We can also restrict a given grid functionvℓ onΩint
ℓ to a grid function onΩint

ℓ−1. An obvious
approach is to use a restrictionr based on simple injection:

(rinjvℓ)(ξ) = vℓ(ξ) if ξ ∈ Ωint
ℓ−1 .

When used in a multigrid method then often this restriction based on injection is not sat-
isfactory (cf. Hackbusch1, section 3.5). A better method is obtained if a natural Galerkin
property is satisfied. It can easily be verified (cf. also lemma 3.2) that withAℓ, Aℓ−1 and
pℓ as defined in (10), (15) we have

rℓAℓpℓ = Aℓ−1 iff rℓ = pT
ℓ . (17)

Thus the natural Galerkin conditionrℓAℓpℓ = Aℓ−1 implies the choice

rℓ = pT
ℓ (18)

for the restriction operator.

The two-grid method is based on the idea that a smooth error, which resultsfrom
the application of one or a few damped Jacobi iterations, canbe approximated fairly well
on acoarsergrid. We now introduce this two-grid method.

ConsiderAℓx
∗
ℓ = bℓ and letxℓ be the result of one or a few damped Jacobi iterations

applied to a given starting vectorx0
ℓ . For the erroreℓ := x∗

ℓ − xℓ we have

Aℓeℓ = bℓ −Aℓxℓ =: dℓ ( “residual” or “defect”). (19)

Based on the assumption thateℓ is smooth it seems reasonable to make the approximation
eℓ ≈ pℓẽℓ−1 with an appropriate vector (grid function)ẽℓ−1 ∈ R

nℓ−1 . To determine the
vectorẽℓ−1 we use the equation (19) and the Galerkin property (17). Thisresults in the
equation

Aℓ−1ẽℓ−1 = rℓdℓ

for the vector̃eℓ−1. Note thatx∗ = xℓ + eℓ ≈ xℓ + pℓẽℓ−1. Thus for the new iterant
we takexℓ := xℓ + pℓẽℓ−1. In a more compact formulation this two-grid method is as
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follows:






procedure TGMℓ(xℓ,bℓ)
if ℓ = 0 then x0 := A−1

0 b0 else
begin

xℓ := Jν
ℓ (xℓ,bℓ) (∗ ν smoothing it., e.g. damped Jacobi∗)

dℓ−1 := rℓ(bℓ −Aℓxℓ) (∗ restriction of defect∗)
ẽℓ−1 := A−1

ℓ−1dℓ−1 (∗ solve coarse grid problem∗)
xℓ := xℓ + pℓẽℓ−1 (∗ add correction∗)
TGMℓ := xℓ

end;

(20)

Often, after the coarse grid correctionxℓ := xℓ + pℓẽℓ−1, one or a few smoothing
iterations are applied. Smoothing before/after the coarsegrid correction is called
pre/post-smoothing. Besides the smoothing property a second property which is of great
importance for a multigrid method is the following:

The coarse grid systemAℓ−1ẽℓ−1 = dℓ−1 is of the same form as the systemAℓxℓ = bℓ.

Thus for solving the problemAℓ−1ẽℓ−1 = dℓ−1 approximatelywe can apply the two-grid
algorithm in (20) recursively. This results in the following multigrid methodfor solving
Aℓx

∗
ℓ = bℓ:







procedure MGMℓ(xℓ,bℓ)
if ℓ = 0 then x0 := A−1

0 b0 else
begin

xℓ := Jν1

ℓ (xℓ,bℓ) (∗ presmoothing∗)
dℓ−1 := rℓ(bℓ −Aℓxℓ)

e0
ℓ−1 := 0; for i = 1 to τ do ei

ℓ−1 := MGMℓ−1(e
i−1
ℓ−1,dℓ−1);

xℓ := xℓ + pℓe
τ
ℓ−1

xℓ := Jν2

ℓ (xℓ,bℓ) (∗ postsmoothing∗)
MGMℓ := xℓ

end;

(21)

If one wants to solve the system on a given finest grid, say withlevel numberℓ, i.e.Aℓx
∗
ℓ

=

bℓ, then we apply some iterations ofMGMℓ(xℓ,bℓ).
Based on efficiency considerations (cf. section 3) we usually takeτ = 1 (“V -cycle”)

or τ = 2 (“W -cycle”) in the recursive call in (21). For the caseℓ = 3 the structure of one
multigrid iteration withτ ∈ {1, 2} is illustrated in Fig. 5.

3 Multigrid for Scalar Elliptic Problems

In this section we introduce multigrid methods which can be used for solving discretized
scalar elliptic boundary value problems. A model example from this problem class is the
Poisson equation in (1). Opposite to the CG method, the applicability of multigrid methods
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Figure 5. Structure of one multigrid iteration

is not restricted to symmetric problems. Multigrid methodscan also be used for solving
problems which are nonsymmetric (i.e., convection terms are present in the equation). If
the problem is convection-dominated (the corresponding stiffness matrix then is strongly
nonsymmetric) one usually has to modify the standard multigrid approach in the sense that
special smoothers and/or special prolongations and restrictions should be used. We do not
discuss this issue here.

We will introduce the two-grid and multigrid method by generalizing the approach of
section 2 to the higher (i.e., two and three) dimensional case. We consider a scalar elliptic
boundary value problems of the form

−∇ · (a∇u) + b · ∇u + cu = f in Ω,

u = 0 on ∂Ω.

This problem is considered in a domainΩ ⊂ R
d, d = 2 or 3. We assume that the functions

a, c and the vector functionb are sufficiently smooth onΩ and

a(x) ≥ a0 > 0, c(x)− 1

2
div b(x) ≥ 0 for all x ∈ Ω̄. (22)

These assumptions guarantee that the problem is elliptic and well-posed. In view of
the finite element discretization we introduce the variational formulation of this prob-
lem. For this we need the Sobolov spaceH1

0 (Ω) := { v ∈ L2(Ω) | ∂v
∂xi
∈ L2(Ω), i =

1, . . . , d, v|∂Ω = 0 }. The partial derivative∂v
∂xi

has to be interpreted in a suitable weak
sense. The variational formulation is as follows:

{

find u ∈ H1
0 (Ω) such that

k(u, v) = f(v) for all v ∈ H1
0 (Ω),

(23)

with a bilinear form and righthand side

k(u, v) =

∫

Ω

a∇uT∇v + b · ∇uv + cuv dx. , f(v) =

∫

Ω

fv dx.

If (22) holds then this bilinear form iscontinuous and ellipticonH1
0 (Ω), i.e. there exist

constantsγ > 0 andc such that

k(u, u) ≥ γ|u|21, k(u, v) ≤ c|u|1|v|1 for all u, v ∈ H1
0 (Ω).
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Here we use|u|1 :=
( ∫

Ω
∇uT∇u dx

) 1
2 , which is a norm onH1

0 (Ω). For the discretization
of this problem we use simplicial finite elements. Let{Th} be a regular family of trian-
gulations ofΩ consisting ofd-simplices andVh a corresponding finite element space. For
simplicity we only considerlinear finite elements:

Vh = { v ∈ C(Ω) | v|T ∈ P1 for all T ∈ Th }.
The presentation and implementation of the multigrid method is greatly simplified if we
assume a given sequence ofnestedfinite element spaces.
Assumption 3.1 In the remainder we always assume that we have a sequenceVℓ, ℓ =
0, 1, . . ., of simplicial finite element spaces which are nested:

Vℓ ⊂ Vℓ+1 for all ℓ. (24)

We note that this assumption is not necessary for a successful application of multigrid
methods. For a treatment of multigrid methods in case of non-nestedness we refer to
Trottenberg et al.4. The construction of a hierarchy of triangulations such that the corre-
sponding finite element spaces are nested is discussed in Bey8.

In Vℓ we use the standard nodal basis(φi)1≤i≤nℓ
. This basis induces an isomorphism

Pℓ : R
nℓ → Vℓ , Pℓx =

nℓ∑

i=1

xiφi.

The Galerkin discretization: Finduℓ ∈ Vℓ such that

k(uℓ, vℓ) = f(vℓ) for all vℓ ∈ Vℓ (25)

can be represented as a linear system

Aℓxℓ = bℓ , with (Aℓ)ij = k(φj , φi), (bℓ)i = f(φi), 1 ≤ i, j ≤ nℓ. (26)

The solutionx∗
ℓ of this linear system yields the Galerkin finite element solutionuℓ = Pℓx

∗
ℓ .

Along the same lines as in the one-dimensional case we introduce a multigrid method for
solving this system of equations on an arbitrary levelℓ ≥ 0.
For thesmootherwe use a basic iterative method such as, for example, aRichardson
method

xk+1 = xk − ωℓ(Aℓx
k − b),

adamped Jacobi method

xk+1 = xk − ωD−1
ℓ (Aℓx

k − b), (27)

or aGauss-Seidel method

xk+1 = xk − (Dℓ − Lℓ)
−1(Aℓx

k − b), (28)

whereDℓ−Lℓ is the lower triangular part of the matrixAℓ. For such a method we use the
general notation

xk+1 = Sℓ(x
k,bℓ) = xk −M−1

ℓ (Aℓx
k − b) , k = 0, 1, . . .

The corresponding iteration matrix is denoted by

Sℓ = I−M−1
ℓ Aℓ.
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For theprolongationwe use the matrix representation of the identityIℓ : Vℓ−1 → Vℓ, i.e.,

pℓ := P−1
ℓ Pℓ−1. (29)

The choice of the restriction is based on the following elementary lemma:
Lemma 3.2 LetAℓ, ℓ ≥ 0, be the stiffness matrix defined in(26)andpℓ as in(29). Then
for rℓ : R

nℓ → R
nℓ−1 we have:

rℓAℓpℓ = Aℓ−1 if and only if rℓ = pT
ℓ .

Proof: For the stiffness matrix matrix the identity

〈Aℓx,y〉 = k(Pℓx, Pℓy) for all x,y ∈ R
nℓ

holds. From this we get

rℓAℓpℓ = Aℓ−1

⇔ 〈Aℓpℓx, r
T
ℓ y〉 = 〈Aℓ−1x,y〉 for all x,y ∈ R

nℓ−1

⇔ k(Pℓ−1x, Pℓr
T
ℓ y) = k(Pℓ−1x, Pℓ−1y) for all x,y ∈ R

nℓ−1 .

Using the ellipticity ofk(·, ·) it now follows that

rℓAℓpℓ = Aℓ−1

⇔ Pℓr
T
ℓ y = Pℓ−1y for all y ∈ R

nℓ−1

⇔ rT
ℓ y = P−1

ℓ Pℓ−1y = pℓy for all y ∈ R
nℓ−1

⇔ rT
ℓ = pℓ.

Thus the claim is proved.

This motivates that for therestrictionwe take:

rℓ := pT
ℓ . (30)

Using these components we can define a multigrid method with exactly the same structure
as in (21):

procedure MGMℓ(xℓ,bℓ)
if ℓ = 0 then x0 := A−1

0 b0 else
begin

xℓ := Sν1

ℓ (xℓ,bℓ) (∗ presmoothing∗)
dℓ−1 := rℓ(bℓ −Aℓxℓ)

e0
ℓ−1 := 0; for i = 1 to τ do ei

ℓ−1 := MGMℓ−1(e
i−1
ℓ−1,dℓ−1);

xℓ := xℓ + pℓe
τ
ℓ−1

xℓ := Sν2

ℓ (xℓ,bℓ) (∗ postsmoothing∗)
MGMℓ := xℓ

end;

(31)

We briefly comment on some important issues related to this multigrid method.
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Smoothers
For many problems basic iterative methods provide good smoothers. In particular the
Gauss-Seidel method is often a very effective smoother. Other smoothers used in practice
are the damped Jacobi method and the ILU method.

Prolongation and restriction
If instead of a discretization with nested finite element spaces one uses a finite difference or
a finite volume method then one can not use the approach in (29)to define a prolongation.
However, for these cases other canonical constructions forthe prolongation operator exist.
We refer to Hackbusch1, Trottenberg et al.4 or Wesseling2 for a treatment of this topic.
A general technique for the construction of a prolongation operator in case of nonnested
finite element spaces is given in Braess9.

Arithmetic costs per iteration
We discuss the arithmetic costs of oneMGMℓ iteration as defined in (31). For this we
introduce a unit of arithmetic work on levelℓ:

WUℓ := # flops needed forAℓxℓ − bℓ computation. (32)

We assume:

WUℓ−1 . gWUℓ with g < 1 independent ofℓ. (33)

Note that ifTℓ is constructed through a uniform global grid refinement ofTℓ−1 (for n = 2:
subdivision of each triangleT ∈ Tℓ−1 into four smaller triangles by connecting the mid-
points of the edges) then (33) holds withg = (1

2 )d. Furthermore we make the follow-
ing assumptions concerning the arithmetic costs of each of the substeps in the procedure
MGMℓ:

xℓ := Sℓ(xℓ,bℓ) : costs . WUℓ

dℓ−1 := rℓ(bℓ −Aℓxℓ)
}

total costs. 2WUℓ
xℓ := xℓ + pℓe

τ
ℓ−1

For the amount of work in one multigrid V-cycle (τ = 1) on levelℓ, which is denoted by
VMGℓ, we get usingν := ν1 + ν2:

VMGℓ . νWU ℓ + 2WU ℓ + VMGℓ−1 = (ν + 2)WU ℓ + VMGℓ−1

. (ν + 2)
(
WU ℓ +WU ℓ−1 + . . .+WU1

)
+ VMG0

. (ν + 2)
(
1 + g + . . .+ gℓ−1

)
WU ℓ + VMG0

.
ν + 2

1− g WU ℓ.

(34)

In the last inequality we assumed that the costs for computingx0 = A−1
0 b0 (i.e.,VMG0)

are negligible compared toWU ℓ. The result in (34) shows that the arithmetic costs for one
V-cycle are proportional (ifℓ → ∞) to the costs of a residual computation. For example,
for g = 1

8 (uniform refinement in 3D) the arithmetic costs of a V-cycle with ν1 = ν2 = 1
on levelℓ are comparable to4 1

2 times the costs of a residual computation on levelℓ.
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For the W-cycle (τ = 2) the arithmetic costs on levelℓ are denoted byWMGℓ. We have:

WMGℓ . νWU ℓ + 2WU ℓ + 2WMGℓ−1 = (ν + 2)WU ℓ + 2WMGℓ−1

. (ν + 2)
(
WU ℓ + 2WU ℓ−1 + 22WU ℓ−2 + . . .+ 2ℓ−1WU1

)
+WMG0

. (ν + 2)
(
1 + 2g + (2g)2 + . . .+ (2g)ℓ−1

)
WU ℓ +WMG0.

From this we see that to obtain a bound proportional toWU ℓ we have to assume

g <
1

2
.

Under this assumption we get for the W-cycle

WMGℓ .
ν + 2

1− 2g
WU ℓ

(again we neglectedWMG0). Similar bounds can be obtained forτ ≥ 3, providedτg < 1
holds.

3.1 Nested Iteration

We consider a sequence of discretizations of a given boundary value problem, as for ex-
ample in (26):

Aℓxℓ = bℓ, ℓ = 0, 1, 2, . . . .

We assume that for a certainℓ = ℓ we want to compute the solutionx∗
ℓ

of the problem
Aℓxℓ = bℓ using an iterative method (not necessarily a multigrid method). In the nested
iteration method we use the systems on coarse grids to obtainagood starting vectorx0

ℓ
for

this iterative method with relatively low computational costs. The nested iteration method
for the computation of this starting vectorx0

ℓ
is as follows







compute the solutionx∗
0 of A0x0 = b0

x0
1 := p̃1x

∗
0 (prolongation ofx∗

0)

xk
1 := result ofk iterations of an iterative method

applied toA1x1 = b1 with starting vectorx0
1

x0
2 := p̃2x

k
1 ( prolongation ofxk

1)

xk
2 := result ofk iterations of an iterative method

applied toA2x2 = b2 with starting vectorx0
2

...
etc.
...
x0

ℓ
:= p̃ℓx

k
ℓ−1

.

(35)

In this nested iteration method we use a prolongationp̃ℓ : R
nℓ−1 → R

nℓ . The nested
iteration principle is based on the idea thatp̃ℓx

∗
ℓ−1 is expected to be a reasonable approxi-

mation ofx∗
ℓ , becauseAℓ−1x

∗
ℓ−1 = bℓ−1 andAℓx

∗
ℓ = bℓ are discretizations of the same
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Figure 6. Multigrid and nested iteration.

continuous problem. With respect to the computational costs of this approach we note the
following (cf. Hackbusch1, section 5.3). For the nested iteration to be a feasible approach,
the number of iterations applied on the coarse grids (i.e.k in (35)) should not be ”too large”
and the number of grid points in the union of all coarse grids (i.e. level0, 1, 2, ..., ℓ − 1)
should be at most of the same order of magnitude as the number of grid points in the level
ℓ grid. Often, if one uses a multigrid solver these two conditions are satisfied. Usually in
multigrid we use coarse grids such that the number of grid points decreases in a geometric
fashion, and fork in (35) we can often takek = 1 or k = 2 due to the fact that on the
coarse grids we use the multigrid method, which has a high rate of convergence.

If one uses the algorithmMGMℓ from (31) as the solver on levelℓ then the imple-
mentation of the nested iteration method can be realized with only little additional effort
because the coarse grid data structure and coarse grid operators (e.g.Aℓ, ℓ < ℓ) needed
in the nested iteration method are already available.

If in the nested iteration method we use a multigrid iterative solver on all levels we
obtain the following algorithmic structure:







x∗
0 := A−1

0 b0; xk
0 := x∗

0

for ℓ = 1 to ℓ do
begin

x0
ℓ := p̃ℓx

k
ℓ−1

for i = 1 to k do xi
ℓ := MGMℓ(x

i−1
ℓ ,bℓ)

end;

(36)

For the caseℓ = 3 andk = 1 this method is illustrated in Fig. 6.
Remark 3.3 The prolongatioñpℓ used in the nested iteration may be the same as the pro-
longationpℓ used in the multigrid method. However, from the point of viewof efficiency
it is sometimes better to use in the nested iteration a prolongationp̃ℓ that has a higher order
of accuracy than the prolongation used in the multigrid method. �
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4 Numerical Experiment: Multigrid Applied to a Poisson Equation

In this section we present results of a standard multigrid solver applied to the model prob-
lem of the Poisson equation:

−∆u = f in Ω := (0, 1)3,

u = 0 on ∂Ω.

We takef(x1, x2, x3) = x2
1 +ex2x1 +x2

3x2. For the discretization we start with a uniform
subdivision ofΩ into cubes with edges of lengthh0 := 1

4 . Each cube is subdivided into
six tetrahedra. This yields the starting triangulationT0 of Ω. The triangulationT1 with
mesh sizeh1 = 1

8 is constructed by regular subdivision of each tetrahedron in T0 into
8 child tetrahedra. This uniform refinement strategy is repeated, resulting in a family of
triangulations(Tℓ)ℓ≥0 with corresponding mesh sizehℓ = 2−ℓ−2. For discretization of this
problem we use the space of linear finite elements on these triangulations. The resulting
linear system is denoted byAℓxℓ = bℓ. We consider the problem of solving this linear
system on a fixed finest levelℓ = ℓ̄. Below we consider̄ℓ = 1, . . . , 5. For ℓ̄ = 5 the
triangulation contains 14.380.416 tetrahedra and in the linear system we have 2.048.383
unknowns.

We briefly discuss the components used in the multigrid method for solving this linear
system. For the prolongation and restriction we use the canonical ones as in (29), (30).
For the smoother we use two different methods, namely a damped Jacobi method and
a symmetric Gauss-Seidel method (SGS). The damped Jacobi method is as in (27) with
ω := 0.7. The symmetric Gauss-Seidel method consists of two substeps. In the first step
we use a Gauss-Seidel iteration as in (28). In the second stepwe apply this method with
a reversed ordering of the equations and the unknowns. The arithmetic costs per iteration
for such a symmetric Gauss-Seidel smoother are roughly twice as high as for a damped
Jacobi method. In the experiment we use the same number of pre- and post-smoothing
iterations, i.e.ν1 = ν2. The total number of smoothing iterations per multigrid iteration
is ν := ν1 + ν2. We use a multigrid V-cycle. i.e.,τ = 1 in the recursive call in (31).
The coarsest grid used in the multigrid method isT0, i.e. with a mesh sizeh0 = 1

4 . In
all experiments we use a starting vectorx0 := 0. The rate of convergence is measured by
looking at relative residuals:

rk :=
‖Aℓ̄x

k − bℓ̄‖2
‖bℓ̄‖2

.

In Fig. 7 (left) we show results for SGS withν = 4. For ℓ̄ = 1, . . . , 5 we plotted the
relative residualsrk for k = 1, . . . , 8. In Fig. 7 (right) we show results for the SGS method
with varying number of smoothing iterations, namelyν = 2, 4, 6. For ℓ̄ = 1, . . . , 5 we
give the average residual reduction per iterationr := (r8)

1
8 .

These results show the very fast and essentially level independent rate of convergence
of this multigrid method. For a larger number of smoothing iterations the convergence is
faster. On the other hand, also the costs per iteration then increase, cf. (34) (withg = 1

8 ).
Usually, in practice the number of smoothings per iterationis not taken very large. Typical
values areν = 2 or ν = 4. In the Fig. 8 we show similar results but now for the damped
Jacobi smoother (damping withω = 0.7) instead of the SGS method.
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For the method with damped Jacobi smoothing we also clearly observe an essentially
level independent rate of convergence. Furthermore there is an increase in the rate of
convergence when the numberν of smoothing step gets larger. Comparing the results of
the multigrid method with Jacobi smoothing to those with SGSsmoothing we see that the
latter method has a significantly faster convergence. Note,however, that the arithmetic
costs per iteration for the latter method are higher (the ratio lies between 1.5 and 2).

5 Multigrid Methods for Generalized Stokes Equations

Let Ω ⊂ R
d, d = 2 or 3 be a bounded connected domain. We consider the following

generalized Stokes problem: Given~f , find a velocity~u and a pressurep such that

ξ~u− ν∆~u+∇p = ~f in Ω,

∇ · ~u = 0 in Ω,

~u = 0 on ∂Ω.

(37)
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The parametersν > 0 (viscosity) andξ ≥ 0 are given. Often the latter is proportional to the
inverse of the time step in an implicit time integration method applied to a nonstationary
Stokes problem. Note that this general setting includes theclassical (stationary) Stokes
problem (ξ = 0). The weak formulation of (37) is as follows: Given~f ∈ L2(Ω)d, we seek
~u ∈ H1

0 (Ω)d andp ∈ L2
0(Ω) := { q ∈ L2(Ω) |

∫

Ω q dx = 0 } such that

ξ(~u,~v) + ν(∇~u,∇~v)− (div ~v, p) = (~f,~v) for all ~v ∈ H1
0 (Ω)d,

(div ~u, q) = 0 for all q ∈ L2
0(Ω).

(38)

Here(·, ·) denotes theL2 scalar product.
For discretization of (38) we use a standard finite element approach. Based on a regular

family of nestedtetrahedral gridsTℓ = Thℓ
with T0 ⊂ T1 ⊂ . . . we use a sequence of

nested finite element spaces

(Vℓ−1, Qℓ−1) ⊂ (Vℓ, Qℓ), ℓ = 1, 2, . . . .

The pair of spaces(Vℓ, Qℓ), ℓ ≥ 0, is assumed to be stable. Byhℓ we denote the mesh
size parameter corresponding toTℓ. In our numerical experiments we use the Hood-Taylor
P2 − P1 pair:

Vℓ = V d
ℓ , Vℓ := { v ∈ C(Ω) | v|T ∈ P2 for all T ∈ Tℓ },

Qℓ = { v ∈ C(Ω) | v|T ∈ P1 for all T ∈ Tℓ }.
(39)

The discrete problem is given by the Galerkin discretization of (38) with the pair(Vℓ, Qℓ).
We are interested in the solution of this discrete problem ona given finest discretization
level ℓ = ℓ̄. The resulting discrete problem can be represented using the standard nodal
bases in these finite element spaces. The representation of the discrete problem on levelℓ
in these bases results in alinear saddle point problemof the form

Aℓxℓ = bℓ with Aℓ =

(
Aℓ B

T
ℓ

Bℓ 0

)

, xℓ =

(
uℓ

pℓ

)

. (40)

The dimensions of the spacesVℓ andQℓ are denoted bynℓ andmℓ, respectively. The
matrixAℓ ∈ R

nℓ×nℓ is the discrete representation of the differential operator ξI − ν∆
and is symmetric positive definite. Note thatAℓ depends on the parametersξ andν. The
matrixAℓ depends on these parameters, too, and issymmetric and strongly indefinite.

We describe a multigrid method that can be used for the iterative solution of the system
(40). This method has the same algorithmic structure as in (31). We need intergrid transfer
operators (prolongation and restriction) and a smoother. These components are described
below.

Intergrid transfer operators.For the prolongation and restriction of vectors (or correspond-
ing finite element functions) between different level we usethe canonical operators. The
prolongation between levelℓ− 1 andℓ is given by

Pℓ =

(
PV 0
0 PQ

)

, (41)

where the matricesPV : R
nℓ−1 → R

nℓ andPQ : R
mℓ−1 → R

mℓ are matrix represen-
tations of the embeddingsVℓ−1 ⊂ Vℓ (quadratic interpolation forP2) andQℓ−1 ⊂ Qℓ
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(linear interpolation forP1), respectively. For the restriction operatorRℓ between the lev-
elsℓ andℓ − 1 we take the adjoint ofPℓ (w.r.t. a scaled Euclidean scalar product). Then
the Galerkin propertyAℓ−1 = RℓAℓPℓ holds.

