

View

Online


Export
Citation

RESEARCH ARTICLE |  MARCH 29 2024

Hybrid programming-model strategies for GPU offloading of
electronic structure calculation kernels 
Special Collection: Modular and Interoperable Software for Chemical Physics

Jean-Luc Fattebert   ; Christian F. A. Negre  ; Joshua Finkelstein  ; Jamaludin Mohd-Yusof  ;
Daniel Osei-Kuffuor  ; Michael E. Wall  ; Yu Zhang  ; Nicolas Bock  ; Susan M. Mniszewski 

J. Chem. Phys. 160, 122501 (2024)
https://doi.org/10.1063/5.0198797

Articles You May Be Interested In

LibERI—A portable and performant multi-GPU accelerated library for electron repulsion integrals via
OpenMP offloading and standard language parallelism

J. Chem. Phys. (August 2024)

Excited-state electronic structure of molecules using many-body Green’s functions: Quasiparticles and
electron–hole excitations with VOTCA-XTP

J. Chem. Phys. (March 2020)

Interoperable workflows by exchanging grid-based data between quantum-chemical program packages

J. Chem. Phys. (April 2024)

 29 Septem
ber 2024 17:10:18

https://pubs.aip.org/aip/jcp/article/160/12/122501/3280110/Hybrid-programming-model-strategies-for-GPU
https://pubs.aip.org/aip/jcp/article/160/12/122501/3280110/Hybrid-programming-model-strategies-for-GPU?pdfCoverIconEvent=cite
https://pubs.aip.org/jcp/collection/16595/Modular-and-Interoperable-Software-for-Chemical
javascript:;
https://orcid.org/0000-0002-1455-6160
javascript:;
https://orcid.org/0000-0001-5720-0255
javascript:;
https://orcid.org/0000-0003-0073-7371
javascript:;
https://orcid.org/0000-0002-9844-689X
javascript:;
https://orcid.org/0000-0002-6111-6205
javascript:;
https://orcid.org/0000-0003-1000-688X
javascript:;
https://orcid.org/0000-0001-8938-1927
javascript:;
https://orcid.org/0009-0004-5143-2820
javascript:;
https://orcid.org/0000-0002-0077-0537
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0198797&domain=pdf&date_stamp=2024-03-29
https://doi.org/10.1063/5.0198797
https://pubs.aip.org/aip/jcp/article/161/8/082501/3309322/LibERI-A-portable-and-performant-multi-GPU
https://pubs.aip.org/aip/jcp/article/152/11/114103/198521/Excited-state-electronic-structure-of-molecules
https://pubs.aip.org/aip/jcp/article/160/16/162503/3286814/Interoperable-workflows-by-exchanging-grid-based
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2510985&setID=592934&channelID=0&CID=908664&banID=522064408&PID=0&textadID=0&tc=1&rnd=5765799185&scheduleID=2429182&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjcp%22%5D&mt=1727629817598209&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0198797%2F19859522%2F122501_1_5.0198797.pdf&hc=839d59e977e2d7e9abd0f662f722af697d9874b3&location=


The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

Hybrid programming-model strategies
for GPU offloading of electronic structure
calculation kernels

Cite as: J. Chem. Phys. 160, 122501 (2024); doi: 10.1063/5.0198797
Submitted: 19 January 2024 • Accepted: 10 March 2024 •
Published Online: 29 March 2024

Jean-Luc Fattebert,1,a) Christian F. A. Negre,2 Joshua Finkelstein,2 Jamaludin Mohd-Yusof,3

Daniel Osei-Kuffuor,4 Michael E. Wall,3 Yu Zhang,2 Nicolas Bock,5 and Susan M. Mniszewski3

AFFILIATIONS
1 Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
3Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos,
New Mexico 87545, USA

4Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
5Canonical USA Inc., Eatontown, New Jersey 07724, USA

Note: This paper is part of the JCP Special Topic on Modular and Interoperable Software for Chemical Physics.
a)Author to whom correspondence should be addressed: fattebertj@ornl.gov

ABSTRACT
To address the challenge of performance portability and facilitate the implementation of electronic structure solvers, we developed the basic
matrix library (BML) and Parallel, Rapid O(N), and Graph-based Recursive Electronic Structure Solver (PROGRESS) library. The BML
implements linear algebra operations necessary for electronic structure kernels using a unified user interface for various matrix formats (dense
and sparse) and architectures (CPUs and GPUs). Focusing on density functional theory and tight-binding models, PROGRESS implements
several solvers for computing the single-particle density matrix and relies on BML. In this paper, we describe the general strategies used
for these implementations on various computer architectures, using OpenMP target functionalities on GPUs, in conjunction with third-party
libraries to handle performance critical numerical kernels. We demonstrate the portability of this approach and its performance in benchmark
problems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0198797

I. INTRODUCTION

Performance portability is a significant challenge for applica-
tion programs that are run on modern HPC resources. For example,
software solutions targeting portability, such as OpenMP, can some-
times have a hard time delivering performance, either due to the lack
of maturity of compilers or the due to fine granularity of control
needed for some specific kernels. On the other hand, writing ker-
nels in a vendor-specific language targeting one specific GPU may
not be portable and can lead to software maintenance difficulties.
Recent trends in HPC only make this problem more acute as many
leadership computing facilities have adopted hardware composed of
heterogeneous compute nodes containing CPUs and GPUs, where a
majority of the acceleration is provided by the GPUs.1–3

In practice, it is usually best to use existing libraries when possi-
ble if those libraries implement the numerical kernels one needs. For
electronic structure applications, linear algebra libraries are the most
common dependency. For dense linear algebra on CPUs, standard
interfaces developed for BLAS4–6 and LAPACK7 have facilitated
the use and development of these libraries and several well opti-
mized solutions exist. On GPUs, the situation is more complicated.
Vendors offer optimized implementations of BLAS and LAPACK
in platform-specific libraries, such as cuBLAS, cuSolver (NVIDIA),
rocBLAS, rocSolver (AMD), and MKL (Intel). There is, however,
no common interface to these libraries. As a consequence, appli-
cation codes need to have platform-specific wrappers around the
functions that they intend to use. In addition, application develop-
ers need to understand the details of all these interfaces. There are
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several reasons why the GPU situation is not as user friendly as it
is in CPUs. First, there is the choice of having two possible loca-
tions for data arrays passed as arguments, either allocated to the
host or the device, as well as for the return value, when there is
one. Then, there is also the option of enabling several kernels to exe-
cute asynchronously on the device using, for instance, GPU streams.
When writing platform-specific GPU kernels, there also can be extra
kernel arguments depending on the architecture to ensure optimal-
ity such as, for instance, different hardware/run time parameters,
different thread-block grid sizes, or user controlled cache (shared
memory) sizes. As a result of these various issues and GPU tech-
nology changes, user interfaces are not as stable as one would like.
For sparse linear algebra, the situation is also complicated. Unlike
the dense format, for which there are not too many ways of laying
out the data, there are several sparse formats, including compressed
sparse row (CSR), compressed sparse column (CSC), coordinate list
(COO), and ELLPACK just to mention a few. In addition, even for
a given format such as CSR, there are variants as some libraries
may or may not expect data in a row to be ordered by column
indexes.

