Density Functional Theory (DFT)

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Quantitative & Computational Biology University of Southern California **Email: anakano@usc.edu**

How to determine the electronic ground state in Born-Oppenheimer molecular dynamics (BOMD)?

Consider a system of N electrons in an external potential $v(\mathbf{r})$ **.**

Theorem 1

The ground-state density $\rho(r)$ & the external potential $\{v(\mathbf{r}) + c\}$ (*c* is a constant) are bijective functional, *i.e.*, one-to-
one correspondence (see the note on DFT for a proof).

Theorem 2

Any property of the many-electron ground state $|\Psi\rangle$, including **the ground-state energy,** $E = \langle \Psi | H | \Psi \rangle$ (*H* is the Hamiltonian operator), is a functional of $\rho(\mathbf{r})$.

P. Hohenberg & W. Kohn, "Inhomogeneous electron gas," *Phys. Rev*. **136**, B864 ('64)

• **See notes on** [density functional theor](https://aiichironakano.github.io/phys760/DFT080603.pdf)y

Functional Derivative Basics

• Functional derivative: $\delta E = \int d\mathbf{r} \frac{\delta E}{\delta \epsilon G}$ $\delta f(\mathbf{r})$ $\delta f(\mathbf{r})$ **functional =**

function of function: $E[f(\mathbf{r})]$

• **Example 1:** $E[f(\mathbf{r})] = \int d\mathbf{r}(f(\mathbf{r}))^2$

 $E[f(\mathbf{r}) + \delta f(\mathbf{r})] - E[f(\mathbf{r})] = \int d\mathbf{r} \{ [f(\mathbf{r}) + \delta f(\mathbf{r})]^2 - f^2(\mathbf{r}) \} = \int d\mathbf{r} [2f(\mathbf{r})\delta f(\mathbf{r}) + \delta f^2(\mathbf{r})]$

$$
\therefore \frac{\delta E}{\delta f(\mathbf{r})} = 2f(\mathbf{r})
$$

• **Example 2:** $E[\rho(\mathbf{r})] = \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}$

$$
E[\rho(\mathbf{r}) + \delta \rho(\mathbf{r})] - E[\rho(\mathbf{r})] = \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \frac{[\rho(\mathbf{r}) + \delta \rho(\mathbf{r})][\rho(\mathbf{r}') + \delta \rho(\mathbf{r}')] - \rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}
$$

$$
= \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \frac{\rho(\mathbf{r})\delta \rho(\mathbf{r}') + \rho(\mathbf{r}')\delta \rho(\mathbf{r}) + \delta \rho(\mathbf{r})\delta \rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}
$$

$$
= \int d\mathbf{r} \int d\mathbf{r}' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \delta \rho(\mathbf{r})
$$

$$
\therefore \frac{\delta E}{\delta \rho(\mathbf{r})} = \int d\mathbf{r}' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}
$$

See notes on [functional derivativ](https://aiichironakano.github.io/phys760/functional.pdf)e

Energy Functional

Definition: Exchange-correlation (xc) functional

$$
E[\rho(\mathbf{r})] = T_{s}[\rho(\mathbf{r})] + \int d\mathbf{r} \nu(\mathbf{r})\rho(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r}d\mathbf{r}' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + E_{\text{xc}}[\rho(\mathbf{r})]
$$

Kinetic energy of
non-interacting
helectors
electrons
interaction energy)
interaction energy)

W. Kohn & L. J. Sham, "Self-consistent equations including exchange and correlation effects," *Phys. Rev*. **140**, A1133 ('65)

Kohn-Sham Equation

• The many-electron ground state is obtained by solving a set of oneelectron Schrödinger equations called Kohn-Sham (KS) equations

$$
\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r_i^2} + v_{KS}(\mathbf{r})\right]\psi_n(\mathbf{r}) = \epsilon_n \psi_n(\mathbf{r})
$$

\n
$$
\mathbf{K} \mathbf{S} \text{ potential}
$$

\n
$$
v_{KS} = v(\mathbf{r}) + \int d\mathbf{r}' \frac{e^2 \rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + v_{xc}(\mathbf{r})
$$

\n
$$
\rho(\mathbf{r}) = \sum_n \Theta(\mu - \epsilon_n) |\psi_n(\mathbf{r})|^2
$$

\n
$$
v_{xc}(\mathbf{r}) \equiv \frac{\delta E_{xc}}{\delta \rho(\mathbf{r})}
$$

\n
$$
N = \sum_n \Theta(\mu - \epsilon_n)
$$

\n
$$
v_{xc}(\mathbf{r}) \equiv \frac{\delta E_{xc}}{\delta \rho(\mathbf{r})}
$$

• See the note on [density functional theor](https://aiichironakano.github.io/phys760/DFT080603.pdf)y **for derivation**

W. Kohn & L. J. Sham, "Self-consistent equations including exchange and correlation effects," *Phys. Rev*. **140**, A1133 ('65)

Extensions of DFT

• Finite-temperature DFT

N. D. Mermin, "Thermal properties of the inhomogeneous electron gas," *Phys. Rev*. **137**, A1441 ('65) Free energy with an entropy term

• **Current DFT in magnetic fields:** $\rho(\mathbf{r}) \& \mathbf{j}(\mathbf{r})$

M. Ferconi & G. Vignale, "Current density functional theory of quantum dots in magnetic fields," *Phys. Rev. B* 50, 14722 ('94) Exchange-correlation vector potential, \mathbf{A}_{xc} J. Sun *et al*., "real-time exciton dynamics with time-dependent density-functional theory," *Phys. Rev*. *Lett*. **127**, 077401 ('21)

• **Superconducting-gap DFT:** $\Delta(\mathbf{r}) = \langle \psi_{\uparrow}(\mathbf{r}) \psi_{\downarrow}(\mathbf{r}) \rangle$ & $\rho(\mathbf{r}) = \sum_{\sigma} \langle \psi_{\sigma}^{\dagger}(\mathbf{r}) \psi_{\sigma}(\mathbf{r}) \rangle$ L. N. Oliveira *et al*., "Density functional theory for superconductors," *Phys. Rev*. *Lett*. **60**, 2430 ('88) **See the note on** [DFT for superconductor](https://aiichironakano.github.io/phys760/SCDFT.pdf)s

• Ensemble DFT for nearly degenerate & strongly correlated states

E. K. U. Gross *et al*., "Density functional theory for ensembles of fractionally occupied states," *Phys. Rev*. *A*. **37**, 2809 ('88) M. Filatov, "Spin-restricted ensemble-referenced Kohn–Sham method," *WIREs Comput. Mol. Sci*. **5**, 146 ('15)

See notes on [energy balance shee](https://aiichironakano.github.io/phys760/DeltaSCF.pdf)t an[d ensemble local-field dynamic](https://aiichironakano.github.io/phys760/EnsembleLFD.pdf)s

• For the electronic current operator, see the note on [quantum dynamical computation of electronic conductivit](https://aiichironakano.github.io/phys760/Conductivity111189.pdf)y