Braess-Sarazin smoother. This smoother is introduced in Braess10. With Dℓ = diag(Aℓ)
and a givenα > 0 the smoothing iteration has the form

(
uk+1

ℓ

pk+1
ℓ

)

=

(
uk

ℓ

pk
ℓ

)

−
(
αDℓ B

T
ℓ

Bℓ 0

)−1{(
Aℓ B

T
ℓ

Bℓ 0

)(
uk

ℓ

pk
ℓ

)

−
(
fℓ
0

)}

. (42)

Each iteration (42) requires the solution of the auxiliary problem
(
αDℓ B

T
ℓ

Bℓ 0

)(
ûℓ

p̂ℓ

)

=

(
rk

ℓ

Bℓu
k
ℓ

)

(43)

with rk
ℓ = Aℓu

k
ℓ +BT

ℓ pk
ℓ − fℓ. From (43) one obtains

Bℓûℓ = Bℓu
k
ℓ ,

and hence,

Bℓu
k+1
ℓ = Bℓ(u

k
ℓ − ûℓ) = 0 for all j ≥ 0. (44)

Therefore, the Braess-Sarazin method can be considered as asmoother on the subspace of
vectors that satisfy the constraint equationBℓuℓ = 0.

The problem (43) can be reduced to a problem for the auxiliarypressure unknown̂pℓ:

Zℓp̂ℓ = BℓD
−1
ℓ rk

ℓ − αBℓu
k
ℓ , (45)

whereZℓ = BℓD
−1
ℓ BT

ℓ .
Remark 5.1 The matrixZℓ is similar to a discrete Laplace operator on the pressure space.
In practice the system (45) is solved approximately using anefficient iterative solver, cf.
Braess10, Zulehner11. �

Oncep̂ℓ is known (approximately), an approximation forûℓ can easily be determined from
αDℓûℓ = rk

ℓ −BT
ℓ p̂ℓ.

Vanka smoother. The Vanka-type smoothers, originally proposed by Vanka12 for finite
difference schemes, are block Gauß-Seidel type of methods.If one uses such a method in
a finite element setting then a block of unknowns consists of all degrees of freedom that
correspond with one element. Numerical tests given in John13 show that the use of this
element-wise Vanka smoother can be problematic for continuous pressure approximations.
In John13 the pressure-oriented Vanka smoother for continuous pressure approximations
has been suggested as a good alternative. In this method a local problem corresponds to
the block of unknowns consisting of one pressure unknown andall velocity degrees of
freedom that are connected with this pressure unknown. We only consider this type of
Vanka smoother. We first give a more precise description of this method.

We take a fixed levelℓ in the discretization hierarchy. To simplify the presentation we

drop the level indexℓ from the notation, i.e. we write, for example,

(
u
p

)

∈ R
n+m instead

of

(
uℓ

pℓ

)

∈ R
nℓ+mℓ . Let r(j)P : R

m → R be the pressure projection (injection)

r
(j)
P p = pj , j = 1, . . . ,m.
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For eachj (1 ≤ j ≤ m) let the set of velocity indices that are “connected” toj be given by

Vj = {1 ≤ i ≤ n | (r(j)P B)i 6= 0}.
Definedj := |Vj | and writeVj = {i1 < i2 < . . . < idj

}. A corresponding velocity

projection operatorr(j)V : R
n → R

dj is given by

r
(j)
V u = (ui1 , ui2 , . . . , uidj

)T .

The combined pressure and velocity projection is given by

r(j) =

(

r
(j)
V 0

0 r
(j)
P

)

∈ R
(dj+1)×(n+m).

Furthermore, definep(j) =
(
r(j)
)T

. Using these operators we can formulate a standard
multiplicative Schwarz method. Define

A(j) := r(j)Ap(j) =:

(

A(j) B(j)T

B(j) 0

)

∈ R
(dj+1)×(dj+1).

Note thatB(j) is a row vector of lengthdj . In addition, we define

D(j) =

(

diag(A(j)) B(j)T

B(j) 0

)

=






. . . 0
...

0
. . .

...
. . .. . . 0




 ∈ R

(dj+1)×(dj+1).

The full Vanka smoother is a multiplicative Schwarz method (or blockGauss-Seidel
method) with iteration matrix

Sfull =

m∏

j=1

(
I − p(j)(A(j))−1r(j)A

)
. (46)

ThediagonalVanka smoother is similar, but withD(j) instead ofA(j):

Sdiag =

m∏

j=1

(
I − p(j)(D(j))−1r(j)A

)
. (47)

Thus, a smoothing step with a Vanka-type smoother consists of a loop over all pressure
degrees of freedom (j = 1, . . . ,m), where for eachj a linear system of equations with
the matrixA(j) (or D(j)) has to be solved. The degrees of freedom are updated in a
Gauss-Seidel manner. These two methods are well-defined if all matricesA(j) andD(j)

are nonsingular.
The linear systems with the diagonal Vanka smoother can be solved very efficiently

using the special structure of the matrixD(j) whereas for the systems with the full Vanka
smoother a direct solver for the systems with the matricesA(j) is required. The computa-
tional costs for solving a local (i.e. for each block) linearsystem of equations is∼ dj for
the diagonal Vanka smoother and∼ d3

j for the full Vanka smoother. Typical values fordj

are given in Table 2.

Using the prolongation, restriction and smoothers as explained above a multigrid algorithm
for solving the discretized Stokes problem (40) is defined asin (31).
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h0 = 2−1 h1 = 2−2 h2 = 2−3 h3 = 2−4 h4 = 2−5

nℓ 81 1029 10125 89373 750141
mℓ 27 125 729 4913 35937

Table 1. Dimensions:nℓ = number of velocity unknowns,mℓ = number of pressure unknowns.

6 Numerical Experiment: Multigrid Applied to a Generalized Stokes
Equation

We consider the generalized Stokes equation as in (37) on theunit cubeΩ = (0, 1)3. The
right-hand side~f is taken such that the continuous solution is

~u(x, y, z) =
1

3





sin(πx) sin(πy) sin(πz)
− cos(πx) cos(πy) sin(πz)
2 · cos(πx) sin(πy) cos(πz)



 ,

p(x, y, z) = cos(πx) sin(πy) sin(πz) + C

with a constantC such that
∫

Ω p dx = 0. For the discretization we start with a uniform
tetrahedral grid withh0 = 1

2 and we apply regular refinements to this starting discretiza-
tion. For the finite element discretization we use the Hood-TaylorP2-P1 pair, cf. (39). In
Table 1 the dimension of the system to be solved on each level and the corresponding mesh
size are given.

In all tests below the iterations were repeated until the condition

‖r(k)‖
‖r(0)‖ < 10−10,

with r(k) = b−Ax(k), was satisfied.
We first consider an experiment to show that for this problem class the multigrid

method withfull Vanka smoother is very time consuming. In Table 2 we show the maximal
and mean values ofdj on the levelℓ. These numbers indicate the dimensions of the local
systems that have to be solved in the Vanka smoother.

h0 = 2−1 h1 = 2−2 h2 = 2−3 h3 = 2−4 h4 = 2−5

mean(dj)
maxj dj

21.8 / 82 51.7 / 157 88.8 / 157 119.1 / 165 138.1 / 166

Table 2. The maximal and mean values ofdj on different grids.

We use a multigrid W-cycle with 2 pre- and 2 post-smoothing iterations. In Table 3 we
show the computing time (in seconds) and the number of iterations needed both for the full
VankaSfull and the diagonal VankaSdiag smoother.

As can be seen from these results, the rather high dimensionsof the local systems lead
to high computing times for the multigrid method with the full Vanka smoother compared
to the method with the diagonal Vanka smoother. Therefore weprefer the method with
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ξ = 0 Sfull, h3 = 2−4 Sdiag,h3 = 2−4 Sfull, h4 = 2−5 Sdiag,h4 = 2−5

ν = 1 287 (4) 19 (10) 3504 (5) 224 (13)
ν = 10−1 283 (4) 19 (10) 3449 (5) 238 (13)
ν = 10−2 284 (4) 19 (10) 3463 (5) 238 (13)
ν = 10−3 356 (5) 20 (11) 3502 (5) 238 (13)

Table 3. CPU time and number of iterations for multigrid withthe full and the diagonal Vanka smoother.

the diagonal Vanka smoother. In numerical experiments we observed that the multigrid
W-cycle with onlyonepre- and post-smoothing iteration with the diagonal Vanka method
sometimes diverges. Further tests indicate that often for the method with diagonal Vanka
smoothing the choiceν1 = ν2 = 4 is (slightly) better (w.r.t. CPU time) thanν1 = ν2 = 2.

Results for two variants of the multigrid W-cycle method, one with diagonal Vanka
smoothing (V-MGM) and one with Braess-Sarazin smoothing (BS-MGM) are given in the
tables 4 and 5. In the V-MGM we useν1 = ν2 = 4. Based on numerical experiments,
in the method with the Braess-Sarazin smoother we useν1 = ν2 = 2 andα = 1.25.
For other valuesα ∈ [1.1, 1.5] the efficiency is very similar. The linear system in (45)
is solved approximately using a conjugate gradient method with a fixed relative tolerance
εCG = 10−2. To investigate the robustness of these method we give results for several
values ofℓ, ν andξ.

ξ = 0 h3 = 2−4

ν V-MGM BS-MGM
ν = 1 19 (5) 20 (11)
ν = 10−1 19 (5) 20 (11)
ν = 10−3 19 (5) 17 (8)

ξ = 10 h3 = 2−4

ν V-MGM BS-MGM
ν = 1 19 (5) 20 (11)
ν = 10−1 17 (4) 20 (11)
ν = 10−3 15 (3) 21 (7)

ξ = 100 h3 = 2−4

ν V-MGM BS-MGM
ν = 1 17 (4) 20 (11)
ν = 10−1 15 (3) 19 (7)
ν = 10−3 15 (3) 19 (6)

Table 4. CPU time and the number of iterations for BS- and V-MGM methods.

The results show that the rate of convergence is essentiallyindependent of the parameters
ν and ξ, i.e., these methods have a robustness property. Furthermore we observe that
if for fixed ν, ξ we compare the results forℓ = 3 (h3 = 2−4) with those forℓ = 4
(h4 = 2−5) then for the V-MGM there is (almost) no increase in the number of iterations.
This illustrates the mesh independent rate of convergence of the method. For the BS-
MGM there is a (small) growth in the number of iterations. Forboth methods the CPU
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ξ = 0 h4 = 2−5

ν V-MGM BS-MGM
ν = 1 198 (5) 274 (14)
ν = 10−1 199 (5) 276 (14)
ν = 10−3 198 (5) 241 (11)

ξ = 10 h3 = 2−5

ν V-MGM BS-MGM
ν = 1 190 (5) 244 (13)
ν = 10−1 189 (5) 224 (10)
ν = 10−3 145 (3) 238 (7)

ξ = 100 h3 = 2−5

ν V-MGM BS-MGM
ν = 1 190 (5) 241 (13)
ν = 10−1 167 (4) 243 (13)
ν = 10−3 122 (2) 282 (9)

Table 5. CPU time and the number of iterations for BS- and V-MGM methods.

time needed per iteration grows with a factor of roughly 10 when going fromℓ = 3 to
ℓ = 4. The number of unknowns then grows with about a factor 8.3, cf. Table 1. This
indicates that the arithmetic work per iteration is almost linear in the number of unknowns.

7 Convergence Analysis for Scalar Elliptic Problems

In this section we present a convergence analysis for the multigrid method introduced in
section 3. Our approach is based on the so-called approximation- and smoothing property,
introduced by Hackbusch1, 14. For a discussion of other analyses we refer to remark 7.23.

7.1 Introduction

One easily verifies that the two-grid method is a linear iterative method. The iteration
matrix of this method withν1 presmoothing andν2 postsmoothing iterations on levelℓ is
given by

CTG,ℓ = CTG,ℓ(ν2, ν1) = Sν2

ℓ (I− pℓA
−1
ℓ−1rℓAℓ)S

ν1

ℓ (48)

with Sℓ = I−M−1
ℓ Aℓ the iteration matrix of the smoother.

Theorem 7.1 The multigrid method(31) is a linear iterative method with iteration matrix
CMG,ℓ given by

CMG,0 = 0 (49a)

CMG,ℓ = Sν2

ℓ

(
I− pℓ(I−Cτ

MG,ℓ−1)A
−1
ℓ−1rℓAℓ

)
Sν1

ℓ (49b)

= CTG,ℓ + Sν2

ℓ pℓC
τ
MG,ℓ−1A

−1
ℓ−1rℓAℓS

ν1

ℓ , ℓ = 1, 2, . . . (49c)
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Proof: The result in (49a) is trivial. The result in (49c) follows from (49b) and the definition
of CTG,ℓ. We now prove the result in (49b) by induction. Forℓ = 1 it follows from (49a)
and (48). Assume that the result is correct forℓ− 1. ThenMGMℓ−1(yℓ−1, zℓ−1) defines
a linear iterative method and for arbitraryyℓ−1, zℓ−1 ∈ R

nℓ−1 we have

MGMℓ−1(yℓ−1, zℓ−1)−A−1
ℓ−1zℓ−1 = CMG,ℓ−1(yℓ−1 −A−1

ℓ−1zℓ−1) (50)

We rewrite the algorithm (31) as follows:

x1 := Sν1

ℓ (xold
ℓ ,bℓ)

x2 := x1 + pℓMGMτ
ℓ−1

(
0, rℓ(bℓ −Aℓx

1)
)

xnew
ℓ := Sν2

ℓ (x2,bℓ).

From this we get

xnew
ℓ − x∗

ℓ = xnew
ℓ −A−1

ℓ bℓ = Sν2

ℓ (x2 − x∗
ℓ )

= Sν2

ℓ

(
x1 − x∗

ℓ + pℓMGMτ
ℓ−1

(
0, rℓ(bℓ −Aℓx

1)
)
.

Now we use the result (50) withyℓ−1 = 0, zℓ−1 := rℓ(bℓ −Aℓx
1). This yields

xnew
ℓ − x∗

ℓ = Sν2

ℓ

(
x1 − x∗

ℓ + pℓ(A
−1
ℓ−1zℓ−1 −Cτ

MG,ℓ−1A
−1
ℓ−1zℓ−1

)

= Sν2

ℓ

(
I− pℓ(I−Cτ

MG,ℓ−1)A
−1
ℓ−1rℓAℓ

)
(x1 − x∗

ℓ )

= Sν2

ℓ

(
I− pℓ(I−Cτ

MG,ℓ−1)A
−1
ℓ−1rℓAℓ

)
Sν1

ℓ (xold − x∗
ℓ ).

This completes the proof.

The convergence analysis will be based on the following splitting of the two-grid
iteration matrix, withν2 = 0, i.e. no postsmoothing:

‖CTG,ℓ(0, ν1)‖2 = ‖(I− pℓA
−1
ℓ−1rℓAℓ)S

ν1

ℓ ‖2
≤ ‖A−1

ℓ − pℓA
−1
ℓ−1rℓ‖2 ‖AℓS

ν1

ℓ ‖2
(51)

In section 7.2 we will prove a bound of the form‖A−1
ℓ −pℓA

−1
ℓ−1rℓ‖2 ≤ CA‖Aℓ‖−1

2 . This
result is called theapproximation property. In section 7.3 we derive a suitable bound for the
term‖AℓS

ν1

ℓ ‖2. This is the so-calledsmoothing property. In section 7.4 we combine these
bounds with the results in (51) and in theorem 7.1. This yields bounds for the contraction
number of the two-grid method and of the multigrid W-cycle. For the V-cycle a more subtle
analysis is needed. This is presented in section 7.5. In the convergence analysis we need
the following:
Assumption 7.2 In the sections 7.2–7.5 we assume that the family of triangulations{Thℓ

}
corresponding to the finite element spacesVℓ, ℓ = 0, 1, . . ., is quasi-uniformand that
hℓ−1 ≤ chℓ with a constantc independent ofℓ.

We give some results that will be used in the analysis furtheron. First we recall aninverse
inequalitythat is known from the analysis of finite element methods:

|vℓ|1 ≤ c h−1
ℓ ‖vℓ‖L2 for all vℓ ∈ Vℓ

with a constantc independent ofℓ. For this result to hold we need assumption 7.2.
We now show that, apart from a scaling factor, the isomorphism Pℓ : (Rnℓ , 〈·, ·〉) →
(Vℓ, 〈·, ·〉L2) and its inverse are uniformly (w.r.t.ℓ) bounded:
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Lemma 7.3 There exist constantsc1 > 0 andc2 independent ofℓ such that

c1‖Pℓx‖L2 ≤ h
1
2d

ℓ ‖x‖2 ≤ c2‖Pℓx‖L2 for all x ∈ R
nℓ . (52)

Proof: The definition ofPℓ yieldsPℓx =
∑nℓ

i=1 xiφi =: vℓ ∈ Vℓ andvℓ(ξi) = xi, where
ξi is the vertex in the triangulation which corresponds to the nodal basis functionφi. Note
that

‖Pℓx‖2L2 = ‖vℓ‖2L2 =
∑

T∈Tℓ

‖vℓ‖2L2(T ).

Sincevℓ is linear on each simplexT in the triangulationTℓ there are constants̃c1 > 0 and
c̃2 independent ofhℓ such that

c̃1‖vℓ‖2L2(T ) ≤ |T |
∑

ξj∈V (T )

vℓ(ξj)
2 ≤ c̃2‖vℓ‖2L2(T ),

whereV (T ) denotes the set of vertices of the simplexT . Summation over allT ∈ Tℓ,
usingvℓ(ξj) = xj and|T | ∼ hd

ℓ we obtain

ĉ1‖vℓ‖2L2 ≤ hd
ℓ

nℓ∑

i=1

x2
i ≤ ĉ2‖vℓ‖2L2,

with constantŝc1 > 0 andĉ2 independent ofhℓ and thus we get the result in (52).

The third preliminary result concerns the scaling of the stiffness matrix:
Lemma 7.4 Let Aℓ be the stiffness matrix as in(26). Assume that the bilinear form is
such that the usual conditions(22)are satisfied. Then there exist constantsc1 > 0 andc2
independent ofℓ such that

c1h
d−2
ℓ ≤ ‖Aℓ‖2 ≤ c2hd−2

ℓ .

Proof: First note that

‖Aℓ‖2 = max
x,y∈R

nℓ

〈Aℓx,y〉
‖x‖2‖y‖2

.

Using the result in lemma 7.3, the continuity of the bilinearform and the inverse inequality
we get

max
x,y∈Rnℓ

〈Aℓx,y〉
‖x‖2‖y‖2

≤ chd
ℓ max

vℓ,wℓ∈Vℓ

k(vℓ, wℓ)

‖vℓ‖L2‖wℓ‖L2

≤ chd
ℓ max

vℓ,wℓ∈Vℓ

|vℓ|1|wℓ|1
‖vℓ‖L2‖wℓ‖L2

≤ c hd−2
ℓ

and thus the upper bound is proved. The lower bound follows from

max
x,y∈R

nℓ

〈Aℓx,y〉
‖x‖2‖y‖2

≥ max
1≤i≤nℓ

〈Aℓei, ei〉 = k(φi, φi) ≥ c|φi|21 ≥ chd−2
ℓ

The last inequality can be shown by using forT ⊂ supp(φi) the affine transformation
from the unit simplex toT .
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7.2 Approximation property

In this section we derive a bound for the first factor in the splitting (51). We start with two
important assumptions that are crucial for the analysis. This first one concernsregularity
of the continuous problem, the second one is adiscretization error bound.
Assumption 7.5 We assume that the continuous problem in(23) is H2-regular, i.e. for
f ∈ L2(Ω) the corresponding solutionu satisfies

‖u‖H2 ≤ c ‖f‖L2,

with a constantc independent off . Furthermore we assume a finite element discretization
error bound for the Galerkin discretization(25):

‖u− uℓ‖L2 ≤ ch2
ℓ‖f‖L2

with c independent off and ofℓ.

We will need thedual problem of (23) which is as follows: determinẽu ∈ H1
0 (Ω)

such thatk(v, ũ) = f(v) for all v ∈ H1
0 (Ω). Note that this dual problem is obtained by

interchanging the arguments in the bilinear formk(·, ·) and that the dual problem equals
the original one if the bilinear form is symmetric (as for example in case of the Poisson
equation).

In the analysis we will use the adjoint operatorP ∗
ℓ : Vℓ → R

nℓ which satisfies
〈Pℓx, vℓ〉L2 = 〈x, P ∗

ℓ vℓ〉 for all x ∈ R
nℓ , vℓ ∈ Vℓ. As a direct consequence of lemma 7.3

we obtain

c1‖P ∗
ℓ vℓ‖2 ≤ h

1
2 d

ℓ ‖vℓ‖L2 ≤ c2‖P ∗
ℓ vℓ‖2 for all vℓ ∈ Vℓ (53)

with constantsc1 > 0 andc2 independent ofℓ. We now formulate a main result for the
convergence analysis of multigrid methods:

Theorem 7.6 (Approximation property.) Consider Aℓ, pℓ, rℓ as defined in(26),
(29),(30). Assume that the variational problem(23) is such that the usual conditions(22)
are satisfied. Moreover, the problem(23)and the corresponding dual problem are assumed
to beH2-regular. Then there exists a constantCA independent ofℓ such that

‖A−1
ℓ − pℓA

−1
ℓ−1rℓ‖2 ≤ CA‖Aℓ‖−1

2 for ℓ = 1, 2, . . . (54)

Proof: Let bℓ ∈ R
nℓ be given. The constants in the proof are independent ofbℓ and ofℓ.

Consider the variational problems:

u ∈ H1
0 (Ω) : k(u, v) = 〈(P ∗

ℓ )−1bℓ, v〉L2 for all v ∈ H1
0 (Ω)

uℓ ∈ Vℓ : k(uℓ, vℓ) = 〈(P ∗
ℓ )−1bℓ, vℓ〉L2 for all vℓ ∈ Vℓ

uℓ−1 ∈ Vℓ−1 : k(uℓ−1, vℓ−1) = 〈(P ∗
ℓ )−1bℓ, vℓ−1〉L2 for all vℓ−1 ∈ Vℓ−1.

Then

A−1
ℓ bℓ = P−1

ℓ uℓ and A−1
ℓ−1rℓbℓ = P−1

ℓ−1uℓ−1

hold. Hence we obtain, using lemma 7.3,

‖(A−1
ℓ − pℓA

−1
ℓ−1rℓ)bℓ‖2 = ‖P−1

ℓ (uℓ − uℓ−1)‖2 ≤ c h−
1
2 d

ℓ ‖uℓ − uℓ−1‖L2 . (55)

491



Now we use the assumptions on the discretization error boundand on theH2-regularity of
the problem. This yields

‖uℓ − uℓ−1‖L2 ≤ ‖uℓ − u‖L2 + ‖uℓ−1 − u‖L2

≤ ch2
ℓ |u|2 + +ch2

ℓ−1|u|2 ≤ ch2
ℓ‖(P ∗

ℓ )−1bℓ‖L2

(56)

We combine (55) with (56) and use (53), and get

‖(A−1
ℓ − pℓA

−1
ℓ−1rℓ)bℓ‖2 ≤ c h2−d

ℓ ‖bℓ‖2

and thus‖A−1
ℓ − pℓA

−1
ℓ−1rℓ‖2 ≤ c h2−d

ℓ . The proof is completed if we use lemma 7.4.

Note that in the proof of the approximation property we use the underlying contin-
uous problem.

7.3 Smoothing property

In this section we derive inequalities of the form

‖AℓS
ν
ℓ ‖2 ≤ g(ν)‖Aℓ‖2

whereg(ν) is a monotonically decreasing function withlimν→∞ g(ν) = 0. In the first
part of this section we derive results for the case thatAℓ is symmetric positive definite. In
the second part we discuss the general case.

Smoothing property for the symmetric positive definite case
We start with an elementary lemma:
Lemma 7.7 LetB ∈ R

m×m be a symmetric positive definite matrix withσ(B) ⊂ (0, 1].
Then we have

‖B(I−B)ν‖2 ≤
1

2(ν + 1)
for ν = 1, 2, . . .

Proof: Note that

‖B(I−B)ν‖2 = max
x∈(0,1]

x(1 − x)ν =
1

ν + 1

( ν

ν + 1

)ν
.

A simple computation shows thatν →
(

ν
ν+1

)ν
is decreasing on[1,∞).

Below for a few basic iterative methods we derive the smoothing property for the
symmetric case, i.e.,b = 0 in the bilinear formk(·, ·). We first consider the Richardson
method:
Theorem 7.8 Assume that in the bilinear form we haveb = 0 and that the usual condi-
tions(22) are satisfied. LetAℓ be the stiffness matrix in(26). For c0 ∈ (0, 1] we have the
smoothing property

‖Aℓ(I−
c0

ρ(Aℓ)
Aℓ)

ν‖2 ≤
1

2c0(ν + 1)
‖Aℓ‖2 , ν = 1, 2, . . .

holds.
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Proof: Note thatAℓ is symmetric positive definite. Apply lemma 7.7 withB := ωℓAℓ,
ωℓ := c0 ρ(Aℓ)

−1. This yields

‖Aℓ(I− ωℓAℓ)
ν‖2 ≤ ω−1

ℓ

1

2(ν + 1)
≤ 1

2c0(ν + 1)
ρ(Aℓ) =

1

2c0(ν + 1)
‖Aℓ‖2

and thus the result is proved.

A similar result can be shown for the damped Jacobi method:
Theorem 7.9 Assume that in the bilinear form we haveb = 0 and that the usual condi-
tions(22)are satisfied. LetAℓ be the stiffness matrix in(26)andDℓ := diag(Aℓ). There
exists anω ∈ (0, ρ(D−1

ℓ Aℓ)
−1], independent ofℓ, such that the smoothing property

‖Aℓ(I− ωD−1
ℓ Aℓ)

ν‖2 ≤
1

2ω(ν + 1)
‖Aℓ‖2 , ν = 1, 2, . . .

holds.
Proof: Define the symmetric positive definite matrix̃B := D

− 1
2

ℓ AℓD
− 1

2

ℓ . Note that

(Dℓ)ii = (Aℓ)ii = k(φi, φi) ≥ c |φi|21 ≥ c hd−2
ℓ , (57)

with c > 0 independent ofℓ andi. Using this in combination with lemma 7.4 we get

‖B̃‖2 ≤
‖Aℓ‖2
λmin(Dℓ)

≤ c , c independent ofℓ.