Some open source alternatives have emerged in recent years,
some of which are targeting multiple architectures and thus facilitat-
ing portability of application codes using those. At the node level, the
MAGMA library8,9 offers the functionalities of BLAS and LAPACK
on GPUs and is already fully functional in NVIDIA and AMD GPUs.
The SLATE project is implementing a distributed and scalable dense
linear algebra library for distributed memory accelerator-based
computer systems, aiming to provide performance and portability to
various types of hardware (CPUs, GPUs, and accelerators).10 On the
sparse matrix side, Ginkgo11 is being actively developed and already
offers a lot of functionalities on GPU architectures.

With the development of the Parallel, Rapid O(N), and Graph-
based Recursive Electronic Structure Solver (PROGRESS) and the
basic matrix library (BML), our goal is to facilitate the development
of performant and portable electronic structure solvers by provid-
ing the necessary linear algebra tools in a hardware agnostic way.
Due to the diversity available in accelerator hardware, we qualita-
tively refer to performance portability as achieving a consistent and
reasonable performance across computer platforms. By providing
several matrix formats, specifically a dense format and several sparse
formats, BML facilitates the development of reduced complexity
algorithms that can exploit any possible sparsity of the Hamilto-
nian and density matrices. We reported on this concept and the
BML a few years ago in Ref. 12, with a focus on CPU implemen-
tations. In this paper, we extend this concept to implementations
on GPUs, demonstrating some of these ideas on various hardware,
such as NVIDIA V100, AMD MI250X, and Intel GPUs. We describe,
in particular, the implementation model used to offload calcula-
tions to GPUs, using OpenMP in combination with third-party
libraries. Electronic structure calculations are an important class of
applications that require heavy use of linear algebra kernels. Here,
electronic structure calculations broadly refer to the many ways of
numerically evaluating the state of electrons in a physical system
(molecule and periodic solid), as necessary, to derive other physical
quantities of interest. In this paper, we will restrict our discussion
to mean-field models, such as density functional theory (DFT) or
tight-binding methods. Some algorithms and implementations dis-
cussed are targeting large scale simulations and make use of matrix

sparsity to reduce computational complexity to O(N). Moreover,
fast time-to-solution is also of high interest in the community,
specifically to speedup wall-clock times in quantum molecular
dynamics (QMD) and enable better modeling with longer time
scales for medium-sized systems on the order of 1000 electrons.

The idea of isolating all the linear algebra operations of an
electronic structure code into a separate library is a natural design
choice and, at the same time, allows for multiple application codes to
share this implementation. Several other research groups have made
efforts toward identifying and isolating software libraries and have
made them available to the community. The DBCSR library,13,14

which the CP2K simulation package15 relies on, is designed to effi-
ciently perform sparse matrix–matrix multiplication, among other
operations. It provides a distributed implementation using MPI and
runs on NVIDIA and AMD GPUs via CUDA and HIP, respectively.
The ELectronic Structure Infrastructure (ELSI) project16 provides an
open-source software interface to facilitate the implementation and
optimal use of high-performance solver libraries electronic struc-
ture codes, including traditional eigensolvers, O(N) complexity
algorithms, and other reduced complexity methods. The Electronic
Structure Library (ESL)17 is a community-maintained library of soft-
ware specific to electronic structure simulations, which includes,
among others, the ELSI library just mentioned. On the applica-
tion side, an example of an electronic structure code that recently
embraced this separation of operations and the use of more libraries
is SIESTA.18

After introducing the PROGRESS library and BML in Sec. II,
we discuss in Sec. III the specific problem of the electronic struc-
ture that these libraries are targeting: computing the single-particle
density matrix (DM). In Sec. IV, we discuss some GPU-friendly
algorithms implemented in PROGRESS as possible alternatives to a
direct dense diagonalization. In Sec. V, we describe our general strat-
egy to offload computational kernels to the GPU using OpenMP.
We then describe some more specific strategies used for the dense
matrix format in Sec. VI (using the MAGMA and MKL libraries)
and sparse matrix format in Sec. VII (using the AMD rocSPARSE
library and the hypre library). Finally, in Sec. VIII, we discuss dis-
tributed memory solvers that leverage the shared memory solvers
discussed in Secs. IV–VII.

II. PROGRESS AND BML LIBRARIES
The basic matrix library (BML) is designed to implement the

linear algebra operations necessary to implement matrix-based elec-
tronic solvers. Its purpose is to hide all the implementation details of
numerically intensive kernels, including architecture-specific code
and interfaces with third-party libraries, from the user.

BML is written in C. This facilitates interoperability with other
languages, such as Fortran and C++. BML supports four datatypes
for all operations: single precision, double precision, single com-
plex, double complex. To avoid writing essentially the same code
for all the data types, C macros are used extensively for data types
and in function names, and the C preprocessor is used to gener-
ate specifics code associated with each data type. To avoid nam-
ing conflicts with other packages, all BML function names use a
prefix bml_.

BML supports four different matrix formats: dense, ELLPACK-
R, CSR, and ELLBLOCK. ELLPACK-R is a sparse format with a fixed
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memory allocation, allowing a pre-determined maximum number
M of non-zero elements per row.19 It is less adaptable than CSR
since a growing number of non-zeroes may reach the limit M and
lead to failure. However, it has the performance advantage of avoid-
ing a lot of memory allocation/deallocation during routine usage.
ELLBLOCK is a generalization of ELLPACK-R, in which each ele-
ment is a block.20 Note that the BML CSR format implementation
is not exactly what is usually referred to as CSR. In the BML, rows
of data and column indexes are stored independent to each other
instead of being packed together into a single array. This facili-
tates memory reallocation when the number of non-zeroes in a row
changes. In addition, BML supports a memory distributed format,
“distributed2d,” which builds on top of the four non-distributed
formats.

BML matrices are stored as a C struct, which includes, besides
a pointer to the data storage, other parameters necessary to fully
describe that matrix, such as its type (e.g. dense or ELLPACK-R),
its data type (float, double, complex), and the number of rows in the
matrix. An example for an ELLPACK-R matrix is shown in Listing 1.

LISTING 1. C struct used for ELLPACK-R matrix storage.

The PROGRESS [Parallel, Rapid O(N), and Graph-based
Recursive Electronic Structure Solver] library is a collection of algo-
rithms used in electronic structure calculations, with a focus on
iterative solvers based on matrix polynomials. It is mostly written
in FORTRAN but also offers a C-interface for routines expected to
be called directly by an application code. More specifically, it imple-
ments several versions of the “second-order spectral projection”
(SP2) DM solver,21 a Chebyshev polynomial expansion of the DM,22

as well as some iterative methods to compute the inverse square
root of an overlap matrix as is often necessary in a non-orthogonal
basis set or a non-orthogonal tight-binding model. All these imple-
mentations rely on BML matrices and their functionalities. They
are mostly matrix format agnostic and available for all data types
in BML. Several of these algorithms show an O(N) computational
complexity with matrix size N when sparse matrix formats are used,
and an appropriate threshold is used to discard small matrix ele-
ments. Figure 1 shows the software stack for a typical application

FIG. 1. Software stack showing the PROGRESS library and BML and their
integration within an electronic structure application.

using PROGRESS and BML, including third-party dependencies.
The PROGRESS library and BML are both open source, licensed
under the BSD 3-clause license, and available on GitHub.23,24

To evaluate the solver’s performance, we developed some
benchmark drivers within PROGRESS. Our main benchmark test
is based on a physical system, a small peptide chain solvated in water
with periodic boundary conditions (Fig. 2). It consists of 523 atoms.
From this atomic configuration, we build a tight-binding Hamil-
tonian represented by a matrix of size 1081 × 1081. To construct
this Hamiltonian, we call a density functional based tight bind-
ing (DFTB)25 Hamiltonian builder implemented in PROGRESS that
uses DFTB parameters from the LATTE (Los Alamos Transferable
Tight-binding for Energetics) code.26 We build larger Hamiltoni-
ans by replicating this system by a factor of two or three in each
direction. This gives us a series of Hamiltonians of increasing sizes
to study computational cost, computational complexity, and paral-
lel scaling. The sparsity of each DM for these benchmark problems
is presented in Table I. This resulting “soft matter” system is what
one would typically encounter in a biophysical molecular dynamics
(MD) simulation.

PROGRESS and BML rely on the CMake build system.28 To
facilitate the development of these libraries and avoid breaking the
code when changes are made by developers that are not familiar
with all the functionalities and implementation details, an exten-
sive suite of unit tests has been developed over time and continue
to be enhanced. These tests cover all the matrix formats and matrix
datatypes and are run through Ctest, the testing driver provided by
CMake.
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FIG. 2. Small peptide chain solvated in water, used for PROGRESS benchmarks.
The figure was created using PyMOL.27

TABLE I. Percentage of zero-valued elements in DM in the PROGRESS benchmark
problem, using a cutoff threshold of 10−6.

Replicas N DM sparsity (%)

1 × 1× 1 1081 57.5
2 × 1× 1 2162 78.7
3 × 1× 1 3243 85.8
2 × 2× 1 4324 89.3
3 × 2× 1 6486 92.9
2 × 2× 2 8648 94.6
3 × 3× 1 9729 95.3
3 × 2× 2 12 972 96.4
3 × 3× 2 19 458 97.6
3 × 3× 3 29 187 98.4

III. SINGLE-PARTICLE DENSITY MATRIX
AND THE ASSOCIATED EIGENVALUE PROBLEM

Given a symmetric (or Hermitian) N ×N matrix H repre-
senting a Hamiltonian operator in a finite basis set, the task of
computing the single-particle density matrix D in that same basis
set can be accomplished by following a straightforward procedure,
as follows:

1. Compute all the eigenvalues ϵi and eigenvectors vi of H.
2. Given a chemical potential μ, the Fermi–Dirac distribution

function is given by

fμ(ε) =
1

1 + exp (β(ε − μ))
. (1)

3. The single-particle density matrix is given by

D = V

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

fμ(ε1)

fμ(ε2)

. . .

fμ(εN)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

VT , (2)

where V is the N ×N matrix made of the ordered and
orthonormal eigenvectors,

V = (v1v2 . . . vN).

Note that if there is a gap in the eigenvalue spectrum and no
eigenvalue close to μ, fμ(ε) takes either the value 1 (ε < μ) or 0
(ε > μ), provided that β is not too small. In this case, we have an
insulator. The value μ in practice can be determined by setting an
occupation (number of electrons) and finding μ, which results in this
occupation through an iterative process.

In practice, the Hamiltonian matrix can come, for example,
directly from a discretization of the problem in a small basis set
(such as a set of Gaussian-shaped orbitals centered on the atoms),
through a parameterized tight-binding (TB) approximation or from
the projection of the Hamiltonian operator onto an auxiliary set of
wave functions built iteratively during the search for the numerical
solution in a larger numerical basis set (e.g. plane waves, finite ele-
ments, or finite difference cases). Depending on the discretization of
the problem and the solver adopted, the size and degree of sparsity
of this matrix H can vary significantly.

The matrix size also depends on the algorithm used to solve
the electronic structure problem. When working with wave func-
tions, N can be substantially smaller than in a TB or Gaussian-based
approach. It can be as small as the number of occupied orbitals, as
in a conjugate gradient solver,29 in which case, no diagonalization
is needed for the projected Hamiltonian (all states are fully occu-
pied). However, wave function based solvers often use N larger than
the number of occupied orbitals in order to speed up the solver or to
solve for partial occupancy in metallic systems.30 In addition, solvers
such as block Davidson will involve solving a Rayleigh–Ritz prob-
lem often referred to, in the field of electronic structure, as subspace
diagonalization for 2N × 2N matrices.31–33 A locally optimal block
preconditioned conjugate gradient (LOBPCG) solver34 will involve
an even larger space, with a Rayleigh–Ritz procedure in the 3N × 3N
matrix space.

Note that for wave function based approaches, distribution of
the wave function over nodes and cores can substantially reduce the
time-to-solution. However, the Rayleigh–Ritz process used to com-
pute the orbitals occupation does involve information from all the
distributed parts, so that the resulting synchronization communica-
tion step is often the bottleneck in the strong scaling limit35,36 and
thus requires efficient algorithms to solve that problem.

IV. GPU FRIENDLY ALGORITHMS
Matrix multiplications have two advantageous properties when

it comes to their implementations on GPUs: (i) very simple arith-
metic operations and (ii) high arithmetic intensity (floating point
operations per memory load). When compared to the operations
involved in solving a dense eigenvalue problem on a GPU, the use
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of standard dense diagonalization algorithms are typically not very
efficient. Thus, solvers based on matrix–matrix multiplications are
able to better utilize the massively parallel threads on a GPU and
may offer a better performance.20,37,38

In the 1990s, significant development happened in the
matrix–matrix multiplication based iterative solvers for the density
matrix. Their primary purpose was to reduce algorithmic complexity
from O(N3

) to O(N) by utilizing the sparsity in the Hamiltonian
matrix and in functions of the Hamiltonian matrix (see Ref. 39 for a
review). The key idea is to replace the diagonalization of the Hamil-
tonian matrix to evaluate the Fermi–Dirac function (see Sec. III)
with a much cheaper polynomial approximation that one can eas-
ily apply to a Hamiltonian matrix. Often in these approaches, we
define a shifted and rescaled Hamiltonian matrix H̃ such that the
eigenvalues of this matrix are all inside the interval [a, b]. A good
polynomial approximation would then map the interval [a, b] to
a Fermi–Dirac function with the appropriate chemical potential μ
so that

D ≈ pμ(H̃), (3)

where the subscript of the polynomial p denotes the dependence on
the chemical potential μ. Another type of approximate expansion is
a recursive polynomial expansion,

D ≈ pn(pn−1 (. . . p2(p1(H̃))), (4)

so that the polynomial pμ is replaced by a composition of generally
simpler or lower-order polynomials, pμ = pn ○ pn−1 ○ ⋅ ⋅ ⋅ ○ p2 ○ p1.

Although electronic structure problems can be quite large,
domain scientists are often limited to solving problems of more
modest sizes for which a very fast time-to-solution can be achieved.
This is usually the case for quantum molecular dynamics, where an
electronic structure problem needs to be solved at each time step
to accurately compute atomic forces and propagate the atoms along
the MD trajectories. In these more moderately sized problem cases,
even matrix multiplications cannot always fully utilize the avail-
able resources on GPU devices and substantial portions of the GPU
remain idle. Therefore, finding further parallelism in the evaluation
of these polynomials is beneficial (see Sec. IV B).