Hence forω ∈ (0, 1
c ] ⊂ (0, ρ(D−1

ℓ Aℓ)
−1] we haveσ(ωB̃) ⊂ (0, 1]. Application of

lemma 7.7, withB = ωB̃, yields

‖Aℓ(I− ωD−1
ℓ Aℓ)

ν‖2 ≤ ω−1‖D
1
2

ℓ ‖2‖ωB̃(I− ωB̃)ν‖2‖D
1
2

ℓ ‖2

≤ ‖Dℓ‖2
2ω(ν + 1)

≤ 1

2ω(ν + 1)
‖Aℓ‖2

and thus the result is proved.

Remark 7.10 The value of the parameterω used in theorem 7.9 is such that

ωρ(D−1
ℓ Aℓ) = ωρ(D

− 1
2

ℓ AℓD
− 1

2

ℓ ) ≤ 1 holds. Note that

ρ(D
− 1

2

ℓ AℓD
− 1

2

ℓ ) = max
x∈R

nℓ

〈Aℓx,x〉
〈Dℓx,x〉

≥ max
1≤i≤nℓ

〈Aℓei, ei〉
〈Dℓeiei〉

= 1

and thus we haveω ≤ 1. This explains why in multigrid methods one usually uses a
dampedJacobi method as a smoother. �

We finally consider the symmetric Gauss-Seidel method. IfAℓ = AT
ℓ this method has an

iteration matrix

Sℓ = I−M−1
ℓ Aℓ, Mℓ = (Dℓ − Lℓ)D

−1
ℓ (Dℓ − LT

ℓ ) , (58)

where we use the decompositionAℓ = Dℓ − Lℓ − LT
ℓ with Dℓ a diagonal matrix andLℓ

a strictly lower triangular matrix.
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Theorem 7.11 Assume that in the bilinear form we haveb = 0 and that the usual con-
ditions (22) are satisfied. LetAℓ be the stiffness matrix in(26) andMℓ as in (58). The
smoothing property

‖Aℓ(I−M−1
ℓ Aℓ)

ν‖2 ≤
c

ν + 1
‖Aℓ‖2 , ν = 1, 2, . . .

holds with a constantc independent ofν andℓ.
Proof: Note thatMℓ = Aℓ + LℓD

−1
ℓ LT

ℓ and thusMℓ is symmetric positive definite.

Define the symmetric positive definite matrixB := M
− 1

2

ℓ AℓM
− 1

2

ℓ . From

0 < max
x∈Rnℓ

〈Bx,x〉
〈x,x〉 = max

x∈Rnℓ

〈Aℓx,x〉
〈Mℓx,x〉

= max
x∈Rnℓ

〈Aℓx,x〉
〈Aℓx,x〉+ 〈D−1

ℓ LT
ℓ x,LT

ℓ x〉 ≤ 1

it follows thatσ(B) ⊂ (0, 1]. Application of lemma 7.7 yields

‖Aℓ(I−M−1
ℓ Aℓ)

ν‖2 ≤ ‖M
1
2

ℓ ‖22 ‖B(I−B)ν‖2 ≤ ‖Mℓ‖2
1

2(ν + 1)
.

From (57) we have‖D−1
ℓ ‖2 ≤ c h2−d

ℓ . Using the sparsity ofAℓ we obtain

‖Lℓ‖2‖LT
ℓ ‖2 ≤ ‖Lℓ‖∞‖Lℓ‖1 ≤ c(max

i,j
|(Aℓ)ij |)2 ≤ c‖Aℓ‖22.

In combination with lemma 7.4 we then get

‖Mℓ‖2 ≤ ‖D−1
ℓ ‖2‖Lℓ‖2‖LT

ℓ ‖2 ≤ c h2−d
ℓ ‖Aℓ‖22 ≤ c‖Aℓ‖2 (59)

and this completes the proof.

For the symmetric positive definite case smoothing properties have also been proved for
other iterative methods. For example, in Wittum15, 16 a smoothing property is proved
for a variant of the ILU method and in Bröker et al.17 it is shown that the SPAI (sparse
approximate inverse) preconditioner satisfies a smoothingproperty.

Smoothing property for the nonsymmetric case
For the analysis of the smoothing property in the general (possibly nonsymmetric) case
we can not use lemma 7.7. Instead the analysis will be based onthe following lemma (cf.
Reusken18, 19):
Lemma 7.12 Let ‖ · ‖ be any induced matrix norm and assume that forB ∈ R

m×m the
inequality‖B‖ ≤ 1 holds. The we have

‖(I−B)(I + B)ν‖ ≤ 2ν+1

√

2

πν
, for ν = 1, 2, . . .

Proof: Note that

(I−B)(I + B)ν = (I−B)

ν∑

k=0

(
ν
k

)

Bk = I−Bν+1 +

ν∑

k=1

(
(
ν
k

)

−
(

ν
k − 1

)
)
Bk.

This yields

‖(I−B)(I + B)ν‖ ≤ 2 +

ν∑

k=1

∣
∣

(
ν
k

)

−
(

ν
k − 1

)
∣
∣.
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Using

(
ν
k

)

≥
(

ν
k − 1

)

⇔ k ≤ 1
2 (ν + 1) and

(
ν
k

)

≥
(

ν
ν − k

)

we get (with[ · ]
the round down operator):

ν∑

k=1

∣
∣

(
ν
k

)

−
(

ν
k − 1

)
∣
∣

=

[ 12 (ν+1)]
∑

1

(
(
ν
k

)

−
(

ν
k − 1

)
)

+
ν∑

[ 12 (ν+1)]+1

(
(

ν
k − 1

)

−
(
ν
k

)
)

=

[ 12ν]
∑

1

(
(
ν
k

)

−
(

ν
k − 1

)
)

+

[ 12ν]
∑

m=1

(
(
ν
m

)

−
(

ν
m− 1

)
)

= 2

[ 12ν]
∑

k=1

(
(
ν
k

)

−
(

ν
k − 1

)
)

= 2
(
(

ν
[ 12ν]

)

−
(
ν
0

)
)
.

An elementary analysis yields (cf., for example, Reusken19)
(

ν
[ 12ν]

)

≤ 2ν

√

2

πν
for ν ≥ 1.

Thus we have proved the bound.

Corollary 7.13 Let ‖ · ‖ be any induced matrix norm. Assume that for a linear iterative
method with iteration matrixI−M−1

ℓ Aℓ we have

‖I−M−1
ℓ Aℓ‖ ≤ 1 (60)

Then forSℓ := I− 1
2M

−1
ℓ Aℓ the following smoothing property holds:

‖AℓS
ν
ℓ ‖ ≤ 2

√

2

πν
‖Mℓ‖ , ν = 1, 2, . . .

Proof: DefineB = I−M−1
ℓ Aℓ and apply lemma 7.12:

‖AℓS
ν
ℓ ‖ ≤ ‖Mℓ‖

(1

2

)ν‖(I−B)(I + B)ν‖ ≤ 2

√

2

πν
‖Mℓ‖.

Remark 7.14 Note that in the smoother in corollary 7.13 we use damping with a factor12 .
Generalizations of the results in lemma 7.12 and corollary 7.13 are given in Nevanlinna20,
Hackbusch21, Zulehner22. In Nevanlinna20, Zulehner22 it is shown that the damping factor
1
2 can be replaced by an arbitrary damping factorω ∈ (0, 1). Also note that in the smooth-

ing property in corollary 7.13 we have aν-dependence of the formν−
1
2 , whereas in the

symmetric case this is of the formν−1. It Hackbusch21 it is shown that this loss of a factor
ν

1
2 when going to the nonsymmetric case is due to the fact that complex eigenvalues may

occur. �

To verify the condition in (60) we will use the following elementary result:
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Lemma 7.15 If E ∈ R
m×m is such that there exists ac > 0 with

‖Ex‖22 ≤ c〈Ex,x〉 for all x ∈ R
m

then we have‖I− ωE‖2 ≤ 1 for all ω ∈ [0, 2
c ].

Proof: Follows from:

‖(I− ωE)x‖22 = ‖x‖22 − 2ω〈Ex,x〉+ ω2‖Ex‖22
≤ ‖x‖22 − ω(

2

c
− ω)‖Ex‖22

≤ ‖x‖22 if ω(
2

c
− ω) ≥ 0.

We now use these results to derive a smoothing property for the Richardson method.
Theorem 7.16 Assume that the bilinear form satisfies the usual conditions(22). LetAℓ

be the stiffness matrix in(26). There exist constantsω > 0 and c independent ofℓ such
that the following smoothing property holds:

‖Aℓ(I− ωh2−d
ℓ Aℓ)

ν‖2 ≤
c√
ν
‖Aℓ‖2 , ν = 1, 2, . . . .

Proof: Using lemma 7.3, the inverse inequality and the ellipticityof the bilinear form we
get, for arbitraryx ∈ R

nℓ :

‖Aℓx‖2 = max
y∈R

nℓ

〈Aℓx,y〉
‖y‖2

≤ c h
1
2d

ℓ max
vℓ∈Vℓ

k(Pℓx, vℓ)

‖vℓ‖L2

≤ c h
1
2 d

ℓ max
vℓ∈Vℓ

|Pℓx|1|vℓ|1
‖vℓ‖L2

≤ c h
1
2d−1

ℓ |Pℓx|1

≤ c h
1
2 d−1

ℓ k(Pℓx, Pℓx)
1
2 = c h

1
2 d−1

ℓ 〈Aℓx,x〉
1
2 .

From this and lemma 7.15 it follows that there exists a constantω > 0 such that

‖I− 2ωh2−d
ℓ Aℓ‖2 ≤ 1 for all ℓ. (61)

Define Mℓ := 1
2ωh

d−2
ℓ I. From lemma 7.4 it follows that there exists a constantcM

independent ofℓ such that‖Mℓ‖2 ≤ cM‖Aℓ‖2. Application of corollary 7.13 proves the
result of the lemma.

We now consider the damped Jacobi method.
Theorem 7.17 Assume that the bilinear form satisfies the usual conditions(22). LetAℓ

be the stiffness matrix in(26) andDℓ = diag(Aℓ). There exist constantsω > 0 and c
independent ofℓ such that the following smoothing property holds:

‖Aℓ(I− ωD−1
ℓ Aℓ)

ν‖2 ≤
c√
ν
‖Aℓ‖2 , ν = 1, 2, . . .

Proof: We use the matrix norm induced by the vector norm‖y‖D := ‖D
1
2

ℓ y‖2 for y ∈
R

nℓ . Note that forB ∈ R
nℓ×nℓ we have‖B‖D = ‖D

1
2

ℓ BD
− 1

2

ℓ ‖2. The inequalities

‖D−1
ℓ ‖2 ≤ c1 h2−d

ℓ , κ(Dℓ) ≤ c2 (62)
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hold with constantsc1, c2 independent ofℓ. Using this in combination with lemma 7.3,
the inverse inequality and the ellipticity of the bilinear form we get, for arbitraryx ∈ R

nℓ :

‖D− 1
2

ℓ AℓD
− 1

2

ℓ x‖2 = max
y∈Rnℓ

〈AℓD
− 1

2

ℓ x,D
− 1

2

ℓ y〉
‖y‖2

= max
y∈Rnℓ

k(PℓD
− 1

2

ℓ x, PℓD
− 1

2

ℓ y)

‖y‖2

≤ c h−1
ℓ max

y∈Rnℓ

|PℓD
− 1

2

ℓ x|1‖PℓD
− 1

2

ℓ y‖L2

‖y‖2
≤ c h

1
2d−1

ℓ |PℓD
− 1

2

ℓ x|1‖D− 1
2

ℓ ‖2 ≤ c |PℓD
− 1

2

ℓ x|1
≤ c k(PℓD

− 1
2

ℓ x, PℓD
− 1

2

ℓ x)
1
2 = c 〈D− 1

2

ℓ AℓD
− 1

2

ℓ x,x〉 12 .
From this and lemma 7.15 it follows that there exists a constantω > 0 such that

‖I− 2ωD−1
ℓ Aℓ‖D = ‖I− 2ωD

− 1
2

ℓ AℓD
− 1

2

ℓ ‖2 ≤ 1 for all ℓ.

DefineMℓ := 1
2ωDℓ. Application of corollary 7.13 with‖ · ‖ = ‖ · ‖D in combination

with (62) yields

‖Aℓ(I− ωhℓD
−1
ℓ Aℓ)

ν‖2 ≤ κ(D
1
2

ℓ ) ‖Aℓ(I−
1

2
M−1

ℓ Aℓ)
ν‖D

≤ c√
ν
‖Mℓ‖D =

c

2ω
√
ν
‖Dℓ‖2 ≤

c√
ν
‖Aℓ‖2

and thus the result is proved.

7.4 Multigrid contraction number

In this section we prove a bound for the contraction number inthe Euclidean norm of the
multigrid algorithm (31) withτ ≥ 2. We follow the analysis introduced by Hackbusch1, 14.
Apart from the approximation and smoothing property that have been proved in the sec-
tions 7.2 and 7.3 we also need the following stability bound for the iteration matrix of the
smoother:

∃ CS : ‖Sν
ℓ ‖2 ≤ CS for all ℓ andν. (63)

Lemma 7.18 Consider the Richardson method as in theorem 7.8 or theorem 7.16. In both
cases(63)holds withCS = 1.
Proof: In the symmetric case (theorem 7.8) we have

‖Sℓ‖2 = ‖I− c0
ρ(Aℓ)

Aℓ‖2 = max
λ∈σ(Aℓ)

∣
∣1− c0

λ

ρ(Aℓ)

∣
∣ ≤ 1.

For the general case (theorem 7.16) we have, using (61):

‖Sℓ‖2 = ‖I− ωh2−d
ℓ Aℓ‖2 = ‖1

2
I +

1

2
(I− 2ωh2−d

ℓ Aℓ)‖2

≤ 1

2
+

1

2
‖I− 2ωh2−d

ℓ Aℓ‖2 ≤ 1.
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Lemma 7.19 Consider the damped Jacobi method as in theorem 7.9 or theorem 7.17. In
both cases(63)holds.
Proof: Both in the symmetric and nonsymmetric case we have

‖Sℓ‖D = ‖D
1
2

ℓ (I− ωD−1
ℓ Aℓ)D

− 1
2

ℓ ‖2 ≤ 1

and thus

‖Sν
ℓ ‖2 ≤ ‖D

− 1
2

ℓ (D
1
2

ℓ SℓD
− 1

2

ℓ )νD
1
2

ℓ ‖2 ≤ κ(D
1
2

ℓ ) ‖Sℓ‖νD ≤ κ(D
1
2

ℓ )

Now note thatDℓ is uniformly (w.r.t.ℓ) well-conditioned.

Using lemma 7.3 it follows that forpℓ = P−1
ℓ Pℓ−1 we have

Cp,1‖x‖2 ≤ ‖pℓx‖2 ≤ Cp,2‖x‖2 for all x ∈ R
nℓ−1 . (64)

with constantsCp,1 > 0 andCp,2 independent ofℓ.
We now formulate a main convergence result for the multigridmethod.

Theorem 7.20 Consider the multigrid method with iteration matrix given in (49)and
parameter valuesν2 = 0, ν1 = ν > 0, τ ≥ 2. Assume that there are constantsCA,
CS and a monotonically decreasing functiong(ν) with g(ν) → 0 for ν → ∞ such
that for all ℓ:

‖A−1
ℓ − pℓA

−1
ℓ−1rℓ‖2 ≤ CA‖Aℓ‖−1

2 (65a)

‖AℓS
ν
ℓ ‖2 ≤ g(ν) ‖Aℓ‖2 , ν ≥ 1 (65b)

‖Sν
ℓ ‖2 ≤ CS , ν ≥ 1. (65c)

For anyξ∗ ∈ (0, 1) there exists aν∗ such that for allν ≥ ν∗

‖CMG,ℓ‖2 ≤ ξ∗ , ℓ = 0, 1, . . .

holds.

Proof: For the two-grid iteration matrix we have

‖CTG,ℓ‖2 ≤ ‖A−1
ℓ − pℓA

−1
ℓ−1rℓ‖2‖AℓS

ν
ℓ ‖2 ≤ CAg(ν).

Defineξℓ = ‖CMG.ℓ‖2. From (49) we obtainξ0 = 0 and forℓ ≥ 1:

ξℓ ≤ CAg(ν) + ‖pℓ‖2ξτ
ℓ−1‖A−1

ℓ−1rℓAℓS
ν
ℓ ‖2

≤ CAg(ν) + Cp,2C
−1
p,1ξ

τ
ℓ−1‖pℓA

−1
ℓ−1rℓAℓS

ν
ℓ ‖2

≤ CAg(ν) + Cp,2C
−1
p,1ξ

τ
ℓ−1

(
‖(I− pℓA

−1
ℓ−1rℓAℓ)S

ν
ℓ ‖2 + ‖Sν

ℓ ‖2
)

≤ CAg(ν) + Cp,2C
−1
p,1ξ

τ
ℓ−1

(
CAg(ν) + CS

)
≤ CAg(ν) + C∗ξτ

ℓ−1

with C∗ := Cp,2C
−1
p,1(CAg(1) + CS). Elementary analysis shows that forτ ≥ 2 and any

ξ∗ ∈ (0, 1) the sequencex0 = 0, xi = CAg(ν) + C∗xτ
i−1, i ≥ 1, is bounded byξ∗ for

g(ν) sufficiently small.

Remark 7.21 ConsiderAℓ, pℓ, rℓ as defined in (26), (29),(30). Assume that the vari-
ational problem (23) is such that the usual conditions (22) are satisfied. Moreover, the
problem (23) and the corresponding dual problem are assumedto beH2-regular. In the
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multigrid method we use the Richardson or the damped Jacobi method described in sec-
tion 7.3. Then the assumptions(65) are fulfilled and thus forν2 = 0 and ν1 sufficiently
large the multigrid W-cycle has a contraction number smaller than one independent ofℓ.
�

Remark 7.22 Let CMG,ℓ(ν2, ν1) be the iteration matrix of the multigrid method withν1
pre- andν2 postsmoothing iterations. Withν := ν1 + ν2 we have

ρ
(
CMG,ℓ(ν2, ν1)

)
= ρ
(
CMG,ℓ(0, ν)

)
≤ ‖CMG,ℓ(0, ν)‖2

Using theorem 7.20 we thus get, forτ ≥ 2, a bound for thespectral radiusof the iteration
matrixCMG,ℓ(ν2, ν1). �

Remark 7.23 The multigrid convergence analysis presented above assumes sufficient
regularity (namelyH2-regularity) of the elliptic boundary value problem. Therehave been
developed convergence analyses in which this regularity assumption is avoided and anh-
independent convergence rate of multigrid is proved. Theseanalyses are based on so-called
subspace decomposition techniques. Two review papers on multigrid convergence proofs
are Yserentant23 and Xu24. �

7.5 Convergence analysis for symmetric positive definite problems

In this section we analyze the convergence of the multigrid method for the symmetric
positive definite case, i.e., the stiffness matrixAℓ is assumed to be symmetric positive
definite. This property allows a refined analysis which proves that the contraction number
of the multigrid method withτ ≥ 1 (the V-cycle is included !) andν1 = ν2 ≥ 1 pre-
and postsmoothing iterations is bounded by a constant smaller than one independent ofℓ.
The basic idea of this analysis is due to Braess25 and is further simplified by Hackbusch1, 14.

Throughout this section we make the following
Assumption 7.24 In the bilinear formk(·, ·) in (23) we haveb = 0 and the conditions
(22)are satisfied.
Due to this the stiffness matrixAℓ is symmetric positive definite and we can define the
energy scalar product and corresponding norm:

〈x,y〉A := 〈Aℓx,y〉 , ‖x‖A := 〈x,x〉
1
2

A x,y ∈ R
nℓ .

We only consider smoothers with an iteration matrixSℓ = I −M−1
ℓ Aℓ in which Mℓ is

symmetric positive definite. Important examples are the smoothers analyzed in section 7.3:

Richardson method: Mℓ = c−1
0 ρ(Aℓ)I , c0 ∈ (0, 1] (66a)

Damped Jacobi: Mℓ = ω−1Dℓ, ω as in thm. 7.9 (66b)

Symm. Gauss-Seidel: Mℓ = (Dℓ − Lℓ)D
−1
ℓ (Dℓ − LT

ℓ ). (66c)

For symmetric matricesB,C ∈ R
m×m we use the notationB ≤ C iff 〈Bx,x〉 ≤ 〈Cx,x〉

for all x ∈ R
m.

Lemma 7.25 For Mℓ as in(66) the following properties hold:

Aℓ ≤ Mℓ for all ℓ (67a)

∃CM : ‖Mℓ‖2 ≤ CM‖Aℓ‖2 for all ℓ. (67b)
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Proof: For the Richardson method the result is trivial. For the damped Jacobi method

we haveω ∈ (0, ρ(D−1
ℓ Aℓ)

−1] and thusωρ(D
− 1

2

ℓ AℓD
− 1

2

ℓ ) ≤ 1. This yields
Aℓ ≤ ω−1Dℓ = Mℓ. The result in (67b) follows from‖Dℓ‖2 ≤ ‖Aℓ‖2. For the
symmetric Gauss-Seidel method the results (67a) follows from Mℓ = Aℓ + LℓD

−1
ℓ LT

ℓ

and the result in (67b) is proved in (59).

We introduce the followingmodified approximation property:

∃ C̃A : ‖M
1
2

ℓ

(
A−1

ℓ − pℓA
−1
ℓ−1rℓ

)
M

1
2

ℓ ‖2 ≤ C̃A for ℓ = 1, 2, . . . (68)

We note that the standard approximation property (54) implies the result (68) if we consider
the smoothers in (66):
Lemma 7.26 ConsiderMℓ as in (66) and assume that the approximation property(54)
holds. Then(68)holds withC̃A = CMCA.
Proof: Trivial.
One easily verifies that for the smoothers in (66) the modifiedapproximation property
(68) implies the standard approximation property (54) ifκ(Mℓ) is uniformly (w.r.t. ℓ)
bounded. The latter property holds for the Richardson and the damped Jacobi method.

We will analyze the convergence of the two-grid and multigrid method using the
energy scalar product. For matricesB, C ∈ R

nℓ×nℓ that are symmetric w.r.t.〈·, ·〉A
we use the notationB ≤A C iff 〈Bx,x〉A ≤ 〈Cx,x〉A for all x ∈ R

nℓ . Note that
B ∈ R

nℓ×nℓ is symmetric w.r.t. 〈·, ·〉A iff (AℓB)T = AℓB holds. We also note the
following elementary property for symmetric matricesB, C ∈ R

nℓ×nℓ :

B ≤ C ⇔ BAℓ ≤A CAℓ. (69)

We now turn to the two-grid method. For the coarse grid correction we introduce the
notationQℓ := I− pℓA

−1
ℓ−1rℓAℓ. For symmetry reasons we only considerν1 = ν2 = 1

2ν
with ν > 0 even. The iteration matrix of the two-grid method is given by

CTG,ℓ = CTG,ℓ(ν) = S
1
2ν

ℓ QℓS
1
2ν

ℓ .

Due the symmetric positive definite setting we have the following fundamental property:
Theorem 7.27 The matrixQℓ is an orthogonal projection w.r.t.〈·, ·〉A.
Proof: Follows from

Q2
ℓ = Qℓ and (AℓQℓ)

T = AℓQℓ.

As an direct consequence we have

0 ≤A Qℓ ≤A I. (70)

The next lemma gives another characterization of the modified approximation property:
Lemma 7.28 The property(68) is equivalent to

0 ≤A Qℓ ≤A C̃AM−1
ℓ Aℓ for ℓ = 1, 2, . . . (71)

500



Proof: Using (69) we get

‖M
1
2

ℓ

(
A−1

ℓ − pℓA
−1
ℓ−1rℓ

)
M

1
2

ℓ ‖2 ≤ C̃A for all ℓ

⇔ − C̃AI ≤M
1
2

ℓ

(
A−1

ℓ − pℓA
−1
ℓ−1rℓ

)
M

1
2

ℓ ≤ C̃AI for all ℓ

⇔ − C̃AM−1
ℓ ≤ A−1

ℓ − pℓA
−1
ℓ−1rℓ ≤ C̃AM−1

ℓ for all ℓ

⇔ − C̃AM−1
ℓ Aℓ ≤A Qℓ ≤A C̃AM−1

ℓ Aℓ for all ℓ.

In combination with (70) this proves the result.

We now present a convergence result for the two-grid method:

Theorem 7.29 Assume that(67a)and(68)hold. Then we have

‖CTG,ℓ(ν)‖A ≤ max
y∈[0,1]

y(1− C̃−1
A y)ν

=







(1 − C̃−1
A )ν if ν ≤ C̃A − 1

C̃A

ν+1

(
ν

ν+1

)ν
if ν ≥ C̃A − 1.

(72)

Proof: DefineXℓ := M−1
ℓ Aℓ. This matrix is symmetric w.r.t. the energy scalar product

and from (67a) it follows that

0 ≤A Xℓ ≤A I (73)

holds. From lemma 7.28 we obtain0 ≤A Qℓ ≤A C̃AXℓ. Note that due to this, (73) and
the fact thatQℓ is an A-orthogonal projection which is not identically zerowe get

C̃A ≥ 1. (74)

Using (70) we get

0 ≤A Qℓ ≤A αC̃AXℓ + (1− α)I for all α ∈ [0, 1]. (75)

Hence, usingSℓ = I−Xℓ we have

0 ≤A CTG,ℓ(ν) ≤A (I−Xℓ)
1
2ν
(
αC̃AXℓ + (1− α)I

)
(I−Xℓ)

1
2ν

for all α ∈ [0, 1] , and thus

‖CTG,ℓ(ν)‖A ≤ min
α∈[0,1]

max
x∈[0,1]

(
αC̃Ax+ (1− α)

)
(1− x)ν .