A. SP2 solver
An example of a recursive expansion is the “second-order spec-

tral projection” (SP2) algorithm,21 as implemented in PROGRESS.
In SP2, one starts with

D0 ≡ H̃ =
εN I −H
εN − ε1

, (5)

the shifted and rescaled Hamiltonian, after which the density matrix
is computed iteratively using the recursion

Dm+1 = D2
m (6)

if the trace of Dm is larger than the number of electrons and

Dm+1 = 2Dm −D2
m (7)

if the trace of Dm is smaller than the number of electrons. The den-
sity matrix D is then approximated by Dn for a sufficient number of
iterations, n. Listing 2 shows a sketch of a Fortran code implement-
ing an SP2 solver based on BML matrices and functionalities. We
should emphasize that such an implementation is independent of
the matrix format, the matrix data type, and the underlying com-
puter architecture. Other variants of the SP2 algorithm have also
been implemented in PROGRESS.

LISTING 2. Illustration of use case for BML matrices in the SP2 solver as
implemented in the PROGRESS library.

We use SP2 in our PROGRESS benchmark, specifically to
evaluate the performance of matrix-multiplication-based algorithms
compared to dense diagonalization. For the bio-system benchmark
described in Sec. II, SP2 converges to the specific tolerance used in
that benchmark in 22 iterations, and its cost is typically dominated
by the 22 matrix–matrix multiplications used in these iterations.

B. Chebyshev polynomial expansion
Recursive Fermi operator expansion techniques, such as SP2,

have known challenges in the case of a vanishing electronic bandgap.
In this case, a better technique is to use a serial Chebyshev expansion
of the Fermi operator,22

fμ(H) ≈
L

∑
n=0

cnTn(H), (8)

where Tn is the nth Chebyshev polynomial and cn is the nth
Chebyshev expansion coefficient. Currently, in PROGRESS and in
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some other codes,40 this expansion is computed via the Chebyshev
polynomial recursion property,

Tn+1(H) = 2HTn(H) − Tn−1(H), (9)

for n > 0, which results in a serialized summation—each term in
the summation for fμ needs to be computed in a sequence. More-
over, each recursion requires a single matrix multiplication so that
for a Chebyshev expansion of polynomial order L, approximately L
matrix multiplications are required. In other words, the number of
matrix multiplications to approximate the Fermi operator and com-
pute the density matrix scales linearly with the number of expansion
terms.

In 1973, Paterson and Stockmeyer41 showed that a generic poly-
nomial P in powers of x of order L could be rewritten in such a way
that only ∼2

√
L multiplications in x are needed to evaluate P(x).

Several decades later, Liang et al.42,43 showed that this same idea
could be applied directly to Chebyshev polynomial expansions of
the Fermi–Dirac operator. Then, the Chebyshev expansion in Eq. (8)
can be written as

L

∑
n=0

cnTn =
k−1

∑
i=0

di,0Ti + Tk(
k−1

∑
i=0

di,1Ti

+ Tk (
k−1

∑
i=0

di,2Ti + ⋅ ⋅ ⋅ + Tk(
k−1

∑
i=0

di,m−1Ti) ⋅ ⋅ ⋅)), (10)

for coefficients di,j, which can be determined from the Chebyshev
coefficients cn and positive integers k, m such that L + 1 = km. Not
only did this algorithm replace a diagonalization with matrix–matrix
multiplications, it also substantially reduced the number of multi-
plications needed to approximate the Fermi–Dirac operator for a
given Chebyshev expansion size. Instead of the nearly L multipli-
cations required for the serial recursion from Eq. (9), the number of
multiplications now scaled with the square root of the polynomial
order,

√
L. The large timing discrepancies between matrix–matrix

multiplications and diagonalization previously mentioned then have
an even more pronounced effect, making this approach very well-
suited to modern GPU devices. The determination of the coefficients
di,j relies on the multiplicative recursion property of Chebyshev
polynomials:37 for n, m non-negative integers,

TnTm(H) =
1
2
(Tn+m + T∣n−m∣)(H). (11)

Note that each sum, Sj, on the right-hand side of Eq. (10), where

Sj =
k−1

∑
i=0

di,jTi, 0 ≤ j ≤ m − 1, (12)

is completely independent of every other sum Sj′ for j ≠ j′ once the
first k Chebyshev polynomials Ti, i = 0, . . . , k are known. This intro-
duces parallelism into Eq. (10) since each sum can be calculated
concurrently with every other sum. In addition, the first k Chebyshev
polynomials, T1, T2 up to Tk, can be calculated in a semi-parallel
way too. The idea is to use the Chebyshev polynomial multiplication

FIG. 3. Speedup over diagonalization of the density matrix construction (using a
known chemical potential) on an AMD MI250X GPU with multiple GPU streams for
N = 500 and N = 1000. Only a single stream is used for N = 2000 and N = 4000.
The MAGMA library is used for diagonalization, which was found to be faster than
the diagonalization routine in rocSolver.

identity from Eq. (11) to calculate each Ti, i = 2, . . . , k. Starting from
T0 and T1, the second Chebyshev polynomial can be computed as

T2 = 2T1T1 − T0, (13)

and similarly, once T0, T1, and T2 are known, the next two
Chebyshev polynomials can be computed via

T3 = 2T2T1 − T1,
T4 = 2T2T2 − T0,

(14)

using only previously computed Ti. Each Chebyshev polynomial on
the left-hand side in Eq. (14) can, therefore, be computed in par-
allel. This parallelization on a single GPU is implemented using
CUDA and HIP streams, on NVIDIA and AMD GPUs, respectively,
through MAGMA queues. The combination of this parallelization
along with the square root scaling Chebyshev expansion approach
leads to orders-of-magnitude speedups over diagonalization when
constructing the single-particle density matrix through a Chebyshev
expansion. In Fig. 3, we show the speedup obtained on an AMD
MI250X GPU.

Further details of this approach, and on how to compute the set
of coefficients {di,j}, can be found in Ref. 37.

V. OFFLOADING WITH OPENMP
There are two components of GPU offloading, data move-

ment and computation. Since most accelerated architectures have
separate memory spaces for the host and device, with limited band-
width between them, we attempt to minimize the data movement
whenever possible. OpenMP44,45 offers a portable, pragma-based
framework for data movement between the host and device, as
well as compute functionality on both. The OpenMP standard is
supported by multiple compiler vendors,46 with varying degrees
of compatibility, especially with regard to offload support. GPU-
offloading capabilities of OpenMP have been successfully used by
various applications,47–49 including some in the electronic struc-
ture community50–52 and for large-scale sparse eigensolvers.53 In this
section, we outline the general strategy adopted in BML for using
OpenMP to offload compute to accelerated devices.
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A. Data allocation
The BML matrix format includes both the base matrix data (one

or more data arrays, depending on the format) and certain meta-
data (e.g. matrix format, distribution mode, and local array bounds)
in a C struct (see Listing 1). We only offload the data arrays to
the device at allocation time, using persistent data allocation on the
device. For example, in the ELLPACK-R format, we offload the val-
ues, index, and number of non-zero arrays using a combination of
allocation and updates from the host to the device (see Listing 3).
Subsequently, we assume that the data on the device are correct,
and synchronization between the device and host is only performed
when needed. We also modify the corresponding deallocation func-
tions to ensure that the device-side memory is freed when host-side
arrays are destroyed.

LISTING 3. GPU memory allocation and update for BML matrix data.

B. OpenMP compute
For simple computations or those computations that are not

performance-critical, we can use OpenMP to perform device com-
putations, for example, scaling an ELLPACK-R matrix (Listing 4).

LISTING 4. Example of a GPU-offloaded kernel using OpenMP directives.

In practice, OpenMP may not offer the ability to generate ker-
nels with optimal performance on some devices due to the inability
to access certain fine-grained parallelisms that are only available
via vendor-specific methods, such as CUDA.54 For this reason, we
generally utilize a mixture of OpenMP, for data movement and exe-
cution of simple or non-performance-critical compute with vendor-
specific libraries (rocSparse and oneAPI) for performance-critical
kernels (see Secs. VI B, VII A and VII B). Particularly for sparse
matrices, we find that native OpenMP is unable to match the per-
formance of vendor-optimized functions (see Fig. 6). Fortunately, it
is relatively easy to pass data to vendor libraries through raw pointers
in C as allocated by OpenMP on the GPU. In these cases, we utilize
the OpenMP use_device_ptr functionality to perform compute

on the previously allocated device-side data arrays, for example,
Listing 5 shows the interface to call an eigensolver using Intel
oneAPI MKL libraries.

LISTING 5. Code example illustrating a library call within an OpenMP region, in this
case, calling MKL eigensolver.

In some cases, we have utilized entirely separate workflows,
such as MAGMA, which encompass both data movement and
compute bypassing OpenMP (see Sec. VI A).

For sparse matrix functionality, most vendor-supplied libraries
only use the CSR format, both on CPU and accelerator. In con-
trast, BML uses the CSR (slightly modified), ELLPACK-R, and
ELLBLOCK formats. In order to leverage the performance of the
vendor-supplied libraries, we developed a set of functions to per-
form the appropriate data transformations. Here, we show a simple
example of transforming data from a canonical CSR format to
ELLPACK-R on the GPU (Listing 6);

LISTING 6. CSR to ELLPACK-R conversion using OpenMP target directives. Here,
“ROWMAJOR” is a C macro that returns the 1-d index of an element (i, j) for a matrix
of size A_M × A_N.

Although these data transformations inevitably introduce some
overhead, the cost is outweighed by the potential penalty of using
sub-optimal compute for performance-critical functions, such as
sparse matrix multiplication, in the native ELLPACK-R format using
OpenMP.

VI. OFFLOADING DENSE LINEAR ALGEBRA SOLVERS
A. MAGMA on NVIDIA and AMD GPUs

The MAGMA library8,55 offers most of the functionalities that
we need for the dense matrix format. It essentially implements the
whole set of functions typically available in BLAS and LAPACK for
the GPU and more. It currently supports NVIDIA and AMD GPUs
and is expected to support Intel GPUs in the near future. For offload-
ing the dense matrix format to GPU in the BML, the choice was
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made to rely heavily and, mostly, on MAGMA for memory alloca-
tion, data movement, and linear algebra operations on NVIDIA and
AMD GPUs.

As an exception, we observed that the diagonalization function
available in the cuSolver library “cusolverDnDsyevd” from NVIDIA
significantly outperforms the MAGMA functions and have, thus,
added an interface to it. Calling a cuSOLVER function from within
a MAGMA code turns out to be easy since both codes work with
simple C pointers, and a data array allocated by MAGMA can be
directly used by any cuSolver function. The rocSolver library is the
AMD equivalent of NVIDIA’s cuSolver and is easy to integrate
with MAGMA as well. However, we did not find the diagonaliza-
tion function in that library to be more performant than the one in
MAGMA.

In Fig. 4, we plot the time-to-solution for the SP2 solver (based
on the “magma_dgemm” function) compared to dense diagonaliza-
tion (using the “magma_dsyevd_gpu” function) for the PROGRESS
3D bio-benchmark, as measured on AMD MI250X GPU. SP2 sig-
nificantly outperforms the dense diagonalization for all matrix sizes
shown here (up to N = 29 187) but more significantly for the smaller
sizes.

Note that MAGMA provides a two-stage eigensolver that could
potentially be faster than the divide and conquer version we are cur-
rently using. However, its current interface only supports data on
the CPU, and thus, would require extra copies between the GPU and
CPU in our implementation.

B. MKL on Intel GPUs
When offloading computation to Intel GPUs, we use the

oneAPI MKL libraries.56 At present, we have only offloaded the
computations for BML dense format, but we anticipate that the
methodology will be directly transferable to the appropriate sparse
formats. The offloading of data to the Intel GPU is accomplished
using the OpenMP functionality, as described in Sec. V. That is, we
allocate the appropriate array, which in this case, is a single dense
block, on the GPU when the BML matrix is initialized. Subsequently,
the correct state of the matrix is assumed to be that on the GPU, and
all computation is performed on the GPU when possible in order to
minimize data movement and to maximally leverage the improved
GPU compute relative to the CPU.

FIG. 4. Comparison of the time-to-solution between the SP2 solver and dense
diagonalization using MAGMA functionalities on AMD MI250X GPU for the
PROGRESS 3D bio-benchmark.

The Intel model for GPU offload is enabled via offloaded ver-
sions of their oneAPI MKL libraries. The call signature is largely the
same as the corresponding CPU function, with the addition of an
appropriate OpenMP pragma. For example, the call for matrix addi-
tion on CPU (computing αA + βB) in double precision is given by
using the BLAS C-interface (Listing 7):

LISTING 7. Computing αA + βB using the BLAS C-interface.

In addition, the corresponding GPU offload is shown in
Listing 8.

LISTING 8. Computing αA + βB using oneAPI MKL.

Note that for complex data types, the MKL CBLAS calls on the
GPU require an “ & ” in front of alpha and beta to get the address of
a complex number. In addition, the target variant dispatch
and use_device_ptr pragmas should also be noted. Otherwise,
the call signature of the offloaded function appears identical to the
corresponding host-side call.

With the appropriate functions offloaded, we can then compare
the performance of the SP2 algorithm on the GPU with diago-
nalization, on both the CPU and GPU, for the PROGRESS 3D
bio-benchmark. The resulting timings on the Sunspot testbed are
shown in Fig. 5. Sunspot is a precursor to Aurora,57 where each

FIG. 5. PROGRESS benchmark timings measured on the Intel Sunspot system for
dense matrices of sizes N = 1081 up to N = 29 187 using the oneAPI MKL library.
Time is in milliseconds. The CPU runs used either 16 or 52 threads, as indicated
in the legend. This work was performed on a pre-production supercomputer with
early versions of the Aurora software development kit.
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node consists of two Intel Xeon CPU Max Series (codename Sap-
phire Rapids or SPR) and six Intel Data Center GPU Max Series
(codename Ponte Vecchio or PVC). Each Xeon has 52 physical cores
supporting two hardware threads per core. We utilize 16 threads per
process on the CPU, to simulate using 1/6 of the CPU available per
GPU. We also repeated the test with 52 CPU threads, equivalent
to a full socket, which shows some improvement at larger sizes. As
seen in other systems, the SP2 solver is performing well compared
to the dense diagonalization on the GPU. On the other hand, MKL
“dsyevd” on CPU using 16 threads already outperforms the same
function on the GPU.

Although the choice to implement the offloaded functions with
(almost) identical signatures to the CPU version makes the imple-
mentation straightforward from a coding standpoint, the lack of
maturity in the software stack is an issue. Functions are being ported
to the GPU gradually, and compiler updates may break working
builds so frequent regression testing is needed. Overall, this is to be
expected with a software stack at this stage of development.