A minimax result (cf. Sion26) implies that in the previous expression the min and max
operations can be interchanged. A simple computation yields

max
x∈[0,1]

min
α∈[0,1]

(
αC̃Ax+ (1 − α)

)
(1 − x)ν

= max
{

max
x∈[0,C̃−1

A ]
C̃Ax(1 − x)ν , max

x∈[C̃−1
A ,1]

(1− x)ν
}

= max
x∈[0,C̃−1

A ]
C̃Ax(1 − x)ν = max

y∈[0,1]
y(1− C̃−1

A y)ν .
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This proves the inequality in (72). An elementary computation shows that the equality in
(72) holds.

We now show that the approach used in the convergence analysis of the two-grid
method in theorem 7.29 can also be used for the multigrid method.
We start with an elementary result concerning a fixed point iteration that will be used in
theorem 7.31.
Lemma 7.30 For given constantsc > 1, ν ≥ 1 defineg : [0, 1)→ R by

g(ξ) =







(1− 1
c )ν if 0 ≤ ξ < 1− ν

c−1

c
ν+1

(
ν

ν+1

)ν
(1− ξ)

(
1 + 1

c
ξ

1−ξ

)ν+1
if 1− ν

c−1 ≤ ξ < 1.
(76)

For τ ∈ N, τ ≥ 1, define the sequenceξτ,0 = 0, ξτ,i+1 = g(ξτ
τ,i) for i ≥ 1. The

following holds:

∗ ξ → g(ξ) is continuous and increasing on[0, 1).

∗ For c = C̃A, g(0) coincides with the upper bound in(72).

∗ g(ξ) = ξ iff ξ =
c

c+ ν
.

∗ The sequence(ξτ,i)i≥0 is monotonically increasing, andξ∗τ := lim
i→∞

ξτ,i < 1.

∗
(
(ξ∗τ )τ , ξ∗τ

)
is the first intersection point of the graphs ofg(ξ) andξ

1
τ .

∗ c

c+ ν
= ξ∗1 ≥ ξ∗2 ≥ . . . ≥ ξ∗∞ = g(0).

Proof: Elementary calculus.

As an illustration for two pairs(c, ν) we show the graph of the functiong in Fig. 9.
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Figure 9. Functiong(ξ) for ν = 2, c = 4 (left) andν = 4, c = 4 (right).
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Theorem 7.31 We takeν1 = ν2 = ν and consider the multigrid algorithm with iteration
matrix CMG,ℓ = CMG,ℓ(ν, τ) as in (49). Assume that(67a)and(68) hold. For c = C̃A,
ν ≥ 2 andτ as in(49) let ξ∗τ ≤ c

c+ν be the fixed point defined in lemma 7.30. Then

‖CMG,ℓ‖A ≤ ξ∗τ
holds.

Proof: From (49) we have

CMG,ℓ = S
1
2ν

ℓ

(
I− pℓ(I−Cτ

MG,ℓ−1)A
−1
ℓ−1rℓAℓ

)
S

1
2ν

ℓ

= S
1
2ν

ℓ (Qℓ + Rℓ)S
1
2 ν

ℓ , Rℓ := pℓC
τ
MG,ℓ−1A

−1
ℓ−1rℓAℓ.

The matricesSℓ and Qℓ are symmetric w.r.t.〈·, ·〉A. If CMG,ℓ−1 is symmetric w.r.t.
〈·, ·〉Aℓ−1

then from

(AℓRℓ)
T =

[
(AℓpℓA

−1
ℓ−1)(Aℓ−1C

τ
MG,ℓ−1)(A

−1
ℓ−1rℓAℓ)

]T
= AℓRℓ

it follows thatRℓ is symmetric w.r.t.〈·, ·〉A, too. By induction we conclude that for allℓ
the matricesRℓ andCMG,ℓ are symmetric w.r.t.〈·, ·〉A. Note that

0 ≤A Cτ
MG,ℓ−1 ⇔ 0 ≤ Cτ

MG,ℓ−1A
−1
ℓ−1 ⇔ 0 ≤ pℓC

τ
MG,ℓ−1A

−1
ℓ−1rℓ ⇔ 0 ≤A Rℓ

holds. Thus, by induction and using0 ≤A Qℓ we get

0 ≤A Qℓ + Rℓ , 0 ≤A CMG,ℓ for all ℓ. (77)

For ℓ ≥ 0 defineξℓ := ‖CMG,ℓ‖A. Hence,0 ≤A CMG,ℓ ≤A ξℓI holds. For arbitrary
x ∈ R

nℓ we have

〈Rℓx,x〉A = 〈Cτ
MG,ℓ−1A

−1
ℓ−1rℓAℓx,A

−1
ℓ−1rℓAℓx〉Aℓ−1

≤ ξτ
ℓ−1〈A−1

ℓ−1rℓAℓx,A
−1
ℓ−1rℓAℓx〉Aℓ−1

= ξτ
ℓ−1〈x, (I−Qℓ)x〉A

and thus

Rℓ ≤A ξτ
ℓ−1(I−Qℓ) (78)

holds. DefineXℓ := M−1
ℓ Aℓ. Using (75), (77) and (78) we get

0 ≤A Qℓ + Rℓ ≤A (1− ξτ
ℓ−1)Qℓ + ξτ

ℓ−1I

≤A (1− ξτ
ℓ−1)

(
αC̃AXℓ + (1− α)I

)
+ ξτ

ℓ−1I for all α ∈ [0, 1].

Hence, for allα ∈ [0, 1] we have

0 ≤A CMG,ℓ ≤A (I−Xℓ)
1
2 ν
[
(1 − ξτ

ℓ−1)
(
αC̃AXℓ + (1− α)I

)
+ ξτ

ℓ−1I
]
(I−Xℓ)

1
2ν .

This yields

ξℓ ≤ min
α∈[0,1]

max
x∈[0,1]

[
(1− ξτ

ℓ−1)
(
αC̃Ax+ 1− α

)
+ ξτ

ℓ−1

]
(1− x)ν .

As in the proof of theorem 7.29 we can interchange the min and max operations in the
previous expression. A simple computation shows that forξ ∈ [0, 1] we have

max
x∈[0,1]

min
α∈[0,1]

[
(1− ξ)

(
αC̃Ax+ 1− α

)
+ ξ
]
(1− x)ν

= max
{

max
x∈[0,C̃−1

A ]

(
(1 − ξ)C̃Ax+ ξ

)
(1− x)ν , max

x∈[C̃−1
A ,1]

(1− x)ν
}

= g(ξ)
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whereg(ξ) is the function defined in lemma 7.30 withc = C̃A. Thusξℓ satisfiesξ0 = 0
andξℓ ≤ g(ξτ

ℓ−1) for ℓ ≥ 1. Application of the results in lemma 7.30 completes the proof.

The boundξ∗τ for the multigrid contraction number in theorem 7.31 decreases if τ
increases. Moreover, forτ → ∞ the bound converges to the bound for the two-grid
contraction number in theorem 7.29.
Corollary 7.32 ConsiderAℓ, pℓ, rℓ as defined in(26), (29),(30). Assume that the vari-
ational problem(23) is such thatb = 0 and that the usual conditions(22) are satisfied.
Moreover, the problem is assumed to beH2-regular. In the multigrid method we use one
of the smoothers(66). Then the assumptions(67a) and (68) are satisfied and thus for
ν1 = ν2 ≥ 1 the multigrid V-cycle has a contraction number (w.r.t.‖ · ‖A) smaller than
one independent ofℓ. �

8 Convergence Analysis for Stokes Problems

The multigrid method for the Stokes problem can be analyzed along the same lines as
in section 7.4, i.e., based on a smoothing and approximationproperty. For the Stokes
problem an analysis which proves convergence of the V-cycleis not known. In other
words, results as presented for scalar elliptic problems insection 7.5 are not known for the
Stokes equation.

We briefly outline the convergence results available for multigrid applied to the Stokes
problem. For a detailed treatment we refer to the literature, for example to Verfürth27,
Larin28, Zulehner11. As in section 7 we assume that the family of triangulations{Thℓ

} is
quasi-uniform and thathℓ−1/hℓ is uniformly bounded w.r.t.ℓ. We assumeH2-regularity
of the Stokes problem, i.e., for the solution(~u, p) of (38) we have

‖~u‖H2 + ‖p‖H1 ≤ c‖~f‖L2

with a constantc independent of~f ∈ L2(Ω)d. The finite element spacesVℓ, Qℓ should
have the approximation property

inf
~v∈Vℓ

‖~u− ~v‖H1 + inf
q∈Qℓ

‖p− q‖L2 ≤ c hℓ

(
‖~u‖H2 + ‖p‖H1),

for all ~u ∈ (H2(Ω) ∩ H1
0 (Ω))d, p ∈ H1(Ω) ∩ L2

0(Ω). This holds, for example, for the
Hood-Taylor pair of finite element spaces. LetAℓ be the Stokes stiffness matrix as in (40)
andSℓ the iteration matrix of the smoother. The prolongationPℓ is as in (41). For the
restrictionRℓ we take the adjoint of the prolongation. The iteration matrix of the two-grid
method withν = ν1 pre-smoothing andν2 = 0 post-smoothing iterations is given by

Mℓ = (I − PℓA−1
ℓ−1RℓAℓ)Sν

ℓ .

For the analysis we have to introduce a suitable scaled Euclidean norm defined by
∥
∥
∥
∥

(
uℓ

pℓ

)∥
∥
∥
∥

2

h

:= ‖uℓ‖2 + h2
ℓ‖pℓ‖2 =

∥
∥
∥
∥
Λℓ

(
uℓ

pℓ

)∥
∥
∥
∥

2

with Λℓ :=

(
Inℓ

0
0 hℓImℓ

)

. (79)

Furthermore we introduce the scaled matrices

Ãℓ := Λ−1
ℓ AℓΛ

−1
ℓ =

(
Aℓ h−1

ℓ BT
ℓ

h−1
ℓ Bℓ 0

)

, S̃ℓ := ΛℓSℓΛ
−1
ℓ .
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Using these definitions we obtain

‖Mℓ‖h = ‖Λℓ(A−1
ℓ − PℓA−1

ℓ−1Rℓ)ΛℓΛ
−1
ℓ AℓSν

ℓ Λ−1
ℓ ‖

≤ ‖Λℓ(A−1
ℓ − PℓA−1

ℓ−1Rℓ)Λℓ‖ ‖ÃℓS̃ν
ℓ ‖.

In Larin28 theapproximation property

‖Λℓ(A−1
ℓ − PℓA−1

ℓ−1Rℓ)Λℓ‖ ≤ ch2
ℓ (80)

is proved. In that paper it is also shown (using an analysis along the same lines as in sec-
tion 7.3) that for the Braess-Sarazin method in which the system in (45) is solved exactly,
we have a smoothing property

‖ÃℓS̃ν
ℓ ‖ ≤

ch−2
ℓ

e(ν − 2) + 1
for ν ≥ 2. (81)

In Zulehner11 a smoothing property for the Braess-Sarazin method with aninexact(but
sufficiently accurate) inner solve for the system (45) is proved:

‖ÃℓS̃ν
ℓ ‖ ≤

ch−2
ℓ

ν − 1
for ν ≥ 2. (82)

Combining the approximation property in (80) with the smoothing property (81) or (82)
we obtain a bound for the contraction number of the two-grid iteration matrix:

‖Mℓ‖h ≤
cA
ν − 1

for ν ≥ 2

with a constantcA independent ofℓ andν. Thus we have a two-grid convergence with a
rate independent ofℓ if the number of smoothing iterationsν is sufficiently high. Using
an analysis as in section 7.4 one can derive a convergence result for the multigrid W-cycle
method.

A smoothing property of the form (81), (82) for the Vanka smoother isnot known in
the literature. A theoretical analysis which proves convergence of the multigrid method
with a Vanka smoother for the Stokes equations is not available.
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27. Rüdiger Verfürth,Error estimates for a mixed finite element approximation of Stokes

problem, RAIRO Anal. Numer.,18, 175–182, 1984.
28. Maxim Larin and Arnold Reusken,A comparative study of efficient iterative solvers

for generalized Stokes equations, Numer. Linear Algebra Appl.,15, 13–34, 2008.

506
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Wavelets can be used as a basis set for the solution of partialdifferential equations. After
introducing the theoretical framework of wavelet theory, we will show how they can be used to
solve Poisson’s equation and Schrödinger’s equation in anefficient way.

1 Wavelets, an Optimal Basis Set

The preferred way to solve partial differential equations is to express the solution as a
linear combination of so-called basis functions. These basis functions can for instance be
plane waves, Gaussians or finite elements. Having discretized the differential equation in
this way makes it amenable to a numerical solution. In the case of Poisson’s equation one
obtains for instance a linear system of equation, in the caseof Schrödinger’s equation one
obtains an eigenvalue problem. This procedure is usually more stable than other methods
which do not involve basis functions, such as finite difference methods. Wavelets3, 2 are
just another basis set which however offers considerable advantages over alternative basis
sets and allows us to attack problems not accessible with conventional numerical methods.
Its main advantages are:

• The basis set can be improved in an systematic way:
If one wants the solution of the differential equation with higher accuracy one can
just add more wavelets in the expansion of the solution. Thiswill not lead to any
numerical instabilities as one encounters for instance with Gaussians. The accuracy of
the solution is determined by one single parameter similar to the minimal wavelength
determining the accuracy of a plane wave expansion. In the case of the Gaussian type
basis sets used in quantum chemistry there are many parameters which determine
the accuracy and it is frequently not obvious which one has the largest leverage to
improve upon the accuracy.

• Different resolutions can be used in different regions of space:
If the solution of the differential equation is varying particularly rapidly in a partic-
ular region of space one can increase the resolution in this region by adding more
high resolution wavelets centered around this region. Thisvarying resolution is for
instance not possible with plane waves, which give the same resolution in the whole
computational volume.

• The coupling between different resolution levels is easy:
Finite elements can also be used with varying resolution levels. The resulting highly
structured grids lead however to very complicated matrix structures, requiring indirect
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indexing of most arrays. In the case of wavelets, in contrast, the coupling between
different resolution levels is rather easy.

• There are few topological constraints for increased resolution regions:
The regions of increased resolution can be chosen arbitrarily, the only requirement
being that a region of higher resolution be contained in a region of the next lower res-
olution. If one uses for instance generalized plane waves inconnection with curvilin-
ear coordinates1 to obtain varying resolution one has the requirement that the varying
resolution grid can be obtained by a mapping from a equally spaced grid. Increasing
the resolution in one region requires decreasing the resolution in some other region.

• The Laplace operator is diagonally dominant in an appropriate wavelet basis:
This allows for a simple but efficient preconditioning scheme for equations such as
Poisson’s or Schrödinger’s equation which contains the Laplacian as well. As a result
the number of iterations needed in the iterative solution ofthe linear algebra equations
corresponding to these differential equations is fairly small and independent of the
maximal resolution. No such easy and efficient preconditioning scheme is known for
other varying resolution schemes such as finite elements, Gaussians or generalized
plane waves with curvilinear coordinates.

• The matrix elements of the Laplace operator are very easy to calculate:
The requirement that the matrix elements can easily be calculated is essential for any
basis set and therefore fulfilled by all standard basis sets.For the case of wavelets it
is however particularly easy since they can be calculated onthe fly by simple scaling
arguments and therefore need not be stored in memory.

• The numerical effort scales linearly with respect to systemsize:
Three-dimensional problems of realistic size require usually a very large number of
basis functions. It is therefore of utmost importance, thatthe numerical effort scales
only linearly (and not quadratically or cubically) with respect to the number of basis
functions. If one uses iterative matrix techniques, this linear scaling can only be ob-
tained if two requirements are fulfilled, namely that the matrix vector multiplications
which are necessary for all iterative methods can be done with linear scaling and that
the number of matrix vector multiplications is independentof the problem size. The
first requirement is fulfilled if either the matrix representing the differential operator
is sparse or can be transformed into sparse form by a transformation which has lin-
ear scaling, a requirement fulfilled by wavelets. The secondrequirement is related to
the availability of a good preconditioning scheme. Since such a scheme exists, the
conditioning number of the involved matrices do not vary strongly with respect to
the problem size and the number of iterations (i.e. matrix vector multiplications) is
independent of the problem size.

2 A First Tour of Some Wavelet Families

Many families of wavelets have been proposed in the mathematical literature. If one wants
to use wavelets for the solution of differential equations,one therefore has to choose one
specific family which is most advantageous for the intended application. Within one family
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there are also members of different degree. Without going into any detail at this point we
will in the following just show some plots of some common wavelet families. Only families
with compact support (i.e. they are nonzero only in a finite interval) will be presented.
All these wavelet families can be classified as either being an orthogonal or biorthogonal
family. The meaning of orthogonality will be explained later. Each orthogonal wavelet
family is characterized by two functions, the mother scaling functionφ and the mother
waveletψ. In the case of biorthogonal families one has a dual scaling functionφ̃ and a
dual waveletψ̃ in addition to the non-dual quantities.

Figure 1 shows the orthogonal Haar wavelet family, which is conceptually the simplest
wavelet family. It is too crude to be useful for any numericalwork, but its simplicity will
help us to illustrate some basic wavelet concepts. The Haar wavelet is identical to the
zero-th degree Daubechies3 wavelet.

φ ψ 

1 0

1 

0

Figure 1. The Haar scaling functionφ and waveletψ.

Figure 2 shows the 4 and 8 order Daubechies wavelets. Note that both the regularity
and the support length increase with increasing order of thewavelets. The Daubechies
family is an orthogonal wavelet family.

-3 -2 -1 0 1 2 3

’scfunction’
’wavelet’

-4 -2 0 2 4

’scfunction’
’wavelet’

Figure 2. The orthogonal Daubechies scaling function and wavelet of degree 4 (left panel) and 8 (right panel).
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Figure 3 shows a biorthogonal interpolating wavelet familyof degree 4. It is smoother
than other families of the same degree. Note that the scalingfunction vanishes at all integer
points except at the origin.

-1

-0.5

0

0.5

1

-3 -2 -1 0 1 2 3

’scfunction’
’wavelet’

Figure 3. The interpolating scaling function and wavelet ofdegree 4.

3 Forming a Basis Set

To obtain a basis set at a certain resolution levelk one can use all the integer translations
of the mother scaling function of some wavelet family,

φk
i (x) ∝ φ(2kx− i) . (1)

Note that with this convention higher resolution corresponds to larger values ofk. Since
high resolution scaling functions are skinnier, more translation indicesi are allowed for a
interval of fixed length. Some examples for an unspecified wavelet family are shown in
Figure 4.

              1         2         3         4         5         6         7         8     

  

  

  

Figure 4. Two basis functionsφ0
2(x) (solid line) andφ1

12(x) (dotted line) for an arbitrary wavelet family.
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Exactly the same scaling and shifting operations can of course also be applied to the
wavelets,

ψk
i (x) ∝ ψ(2kx− i) . (2)

This set of wavelet basis functions can be added as a basis to the scaling functions as will
be explained in the following.

4 The Haar Wavelet

In the case of the Haar family, any function which can exactlybe represented at any level
of resolution is necessarily piecewise constant. One such function is shown in Figure 5.

 0

4 

  1x 

φ

Figure 5. A function at resolution level 4 together with the scaling function at the same resolution level.

Evidently this function can be written as a linear combination of the scaling functions
φ4

i (x)

f =

15∑

i=0

s4i φ
4
i (x) , (3)

wheres4i = f(i/16).
Another, more interesting, possibility consists of expanding a function with respect to

both scaling functions and wavelets of different resolution. Even though such a expansion
contains both scaling functions and wavelets, we will referto it as a wavelet representation
to distinguish it from the our scaling function representation of Equation (3). A wavelet
representation is possible because a scaling function at resolution levelk is always a linear
combination of a scaling function and a wavelet at the next coarser levelk− 1 as shown in
Figure 6.

Using this relation depicted in Figure 6, we can write any linear combination of the two
scaling functionsφk

2i(x) andφk
2i+1(x) as a linear combination ofφk−1

i (x) andψk−1
i (x).

Hence we can writef as

f =
7∑

i=0

s3i φ
3
i (x) +

7∑

i=0

d3
i ψ

3
i (x) . (4)

It is easy to verify that the transformation rule for the coefficients is given by

sk−1
i =

1

2
sk
2i +

1

2
sk
2i+1 ; dk−1

i =
1

2
sk
2i −

1

2
sk
2i+1 . (5)
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0 1

0
1

0
level  k 
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φ

φ

ψ

1/2 

= 

0 1

0
1

0 1

φ

ψ

φ

- 1/2 

level  k-1 

level  k-1 

Figure 6. A skinny (levelk) scaling function is a linear combination of a fat (levelk − 1) scaling function and a
fat wavelet.

So to calculate the expansion coefficients with respect to the scaling functions at the next
coarser level, we have to take an average over expansion coefficients at the finer resolution
level. Because we have to take some weighted sum these coefficients are denoted bys. To
get the expansion coefficients with respect to the wavelet, we have to take some weighted
difference and the coefficients are accordingly denoted byd. The wavelet part contains
mainly high frequency components and by doing this transformation we therefore peel
off the highly oscillatory parts of the function. The remaining part represented by the
coefficientssk−1

i is therefore smoother. It is admittedly difficult to talk about smoothness
for this kind of piecewise constant functions. This effect will be more visible for better
wavelet families discussed later. For the case of our example in Figure 5 this remaining
part after one transformation step is shown in Figure 7.

 0

3 

  1x 

φ

Figure 7. The function from Figure 5 at resolution level 3.

For any data set whose size is a power of 2, we can now apply thistransformation
repeatedly. In each step the number ofs coefficients will be cut into half. So we have
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to stop the procedure as soon as there is only ones coefficient left. Such a series of
transformation steps is called a forward Haar wavelet transform. The resulting wavelet
representation of the function in Equation (3) is then

f = s00φ
0
0(x) + d0

0ψ
0
0(x) +

1∑

i=0

d1
iψ

1
i (x) +

3∑

i=0

d2
iψ

2
i (x) +

7∑

i=0

d3
iψ

3
i (x) . (6)

Note that in both cases we need exactly 16 coefficients to represent the function. In the
coming sections such wavelet representations will be the focus of our interest.

By doing a backward wavelet transform, we can go back to the original scaling func-
tion representation of Equation (3). Starting at the coarsest resolution level, we have to
express each scaling function and wavelet on the coarse level in terms of scaling functions
at the finer level. This can be done exactly because wavelet families satisfy the so-called
refinement relations depicted in Figure 8 for the Haar family.

0 1

φ

level  k 

level  k 

level  k-1 

0

=

1

φ

0 1

φ

0 1

φ

0 1

φ

0
1ψ=

+ -

Figure 8. Fat (levelk − 1) scaling functions and fat wavelets are linear combinations of skinny (levelk) scaling
functions.

It then follows that we have to back-transform the coefficients in the following way

sk+1
2i = sk

i + dk
i ; sk+1

2i+1 = sk
i − dk

i . (7)

5 The Concept of Multi-Resolution Analysis

In the previous sections a very intuitive introduction to wavelet theory was given. The
formal theory behind wavelets is called Multi-Resolution Analysis3 (MRA). Even though
the formal definitions of MRA are usually not required for practical work, we will for
completeness briefly present them. The equations which are useful for numerical work
will be listed afterwards.

513



5.1 Formal definition of Multi-Resolution Analysis

• A Multi-Resolution Analysis consists of a sequence of successive approximation
spacesVk and associated dual spacesṼk, (which turn out to be the scaling function
spaces and their dual counterpart) satisfying

Vk ⊂ Vk+1 ; Ṽk ⊂ Ṽk+1 .

• If a functionf(x) is contained in the spaceVk, the compressed functionf(2x) has to
be contained in the higher resolution spaceVk+1,

f(x) ∈ Vk ⇔ f(2x) ∈ Vk+1 ; f(x) ∈ Ṽk ⇔ f(2x) ∈ Ṽk+1 .

• If a functionf(x) is contained in the spaceVk, its integer translate has to be contained
in the same space,

f(x) ∈ V0 ⇔ f(x+ 1) ∈ V0 ; f(x) ∈ Ṽ0 ⇔ f(x+ 1) ∈ Ṽ0 .

• The union of all these spaces is theL2(ℜ) space,

⋃

k

Vk = L2(ℜ) .

• There exists a biorthogonal pair of functions spanningVk,
∫

φ̃k
i (x) φk

j (x) dx = δi,j .

The wavelet spacesWk, W̃k are then defined as the complement (orthogonal comple-
ment in the case of orthogonal families) ofVk in Vk+1,

Vk+1 = Vk ⊕Wk ; Ṽk+1 = Ṽk ⊕Wk .

5.2 Basic formulas for biorthogonal wavelet families

The formal MRA requirements listed above lead to the following useful basic facts of
wavelet analysis. The interested reader can find the nontrivial proofs of these formulas in
the book by Daubechies3.