VII. LEVERAGING THIRD-PARTY LIBRARIES
FOR O(N) SPARSE LINEAR ALGEBRA SOLVERS

When it comes to iterative sparse solvers, such as SP2, the
key kernel needed is a sparse–sparse matrix multiply. Compared
to others, such as sparse–dense matrix multiply, this function is
not implemented in many libraries. Previously, threaded sparse
matrix methods in BML were implemented using the ELLPACK-
R sparse matrix format. Our initial approach to GPU acceleration
used OpenMP offload. Unfortunately, this led to bottlenecks in
matrix–matrix multiplications and additions—the performance of
the offloaded versions of these functions was lacking. Thus, we
switched to the use of third-party libraries for these numerical
kernels.

A. AMD rocSparse library
As faster methods were needed for AMD GPUs to prepare

for the availability of Frontier at the Oak Ridge Leadership Facil-
ity,3 we sought to replace these functions with AMD rocSPARSE
methods. The CSR data used by rocSPARSE are obtained using an
ELLPACK-R to CSR translation code within BML (see Sec. V). Calls
to rocSPARSE methods are then made within an omp target data
region to enable host or device pointers to be passed to rocSPARSE
methods as appropriate. The code block in Listing 9 illustrates the
general approach of calling a rocSPARSE function using the GPU
pointer to a BML data array (the approach is similar to the way the
MKL methods are used on Intel GPUs, as described in Sec. VI B).
In this code block, the function f() performs a computation on
A_matrix on the GPU. The use_device_ptr(A_matrix) clause
instructs the compiler to pass the GPU pointer for A_matrix to f().
The variable A_N is not included in the use_device_ptr() clause,
indicating that the value on the host will be used.

LISTING 9. Using OpenMP offload for a rocSPARSE function “f” call and a BML
matrix “A.”

The most computationally intensive kernel in SP2 is the sparse
matrix multiplication; therefore, we first developed an interface to
use the rocsparse_spgemm() function inside BML for this kernel.
Several other bottlenecks were subsequently identified. In particu-
lar, the addition of two matrices in BML was accelerated using the
function rocsparse_csrgeam().

As of at least ROCm 5.3, the rocSPARSE methods require
sorted column indices. This is important for our applications as
the ELLPACK-R format is unsorted, and matrices can become
unsorted during the course of calculations. For example, com-
puting the matrix transpose leads to unsorted column indices.
Moreover, even though the rocSPARSE methods require sorted
matrices on input, they can produce unsorted matrices on out-
put. Therefore, we changed the BML rocSPARSE code to sort
the matrices as needed. This was accomplished using the roc-
SPARSE rocsparse_csrsort function. In addition, to ensure that
the resulting sparse matrices satisfy the thresholding criterion for
including matrix elements, our implementation uses the rocSPARSE
function rocsparse_xprune_csr2csr.

Figure 6 compares the performance of the SP2 solver for the
PROGRESS 3D bio-benchmark using the rocSPARSE (red trian-
gles) vs MAGMA (blue diamonds) solvers. The builds used the
Cray CCE compilers version 15 and AMD ROCm version 5.1. The
rocSPARSE method shows approximate linear scaling, as expected
for the sparse SP2 density matrix algorithms. Due to the approxi-
mate linear scaling, the rocSPARSE timings for large matrix sizes
are smaller than the MAGMA timings (up to more than 10x). Two
OpenMP offload timings for small matrices are shown for com-
parison (orange squares shown in Fig. 6). These data points show
that the time required for the density matrix build using the roc-
SPARSE method is orders of magnitude smaller than that achieved
for the OpenMP offload code. Overall, the figure shows the substan-
tial performance increase achieved in GPU when taking advantage
of sparsity using rocSPARSE compared to the dense format using
MAGMA for large matrix sizes. It also shows that rocSPARSE
overcomes the performance limitations of the OpenMP offload
methods.

FIG. 6. Comparison of the time-to-solution of the SP2 solver between sparse matri-
ces using rocSPARSE and dense matrices using MAGMA on AMD MI250X GPU
for the PROGRESS 3D bio-benchmark. OpenMP offload timings for small matrix
sizes are also shown for comparison.
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B. Hypre library
As mentioned above, functionalities for multiplying two sparse

matrices by each other are not found in many linear algebra libraries.
The focus is often on solving sparse linear systems using iterative
solvers, where multiplying a sparse matrix by a vector is the key
ingredient. That being said, electronic structure solvers are not the
only ones using sparse–sparse matrix multiplications. Another area
where those are heavily used is in the algebraic multigrid commu-
nity. There, coarse grid operators are often computed as the product
AL = RAlP, where Al is the discretized operator at the fine level,
AL is the discretized operator at the coarse level, and R and P are
restriction and prolongation operators, respectively, which are used
to coarsen or refine the data between levels. All these operators
are represented as sparse matrices, and thus, the computation of
AL is typically the result of two consecutive sparse–sparse matrix
multiplications.

The hypre linear solver library58,59 is a well-known open-source
library with scalable algebraic multigrid solver capabilities, among
other solvers. The sparse matrix–matrix multiplication routines in
hypre provide access to both vendor library routines and internal
algorithms independent of the vendor. These internal algorithms
are ported to the HPC hardware with NVIDIA, AMD, and Intel
GPUs based on their respective native programming paradigms.
Thus, through the same interface to hypre, the BML could access
and utilize this performance critical sparse matrix functionality on
different HPC platforms, leading to a performant and portable alter-
native to vendor-specific libraries. Additionally, leveraging open-
source libraries, such as hypre, provides security through access to
software capabilities and personnel with technical expertise and a
shared interest in addressing software stack issues and challenges in
emerging HPC hardware.

Accessing sparse matrix–matrix multiplication routines
through hypre follows a similar approach to integrating BML
with vendor libraries. First, matrix data are converted from the
ELLPACK-R format to the standard CSR format on the device.
The internal CSR matrix data structure of hypre uses raw C array
pointers to store the matrix data. This interface makes it convenient

LISTING 10. Code snippet showing the use of hypre for sparse matrix–matrix multi-
plication in the BML. The assignment operations in the round brackets show how data
pointers are passed to hypre’s internal data structure on the device.

FIG. 7. Time-to-solution of the sparse O(N) SP2 solver using the hypre library
on NVIDIA V100 GPU for the PROGRESS 3D bio-benchmark. For comparison,
we also plot two data points when using the NVIDIA cuSparse library on the same
V100 GPU, as well as the results using the rocSparse SP2 library on the AMD
MI250X GPU.

to directly pass device pointers to standard CSR data, allocated by
OpenMP, into hypre’s internal CSR matrix data structure without
incurring additional overhead. Next, with the data on the device,
the sparse matrix–matrix multiplication is performed using the
functionality provided by hypre. Finally, the result is converted
back from CSR to ELLPACK-R using the same approach as for
vendor libraries. Listing 10 provides a code snippet of how the
integration with hypre is realized. Note that unlike rocSPARSE,
hypre’s interface does not put any requirement on the order of the
elements in a CSR row.