• A biorthogonal wavelet family of degreem is characterized by 4 finite filters denoted
by hj, h̃j , gj , g̃j. Since we will mainly deal with symmetric wavelet families,whose
filters have a natural symmetry center, we will adopt a convention where the nonzero
filter elements are in the intervalj = −m, ...,m, and wherem is even. In case
the number of nonzero filter elements does not fit into this convention, it is always
possible to pad the filters on both sides with zeroes, and to increasem artificially until
it is compatible with this convention.
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The filter coefficients satisfy the orthogonality relations

∑

l

hl−2i h̃l−2j = δi,j , (8)

∑

l

gl−2i g̃l−2j = δi,j , (9)

∑

l

hl−2i g̃l−2j = 0 , (10)

∑

l

h̃l−2i gl−2j = 0 (11)

and the symmetry relations

gi+1 = (−1)i+1h̃−i , (12)

g̃i+1 = (−1)i+1h−i . (13)

• Scaling functions and wavelets at a coarse level can be written as the following linear
combinations of scaling functions at a higher resolution level. These equations are
called refinement relations,

φ(x) =

m∑

j=−m

hj φ(2x− j) , (14)

ψ(x) =

m∑

j=−m

gj φ(2x− j) , (15)

φ̃(x) = 2

m∑

j=−m

h̃j φ̃(2x− j) , (16)

ψ̃(x) = 2

m∑

j=−m

g̃j φ̃(2x− j) . (17)

In terms of the the two index multi level basis functions defined by,

φk
i (x) = φ(2kx− i) , (18)

ψk
i (x) = ψ(2kx− i) , (19)

φ̃k
i (x) = 2kφ̃(2kx− i) , (20)

ψ̃k
i (x) = 2kψ̃(2kx− i) , (21)
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the refinement relations are,

φk
i (x) =

m∑

j=−m

hj φ
k+1
2i+j(x) , (22)

ψk
i (x) =

m∑

j=−m

gj φ
k+1
2i+j(x) , (23)

φ̃k
i (x) =

m∑

j=−m

h̃j φ̃
k+1
2i+j(x) , (24)

ψ̃k
i (x) =

m∑

j=−m

g̃j φ̃
k+1
2i+j(x) . (25)

• A wavelet analysis (forward) transform is given by

sk−1
i =

m∑

j=−m

h̃js
k
j+2i , (26)

dk−1
i =

m∑

j=−m

g̃js
k
j+2i .

A wavelet synthesis (backward) transform is given by

sk+1
2i =

m/2
∑

j=−m/2

h2j s
k
i−j + g2j d

k
i−j (27)

sk+1
2i+1 =

m/2
∑

j=−m/2

h2j+1 s
k
i−j + g2j+1 d

k
i−j .

These two equations are generalizations of equations (5), (7) that we derived in an
intuitive way.

The wavelet transform is in principle for periodic data sets. Therefore the subscripts
of thes andd coefficients have to be wrapped around once they are out of bounds.

• The fundamental functions satisfy the following orthogonality relations,
∫

φ̃k
i (x)φk

j (x)dx = δi,j , (28)
∫

ψ̃k
i (x)φq

j (x)dx = 0 , k ≥ q , (29)
∫

ψk
i (x)φ̃q

j (x)dx = 0 , k ≥ q , (30)
∫

ψk
i (x)ψ̃q

j (x)dx = δk,qδi,j . (31)
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5.3 Basic formulas for orthogonal wavelet families

• An orthogonal wavelet family of degreem is characterized by 2 finite filters denoted
by hj, gj , satisfying the orthogonality relations

∑

l

hl−2i hl−2j = δi,j , (32)

∑

l

gl−2i gl−2j = δi,j , (33)

∑

l

hl−2i gl−2j = 0 (34)

and the symmetry relation

gi+1 = (−1)i+1h−i . (35)

• The refinement relations are

φ(x) =
√

2
m∑

j=−m

hj φ(2x− j) , (36)

ψ(x) =
√

2
m∑

j=−m

gj φ(2x − j) . (37)

In terms of the the two index multi level basis functions defined by

φk
i (x) =

√
2

k
φ(2kx− i) , (38)

ψk
i (x) =

√
2

k
ψ(2kx− i) , (39)

the refinement relations are

φk
i (x) =

m∑

j=−m

hj φ
k+1
2i+j(x) , (40)

ψk
i (x) =

m∑

j=−m

gj φ
k+1
2i+j(x) . (41)

• The formulas for the forward and backward wavelet transforms are identical to the
biorthogonal case (Equation (26) and (27)), with the exception that the filters̃h andg̃
have to be replaced by the filtersh andg in the forward transform.

• The fundamental functions satisfy the orthogonality relations,
∫

φk
i (x)φk

j (x)dx = δi,j , (42)
∫

ψk
i (x)φq

j (x)dx = 0 , k ≥ q , (43)
∫

ψk
i (x)ψq

j (x)dx = δk,qδi,j . (44)
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6 The Fast Wavelet Transform

One single sweep in a wavelet transformation (Eq. 26, Eq. 27)is a convolution with a
short filter that can be done with linear scaling with respectto the size of the data set. An
entire wavelet analysis transformation consists of several sweeps where in each consecutive
sweep the amount of data to be transformed is cut into half. The total number of arithmetic
operations is therefore given by a geometric series and is proportional to the data set. More
precisely, if our filtersh andg have length2m the operation count is given by2m(n+n/2+
n/4 + ...) < 4mn. The entire wavelet analysis scales therefore linearly. Anentire wavelet
synthesis is just the reverse operation and scales linearlyas well. Below the evolution of a
data set in a wavelet analysis is shown.

original data
s40 s41 s42 s43 s44 s45 s46 s47 s48 s49 s410 s

4
11 s

4
12 s

4
13 s

4
14 s

4
15 = S4

after first sweep
s30 s31 s32 s33 s34 s35 s36 s37 d3

0 d3
1 d3

2 d3
3 d3

4 d3
5 d3

6 d3
7 = S3, D3

after second sweep
s20 s21 s22 s23 d2

0 d2
1 d2

2 d2
3 d3

0 d3
1 d3

2 d3
3 d3

4 d3
5 d3

6 d3
7 = S2, D2, D3

after third sweep
s10 s11 d1

0 d1
1 d2

0 d2
1 d2

2 d2
3 d3

0 d3
1 d3

2 d3
3 d3

4 d3
5 d3

6 d3
7 = S1, D1, D2, D3

final data
s00 d0

0 d1
0 d1

1 d2
0 d2

1 d2
2 d2

3 d3
0 d3

1 d3
2 d3

3 d3
4 d3

5 d3
6 d3

7 = S0, D0, D1, D2, D3

Note that this transformation from the original data to the final data corresponds exactly to
the transformation done in an intuitive way to get from Equation (3) to Equation (6).

7 Interpolating Wavelets

As will be discussed later, interpolating wavelets have many properties, which make them
highly suitable as basis sets for partial differential equations. At the same time they are
conceptionally the simplest wavelets. We will therefore describe the construction of the
elementary interpolating wavelet7, 6 in detail.

The construction of interpolating wavelets is closely connected to the question of how
to construct a continuous functionf(x) if only its valuesfi on a finite number of grid
pointsi are known. One way to do this is by recursive interpolation. In a first step we
interpolate the functional values on all the midpoints by using for instance the functional
values of two grid points to the right and of two grid points tothe left of the midpoint.
These four functional values allow us to construct a third order polynomial and we can
then evaluate it at the midpoint. In the next step, we take this new data set, which is now
twice as large as the original one, as the input for a new midpoint interpolation procedure.
This can be done recursively ad infinitum until we have a quasicontinuous function.
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Let us now show, how this interpolation prescription leads to a set of basis functions.
Denoting by the Kroneckerδi−j a data set whose elements are all zero with the exception
of the element at positionj, we can write any initial data set as a linear combination of
such Kronecker data sets:fi =

∑

j fjδi−j . Now the whole interpolation procedure is
clearly linear, i.e. the sum of two interpolated values of two separate data sets is equal to
the interpolated value of the sum of these two data sets. Thismeans that we can instead
also take all the Kronecker data sets as the input for separate ad-infinitum interpolation
procedures, to obtain a set of functionsφ(x − j). The final interpolated function is then
identical tof(x) =

∑

j fjφ(x − j). If the initial grid valuesfi were the functional values
of a polynomial of degree less than four, we obviously will have exactly reconstructed the
original function from its values on the grid points. Since any smooth function can locally
be well approximated by a polynomial, these functionsφ(x) are good basis functions and
we will use them as scaling functions to construct a wavelet family.

The first construction steps of an interpolating scaling function are shown in Figure 9
for the case of linear interpolation. The initial Kroneckerdata set is denoted by the big
dots. The additional data points obtained after the first interpolation step are denoted by
medium size dots and the additional data points obtained after the second step by small
dots.

0 1 2 3-1-2-3

Figure 9. The first two steps of a recursive interpolation procedure in the case of simple linear interpolation. The
original data point are represented by the big dots, data points filled in by the following two interpolation steps
by medium and small dots.

Continuing this process ad infinitum will then result in the function shown in the left
panel of Figure 10. If an higher order interpolation scheme is used the function shown in
the right panel of Figure 10 is obtained.
By construction it is clear, thatφ(x) has compact support. If an(m− 1)-th order interpo-
lation scheme is used, the filter length is(m − 1) and the support interval of the scaling
function is[−(m− 1); (m− 1)].

It is also not difficult to see that the functionφ(x) satisfies the refinement relation.
Let us again consider the interpolation ad infinitum of a Kronecker data set which has
everywhere zero entries except at the origin. We can now split up this process into the first
step where we calculate the half-integer grid point values and a remaining series of separate
ad infinitum interpolations for all half-integer Kroneckerdata sets, which are necessary to
represent the data set obtained by the first step. Doing the ad-infinitum interpolation for
a half integer data set with a unit entry at (half integer) position j, we obviously obtain
the same scaling function, just compressed by a factor of 2,φ(2x − j). If we are using a
(m− 1)-th order interpolation scheme (i.e.m input data for the interpolation process) we
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Figure 10. A Kronecker delta interpolated ad infinitum with linear interpolation (left panel) and 7-th order inter-
polation (right panel) .

thus get the relation

φ(x) =

m−1∑

j=−m+1

φ(j/2) φ(2x− j) . (45)

Comparing this equation with the refinement relation Equation (14) we can identify the
first filter h as

hj = φ(j/2) , j = −m+ 1,m− 1 .

For the case of third order interpolation the numerical values ofh follow from the standard
interpolation formula and are given by:

h = {-1/16 , 0 , 9/16 , 1 , 9/16 , 0 , -1/16}
j = -3 -2 -1 0 1 2 3

Let us next determine the filter̃h. Let us consider a functionf(x) which is band-
limited in the wavelet sense, i.e which can exactly be represented by a superposition of
scaling functions at a certain resolution levelK

f(x) =
∑

j

cjφ
K
j (x) .

It then follows from the orthogonality relation Equation (28) that

cj =

∫

φ̃K
j (x)f(x)dx .

Now we have seen above that with respect to interpolating scaling functions, a band-limited
function is just any polynomial of degree less than or equal tom−1, and that in this case the
expansion coefficientscj are just the functional values at the grid points (Equation (45)).
We therefore have

∫

φ̃K
j (x)f(x)dx = fj ,

which shows that the dual scaling functioñφ is the delta function. Obviously the delta
function satisfies a trivial refinement relationδ(x) = 2δ(2x) and from Equation (16) we
conclude that̃hj = δj .
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ht = { 0 , 0 , 1 , 0 , 0 }
j = -2 -1 0 1 2

From the symmetry Equations (12), (13) for the filters we can now determine the two
remaining filters and we have thus completely specified our wavelet family. Forg̃j we
obtain

gt = { 0 , 0 , -1/16 , 0 , 9/16 , -1 , 9/16 , 0 , -1/16 }
j = -4 -3 -2 -1 0 1 2 3 4

Forgj we obtain
g = { 0 , 0 , 0 , -1 , 0 }
j = -2 -1 0 1 2

As expected, these 4 filters satisfy the orthogonality conditions (8) to (11).
Due to the easy structure of the filters in this case, the backward transform can be done

by inspection to obtain the form of the 4 fundamental functionsφ, ψ, φ̃ andψ̃. In the case
of the scaling functionφ, thed coefficients at all resolution levels vanish. For the even
elements Equation (27) becomes

sk+1
2i = sk

i .

So the even grid points on the finer grid take on the values of the coarser grid. The odd
filter elements are just the interpolating coefficients giving:

sk+1
2i+1 = h3 s

k
i−1 + h1 s

k
i+0 + h−1 s

k
i+1 + h−3 s

k
i+2 .

So the values at the odd fine grid points are just interpolatedfrom the coarse grid points.
In summary we thus see that an infinite series of backward transforms just describes the
ad-infinitum interpolation process depicted in Figure 9.

In the case of the waveletψ the only nonzerod coefficient in the input data will generate
in the first step as data set where again only one coefficient is nonzero, since the g filter
has only one nonzero entry. Continuing the procedure one will thus obtain for the wavelet
a negative scaling function compressed by a factor of 2,ψ(x) = −φ(2x− 1).

To generate the dual functions̃φ andψ̃, one has to replace the filtersh andg in the
backward transform by the dual counterpartsh̃ and g̃. For the case of the dual scaling
function φ̃, one sees by inspection that the backward transform equations Equation (27)
become:

sk−1
2i+1 = 0 ; sk−1

2i =

{
1 if i = 0
0 otherwise

As one should, one thus obtains a delta function

φ̃(x) = δ(x) . (46)

For the case of a dual waveletψ̃ the argument is analogous to the non-dual case. In the
first step of the backward transform the filterg̃ generates 5 nonzeros coefficients, which
will become 5 delta functions through the action of the filterh̃. We get

ψ̃(x) = − 1
16δ((x− 1

2 ) + 3/2) + 9
16δ((x − 1

2 ) + 1/2)− δ((x− 1
2 ))

+ 9
16δ((x− 1

2 ) + 1/2)− 1
16δ((x − 1

2 ) + 3/2) . (47)

We thus see that the interpolating wavelet is a very special case in that its scaling function
and wavelet have the same functional form and that the dual functions are related to the
delta function. The non-dual functions are shown in Figure 3. Filters for interpolating
wavelets of other degrees are given in the Appendix.
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8 Expanding Polynomials in a Wavelet Basis

Functions of practical interest are of course not simple polynomials, and it will be discussed
later how to expand arbitrary functions in a wavelet basis. For several proofs the expansion
of polynomials in a wavelet basis is however important and wewill therefore derive the
following theorem: The scaling function expansion coefficientssi(l) of a polynomial of
degreel are themselves a polynomial of the same degreel.

Let us first demonstrate the theorem for the trivial case of a constant, i.e.l = 0. The
expansion coefficientssi(0) are given by

∫
φ̃(x− i)dx. Assuming

∫
φ̃(x)dx is normalized

to 1 we thus obtainsi(0) = 1.
In the linear case (i.e.l = 1) we havesi(1) =

∫
φ̃(x−i)xdx. For the shifted coefficient

we get

si+1(1) =

∫

φ̃(x− i− 1)xdx =

∫

φ̃(x− i)(x+ 1)dx (48)

= si(1) + 1 .

So we see thatsi(1) satisfies the difference equation for a linear polynomial and that it is
therefore a linear polynomial.

For arbitrary degreel we get

si+1(l) =

∫

φ̃(x− i− 1)xldx =

∫

φ̃(x− i)(x+ 1)ldx (49)

=
∑

τ

∫

φ̃(x− i) l!

τ !(l − τ)!x
τdx

=
∑

τ

l!

τ !(l − τ)!si(τ) .

So wee see indeed thatsi(l) is a polynomial oflth degree since it satisfies the correspond-
ing difference equation, which proves the theorem.

9 Orthogonal Versus Biorthogonal Wavelets

The interpolating wavelets constructed above are a specialcase of so-called biorthogonal
wavelet families. The interpolating wavelets have the property of being the smoothest ones
for a fixed filter length. On the other hand the dual functions of the interpolating wavelet
family are the least smooth ones. Loosely speaking the sum ofthe smoothness of the
dual and non-dual space are a constant for a given filter length. For a given filter length
one can therefore either go for maximum smoothness in the dual or non-dual space. The
interpolating wavelets are your favorite choice if you wantmaximum smoothness in the
non-dual space.

Wavelets are called orthogonal if the dual quantities are equal to the non-dual quanti-
ties. In the case of orthogonal wavelets the smoothness in dual and non-dual space is thus
obviously the same. They are therefore not as smooth as the interpolating wavelets. The
smoothness properties of the Daubechies family are actually not as bad as on might expect
from looking at the “ugly” plots. With the 4-th order family one can exactly represent
linear function, with the 6-th order family quadratic and with the 8-th order family cubic
polynomials.
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10 Expanding Functions in a Wavelet Basis

As we have seen, there are two possible representations of a function within the framework
of wavelet theory. The first one is called scaling function representation and involves only
scaling functions. The second is called wavelet representation and involves wavelets as
well as scaling functions. Both representations are completely equivalent and exactly the
same number of coefficients are needed. The scaling functionrepresentation is given by

f(x) =
∑

j

sKmax
j φKmax

j (x) . (50)

Evidently this approximation is more accurate if we use skinnier scaling functions from a
higher resolution levelKmax. From the orthogonality relations (28) it follows, that the
coefficients are given by

sKmax
j =

∫

φ̃Kmax
j (x) f(x)dx . (51)

Once we have a set of coefficientssKmax
j we can use a full forward wavelet transform to

obtain the wavelet representation

f(x) =
∑

j

sKmin
j φKmin

j (x) +

Kmax∑

K=Kmin

∑

j

dK
j ψK

j (x) . (52)

Alternatively, one could also directly calculate thed coefficients by integration

dK
j =

∫

ψ̃K
j (x) f(x)dx . (53)

The above Equation (53) follows from the orthogonality relations (29) to (31). So we see
that if we want to expand a function either in scaling functions or wavelets, we have to
perform integrations at some point to calculate the coefficients. For general wavelet fam-
ilies this integration is fairly cumbersome5 and requires especially in 2 and 3 dimensions
a substantial number of integration points. Furthermore itis not obvious how to do the
integration if the function is only given in tabulated form.If one wants to obtain the same
number of coefficients as one has functional values, one could either first interpolate the
function to obtain the necessary number of integration points, which will introduce ad-
ditional approximations. If one does not generate additional integration points, then the
number of coefficients will necessarily be less than the number of functional values and
information is thus lost. The interpolating wavelets discussed above are the glorious ex-
ception. Since the dual scaling function is a delta functionand since the dual wavelet is
a sum of the delta functions, one or a few data points are sufficient to do the integration
exactly. In the case of periodic data sets, the filters will wrap around for data points close
enough to the boundary of the periodic volume. One will therefore get exactly the same
number of coefficients as one has data points and one has an invertible one-to-one mapping
between the functional values on the grid and the expansion coefficients.

Non-periodic data sets can also be handled. In this case we have to put the non-periodic
data set into a larger periodic data set consisting of zeroes. This composite data set will
then contain the nonzero non-periodic data set in the middlesurrounded by a layer of
zeroes on all sides. If this layer of zeroes is broader than half the filter lengthm/2 opposite
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ends will not interfere during one sweep of a wavelet transform and one obtains the correct
representation of the non-periodic function. Correct means in this context that the value
of the nonzero coefficients would not change if we made the surrounding layer of zeroes
broader.

The interpolating wavelets are also unbeatable from the point of view of accuracy.
The accuracy of a scaling function expansion depends on the smoothness of the scaling
function. This is easy to see for the case of interpolating wavelets. The functional value
of a scaling function expansion at any midpoint is given by interpolation and thus the error
is also given by the well known interpolation error formula.If h is the grid spacing and
(m − 1)-th order interpolation is used then the error is proportional to hm. So since the
interpolating wavelets are the smoothest wavelets they arealso the most accurate ones. If
on the other hand one is willing to accept a certain error thenthe interpolating wavelets
will meet this error criteria with the smallest number of expansion coefficients.

This fact can also be understood from a different point of view. Let us introduce the
momentsM̃l,

M̃l =

∫

ψ̃(x) xldx .

Now we know, that locally any smooth function can be approximated by a polynomial. Let
us for simplicity consider the coefficientdK

0 at the origin,

dK
0 =

∞∑

ν=0

∫

fν(0)
xν

ν!
ψ̃K

0 (x)dx .

If the firstL momentsl = 0, ..., L− 1 vanish this becomes

dK
0 =

∞∑

ν=L

hνCν ,

where we have used the fact thatψ̃ is a sum of delta functions and whereCν are appropriate
constants. Thed coefficients decay therefore ashL and since the error is proportional to
the coefficients of the wavelets which are discarded, the error is proportional tohL as well.
In the case of the 4-th order interpolating wavelet it is easyto see, that the first 4 moments
vanish,M̃l = 0, l = 0, 1, 2, 3 and thus the error is indeed proportional toh4. The measured
decay of the d coefficients for the case of a Gaussian is shown in Figure 11.

This relation between the error in the expansion of a function and the number of van-
ishing moments is not only valid for interpolating waveletsbut also holds true for other
wavelet families.

11 Wavelets in 2 and 3 Dimensions

The easiest way to construct a wavelet basis in higher dimensional spaces is by forming
product functions3. For simplicity of notation we will concentrate on the 2-dimensional
case, the generalization to higher dimensional spaces being obvious. The space of all
scaling functions of resolution levelk is given in the 2-dimensional case by

φk
i1,i2(x, y) = φk

i1(x)φ
k
i2(y) . (54)
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Figure 11. The decay of thed coefficients as a function of their resolution level on a double logarithmic scale.
The solid lines show the result for a 4-th and 8-th order interpolating wavelet, the dashed line is for the 8-th order
Daubechies family.

The wavelets consist of three types of products

ψ[sd]ki1,i2(x, y) = φk
i1(x)ψ

k
i2(y) , (55)

ψ[ds]ki1,i2(x, y) = ψk
i1(x)φ

k
i2(y) , (56)

ψ[dd]ki1,i2(x, y) = ψk
i1(x)ψ

k
i2(y) . (57)

In a 3-dimensional space the scaling functions are correspondingly of [sss] type and
there are 7 different classes of wavelets denoted by[ssd], [sds], [sdd], [dss], [dsd], [dds]
and[ddd].

It is easy to see, that both the many-dimensional scaling functions and wavelets sat-
isfy refinement and orthogonality relations that are obvious generalizations of the 1-
dimensional case. A wavelet transform step in the 2-dimensional setting is done by first
transforming along the x and then along the y direction (or vice versa) as shown below.

D D

S

S

D

S S S D

D S

To do a full 2-dim wavelet analysis one has to do a series of analysis steps. In each step
the size of the active data set is reduced by 1/4 as shown in Figure 12. The total numerical
effort therefore scales again linearly as in the one-dimensional case.
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Figure 12. A full 2-dim wavelet analysis transformation.

12 Calculation of Differential Operators

As we have seen in the preceding chapter we need the matrix elements

∫

φ̃k
i (x)

∂l

∂xl
φk

j (x) dx , (58)

∫

ψ̃k
i (x)

∂l

∂xl
φk

j (x) dx , (59)

∫

φ̃k
i (x)

∂l

∂xl
ψk

j (x) dx , (60)

∫

ψ̃k
i (x)

∂l

∂xl
ψk

j (x) dx , (61)
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to set up theSS, DS, SD andDD parts of the non-standard operator form. Matrix
elements on different resolution levelsk are obviously related by simple scaling relations.
For instance

∫

φ̃k+1
i (x)

∂l

∂xl
φk+1

j (x)dx = 2l

∫

φ̃k
i (x)

∂l

∂xl
φk

j (x)dx . (62)

So we just have to calculate these 4 matrix elements for one resolution level. On a certain
resolution level, we can use the refinement relations to express the matrix elements involv-
ing wavelets in terms of matrix elements involving scaling functions (at a higher resolution
level) only. Denoting the basic integral byai, where

ai =

∫

φ̃(x)
∂l

∂xl
φ(x − i)dx , (63)

we obtain
∫

φ̃i(x)
∂l

∂xl
φj(x)dx = aj−i , (64)

∫

ψ̃i(x)
∂l

∂xl
φj(x)dx = 2l

∑

ν,µ

g̃νhµa2j−2i+µ−ν , (65)

∫

φ̃i(x)
∂l

∂xl
ψj(x)dx = 2l

∑

ν,µ

h̃νgµa2j−2i+µ−ν , (66)

∫

ψ̃i(x)
∂l

∂xl
ψj(x)dx = 2l

∑

ν,µ

g̃νgµa2j−2i+µ−ν . (67)

To calculateai we follow Beylkin9. Using the refinement relations Equations (14) and
(16) forφ andφ̃ we obtain

ai =

∫

φ̃(x)
∂l

∂xl
φ(x − i)dx (68)

=
∑

ν,µ

2h̃νhµ

∫

φ̃(2x− ν) ∂
l

∂xl
φ(2x− 2i− µ)dx

=
∑

ν,µ

2h̃νhµ2l−1

∫

φ̃(y − ν) ∂
l

∂yl
φ(y − 2i− µ)dy

=
∑

ν,µ

h̃νhµ2l

∫

φ̃(y)
∂l

∂yl
φ(y − 2i− µ+ ν)dy

=
∑

ν,µ

h̃νhµ 2l a2i−ν+µ

We thus have to find the eigenvectora associated with the eigenvalue of2−l,

∑

j

Ai,j aj =

(
1

2

)l

ai , (69)
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where the matrixAi,j is given by

Ai,j =
∑

ν,µ

h̃νhµ δj,2i−ν+µ . (70)

As it stands this eigensystem has a solution only if the rang of the matrixA − 2−lI
is less than its dimension. For a well defined differential operator, i.e ifl is less than the
degree of smoothness of the scaling function this will be thecase (for the 4-th order inter-
polating wavelet family the second derivative is for instance not defined). The system (69)
is numerically unstable and it is therefore better to solve it using symbolic manipulations
with a software such as Mathematica instead of solving it numerically.

The system of equations (69) determines theaj ’s only up to a normalization factor. In
the following, we will therefore derive the normalization equation. For simplicity, we will
give the derivation only for the case of interpolating polynomials, even though the final
result Equation (73) will hold in the general case.

From the normalization of the scaling function and from elementary calculus, it follows
that

∫

φ(x)
∂l

∂xl
xl dx =

∫

φ(x) l! dx = l! . (71)

On the other hand we know, that we can expand any polynomial oflow enough degree
exactly with the interpolating polynomials. The expansioncoefficients are justil. So we
obtain

∫

φ(x)
∂l

∂xl

∑

i

ilφ(x − i) =
∑

i

ilai . (72)

By comparing Equation (71) and (72) we thus obtain the normalization condition
∑

i

ilai = l! . (73)

The interpolating wavelet family offers also an important advantage for the calcula-
tion of differential operators. Whereas in general derivative filters extend over the interval
[−2m; 2m] most of the border elements of interpolating wavelets are zero and their effec-
tive filter length is only[−m+ 2;m− 2].

Derivative filter coefficients for several families are listed in the Appendix.

13 Differential Operators in Higher Dimensions

As was pointed out before, higher dimensional wavelets can be constructed as products
of one dimensional wavelets. The matrix elements of differential operators can therefore
easily be derived.

Let us consider as an example the matrix elements of∂
∂x with respect to the 2-

dimensional scaling functions,
∫

φ̃k
i1,i2(x, y)

∂

∂x
φk

j1,j2(x, y) =

∫

φ̃k
i1(x)φ̃

k
i2(y)

∂

∂x
φk

j1(x)φ
k
j2(y) = δi2−j2aj1−i1 .

The remaining matrix elements among the wavelets and scaling functions can be derived
along the same lines. Obviously a differential operator acting onx will only couple func-
tions which have the same dependence with respect toy as indicated in Figure 13.
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Figure 13. The coupling of the expansion coefficients under the action of a differential operator acting along the
(horizontal)x axis.

14 The Solution of Poisson’s Equation

In the following, a method11 will be presented that uses interpolating scaling functions to
solve Poisson’s equation with free boundary conditions andNlog(N) scaling. The input
is a charge densityρi1, i2, i3 on a equally spaced 3-dimensional grid ofN = n1n2n3 grid
points. For simplicity we put the grid spacing equal to 1. Since for interpolating scaling
functions the expansion coefficients are just the values on the grid we can obtain from our
discrete data setρi1,i2,i3 a continuous charge distributionρ(r)

ρ(r) =
∑

i1,i2,i3

ρi1,i2,i3 φ(x/h− i1) φ(y/h− i2) φ(z/h− i3) (74)

It is not very difficult to prove that the discrete and continuous monopoles, i.e
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz ρ(r) =

∑

i1,i2,i3

ρi1,i2,i3

In the same way the discrete and continuous dipoles are identical, i.e
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz z ρ(r) =

∑

i1,i2,i3

i3 ρi1,i2,i3

The potential on the grid pointj1, j2, j3 (of same grid that was used for the input charge
density) is then given by

Vj1,j2,j3 =
∑

i1,i2,i3

ρi1,i2,i3

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz

φ(x − i1) φ(y − i2) φ(z − i3)
√

(x − j1)2 + (y − j2)2 + (z − j3)2

=
∑

i1,i2,i3

ρi1,i2,i3Fi1−j1,i2−j2,i3−j3 (75)

F is a long filter which depends only on the distancei − j between the observation point
j and the source pointi. Since the above expression for the potentialVj1,j2,j3 is a con-
volution it can be calculated with FFT techniques at the costof N3 log(N3) operations
whereN3 is the number of grid points. It remains to calculate the values of the filter
Fi1−j1,i2−j2,i3−j3 . Calculating each of theN3 filter elements as a 3-dimensional numer-
ical integral would be too costly. The calculation becomes however feasible if the1/r
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kernel is made separable. This can be achieved by representing it as a sum of Gaussians.
The representation is best based on the identity

1

r
=

2√
π

∫ ∞

−∞
e−r2 exp(2s)+sds

Discretizing this integral we obtain

1

r
=
∑

l

wle
−γlr

2

(76)

With 89 well optimized values forwl andγl it turns out that1/r can be represented in the
interval from10−9 to 1 with an relative error of10−8. The 3-dimensional integral in Eq. 75
becomes then a sum of 89 terms each of which is a product of 1-dimensional integrals.

∫

dx

∫

dy

∫

dz
φ(x− i1) φ(y − i2) φ(z − i3)

√

(x− j1)2 + (y − j2)2 + (z − j3)2
=

89∑

l=1

wl

∫

dx

∫

dy

∫

dz φ(x− i1) φ(y − i2) φ(z − i3) e−γl((x−j1)2+(y−j2)2+(z−j3)2) =

89∑

l=1

wl

∫

dx φ(x − i1)e−γl(x−j1)2
∫

dy φ(y − i2)e−γl(y−j2)2
∫

dz φ(z − i3)e−γl(z−j3)2

Using 89 terms in Eq. 76 we have thus to solve just89N one-dimensional integrals which
can be done extremely rapidly on a modern computer. The main cost are thus the FFT’s
required to calculate the convolution with the kernelFi1−j1,i2−j2,i3−j3 .

The above presented method does not exploit the possibilityto have adaptivity in a
wavelet basis. Adpative methods to solve Poisson’s equation on grids where the resolution
varies by several orders of magnitude exist10 as well. They are however based on more
advanced concepts4 such as non-standard operator forms and lifted interpolating wavelets.

15 The Solution of Schr̈odinger’s Equation

Since the different Kohn-Sham orbitals in a density functional calculation have to be or-
thogonal, orthogonalization steps occur frequently in such a calculation. As a matter of
fact these orthogonalization operations have cubic scaling and dominate thus the whole
calculation for large system. It is therefore important that these operations can be done
efficiently. This strongly suggests to use orthogonal Daubechies scaling functions and
wavelets as basis functions for the Kohn-Sham orbitals. In spite of the striking advantages
of Daubechies wavelets, the initial exploration of this basis set8 did not lead to any algo-
rithm that would be useful for real electronic structure calculations. This was due to the
fact that an accurate evaluation of the local potential energy is difficult in a Daubechies
wavelet basis. The kinetic energy part on the other hand is easy since it is just given by
the Laplace operator. How to treat the Laplace operator has already been discussed. The
obstacles in the evaluation of the potential energy have been overcome12 recently and it
was consequently shown that wavelets are an efficient basis set for electronic structure cal-
culations13 which outperforms plane waves for open structures. We will next discuss how
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the different parts of the Hamiltonian are handled in a wavelet basis. For simplicity, we
will discuss only the case where a wave functionΨ is expanded in scaling functions.

Ψ(r) =
∑

i1,i2,i3

si1,i2,i3φi1,i2,i3(r) (77)

The sum overi1, i2, i3 runs over all the points of a uniform grid. The more general case of
adaptive resolution is discussed in the original paper13.

15.1 Treatment of local potential energy

The local potentialV (r) is generally known on the nodes of the uniform grid in the simu-
lation box. Approximating a potential energy matrix element Vi,j,k;i′,j′,k′

Vi,j,k;i′,j′,k′ =

∫

drφi′,j′,k′ (r)V (r)φi,j,k(r)

by

Vi,j,k;i′ ,j′,k′ ≈
∑

l,m,n

φi,j,k(rl,m,n)V (rl,m,n)φi,j,k(rl,m,n)

gives an extremely slow convergence rate with respect to thenumber of grid point used to
approximate the integral because a single scaling functionis not very smooth, i.e. it has a
rather low number of continuous derivatives. A. Neelov and S. Goedecker12 have shown
that one should not try to approximate a single matrix element as accurately as possible but
that one should try instead to approximate directly the expectation value of the local po-
tential. The reason for this strategy is that the wave function expressed in the Daubechies
basis is smoother than a single Daubechies basis function. Asingle Daubechies scaling
function of order 16 has only 4 continuous derivatives. By suitable linear combinations of
Daubechies 16 one can however exactly represent polynomials up to degree 7, i.e. func-
tions that have 7 non-vanishing continuous derivatives. The discontinuities get thus can-
celed by taking suitable linear combinations. Since we use pseudopotentials, our exact
wave functions are analytic and they can locally be represented by a Taylor series. We
are thus approximating functions that are approximately polynomials of order 7 and the
discontinuities cancel to a large degree.

Instead of calculating the exact matrix elements we therefore use matrix elements with
respect to a smoothed versionφ̃ of the Daubechies scaling functions.

Vi,j,k;i′,j′,k′ ≈
∑

l,m,n

φ̃i′,j′,k′(rl,m,n)V (rl,m,n)φ̃i,j,k(rl,m,n) =

∑

l,m,n

φ̃0,0,0(ri′+l,j′+m,k′+n)V (rl,m,n)φ̃0,0,0(ri+l,j+m,k+n) . (78)

The magic filterω is defined by

ωl,m,n = φ̃0,0,0(rl,m,n)

The relation between the true functional values, i.e. the scaling function, andω is shown in
figure 14. Even though Eq. 78 is not a particularly good approximation for a single matrix
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element it gives an excellent approximation for the expectation values of the local potential
energy

∫

dx

∫

dy

∫

dz Ψ(x, y, z)V (x, y, z)Ψ(x, y, z)

In practice we do not explicitly calculate any matrix elements but we apply only filters
to the wave function expansion coefficients as will be shown in the following. This is
mathematically equivalent but numerically much more efficient.
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Figure 14. The magic filterωi for the least asymmetric Daubechies-16 basis. The values ofthe magic filter do
not coincide with the functional values of the scaling function but represent the behavior of this function in some
neighborhood.

Once we have calculated̃Ψi,j,k the approximate expectation valueǫV of the local po-
tentialV for a wave functionΨ is obtained by simple summation on the real space grid:

ǫV =
∑

j1,j2,j3

Ψ̃j1,j2,j3Vj1,j2,j3Ψ̃j1,j2,j3

15.2 Treatment of the non-local pseudopotential

The energy contributions from the non-local pseudopotential have for each angular mo-
mentl the form

∑

i,j

〈Ψ|pi〉hij〈pj |Ψ〉

where|pi〉 is a pseudopotential projector. When applying the hamiltonian operator on a
wave function, such a separable term requires the calculation of

|Ψ〉 → |Ψ〉+
∑

i,j

|pi〉hij〈pj |Ψ〉 .
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It follows from Eq. 51 that the scaling function expansion coefficients for the projectors
are given by

∫

p(r)φi1,i2,i3(r)dr . (79)

The GTH-HGH pseudopotentials14, 15 have projectors which are written in terms of
Gaussian times polynomials. This form of projectors is particularly convenient to be ex-
panded in the Daubechies basis. Since a 3-dimensional Gaussian〈r|p〉 = e−cr2xℓxyℓyzℓz

is a product of three 1-dimensional Gaussians, the 3-dimensional integral 79 can be factor-
ized into a product of three 1-dimensional integrals.

∫

〈r|p〉φi1,i2,i3(r)dr = Wi1(c, ℓx)Wi2 (c, ℓy)Wi3 (c, ℓx) ,

Wj(c, ℓ) =
∫ +∞
−∞ e−ct2tℓφ(t/h− j)dt

The 1-dimensional integralsWj(c, ℓ) are calculated in the following way. We first cal-
culate the scaling function expansion coefficients for scaling functions on a 1-dimensional
grid that is 16 times denser. The integration on this dense grid is done by summing the
product of the Gaussian and the smoothed scaling function that is obtained by filtering
the original scaling function with the magic filter12. This integrations scheme based on the
magic filter has a convergence rate ofh14 and we gain therefore a factor of1614 in accuracy
by going to a denser grid. This means that the expansion coefficients are for reasonable
grid spacingsh accurate to machine precision. After having obtained the expansion co-
efficients with respect to the fine scaling functions we obtain the expansion coefficients
with respect to the scaling functions and wavelets on the required resolution level by one-
dimensional fast wavelet transformations (Eq. 26). No accuracy with respect to the scaling
function coefficients on the lower resolution levels is lostin the wavelet transforms and
our representation of the coarse scaling function coefficients of the projectors is therefore
typically accurate to nearly machine precision.

16 Final Remarks

Even though wavelet basis sets allow for a very high degree ofadaptivity, i.e. many levels
of wavelets in Eq. 52, such a high degree of adaptivity causessome numerical overhead
that slows down a program. For this reason we have adopted in the BigDFT electronic
structure program (http://www-drfmc.cea.fr/sp2m/LSim/BigDFT/) only a low degree of
adaptivity, namely two resolution levels which are obtained by a set of scaling function
augmented by a set of 7 wavelets in the high resolution regions. In most cases, the more
rapid variation of the wavefunction around in the chemical bonding region is described
by scaling functions plus wavelets whereas the slower variation in the tail regions of the
wavefunction is described by scaling functions only. This is typically sufficient since pseu-
dopotentials are used to eliminate the strongly varying core electrons and to account for
relativistic effects. All electron wavelet based electronic structure programs do however
exist as well16, 17.
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The major parallel programming models for scalable parallel architectures are the message
passing model and the shared memory model. This article outlines the main concepts of these
models as well as the industry standard programming interfaces MPI and OpenMP. To exploit
the potential performance of parallel computers, programsneed to be carefully designed and
tuned. We will discuss design decisions for good performance as well as programming tools
that help the programmer in program tuning.

1 Introduction

Many applications like numerical simulations in industry and research as well as com-
mercial applications such as query processing, data mining, and multi-media applications
require more compute power than provided by sequential computers. Current hardware
architectures offering high performance do not only exploit parallelism within a single
processor via multiple CPU cores but also apply a medium to large number of processors
concurrently to a single computation. High-end parallel computers currently (2009) de-
liver up to 1 Petaflop/s (1015 floating point operations per second) and are developed and
exploited within the ASC (Advanced Simulation and Computing) program of the Depart-
ment of Energy in the USA and PRACE (Partnership for AdvancedComputing in Europe)
in Europe. In addition, the current trend to multi-core processors also requires parallel
programming to fully exploit the compute power of the multiple cores.

This article concentrates on programming numerical applications on parallel computer
architectures introduced in Section 1.1. Parallelizationof those applications centers around
selecting a decomposition of the data domain onto the processors such that the workload
is well balanced and the communication between processors is reduced (Section 1.2)4.

The parallel implementation is then based on either the message passing or the shared
memory model (Section 2). The standard programming interface for the message passing
model is MPI (Message Passing Interface)8–12, offering a complete set of communication
routines (Section 3). OpenMP13–15 is the standard for directive-based shared memory pro-
gramming and will be introduced in Section 4.

Since parallel programs exploit multiple threads of control, debugging is even more
complicated than for sequential programs. Section 5 outlines the main concepts of parallel
debuggers and presents TotalView21 and DDT3, the most widely available debuggers for
parallel programs.

Although the domain decomposition is key to good performance on parallel archi-
tectures, program efficiency also heavily depends on the implementation of the commu-
nication and synchronization required by the parallel algorithms and the implementation
techniques chosen for sequential kernels. Optimizing those aspects is very system depen-
dent and thus, an interactive tuning process consisting of measuring performance data and
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applying optimizations follows the initial coding of the application. The tuning process is
supported by programming model specific performance analysis tools. Section 6 presents
basic performance analysis techniques.

1.1 Parallel Architectures

A parallel computeror multi-processor systemis a computer utilizing more than one pro-
cessor. A common way to classify parallel computers is to distinguish them by the way
how processors can access the system’s main memory because this influences heavily the
usage and programming of the system.

In a distributed memory architecturethe system is composed out of single-processor
nodes with local memory. The most important characteristicof this architecture is that
access to the local memory is faster than to remote memory. Itis the challenge for the
programmer to assign data to the processors such that most ofthe data accessed during
the computation are already in the node’s local memory. Two major classes of distributed
memory computers can be distinguished:

No Remote Memory Access (NORMA) computers do not have any special hardware
support to access another node’s local memory directly. Thenodes are only con-
nected through a computer network. Processors obtain data from remote memory
only by exchanging messages over this network between processes on the requesting
and the supplying node. Computers in this class are sometimes also calledNetwork
Of Workstations (NOW) or Clusters Of Workstations (COW).

Remote Memory Access (RMA) computers allow to access remote memory via special-
ized operations implemented by hardware, however the hardware does not provide a
global address space, i.e., a memory location is not determined via an address in a
shared linear address space but via a tuple consisting of theprocessor number and the
local address in the target processor’s address space.

The major advantage of distributed memory systems is their ability to scale to a very
large number of nodes. Today (2009), systems with more than 210,000 cores have been
built. The disadvantage is that such systems are very hard toprogram.

In contrast, ashared memory architectureprovides (in hardware) a global address
space, i.e., all memory locations can be accessed via usual load and store operations. Ac-
cess to a remote location results in a copy of the appropriatecache line in the processor’s
cache. Therefore, such a system is much easier to program. However, shared memory sys-
tems can only be scaled to moderate numbers of processors, typically 64 or 128. Shared
memory systems are further classified according to the quality of the memory accesses:

Uniform Memory Access (UMA) computer systems feature one global shared memory
subsystem which is connected to the processors through a central bus or memory
switch. All of the memory is accessible to all processors in the same way. Such a
system is also often calledSymmetrical Multi Processor (SMP).

Non Uniform Memory Access (NUMA) computers are more scalable by physically dis-
tributing the memory but still providing a hardware implemented global address
space. Therefore access to memory local or close to a processor is faster than to re-
mote memory. If such a system has additional hardware which also ensures that multi-
ple copies of data stored in different cache lines of the processors is kept coherent, i.e.,

536



the copies always do have the same value, then it is called aCache-Coherent Non
Uniform Memory Access (ccNUMA) system. ccNUMA systems offer the abstrac-
tion of a shared linear address space resembling physicallyshared memory systems.
This abstraction simplifies the task of program developmentbut does not necessarily
facilitate program tuning.

While most of the early parallel computers were simple single processor NORMA
systems, today’s large parallel systems are typicallyhybrid systems, i.e., shared memory
NUMA nodes with a moderate number of processors are connected together to form a
distributed memory cluster system.

1.2 Data Parallel Programming

Applications that scale to a large number of processors usually perform computations on
large data domains. For example, crash simulations are based on partial differential equa-
tions that are solved on a large finite element grid and molecular dynamics applications
simulate the behavior of a large number of particles. Other parallel applications apply lin-
ear algebra operations to large vectors and matrices. The elemental operations on each
object in the data domain can be executed in parallel by the available processors.

The scheduling of operations to processors is determined bya domain decomposition5

specified by the programmer. Processors execute those operations that determine new val-
ues for elements stored in local memory (owner-computes rule). While processors execute
an operation, they may need values from other processors. The domain decomposition has
thus to be chosen so that the distribution of operations is balanced and the communication
is minimized. The third goal is to optimize single node computation, i.e., to be able to
exploit the processor’s pipelines and the processor’s caches efficiently.

A good example for the design decisions taken when selectinga domain decomposition
is Gaussian elimination1. The main structure of the matrix during the steps of the algorithm
is outlined in Figure 1.

The goal of this algorithm is to eliminate all entries in the matrix below the main
diagonal. It starts at the top diagonal element and subtracts multiples of the first row from
the second and subsequent rows to end up with zeros in the firstcolumn. This operation
is repeated for all the rows. In later stages of the algorithmthe actual computations have
to be done on rectangular sections of decreasing size. If themain diagonal element of the
current row is zero, a pivot operation has to be performed. The subsequent row with the
maximum value in this column is selected and exchanged with the current row.

A possible distribution of the matrix is to decompose its columns into blocks, one
block for each processor. The elimination of the entries in the lower triangle can then be
performed in parallel where each processor computes new values for its columns only. The
main disadvantage of this distribution is that in later computations of the algorithm only a
subgroup of the processors is actually doing any useful worksince the computed rectangle
is getting smaller.

To improve load balancing, a cyclic column distribution canbe applied. The computa-
tions in each step of the algorithm executed by the processors differ only in one column.

In addition to load balancing also communication needs to beminimized. Communica-
tion occurs in this algorithm for broadcasting the current column to all the processors since
it is needed to compute the multiplication factor for the row. If the domain decomposition
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Figure 1. Structure of the matrix during Gaussian elimination.

is a row distribution, which eliminates the need to communicate the current column, the
current row needs to be broadcast to the other processors.

If we consider also the pivot operation, communication is necessary to select the best
row when a row-wise distribution is applied since the computation of the global maximum
in that column requires a comparison of all values.

Selecting the best domain decomposition is further complicated due to optimizing sin-
gle node performance. In this example, it is advantageous toapply BLAS32 operations for
the local computations. These operations make use of blocksof rows to improve cache uti-
lization. Blocks of rows can only be obtained if a block-cyclic distribution is applied, i.e.,
columns are not distributed individually but blocks of columns are cyclically distributed.

This discussion makes clear, that choosing a domain decomposition is a very compli-
cated step in program development. It requires deep knowledge of the algorithm’s data
access patterns as well as the ability to predict the resulting communication.

2 Programming Models

Programming parallel computers is almost always done via the so-calledSingle Program
Multiple Data (SPMD) model. SPMD means that the same program (executable code) is
executed on all processors taking part in the computation, but it computes on different parts
of the data which were distributed over the processors basedon a specific domain decom-
position. If computations are only allowed on specific processors, this has to be explicitly
programmed by using conditional programming constructs (e.g., withif orwhere state-
ments). There are two main programming models,message passingandshared memory,
offering different features for implementing applications parallelized by domain decompo-
sition.

The message passing model is based on a set of processes with private data structures.
Processes communicate by exchanging messages with specialsend and receive operations.
It is a natural fit for programming distributed memory machines but also can be used on
shared memory computers. The domain decomposition is implemented by developing a
code describing the local computations and local data structures of a single process. Thus,
global arrays have to be split up and only the local part has tobe allocated in a process.
This handling of global data structures is calleddata distribution. Computations on the
global arrays also have to be transformed, e.g., by adaptingthe loop bounds, to ensure that
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only local array elements are computed. Access to remote elements has to be implemented
via explicit communication, temporary variables have to beallocated, messages have to be
constructed and transmitted to the target process.

The shared memory model is based on a set of threads that is created when parallel
operations are executed. This type of computation is also called fork-join parallelism.
Threads share a global address space and thus access array elements via a global index.
The main parallel operations areparallel loopsandparallel sections. Parallel loops are
executed by a set of threads also called ateam. The iterations are distributed among the
threads according to a predefined strategy. This schedulingstrategy implements the chosen
domain decomposition. Parallel sections are also executedby a team of threads but the
tasks assigned to the threads implement different operations. This feature can for example
be applied if domain decomposition itself does not generateenough parallelism and whole
operations can be executed in parallel since they access different data structures.

In the shared memory model, the distribution of data structures onto the node memories
is not enforced by decomposing global arrays into local arrays, but the global address
space is distributed onto the memories by the operating system. For example, the pages
of the virtual address space can be distributed cyclically or can be assigned at first touch.
The chosen domain decomposition thus has to take into account the granularity of the
distribution, i.e., the size of pages, as well as the system-dependent allocation strategy.

While the domain decomposition has to be hard-coded into themessage passing pro-
gram, it can easily be changed in a shared memory program by selecting a different
scheduling strategy for parallel loops.

Another advantage of the shared memory model is that automatic and incremental par-
allelization is supported. While automatic parallelization leads to a first working parallel
program, its efficiency typically needs to be improved. The reason for this is that paral-
lelization techniques work on a loop-by-loop basis and do not globally optimize the parallel
code via a domain decomposition. In addition, dependence analysis, the prerequisite for
automatic parallelization, is limited to access patterns known at compile time. The biggest
disadvantage of this model is that it can only be used on shared memory computers.

In the shared memory model, a first parallel version is relatively easy to implement
and can be incrementally tuned. In the message passing modelinstead, the program can
be tested only after finishing the full implementation. Subsequent tuning by adapting the
domain decomposition is usually time consuming.

3 MPI

The Message Passing Interface (MPI)8–12was mainly developed between 1993 and 1997. It
is a community standard which standardizes the calling interface for a communication and
synchronization function library. It provides Fortran 77,Fortran 90, C and C++ language
bindings. It includes routines for point-to-point communication, collective communica-
tion, one-sided communication, parallel IO, and dynamic task creation. Currently, almost
all available open-source and commercial MPI implementations support the 2.0 standard
with the exception of dynamic task creation, which is only implemented by a few. In 2008,
an update and clarification of the standard was published as Version 2.1 and work has be-
gun to define further enhancements (version 3.x). For a simple example see the appendix.
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3.1 MPI Basic Routines

MPI consists of more than 320 functions. But realistic programs can already be developed
based on no more than six functions:

MPI Init initializes the library. It has to be called at the beginningof a parallel operation
before any other MPI routines are executed.

MPI Finalize frees any resources used by the library and has to be called atthe end of
the program.

MPI Comm size determines the number of processors executing the parallelprogram.
MPI Comm rank returns the unique process identifier.
MPI Send transfers a message to a target process. This operation is a blocking send

operation, i.e., it terminates when the message buffer can be reused either because
the message was copied to a system buffer by the library or because the message was
delivered to the target process.

MPI Recv receives a message. This routine terminates if a message wascopied into the
receive buffer.

3.2 MPI Communicator

All communication routines depend on the concept of acommunicator. A communicator
consists of a process group and a communication context. Theprocesses in the process
group are numbered from zero to process count - 1. The processnumber returned by
MPI Commrank is the identification in the process group of the communicator which is
passed as a parameter to this routine.

The communication context of the communicator is importantin identifying messages.
Each message has an integer number called atagwhich has to match a given selector in the
corresponding receive operation. The selector depends on the communicator and thus on
the communication context. It selects only messages with a fitting tag and having been sent
relative to the same communicator. This feature is very useful in building parallel libraries
since messages sent inside the library will not interfere with messages outside if a special
communicator is used in the library. The default communicator that includes all processes
of the application is MPICOMM WORLD.

3.3 MPI Collective Operations

Another important class of operations arecollective operations. Collective operations are
executed by a process group identified via a communicator. All the processes in the group
have to perform the same operation. Typical examples for such operations are:

MPI Barrier synchronizes all processes. None of the processes can proceed beyond the
barrier until all the processes started execution of that routine.

MPI Bcast allows to distribute the same data from one process, the so-called root pro-
cess, to all other processes in the process group.

MPI Scatter also distributes data from a root process to a whole process group, but each
receiving process gets different data.

MPI Gather collects data from a group of processes at a root process.
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MPI Reduce performs a global operation on the data of each process in theprocess
group. For example, the sum of all values of a distributed array can be computed
by first summing up all local values in each process and then summing up the local
sums to get a global sum. The latter step can be performed by the reduction operation
with the parameter MPISUM. The result is delivered to a single target processor.

3.4 MPI IO

Data parallel applications make use of the IO subsystem to read and write big data sets.
These data sets result from replicated or distributed arrays. The reasons for IO are to read
input data, to pass information to other programs, e.g., forvisualization, or to store the
state of the computation to be able to restart the computation in case of a system failure or
if the computation has to be split into multiple runs due to its resource requirements.