Initial challenges to this effort came from having a consistent
compiler stack to enable an interoperable build of hypre with BML,
with OpenMP offload and vendor-specific compiler constraints.
These challenges were eventually resolved. The performance results
for the PROGRESS SP2 benchmark using the sparse–sparse matrix
multiplication from the hypre library are shown in Fig. 7 for an
NVIDIA V100 GPU. Two data points using the NVIDIA cuSPARSE
library are also shown. These correspond to the two smallest matrix
sizes in the PROGRESS benchmark—the only two that we were able
to complete using the NVIDIA CUDA 11 toolkit due to the large
memory requirements for the cuSPARSE sparse–sparse matrix mul-
tiplication. They show a significantly better performance using hypre
(factor 6-7X). The results from Sec. VII A using rocSPARSE on
AMD MI250X GPU, are also shown for reference. Taking the dif-
ferences in hardware performance into account —about 3X more
flops and 1.8X better memory bandwidth for the AMD—GPU—they
indicate a comparable performance for hypre and rocSPARSE
sparse–sparse matrix multiplications.

VIII. DISTRIBUTED MEMORY SOLVERS
Distributed memory approaches are very attractive for large

problems that do not fit in the memory of a single node. However,
they can also be used to speed up time-to-solution. There is obvi-
ously always a cost to distributing a problem across multiple nodes
due to communication and possibly extra computation for overlap-
ping work. However, in many cases, these costs can be managed to a
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reasonable fraction of the compute time, and calculations can benefit
from the distributed resources.

Here, we distinguish between two general ways of distribut-
ing an atomistic simulation: distributing the linear algebra problem
of computing a DM or dividing the physical system into a set of
(potentially overlapping) subsystems. The ScaLAPACK library60 is
probably the most well-known library implementing distributed
linear algebra operations. In BML, we implemented a distributed
matrix format that leverages the operations implemented for the var-
ious shared memory formats in BML. This approach is described
in Sec. VIII A. Partitioning the DM computation at the physical
level was proposed by Yang and Lee in 1995 using a divide and
conquer approach.61 In Sec. VIII B, we present a related approach
implemented in PROGRESS. It relies purely on matrix elements to
determine the partitioning of the system and is thus, very appro-
priate for a library implementation totally independent of any
specific electronic structure code. It also leverages shared memory
solvers implemented in BML, which are used for the linear algebra
operations performed for each physical sub-system.

A. Distributed linear algebra
In order to leverage the implementation performed for all the

shared memory matrix formats in BML, we introduced a distributed
matrix format, in which each block owned by an MPI task is a BML
matrix in a non-distributed (shared memory) format. This allows
us to have a distributed format for all the shared memory matrix
formats already implemented in BML. We introduce the following
restrictions with this format: (i) the sub-matrices owned by each
MPI task have to be square matrices and (ii) the number of MPI
tasks used has to be a squared integer. We named that new format
“distributed2d.” This format is built with the BML library when BML
is configured to be built with MPI.

Our implementation is non-intrusive, leaving the shared mem-
ory matrix formats untouched. It consists mainly of “wrapper” func-
tions calling sub-matrix operations when possible, implementing
the “distributed2d” matrix operations as combinations of “shared
memory” matrix operations. Some operations, such as the Frobe-
nius norm for instance, need an MPI reduction at the end to get
the global values. Some operations (multiplication, transpose, . . .)
require more substantial communications. Our current implemen-
tation of the distributed matrix–matrix multiplication is based on
Cannon’s algorithm. Some operations are intrinsically more intru-
sive, for instance, computing the bounds on the eigenvalues of a
matrix using Gershgorin circles. In this case, the strategy is to add
functionalities to the basic formats to be used by “distributed2d”
implementation. Some operations are beyond the scope of this
project. For instance, implementing a distributed eigensolver would
require a lot of work beyond the resources of this project. Fortu-
nately, other libraries offer good distributed eigensolvers. Thus, in
BML, our eigensolver is simply interfacing with an existing solver.
For CPU, we have implemented an interface to ScaLAPACK.60 For
GPU, we have implemented an interface to the ELPA library.62

B. Graph-based divide electronic structure
Recent findings63 by Niklasson and co-workers have demon-

strated, both theoretically and practically, that there exists a bijective
correspondence between matrix functions of sparse matrices and

the same functions applied to only certain graph-restricted domains
(parts) of the matrices. This theory enables the decomposition of the
problem of computing a sparse matrix function into sub-problems
involving much smaller dense matrices. The technique achieves
near-perfect parallelism, in which computations can be executed
with distributed memory and minimal communication.64,65 The sig-
nificance is twofold: it not only offers a systematic approach to
addressing matrix function calculations by breaking them down into
manageable components but also capitalizes on the power of parallel
computing to handle these computations concurrently.

The original article used electronic structure calculations (the
application of the Fermi–Dirac function) to validate this technique
and was coined “graph-based linear-scaling electronic structure
theory.” The utilization of electronic structure concepts to verify this
theoretical result underscores its practical relevance in real-world
applications, particularly in the domain of large-scale scientific
computing. Other researchers embraced this concept and trans-
lated it into libraries designed for the parallel application of matrix
functions on massively large scales.66

Within the context of the PROGRESS library, we apply the
Fermi–Dirac function to compute the system’s DM. This technique,
however, can be generalized to other functions. Given a Hamiltonian
matrix H and a threshold τ, one can create a graph G by constructing
its adjacency matrix A defined as

Aij =

⎧⎪⎪
⎨
⎪⎪⎩

1 if ∣Hij ∣ ≥ τ and i ≠ j,
0, otherwise.

(15)

This graph can be partitioned into several components (or
parts) using various methods referred to as graph-partitioning tech-
niques.67 We define a partition Π of graph G into m parts, as a
collection of m sets of nodes of G, Π = {π1, . . .πi, . . .πm}.

The PROGRESS library provides several options for graph par-
titioning. Perhaps the most straightforward one is to simply divide
the matrix index list into relatively regular segments. PROGRESS
also offers partitioning through the use of the METIS library, which
implements various algorithms based on multiple constraint par-
titionings.68 In addition, PROGRESS provides a partitioning algo-
rithm with the objective of minimizing the total number of arith-
metic operations if a O(N3

) complexity would dominate the math-
ematical operations performed over each set of nodes. PROGRESS
also implements several variations of graph partitioning inspired by
the Kernighan–Lin method.69 Finally, there is a method in which a
METIS partitioning is refined using a simulated annealing technique
to minimize the number of operations in an O(N3

) complexity
algorithm.

Within the context of electronic structure, two concepts imme-
diately follow the idea of a partition: core partition and core-halo par-
tition. A partition is called a core partition, Πc = {πc

1, . . .πc
i , . . .πc

m},
if every node in G belongs to one and only one of the πc

k ∈ Πc.
If we extend each core component πc

k ∈ Πc to also include the
neighboring nodes of every node in πc, this defines a core-halo par-
tition, Πch = {πch

1 , . . .πch
i , . . .πch

m}. Thus, if a node l belongs to πc
k,

then every directly connected neighboring node o (where Al,o = 1)
belongs to πch

k .
Given a partition Π of G, for every element πk ∈ Π, we can

extract a submatrix hk
αβ ∶= Hi ∈πk , j ∈πk . Then there is a one-to-one
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mapping between indices of h and the indices of H, that is, if
sk is the size (number of nodes) of πk, α ∈ [1, sk]↔ i ∈ πk. BML
implements the functionalities to extract a submatrix h from a
global matrix H and to map data from a submatrix h into a global
matrix H.

To prevent discontinuities, our approach involves extracting
submatrices from core-halo partitions, applying the necessary func-
tions to these submatrices and then subsequently constructing the
final matrices. This is accomplished by first constructing a core-
halo partition from a core partition. The extension is based on an
“auxiliary” matrix that defines the connectivity of the orbitals. This
auxiliary matrix can be the Hamiltonian itself, the overlap matrix,
or a previously computed DM. A previously computed DM can be
obtained from previous time steps (or a previous SCF step) during a
geometry optimization and/or a QMD simulation. From this exten-
sion, we can extract the submatrix hkch for each part k and apply a
matrix function to it. Once the function has been evaluated for every
part k, we can then extract the submatrices corresponding to the
“core” partition and map them back to a full system density matrix
P, where P ≈ f (H).

In Listing 11, we present a general algorithm that applies
this graph-based approach to computing the density matrix. The
inputs are the Hamiltonian (h_bml) matrix and the auxiliary matrix
(g_bml) that serves as a guess for the connectivity of the orbitals.
In our PROGRESS implementation, all the matrices in the inter-
face are sparse matrices. The construction of the graph is handled
using the BML ELLPACK-R format given the sizes of the adjacency
matrices that are typically involved in large systems that need mem-
ory distributed techniques. The auxiliary matrix is converted into
a weighted adjacency matrix by taking the absolute values of every
entry and a thresholding operation is applied to control the extent
of the resulting graph. The resulting graph is then used in a graph
partitioning algorithm to get the parts. The graph parts are then
used to define the Hamiltonian sub-matrices (dense BML matrices),
which are then solved for independently and concurrently using,
for example, a regular diagonalization method (prg_build_DM()).
From the several DM sub-matrices obtained, each MPI task will
locally reconstruct a “partially filled” full DM, before the full DM
is assembled by summing up all contributions using an MPI reduc-
tion operation. Figure 8 shows the average DM element error and

FIG. 8. Error vs thresholding parameter used to construct the adjacency matrix
(blue) with average sizes of core + halo parts (red). These results were obtained
from the PROGRESS benchmark Hamiltonian for N = 2162 and a partition into
eight parts.

the average CH size as a function of the threshold value picked to
build the adjacency matrix. We see that we get a well-controlled
error (Frobenius norm of the difference between the graph-based
DM and the DM obtained using the dense diagonalization) by mod-
ifying the thresholding parameter used to construct the adjacency
matrix. The average element error follows a linear function of the
threshold on a log–log plot, indicating that the error is a polynomial
of the threshold (error ∼ τ2.2 in this case). When the submatrices
are extracted, they contain a halo region (extra layer of surround-
ing orbitals), which is an extension from the cores (extracted set of
atoms) arising from the overlapping graph-partitioning process. The
smaller the threshold, the larger the overlap between the different
parts and the smaller the error committed. On the other hand, the
smaller the threshold, the larger the individual Hamiltonians that
need to be solved independently and the higher the computational
cost.

LISTING 11. General density matrix graph-based distributed solver routine as
implemented in PROGRESS.

We tested this graph-based approach performance by evaluat-
ing the wall-clock time for the construction of DM as a function
of the problem size. In Fig. 9, we show the timings obtained and
compare those to a standard dense diagonalization. The computa-
tional cost as a function of problem size is remarkably promising.
On a single Intel CPU node, the graph-based approach has a very
low prefactor scaling as compared to the regular DM construc-
tion method (see Fig. 9) and becomes competitive for matrix size
N = 2000 and beyond. We also see a larger speedup for larger
adjacency matrix threshold (Fig. 10).

With modern hybrid architectures with GPU-accelerated
nodes, speedups can be obtained only for larger problems. The over-
head associated with this distributed graph-based approach includes
(i) partitioning the global matrix into “core+ halo” parts, (ii) extract-
ing the dense submatrices associated with each part from large sparse
matrices, and (iii) communications between MPI tasks to gather the
calculated submatrices into the resulting global DM. In Table II, we
present the matrix and submatrix sizes used by the graph-solver, as
well as the performance numbers obtained on NVIDIA GPUs using
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FIG. 9. Wall-clock time vs problem size for a fixed threshold of 0.01 for the graph-
based solver using eight parts (red). This is compared to the wall-clock time of a
dense diagonalization of the entire problem (blue). Runs on a single Intel Core i7
CPU node with 12 OpenMP threads.

FIG. 10. Speedup with the distributed graph solver compared to serial global solver
as a function of the threshold used for graph partitioning. The results obtained for
the PROGRESS benchmark with N = 2162.

TABLE II. Performance of the graph-based density matrix construction for a Hamil-
tonian matrix of size 12 972. Run on one node of Summit at OLCF (NVIDIA V100
GPUs). The local, single GPU solver is NVIDIA cuSolver “cusolverDnDsyevd.” The
graph was constructed from the (precomputed) DM itself with a threshold of 10−2.

Number of parts 4
Number of MPI tasks 4
Number of GPUs 4
Matrix size 12 972
Number of core nodes/part 3 149–3 314
Number of core + halo nodes/part 5 657–5 810
Wall-clock time for local solver (s) 2.0
Total wall-clock time distributed solver (s) 5.6
Wall-clock time single GPU solver (s) 8.7
Speedup 1.55X

a molecular system from the PROGRESS benchmark described in
Sec. II. In this case, the difference between the time spent in the
local solver and the total time for the distributed solver shows the
time spent in the overhead operations (3.6 s). While it cannot be
eliminated totally, we expect future code optimization to reduce it
significantly.

IX. CONCLUDING REMARKS
Even though the software development environment using

high-performance computing resources with GPU accelerators has
improved substantially in recent years, it is still a challenge to
produce software that is performant, portable, and maintainable.

With modern hybrid architectures, where more than 90% of the
flops are those in the GPU, more and more scientific code needs to
be developed and optimized for GPU execution. From a numerical
point of view, maximal utilization of a GPU is both a lot of work and
technically challenging and may even require algorithm redesign.
Dense eigenvalue solvers routinely used in the electronic structure
community do not get the speedup that one might expect on a GPU
based on flops specifications, while other solvers based on matrix
multiplications perform much better.

In this paper, we demonstrated some ideas on how to address
some of these issues and described libraries (PROGRESS and BML)
where these techniques are implemented. From a performance
point of view, when comparing the dense matrix-multiplication-
based iterative solver, SP2, with traditional dense diagonalization,
we showed some significant speedups using AMD and Intel GPUs.
For O(N) solvers based on sparse SP2, focusing on NVIDIA and
AMD GPUs, we demonstrated how to leverage third-party libraries
for core numerical kernels within an OpenMP offload implemen-
tation to achieve a better performance than dense solvers for matrix
sizes beyond N = 3000. We also showed how some distributed mem-
ory solvers can be implemented, leveraging the performance of the
shared memory operations implemented in BML. For these, the
challenge remains to keep the data transfer overhead low in com-
parison to on-GPU operations, which are extremely fast on high-end
devices.

From a practical point of view, the software stack can still
be quite unstable and building a set of working libraries and code
together remains a challenge. In addition, OpenMP offload sup-
port differs from compiler to compiler, which, with fewer debugging
options than in CPUs, can require significant code development
efforts. While we expect software stack stability and reliability to
improve with maturity of the technology used in today’s largest HPC
resources, we also expect some challenges to persist for quite some
time.
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