IO can be implemented in three ways:

1. Sequential IO

A single node is responsible to perform the IO. It gathers information from the other
nodes and writes it to disk or reads information from disk andscatters it to the ap-
propriate nodes. Whereas this approach might be feasible for small amounts of data,
it bears serious scalability issues, as modern IO subsystems can only be utilized ef-
ficiently with parallel data streams and aggregated waitingtime increases rapidly at
larger scales.

2. Private IO

Each node accesses its own files. The big advantage of this implementation is that
no synchronization among the nodes is required and very highperformance can be
obtained. The major disadvantage is that the user has to handle a large number of
files. For input the original data set has to be split according to the distribution of the
data structure and for output the process-specific files haveto be merged into a global
file for post-processing.

3. Parallel IO

In this implementation all the processes access the same file. They read and write only
those parts of the file with relevant data. The main advantages are that no individual
files need to be handled and that reasonable performance can be reached. The parallel
IO interface of MPI provides flexible and high-level means toimplement applications
with parallel IO.

Files accessed via MPI IO routines have to be opened and closed by collective opera-
tions. The open routine allows to specify hints to optimize the performance such as whether
the application might profit from combining small IO requests from different nodes, what
size is recommended for the combined request, and how many nodes should be engaged in
merging the requests.

The central concept in accessing the files is theview. A view is defined for each process
and specifies a sequence of data elements to be ignored and data elements to be read or
written by the process. When reading or writing a distributed array the local information
can be described easily as such a repeating pattern. The IO operations read and write
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a number of data elements on the basis of the defined view, i.e., they access the local
information only. Since the views are defined via runtime routines prior to the access, the
information can be exploited in the library to optimize IO.

MPI IO provides blocking as well as nonblocking operations.In contrast to blocking
operations, the nonblocking ones only start IO and terminate immediately. If the program
depends on the successful completion of the IO it has to checkit via a test function. Besides
the collective IO routines which allow to combine individual requests, also non-collective
routines are available to access shared files.

3.5 MPI Remote Memory Access

Remote memory access(RMA) operations (also calledone-sided communication) allow to
access the address space of other processes without participation of the other process. The
implementation of this concept can either be in hardware, such as in the CRAY T3E, or in
software via additional threads waiting for requests. The advantages of these operations
are that the protocol overhead is much lower than for normal send and receive operations
and that no polling or global communication is required for setting up communication.

In contrast to explicit message passing where synchronization happens implicitly, ac-
cesses via RMA operations need to be protected by explicit synchronization operations.

RMA communication in MPI is based on thewindow concept. Each process has to
execute a collective routine that defines a window, i.e., thepart of its address space that can
be accessed by other processes.

The actual access is performed viaputandgetoperations. The address is defined by the
target process number and the displacement relative to the starting address of the window
for that process.

MPI also provides special synchronization operations relative to a window. The
MPI Win fence operation synchronizes all processes that make some address ranges acces-
sible to other processes. It is a collective operation that ensures that all RMA operations
started before the fence operation terminate before the target process executes the fence
operation and that all RMA operations of a process executed after the fence operation are
executed after the target process executed the fence operation. There are also more fine
grained synchronization methods available in the form of the General Active Target Syn-
chronization or via locks.

4 OpenMP

OpenMP13–15 is a directive-based programming interface for the shared memory program-
ming model. It consists of a set of directives and runtime routines for Fortran 77 (published
1997), for Fortran 90 (2000), and a corresponding set of pragmas for C and C++ (1998). In
2005, a combined Fortran, C, and C++ standard (Version 2.5) and 2008, an update (Version
3.0) were published.

Directives are special comments that are interpreted by thecompiler. Directives have
the advantage that the code is still a sequential code that can be executed on sequential
machines (by ignoring the directives/pragmas) and therefore there is no need to maintain
separate sequential and parallel versions.
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Directives start and terminate parallel regions. When the master thread hits a parallel
region a team of threads is created or activated. The threadsexecute the code in parallel
and are synchronized at the beginning and the end of the computation. After the final
synchronization the master thread continues sequential execution after the parallel region.
The main directives are:

!$OMP PARALLEL DO specifies a loop that can be executed in parallel. The DO
loop’s iterations can be distributed among the set of threads according to vari-
ous scheduling strategies including STATIC(CHUNK), DYNAMIC(CHUNK), and
GUIDED(CHUNK). STATIC(CHUNK) distribution means that theset of iterations
are consecutively distributed among the threads in blocks of CHUNK size (resulting
in block and cyclic distributions). DYNAMIC(CHUNK) distribution implies that iter-
ations are distributed in blocks of CHUNK size to threads on afirst-come-first-served
basis. GUIDED (CHUNK) means that blocks of exponentially decreasing size are as-
signed on a first-come-first-served basis. The size of the smallest block is determined
by CHUNK size.

!$OMP PARALLEL SECTIONS starts a set of sections that are each executed in par-
allel by a team of threads.

!$OMP PARALLEL introduces a code region that is executed redundantly by the
threads. It has to be used very carefully since assignments to global variables will
lead to conflicts among the threads and possibly to nondeterministic behavior.

!$OMP DO / FOR is a work sharing construct and may be used within a parallel region.
All the threads executing the parallel region have to cooperate in the execution of the
parallel loop. There is no implicit synchronization at the beginning of the loop but a
synchronization at the end. After the final synchronizationall threads continue after
the loop in the replicated execution of the program code.
The main advantage of this approach is that the overhead for starting up the threads is
eliminated. The team of threads exists during the executionof the parallel region and
need not be built before each parallel loop.

!$OMP SECTIONS is also a work sharing construct that allows the current teamof
threads executing the surrounding parallel region to cooperate in the execution of
the parallel sections.

!$OMP TASK is only available with the new version 3.0 of the standard andgreatly sim-
plifies the parallelization on non-loop constructs by allowing to dynamically specify
portions of the programs which can run independently.

Program data can either be shared or private. While threads do have their own copy of
private data, only one copy exists of shared data. This copy can be accessed by all threads.
To ensure program correctness, OpenMP provides special synchronization constructs. The
main constructs arebarrier synchronizationenforcing that all threads have reached this
synchronization operation before execution continues andcritical sections. Critical sec-
tions ensure that only a single thread can enter the section and thus, data accesses in such a
section are protected from race conditions. For example, a common situation for a critical
section is the accumulation of values. Since an accumulation consists of a read and a write
operation unexpected results can occur if both operations are not surrounded by a critical
section. For a simple example of an OpenMP parallelization see the appendix.
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5 Parallel Debugging

Debugging parallel programs is more difficult than debugging sequential programs not only
since multiple processes or threads need to be taken into account but also because program
behavior might not be deterministic and might not be reproducible. These problems are not
solved by current state-of-the-art commercial parallel debuggers. They only deal with the
first problem by providing menus, displays, and commands that allow to inspect individual
processes and execute commands on individual or all processes.

Two widely used debuggers are TotalView from Totalview Technologies21 and DDT
from Allinea3. They provide breakpoint definition, single stepping, and variable inspec-
tion for parallel programs via an interactive interface. The programmer can execute those
operations for individual processes and groups of processes. They also provides some
means to summarize information such that equal informationfrom multiple processes is
combined into a single information and not repeated redundantly. They also support MPI
and OpenMP programs on many platforms.

6 Parallel Performance Analysis

Performance analysis is an iterative subtask during program development. The goal is to
identify program regions that do not perform well. Performance analysis is structured into
three phases:

1. Measurement

Performance analysis is done based on information on runtime events gathered during
program execution. The basic events are, for example, cachemisses, termination of a
floating point operation, start and stop of a subroutine or message passing operation.
The information on individual events can be summarized during program execution
(profiling) or individual trace records can be collected for each event(tracing).

2. Analysis

During analysis the collected runtime data are inspected todetectperformance prob-
lems. Performance problems are based onperformance properties, such as the exis-
tence of message passing in a program region, which have a condition for identifying
it and a severity function that specifies its importance for program performance.

Current tools support the user in checking the conditions and the severity by a visu-
alization of the program behavior. Future tools might be able to automatically detect
performance properties based on a specification of possibleproperties. During analy-
sis the programmer applies a threshold. Only performance properties whose severity
exceeds this threshold are considered to be performance problems.

3. Ranking

During program analysis the severest performance problemsneed to be identified.
This means that the problems need to be ranked according to the severity. The most
severe problem is called theprogram bottleneck. This is the problem the programmer
tries to resolve by applying appropriate program transformations.
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Current techniques for performance data collection areprofiling andtracing. Profiling
collects summary data only. This can be done viasampling. The program is regularly
interrupted, e.g., every 10 ms, and the information is addedup for the source code location
which was executed in this moment. For example, the UNIX profiling tool prof applies this
technique to determine the fraction of the execution time spent in individual subroutines.

A more precise profiling technique is based oninstrumentation, i.e., special calls to a
monitoring library are inserted into the program. This can either be done in the source
code by the compiler or specialized tools, or can be done in the object code. While the
first approach allows to instrument more types of regions, for example, loops and vector
statements, the latter allows to measure data for programs where no source code is avail-
able. The monitoring library collects the information and adds it to special counters for the
specific region.

Tracing is a technique that collects information for each event. This results, for exam-
ple, in very detailed information for each instance of a subroutine and for each message
sent to another process. The information is stored in specialized trace records for each
event type. For example, for each start of a send operation, the time stamp, the message
size and the target process can be recorded, while for the endof the operation, the time
stamp and bandwidth are stored.

The trace records are stored in the memory of each process andare written to a trace
file either when the buffer is filled up or when the program terminates. The individual trace
files of the processes are merged together into one trace file ordered according to the time
stamps of the events.

Profiling has the advantage to be of moderate size while traceinformation tends to
be very large. The disadvantage of profiling is that it is not fine grained; the behavior
of individual instances of subroutines can for example not be investigated since all the
information has been summed up.

Widely used performance tools include TAU19, 20 from the University of Oregon, Vam-
pir22, 23from the Technical University of Dresden, and Scalasca17, 18 from the Jülich Super-
computing Centre.

7 Summary

This article gave an overview of parallel programming models as well as programming
tools. Parallel programming will always be a challenge for programmers. Higher-level
programming models and appropriate programming tools onlyfacilitate the process but do
not make it a simple task.

While programming in MPI offers the greatest potential performance, shared memory
programming with OpenMP is much more comfortable due to the global style of the re-
sulting program. The sequential control flow among the parallel loops and regions matches
much better with the sequential programming model all the programmers are trained for.

Although programming tools were developed over years, the current situation seems
not to be very satisfying. Program debugging is done per thread, a technique that does not
scale to larger numbers of processors. Performance analysis tools do also suffer scalability
limitations and, in addition, the tools are complicated to use. The programmers have to
be experts for performance analysis to understand potential performance problems, their
proof conditions, and their severity. In addition they haveto be experts for powerful but
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also complex user interfaces.
Future research in this area has to try to automate performance analysis tools, such

that frequently occurring performance problems can be identified automatically. First au-
tomatic tools are already available: ParaDyn7 from the University of Wisconsin-Madison
and KOJAK6/Scalasca17, 18 from the Jülich Supercomputing Centre.

A second important trend that will effect parallel programming in the future is the move
towards clustered shared memory systems with nodes consisting of multi-core processors.
This introduces a potentially 3-level parallelism hierarchy (machine - node - processor).
Clearly, a hybrid programming approach will be applied on those systems for best perfor-
mance, combining message passing between the individual SMP nodes and shared memory
programming in a node. This programming model will lead to even more complex pro-
grams and program development tools have to be enhanced to beable to help the user in
developing these codes.

A promising approach to reduce complexity in parallel programming in the future are
so-calledpartitioned global address space(PGAS) languages16, such as Unified Parallel
C (UPC) or Co-array Fortran (CAF) which provide simple meansto distribute data and
communicate implicitly via efficient one-sided communication.

Appendix

This appendix provides three versions of a simple example ofa scientific computation. It
computes the value ofπ by numerical integration:

π =

∫ 1

0

f(x)dx with f(x) =
4

1 + x2

This integral can be approximated numerically by the midpoint rule:

π ≈ 1

n

∫ n

1

f(xi) with xi =
(i− 0.5)

n
for i = 1, . . . , n

Larger values of the parametern will give us more accurate approximations ofπ. This
is not, in fact, a very good way to computeπ, but it makes a good example because it has the
typical, complete structure of a numerical simulation program (initialization - loop-based
calculation - wrap-up), and the whole source code fits one onepage or slide.

To parallelize the example, each process/thread computes and adds up the areas for a
different subset of the rectangles. At the end of the computation, all of the local sums are
combined into a global sum representing the value ofπ.

MPI Version of Example Program

The following listing shows a Fortran90 implementation of the π numerical integration
example parallelized with the help of MPI.
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1 program p i mp i
2 i m p l i c i t none
3 i nc lude ’ mpif . h ’
4 i n t e g e r : : i , n , i e r r , myrank , numprocs
5 double p r e c i s i o n : : f , x , sum , p i , h , mypi
6

7 c a l l M P I I n i t ( i e r r )
8 c a l l MPI Comm rank (MPICOMM WORLD, myrank , i e r r )
9 c a l l MPI Comm size (MPICOMM WORLD, numprocs , i e r r )

10

11 i f ( myrank == 0 ) then
12 wr i t e ( ∗ ,∗ ) ” number o f i n t e r v a l s ? ”
13 read ( ∗ ,∗ ) n
14 end i f
15

16 c a l l MPI Bcast ( n , 1 , MPIINTEGER , 0 , MPICOMM WORLD, i e r r )
17

18 h = 1 .0 d0 / n
19 sum = 0 .0 d0
20 do i = myrank +1 , n , numprocs
21 x = ( i − 0 .5 d0 ) ∗ h
22 sum = sum + ( 4 . d0 / ( 1 . d0 + x∗x ) )
23 end do
24 mypi = h ∗ sum
25

26 c a l l MPI Reduce ( mypi , p i , 1 , MPIDOUBLE PRECISION , &
27 MPI SUM , 0 , MPICOMM WORLD, i e r r )
28

29 i f ( myrank == 0 ) then
30 wr i t e (∗ , fmt =” (A, F16 . 1 2 ) ” ) ” Value o f p i i s ” , p i
31 e n d i f
32

33 c a l l M P I F i n a l i z e ( i e r r )
34 end program

First, the MPI system has to be initialized (lines 7 to 9) and terminated (line 33) with
the necessary MPI calls. Next, the input of parameters (line11 to 14) and the output of
results (lines 29 to 31) has to be restricted so that it is onlyexecuted by one processor.
Then, the input has to be broadcasted to the other processors(line 16). The biggest (and
most complicated) change is to program the distribution of work and data. The do-loop in
line 20 has to be changed so that each processor only calculates and summarizes its part of
the distributed computations. Finally, the reduce call in lines 26/27 collects the local sums
and delivers the global sum to processor 0.

547



Sequential and OpenMP Version of Example Program

The following listing shows the corresponding implementation of theπ integration exam-
ple using OpenMP. As one can see, because of the need to explicitly program all aspects
of the parallelization, the MPI version is almost twice as long as the OpenMP version.
Although this is clearly more work, it gives a programmer much more ways to express
and control parallelism. Also, the MPI version will run on all kinds of parallel computers,
while OpenMP is restricted to the shared memory architecture.

As OpenMP is based on directives (which are plain comments ina non-OpenMP com-
pilation mode), it is at the same time also a sequential implementation of the example.

1 program pi omp
2 i m p l i c i t none
3 i n t e g e r : : i , n
4 double p r e c i s i o n : : f , x , sum , p i , h
5

6 wr i t e ( ∗ ,∗ ) ” number o f i n t e r v a l s ? ”
7 read ( ∗ ,∗ ) n
8

9 h = 1 .0 d0 / n
10 sum = 0 .0 d0
11 ! $omp p a r a l l e l do p r i v a t e ( i , x ) r e d u c t i o n (+ : sum )
12 do i = 1 , n
13 x = ( i − 0 .5 d0 ) ∗ h
14 sum = sum + ( 4 . d0 / ( 1 . d0 + x∗x ) )
15 end do
16 p i = h ∗ sum
17

18 wr i t e (∗ , fmt =” (A, F16 . 1 2 ) ” ) ” Value o f p i i s ” , p i
19 end program

The OpenMP directive in line 11 declares the following do-loop as parallel resulting in
a concurrent execution of loop iterations. As the variablesi andx are used to store values
during the execution of the loop, they have to be declared private, so that each thread
executing iterations has its own copy. The variableh is only read, so it can be shared.
Finally, it is specified that there is a reduction (using addition) over the variablesum.
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This contribution presents two examples for the numerical treatment of partial differential equa-
tions using parallel algorithms / computers. The first example solves the Poisson equation in
two dimensions; the second partial differential equation describes the physical process of vibra-
tion of a membrane. Both problems are tackled with differentstrategies: The Poisson equation
is solved by means of the simple Jacobi algorithm and a suitable parallelization scheme is dis-
cussed; in the second case the parallel calculation is performed with the help of the ScaLAPACK
library and the issue of data distribution is addressed. Finally benchmarks of linear algebra li-
braries on the IBM Blue Gene/P architecture and for the PowerXCell processor are shown.

1 Motivation

The growth of processing power of computer systems observedthrough the last decades
allowed scientists and engineers to perform more and more complex and realistic simu-
lations. The driving force for this development was the exponentially increasing density
of integrated circuits, e.g. processors, which can be empirically described by Moore’s
law. The key point of Moore’s law is the observation that the circuit density of electronic
devices doubles approximately every two years. The growingnumber of components to-
gether with the accompanying higher clock frequencies permitted to perform more intricate
computations in shorter times.

Today this growth of circuit density and clock frequencies becomes more and more
difficult to achieve. Furthermore the demand for compute power grows even faster (im-
proved spatial / time resolution of models or the introduction of additional interactions /
effects are required) and forces the developers of supercomputers to find new strategies to
increase the available compute power. One approach which has become quite popular over
the last two decades is the utilization of parallel computers. Many of nowadays parallel
architectures use multi-core processors as building blocks in order to obtain the necessary
compute power. Adding up ever more of these components generates the problem of ex-
cessive power consumption; not only to supply the electrical power but likewise to handle
the produced heat are real challenges for the design of supercomputers.

Possible strategies to overcome the so-called ‘power wall’are the reduction of clock
frequencies and thus power consumption and the usage of special high performance pro-
cessors which do more computations per clock cycle. The firstconcept has been realized
with IBM’s highly scalableBlue Gene1 architecture. The latter strategy has been imple-
mented by means of theCell processor2 which is together with Opteron processors the
workhorse of the IBM Roadrunner3 - the first supercomputer to reachone Petaflop/s(1015
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floating point operations per second). The price one has to pay for this development is the
growing complexity of these heterogeneous systems.

The development of scientific applications on parallel computers, especially on highly
scalable heterogeneous platforms poses a challenge to every scientist and engineer. The
difficulties arising are to some extent problem specific and have to be resolved as the case
arises assisted where possible byparallel performance tools like Scalasca4. Other tasks
are generic and the application developer can resort to wellestablished algorithms or even
ready to use software solutions. Examples for these genericmethods aregraph partition-
ing algorithms for the decomposition of the problem (parallel load balancing) orlinear
algebraalgorithms.

We will focus in the following on linear algebra because these algorithms are the core
of many simulation codes and thus determine the efficiency and scalability of the whole
application.

2 Linear Algebra

Numerical linear algebra is an active field of research whichprovided over the years many
methods / algorithms for the treatment of standard problemslike the solution of systems of
linear equations, the factorization of matrices, the calculation of eigenvalues / eigenvectors
etc.5. The most suitable algorithm for a given linear algebra problem, e.g. arising in a
scientific application, has to be determined depending on the properties of the system /
matrix (see for instance Ref. 6) like:

• symmetry

• definiteness(positive, negative,. . . )

• non-zero structure (dense, sparse, banded)

• real or complexcoefficients

and so on. Furthermore the scientist has to decide whether touse adirect solver, leading to
a transformation of the original matrix and thus (for large problems) generating a need for
hugemain memory, or to use aniterative solver which works with the original matrix.

The same rationale holds for the more specialized field ofparallel linear algebra
methods. There the additional aspects originating from theparallelcomputer architec-
ture have to be taken into account in order to choose a suitable algorithm. Several topics
influencing the choice and even more the consequent implementation of these algorithms
are7, 8:

• memory architecture (shared-memoryvs. distributed memory)

• amount ofmemory per process/processor

• implementedcachestructures

It is far beyond the scope of this contribution to give an overview of the available
algorithms. Instead we refer to review articles like Refs. 9–11.
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From a practical point of view another important decision iswhether the user imple-
ments the linear algebra algorithmhimself or relies onavailable software / libraries.
A variety of well-known, robust packages providing high computational performance are
on the market, which can be used as building blocks for an application software. Some
freely-available libraries are:

• Basic Linear Algebra Subprograms(BLAS)12

• Linear Algebra Package(LAPACK) 13

• Scalable LAPACK(ScaLAPACK)14

• (P)ARPACK - a (parallel) package for the solution of large eigenvalue problems15

• Portable, Extensible Toolkit for Scientific computation(PETSc)16

Some of them like BLAS or LAPACK areserial software, which help to gain good sin-
gle processor performance, but leave the task ofparallelization of the high-level linear
algebra computations, e.g. solution of the coupled linear equations, to the user; others,
e.g. ScaLAPACK or PARPACK, contain implementations ofparallel solvers. Thus these
packages relieve the user of the parallelization, but stillthey rely on special data distri-
bution schemes17 which require a specific organization of the application program. As a
consequence the user has to handle the corresponding data distribution on his own, i.e. he
has to parallelize his program at least partly. Nevertheless this might be a lot easier than to
implement the full parallel linear algebra algorithm.

Since both strategies are preferable under certain circumstances, we will present in the
following two simple physical problems where theparallel numerical solution will be
demonstrated paradigmatically along the two different approaches:

In Section 3 the Poisson equation will be treated using aparallel Jacobi solverfor the
evolving system of linear equations.

In Section 4 the eigenvalue problem arising from the calculation of the vibration of a
membrane is solved using aScaLAPACK routine .

Of course, one would not use these solutions in real applications. Neither is the Jacobi
algorithm a state-of-the-art method for the solution of a system of linear equations, nor
is the eigensolver from ScaLAPACK the optimal choice for thegiven problem. Both ex-
amples result in a sparse matrix as will be shown in the following. ScaLAPACK contains
solvers for full and banded systems, whereas (P)ARACK is a library based on the Arnoldi
method which is very suitable for the calculation of afew eigenvalues for largesparse
systems; thus (P)ARPACK would be the natural choice for thiskind of problem.

Nevertheless due to the importance of ScaLAPACK for many application fields, e.g.
multiscale simulations, and the simplicity of the Jacobi algorithm we present them as
illustrative examples.

3 The Poisson Problem

In this section we discuss the numerical solution of the Poisson equation as an example
for the approximate treatment of partial differential equations. We give a short outline of
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the steps necessary to obtain a serial and later on parallel implementation of the numerical
solver. Similar but more elaborate material on this topic can be found in the Refs. 18–20.

In a first step we discuss the discretization of the Poisson equation and introduce one
simple solver for the evolving system of linear equations. Afterwards we focus on the
parallelization of this algorithm.

3.1 Discretization of the Poisson Equation

ThePoisson equationin two dimensions is given by

∆u =
∂2u

∂x2
+
∂2u

∂y2
= f(x, y) , (x, y) ∈ Ω ⊂ R

2 (1)

whereΩ is a domain inR2. For simplicityu(x, y) shall be given on the boundary∂Ω by a
Dirichlet boundary condition

u(x, y) = g(x, y) , (x, y) ∈ ∂Ω (2)

The functionsf(x, y) andg(x, y) are given andu(x, y) is to be calculated.
Since the analytic solution of such a partial differential equation might not be feasible

depending on the shape of the domain, the functionsf, g etc., one often has to resort to
the numerical solution of such a differential equation. In the following we will develop a
simple scheme how to calculateu approximately. For this we assume that the domain has
a simple form:Ω is a rectangle (Figure 1). In order to determine the approximate solution
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x x
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y

A E
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A

Figure 1. Rectangular domain inR2

of the Poisson equation,u is calculated at certain points of the rectangle. We impose
Ω = (xA, xE)× (yA, yE) with an equidistant mesh (Figure 2), where(xA, xE) is divided
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Figure 2. Mesh forNI = 7 andNJ = 5

into (NI + 1) sub-intervals and(yA, yE) into (NJ + 1) sub-intervals,(NI,NJ ∈ N).
The mesh widthh is then given by

h =
(xE − xA)

(NI + 1)
=

(yE − yA)

(NJ + 1)
(3)

With this choice for the mesh the approximate solution will be calculated at theNI ·NJ
inner points of the domain (The outer points don’t have to be calculated, because they are
given by the Dirichlet boundary condition!).

As a next step the second derivatives are replaced by finite differences. For this purpose
we use the following Taylor expansions ofu at a point(x, y):

u(x+ h, y) = u(x, y) + hux(x, y) +
h2

2!
uxx(x, y) +

h3

3!
uxxx(x, y)± . . . (4)

u(x− h, y) = u(x, y)− hux(x, y) +
h2

2!
uxx(x, y)− h3

3!
uxxx(x, y)± . . . (5)

Addition of both equations and division byh2 gives

u(x− h, y)− 2u(x, y) + u(x+ h, y)

h2
= uxx(x, y) +O(h2) (6)

The result of the analogous procedure for they-direction is

u(x, y − h)− 2u(x, y) + u(x, y + h)

h2
= uyy(x, y) +O(h2) (7)

Using these finite differences the Poisson equation for theNI ·NJ inner mesh points
of the domainΩ is given by

uxx(xi, yj) + uyy(xi, yj) = f(xi, yj)

(i = 0, . . . , NI − 1 ; j = 0, . . . , NJ − 1)
(8)
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By neglecting the discretization errorO(h2) Eqs. (8) can be written as:

ui,j−1 + ui−1,j − 4ui,j + ui,j+1 + ui+1,j = h2fi,j (9)

for i = 0, . . . , NI − 1 ; j = 0, . . . , NJ − 1 . The unknowns

ui,j := u(xi, yj) (10)

have to be calculated from theNI ·NJ coupled linear equations (9).
The approximation used here foruxx + uyy is called5-point stencil (Figure 3). The

(x,y-h)

(x-h,y) (x,y)

(x+h,y)

(x,y+h)

Figure 3. 5-point stencil

name describes the numerical dependency between the pointsof the mesh. The lexico-
graphical numbering (Figure 4) of the mesh points

l = j ·NI + i+ 1 ; i = 0, . . . , NI − 1 ; j = 0, . . . , NJ − 1 (11)

and

ul := ui,j (12)

allows a compact representation of the system of linear equations by means of a matrix.
The coefficient matrixA is a block tridiagonal matrix:

A =










A1 I
I A2 I

. . .
. . .

. . .
I ANJ−1 I

I ANJ










∈ R
(NI·NJ)×(NI·NJ) (13)

with Ai, I ∈ R
NI×NI ; hereI is the unit matrix and

Ai =










−4 1
1 −4 1

. . .
. . .

. . .
1 −4 1

1 −4










i = 1, . . . , NJ (14)

This means the task to solve the Poisson equation numerically leads us to the problem to
find the solution of a system of linear equations:

A~u = ~b (15)
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Figure 4. Lexicographical numbering of a5 × 5 mesh (with3 × 3 inner points)

with

A ∈ R
(NI·NJ)×(NI·NJ) and ~u,~b ∈ R

(NI·NJ) (16)

The right hand side~b contains thefi,j of the differential equations as well as the Dirichlet
boundary condition.

For the solution of these coupled linear equations many well-known numerical algo-
rithms are available. We will focus here on the classic but very simple Jacobi algorithm.

3.2 The Jacobi Algorithm for Systems of Linear Equations

Suppose

A = D − L− U (17)

is a decomposition of the matrixA, whereD is the diagonal sub-matrix,−L is the strict
lower triangular part and−U the strict upper triangular part. Then for the system of linear
equations holds

A~u = ~b ⇔ (D − L− U) ~u = ~b ⇔ D~u = (L+ U) ~u+~b ⇔ (18)

~u = D−1(L + U) ~u+D−1~b if D−1 exists. (19)

From Eq. (19) follows the iteration rule (forD non-singular)

~u (k) = D−1(L+ U) ~u (k−1) +D−1~b with k = 1, 2, . . . (20)

This iterative procedure is known asJacobi or total-step method. The second name is
motivated by the fact that the next iteration is calculatedonly from the values of the un-
knowns of the last iteration. There are other schemes, e.g. Gauß-Seidel algorithm, which
depend on oldand the current iteration of the unknowns!
The corresponding pseudo code for the serial Jacobi algorithm is given here:
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Jacobi algorithm

Choose an initial vector~u (0) ∈ R
n

For k = 1, 2, . . .

For i = 1, 2, . . . , n

u
(k)
i =

1

aii






bi −

n∑

j=1
j 6=i

aij u
(k−1)
j







The Poisson equation (9) discretized with the5-point stencil results in the following iter-
ation procedure












u1

...

...

...
uN












(k)

= −1

4










A′
1 −I

−I A′
2 −I

. . .
. . .

. . .
−I A′

NJ−1 −I
−I A′

NJ





















u1

...

...

...
uN












(k−1)

− 1

4












b1
...
...
...
bN












(21)
with N = NI ·NJ and

A′
i =










0 −1
−1 0 −1

. . .
. . .

. . .
−1 0 −1
−1 0










i = 1, . . . , NJ (22)

This can be seen easily by application of the Jacobi matrix decomposition on the coeffi-
cient matrix given by Eqs. (13) and (14). The pseudo code for this special case is shown
here

Jacobi algorithm for the Poisson equation

Choose initial vector~u (0) ∈ R
N

For k = 1, 2, . . .

For j = 0, 1, . . . , NJ − 1

For i = 0, 1, . . . , NI − 1

u
(k)
i,j =

1

4

(

u
(k−1)
i,j−1 + u

(k−1)
i−1,j + u

(k−1)
i,j+1 + u

(k−1)
i+1,j − h2fi,j

)
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3.3 Parallelization of the Jacobi Algorithm

The numerical treatment of the Poisson equation led us to thetask to solve a system of
linear equations. We introduced the Jacobi algorithm as a simple method to calculate
this solution and presented the corresponding serial pseudo code. Now the next step is to
discuss strategieshow to implement the Jacobi algorithm on a parallel computer.

The important point about the Jacobi (total-step) algorithm one has to remember is that
the calculation of the new iteration only depends on the values of the unknowns from the
last iteration as can be seen for instance from Eq. (21). As a consequence theprocessors
of a parallel computer can calculate the new iteration of theunknowns simultaneously,
supposed each unknown is assigned to its own processor. Thismakes the parallelization of
the Jacobi algorithm quite easy compared to other methods with more complicated depen-
dencies between different iterations.

Usually the number of unknowns is much larger than the numberof available pro-
cessors. Thus some / many unknowns have to be assigned to one processor, i.e. for our
example: the inner points ofΩ (Figure 1) are distributed to the available processors. With
other words thedomain Ω is decomposedaccording to a suitable strategy.
The criteria for a “suitable” strategy are

• load balance, i.e. same / similar number of unknowns for each processor

• minimization of thecommunicationbetween the processors, i.e. the dependency on
unknowns stored on other processors (within one iteration step!) is reduced

For our example, the Poisson equation in two dimensions, a reasonable domain decompo-
sition is shown in Figure 5: Each processor “owns” a domain ofthe same size, i.e. each

P P P P

P

P

P

P

P

P

P

P

P

P

P

P

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 5. Domain decomposition of a squareΩ with 16 processors

Pi “owns” the same number of points. Furthermore the ratio areato edges of each square
and consequently the ratio between the number of inner points (no dependency on points
“owned” by other processors) to the number of points near theboundary is rather good.
This point can been seen even better from Figure6.
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Figure 6. Dependency of the unknowns of processorPi (red) on values stored on the neighbors (blue)

In Fig. 6 the points / corresponding unknowns of processorPi are represented byred
circles, whereas thebluesquares depict theghost points, i.e. points stored on other pro-
cessors which are required for the calculation of the next iteration of the unknowns on
processorPi.

The dependencies / ghost points shown in Fig. 6 are a result ofthe 5-point stencil (see
Fig. 3) originating from the Laplace operator in Eq. (1). Thus the domain decomposition
of choice might differ for other differential equations or other discretization schemes, e.g.
finite elements.

Due to the dependencies between the unknowns “owned” by different processors it
is clear that the parallelization of the Jacobi algorithm has to introduce statements which
will take care of the communication between the processors.One portable way to handle
the communication is the widely usedMessage Passing Interface (MPI)21 library.
The pseudo code of the parallel Jacobi algorithm is given here:

Parallel Jacobi algorithm

Choose initial values for theown mesh pointsand theghost points

Choose initial Precision (e.g. Precision= 1010)

While Precision> ε (e.g.ε = 10−5)

1. Calculate next iteration for theown domain

2. Send the new iterationon boundary of domain

to neighboring processors

3. Receive the new iteration for theghost points

4. Calculate Precision= ‖A~u (k) −~b ‖
End While
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The steps 2 and 3 show the extension of the serial Jacobi algorithm bySendandReceive
statements. This is of course only one very simple way to implement such a communication
with the four neighboring processors. In real applicationsone will look for more efficient
communication patterns.

Step 4 requires implicitlyglobal communication, because the vector~u (k) holding the
approximate solution of the system of linear equations is distributed over all processors.
As soon as the required precision of the solution is achievedthe iteration stops.

4 Vibration of a Membrane

The vibration of a homogeneous membrane is governed by the time-dependent partial dif-
ferential equation22

∂2v

∂t2
= ∆ v (23)

In order to solve this equation we make a separation ansatz for the time and spatial vari-
ables:

v(x, y, t) = u(x, y) g(t) (24)

By insertion of Eq. (24) into Eq. (23) one immediately obtains

g(t)∆u(x, y) = u(x, y) g′′(t) ⇔ (25)

∆u(x, y)

u(x, y)
=

g′′(t)
g(t)

(26)

The left side of Eq. (26) is independent oft, the right side ofx, y. Therefore both sides
must be equal to a constant−λ

∆u(x, y)

u(x, y)
=

g′′(t)
g(t)

= −λ ⇔ (27)

∆u(x, y) = −λu(x, y) and g′′(t) = −λ g(t) (28)

The differential equation forg(t) can be solved easily with the usual ansatz (a linear com-
bination of trigonometric functions).

In the following we want to solve the spatial partial differential equation

∆u(x, y) = −λu(x, y) (29)

numerically. In section 3.1 we presented the discretization of the Poisson equation in two
dimensions. In order to allow a re-use of the results derivedthere, we will calculate the
solution of Eq. (29) for arectangular membrane / domain.

Furthermore we choose for simplicity the Dirichlet boundary condition

u(x, y) = 0 for (x, y) ∈ ∂Ω (30)

Using the same discretization for the Laplace operator and lexicographical numbering
of the mesh points / unknowns as in section 3.1 one can see easily that Eq. (29) leads to the
eigenvalue problem

A~u = −λ~u (31)
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where the matrixA is given by Eqs. (13) and (14).
In section 3 we presented a simple algorithm for the solutionof the system of lin-

ear equations and discussed the parallelization by hand. For the eigenvalue problem we
choose a different strategy: We make use of a widely used parallel library, namely the
ScaLAPACK library.

4.1 Parallel Solution Using the ScaLAPACK Library

The largest and most flexible public domain library with linear algebra routines for dis-
tributed memory parallel systems up to now is ScaLAPACK14. Within the ScaLAPACK
project many LAPACK routines were ported to distributed memory computers using MPI.

The basic routines of ScaLAPACK are thePBLAS (Parallel Basic Linear Algebra
Subroutines)23. They contain parallel versions of the BLAS which are parallelized us-
ing BLACS (Basic Linear Algebra Communication Subprograms)24 for communication
and sequential BLAS for computation. Thus the PBLAS deliververy good performance
on most parallel computers.

ScaLAPACK contains direct parallel solvers for dense linear systems (LU and
Cholesky decomposition), linear systems with band matrices as well as parallel routines
for the solution of linear least squares problems and for singular value decomposition.

Furthermore there are several different routines for the solution of the full symmetric
eigenproblem. We will focus in the following on asimple driver routine using the QR-
algorithm, which computes all eigenvalues and optionally all eigenvectors of the matrix.

Besides this there are other eigensolvers available which are implementations of other
algorithms, e.g. a divide-and-conquer routine; an additional expert driver allows to choose
a range of eigenvalues and optionally eigenvectors to be computed.

For performance and load balancing reasons ScaLAPACK uses atwo-dimensional
block cyclic distribution for full matrices (see ScaLAPACK Users’ Guide)17:
First the matrix is divided into blocks of size MB×NB, where MB and NB are the number
of rows and columns per block, respectively. These blocks are then uniformly distributed
across the MP× NP rectangular processor grid in a cyclic manner. As a result, each
process owns a collection of blocks. Figure 7 shows the distribution of a(9 × 9) matrix
subdivided into blocks of size(3× 2) distributed across a(2× 2) processor grid.

0 1 0 1 0
a11 a12 a13 a14 a15 a16 a17 a18 a19

0 a21 a22 a23 a24 a25 a26 a27 a28 a29

a31 a32 a33 a34 a35 a36 a37 a38 a39

a41 a42 a43 a44 a45 a46 a47 a48 a49

1 a51 a52 a53 a54 a55 a56 a57 a58 a59

a61 a62 a63 a64 a65 a66 a67 a68 a69

a71 a72 a73 a74 a75 a76 a77 a78 a79

0 a81 a82 a83 a84 a85 a86 a87 a88 a89

a91 a92 a93 a94 a95 a96 a97 a98 a99

Figure 7. Block cyclic 2D distribution of a(9× 9) matrix subdivided into(3× 2) blocks on a(2× 2) processor
grid. The numbers outside the matrix indicate processor rowand column indices, respectively.
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ScaLAPACK as a parallel successor of LAPACK attempts to leave the calling sequence
of the subroutines unchanged as much as possible in comparison to the corresponding se-
quential subroutine from LAPACK. The user should have to change only a few parameters
in the calling sequence to use ScaLAPACK routines instead ofLAPACK routines.

Therefore ScaLAPACK uses so-calleddescriptors, which are integer arrays containing
all necessary information about thedistribution of the matrix . This descriptor appears in
the calling sequence of the parallel routine instead of the leading dimension of the matrix
in the sequential one.

For example the sequential simple driverDSYEV from LAPACK for the computation
of all eigenvaluesand (optionally) eigenvectors of areal symmetric (N×N) matrix A has
the following calling sequence25:
...
CALL DSYEV(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO)
...
where JOBZ and UPLO are characters indicating whether to compute eigenvectors, and
whether the lower or the upper triangular part of the matrix Ais provided. LDA is the
leading dimension of A and W is the array of eigenvalues of A. The other variables are
used as workspace and for error report.

The corresponding ScaLAPACK routinePDSYEV is called as follows17:
...

CALL PDSYEV ( JOBZ, UPLO, N, A, IA, JA, DESCA,
$ W, Z, IZ, JZ, DESCZ, WORK, LWORK, INFO )

...
As one can see the leading dimension LDA of the LAPACK call is substituted by the
indices IA and JA and the descriptor DESCA. IA and JA indicatethe start position of the
global matrix (usually IA, JA = 1, but in cases where the global matrix is a sub-matrix of a
larger matrix IA, JA6= 1 might occur) , whereas DESCA contains all information regarding
the distribution of the global matrix. The parameters IZ, JZ, and DESCZ provide the same
information for Z, the matrix of the eigenvectors calculated by PDSYEV.

In order to use the ScaLAPACK routine the user has to distribute his system matrix
in the way required by ScaLAPACK. Thus the user has to setup the processor grid by
initializing MP, the number of processor rows, and NP, the number of processor columns.
Furthermore one has to choose a suitable blocking of the matrix, i.e. MB and NB. For many
routines, especially for the eigenvalue solvers and the Cholesky decomposition, MB=NB
is mandatory. (Since MB and NB are crucial for the performance of the solver, one has
to use these parameters with care.26) Further details on the two-dimensional block cyclic
distribution of the matrix A given by Eqs. (13) and (14) can befound in the appendix.

Once the matrix has been distributed to the processors, the calculation of the eigen-
values and corresponding eigenvectors for the vibration ofthe rectangular membrane
(Eq. (31)) can be calculated easily by one call of the routinePDSYEV. Please note that
the matrix of the eigenvectors Z, is distributed to the processors; thus if necessary, e.g. for
output, it is again the task of the user to collect the different local data and to generate the
global matrix.
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5 Performance of Parallel Linear Algebra Libraries

The performance, i.e. scalability, of parallel libraries and the availability of optimized im-
plementations for specific hardware platforms are major criteria for the selection of (linear
algebra) functions to be used within a scientific application. Especially the availability
of optimized software differs largely for different architectures: for distributed memory
systems using MPI many (non-)numerical libraries are freely-available or are provided by
the vendors. For new and non-standard hardware like thePowerXCell 8i processor27 the
situation is not that comfortable. This can reduce the usability largely particularly for the
Cell processors which have to be programmed inassembler code style.

At present aBLAS library, which can be used just like its serial counterpart and hides
the complexity of the parallel hardware from the application developer28, exists for the
PowerXCell architecture whereas other linear algebra libraries are still under development.
Figure 8 shows the processing power of a PowerXCell 8i processor in Gflops (=109 Float-
ing point operations per second) for adouble precision matrix-matrix multiplication
(BLAS routineDGEMM ) as function of the matrix size. The results are shown for cal-
culations where 2, 4 and 8 Synergistic Processing Elements(SPE)27 are used; the Cell
processor contains 8 SPEs which have a theoretical compute power of 12.8 Gflops each
(3.2 GHz, 4 flops per cycle).
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Figure 8. Processing power [Gflops] of a double precision matrix-matrix multiplication as function of the matrix
size for aPowerXCell processor. Results are shown for different numbers of SPEs: 2, 4 and 8 SPEs.

From Figure 8 one learns that the sustained performance of a PowerXCell processor
for the double precision matrix-matrix multiplication is approximately 90 Gflops and thus
more than 85% of the theoretical peak performance (102.4 Gflops). Furthermore one sees
that the number of computations per second scales well with the number of SPEs and
is quite independent of the problem size. The recent multi-core processorIntel Core i7
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(quad-core) has a theoretical compute power of 51.2 Gflops; the PowerXCell shows twice
the performance in a real computation but for a substantially lower price and electrical
power consumption.

A complementary strategy to build supercomputers is to add huge numbers of low-
cost, regarding price as well as power consumption, processors to gain high compute
power. This concept has been implemented for instance with IBM’s Blue Gene/P where
each processor core supplies ‘only’ 3.4 Gflops (850 MHz, 4 flops per cycle) and has a
local memory of 512 MByte. But the complete Blue Gene/P system JUGENE29 at JSC
with 65536 cores accomplishes more the 220.000 Gflops and hasa main memory of 128
TByte (= 131.072 GBytes).

Figure 9 gives the performance of JUGENE for the parallel double precision matrix-
matrix multiplicationPDGEMM from the ScaLAPACK library using 256, 1024 and 4096
of its processors. Obviously the real compute power as well as its scaling with increasing
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Figure 9. Processing power [Gflops] of a double precision matrix-matrix multiplication as function of the matrix
size on JSC’sBlue Gene/Psystem. Results are shown for different processor numbers:256, 1024 and 4096
processors.

processor number depends largely on the problem size. This is a general observation on
massively parallel computer architectures: Most algorithms show a much better parallel
performance if the problem sizes increase / scale together with the number of processors
employed - a behaviour known asweak scalingand foreseen by Gustafson30 in 1988.

A computation rate of approximately 5.500 Gflops is shown in Figure 9 for a matrix
size of 40.000 and 4096 processors. This result is only about40% of the theoretical peak
performance of the 4096 processors and the parallel speedupfor increasing processor num-
bers is far from optimal, nevertheless it illustrates the potential of supercomputers like the
IBM Blue Gene/P with several ten thousand to hundreds of thousands of processors for
scientific applications. With these results in mind it is no surprise that the combination of
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a massively parallel system and special high performance processors allowed to enter the
era ofPetaflop computingwith theIBM Roadrunner 3.

6 Conclusion

In this contribution we presented two examples for the numerical treatment of partial dif-
ferential equations using parallel algorithms / computers. Both problems were tackled with
different strategies: The first example has been solved by means of the simple Jacobi algo-
rithm and a suitable parallelization scheme was discussed.In the second case the parallel
calculation has been performed with the help of the ScaLAPACK library.

The pros and cons of the different strategies are obvious. Ifa suitable parallel library
is available and a reorganization of the application software according to the complex data
distribution schemes of the libraries is possible, the parallel routines from the library will
provide a robust numerical solution with fair or even good performance. Otherwise the
user has to choose a parallelization scheme which best fits his specific application problem
and he has to implement the necessary algorithms himself; inorder to improve the single
processor performance it is still recommendable to use serial library routines, e.g. from
BLAS or LAPACK, wherever possible!

Benchmarks of a parallel linear algebra routine were shown for the IBM Blue Gene/P
architecture and for the PowerXCell processor. The resultsdemonstrate the compute power
of special purpose processors as well as the potential of massively parallel computers.

Appendix

In section 4.1 some information on thetwo-dimensional block cyclic distribution of the
data used byScaLAPACK has been given. In this appendix we will discuss this issue in
greater detail.

In Fig. 10 a code fragment is shown which distributes the N× N matrix given by
Eqs. (13) and (14) according to the ScaLAPACK data scheme with block sizes NB=MB
to an MP× NP processor grid. Inclusion of this fragment into a parallel program allows
the calculation of the eigenvalues and eigenvectors using the routinePDSYEV:
...

CALL PDSYEV ( JOBZ, UPLO, N, A, IA, JA, DESCA,
$ W, Z, IZ, JZ, DESCZ, WORK, LWORK, INFO )

...
Notice that in the sequential as well as in the parallel routine the matrix A is destroyed.

The difference is that in the sequential case if the eigenvectors are requested A is overwrit-
ten by the eigenvectors whereas in the parallel case the eigenvectors are stored to a separate
matrix Z.

The matrix Z has to be allocated with the same local sizes as A and DESCZ is filled
with the same values as DESCA. The size LWORK of the local workspace WORK can be
found in the ScaLAPACK Users’ Guide.
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1 ! Crea te t h e MP∗ NP p r o c e s s o r g r i d
2 CALL BLACS GRIDINIT ( ICTXT , ’Row−major ’ ,MP, NP)
3 ! Find my p r o c e s s o r c o o r d i n a t e s MYROW and MYCOL
4 ! NPROW r e t u r n s t h e same v a l u e as MP,
5 ! NPCOL r e t u r n s t h e same v a l u e as NP
6 CALL BLACS GRIDINFO ( ICTXT ,NPROW,NPCOL,MYROW,MYCOL)
7 ! Compute l o c a l d imens ions w i th r o u t i n e NUMROC from TOOLS
8 ! N i s d imens ion o f t h e m a t r i x
9 ! NB i s b l o c k s i z e

10 MYNUMROWS = NUMROC(N,NB,MYROW, 0 ,NPROW)
11 MYNUMCOLS = NUMROC(N,NB,MYCOL, 0 ,NPCOL)
12 ! Loca l l e a d i n g d imens ion o f A ,
13 ! Number o f l o c a l rows o f A
14 MXLLDA = MYNUMROWS
15 ! A l l o c a t e on ly t h e l o c a l p a r t o f A
16 ALLOCATE (A(MXLLDA,MYNUMCOLS) )
17 ! F i l l t h e d e s c r i p t o r s , P0 and Q0 are p r o c e s s o r c o o r d i n a t e s
18 ! o f t h e p r o c e s s o r h o l d i n g g l o b a l e lemen t A ( 1 , 1 )
19 CALL DESCINIT (DESCA,N,N,NB,NB, P0 , Q0 , ICTXT ,MXLLDA, INFO )
20 ! F i l l t h e l o c a l p a r t o f t h e m a t r i x w i th da ta
21 do j = 1 , MYNUMCOLS, NB ! F i l l t h e l o c a l column b l o c k s
22 do j j =1 , min (NB,MYNUMCOLS−j +1) ! a l l co lumns o f one b l o c k
23 j l o c = j−1 + j j

! l o c a l column i n d e x
24 j g l o b = ( j −1)∗NPCOL + MYCOL∗NB + j j ! g l o b a l column i n d e x
25 do i = 1 , MYNUMROWS, NB ! l o c a l row b l o c k s i n column
26 do i i =1 , min (NB,MYNUMROWS−i +1)

! rows i n row b l o c k
27 i l o c = i−1 + i i

! l o c a l row i n d e x
28 i g l o b = ( i −1)∗NPROW + MYROW∗NB+ i i ! g l o b a l row i n d e x
29 A( i l o c , j l o c ) = 0
30 I f ( i g l o b == j g l o b ) A( i l o c , j l o c )=−4
31 I f ( i g l o b == j g l o b +1 . and . mod ( jg lob , NI ) / = 0 ) &
32 A( i l o c , j l o c )=1
33 I f ( j g l o b == i g l o b +1 . and . mod ( ig lob , NI ) / = 0 ) &
34 A( i l o c , j l o c )=1
35 I f ( i g l o b == j g l o b +NI ) A( i l o c , j l o c )=1
36 I f ( j g l o b == i g l o b +NI ) A( i l o c , j l o c )=1
37 enddo
38 enddo
39 enddo
40 enddo

Figure 10. Code fragment which distributes the matrix givenby Eqs. (13) and (14) according to ScaLAPACK
(It is assumed that MB=NB=NI and N=NI·NJ).
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The four nested loops in Fig. 10 show how local and global indices can be computed
from block sizes, the number of rows and columns in the processor grid and the processor
coordinates. The conversion of global to local indices and vice versa is supported by some
auxiliary routines in theTOOLS sub-library of ScaLAPACK. Here the routine NUMROC
is used to calculate the number of rows / columns stored on thecorresponding processor.

There is also a sub-libraryREDIST of ScaLAPACK which allows the redistribution
of any two-dimensional block cyclically distributed matrix to any other block cyclic two-
dimensional distribution. Thus if A was column cyclically distributed or if the eigenvectors
have to be column cyclically distributed for further computations they can be redistributed
by such a routine, as a column cyclic distribution is nothingelse but a block cyclic two-
dimensional distribution to a 1× NPR (with NPR = number of processors) grid with block
size 1.
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NIC Series Volume 26
ISBN 3-00-013620-7, April 2005, 110 pages

Multiparadigm Programming 2003
Joint Proceedings of the
3rd International Workshop on Multiparadigm Programming w ith
Object-Oriented Languages (MPOOL’03)
and the
1st International Workshop on Declarative Programming in t he
Context of Object-Oriented Languages (PD-COOL’03)
Jörg Striegnitz, Kei Davis (Editors)
NIC Series Volume 27
ISBN 3-00-016005-1, July 2005, 300 pages

574



Integration von Programmiersprachen durch strukturelle T ypanalyse
und partielle Auswertung
Jörg Striegnitz
NIC Series Volume 28
ISBN 3-00-016006-X, May 2005, 306 pages

OpenMolGRID - Open Computing Grid for Molecular Science
and Engineering
Final Report
Mathilde Romberg (Editor)
NIC Series Volume 29
ISBN 3-00-016007-8, July 2005, 86 pages

GALA Grünenthal Applied Life Science Analysis
Achim Kless and Johannes Grotendorst (Editors)
NIC Series Volume 30
ISBN 3-00-017349-8, November 2006, 204 pages

Computational Nanoscience: Do It Yourself!
Lecture Notes
Johannes Grotendorst, Stefan Blügel, Dominik Marx (Editors)
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