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We propose an efficient quantum algorithm for simulating the dynamics of gen-
eral Hamiltonian systems. Our technique is based on a power series expansion
of the time-evolution operator in its off-diagonal terms. The expansion decou-
ples the dynamics due to the diagonal component of the Hamiltonian from the
dynamics generated by its off-diagonal part, which we encode using the linear
combination of unitaries technique. Our method has an optimal dependence
on the desired precision and, as we illustrate, generally requires considerably
fewer resources than the current state-of-the-art. We provide an analysis of
resource costs for several sample models.

1 Introduction
Simulating the dynamics of quantum many-body systems is a central challenge in Physics,
Chemistry and the Material Sciences as well as in other areas of science and technology.
While for classical algorithms this task is in general intractable, quantum circuits offer a
way around the classical bottlenecks by way of ‘circuitizing’ the time evolution of the system
in question. However, present-day quantum computing devices allow for the programming
of only small and noisy quantum circuits, a state of matters that places severe constraints on
the types of applications these devices may be used for in practice. The qubit and gate costs
of circuitization procedures have therefore rightfully become key factors in determining
the feasibility of any potential application and increasingly more efficient algorithms are
continuously being devised.

We propose a novel approach to resource-efficient Hamiltonian dynamics simulations
on quantum circuits that we argue offers certain advantages, which directly translate to a
shorter algorithm runtime, over state-of-the-art quantum simulation algorithms [1, 2] (see
Sec. 4 for a detailed comparison). We accomplish this by utilizing a series expansion of
the quantum time-evolution operator in its off-diagonal elements wherein the operator is
expanded around its diagonal component [3–5]. This expansion allows one to effectively
integrate out the diagonal component of the evolution, thereby reducing the overall gate
and qubit complexities of the algorithm as compared to existing methods.

In our approach, the time evolution is broken up into identical short-time segments,
each of which is accurately approximated using a number of terms in the off-diagonal series
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that is logarithmic in the inverse of the required precision. Each segment is then executed
with the help of the linear combination of unitaries (LCU) lemma [1]. Our algorithm
enables the simulation of a wide range of realistic models, including systems of spins,
bosons or fermions.

The paper is organized as follows. In Sec. 2, we introduce the off-diagonal expansion
insofar as it applies to the time-evolution operator. In Sec. 3, we present the Hamiltonian
dynamics algorithm that we construct based on the expansion and in Sec. 4 we provide
a comparison between the present scheme and two of the leading approaches to quantum
simulations, the Taylor-series based approach of Berry et al. [1] and the interaction-picture
representation approach devised by Low and Wiebe [2]. We examine several examples in
some detail. A summary and some conclusions are given in Sec. 5.

2 Off-diagonal series expansion of the time-evolution operator
We next derive an expansion of the time evolution operator based on the off-diagonal se-
ries expansion recently introduced in Refs. [3–5] in the context of quantum Monte Carlo
simulations. While we focus in what follows on time-independent Hamiltonians for sim-
plicity, we note that an extension of the following derivation to include time-dependent
Hamiltonians also exists [6].

2.1 Permutation matrix representation of the Hamiltonian
We begin by casting the Hamiltonian in the form

H =
M∑
i=0

DiPi = D0 +
M∑
i=1

DiPi , (1)

where the Di operators are diagonal in some known basis, which we will refer to as the
computational basis and denote by {|z〉}, P0 := 1, and the Pi operators (for i > 0) are
permutation operators, i.e., Pi|z〉 = |z′(i, z)〉 where z′ 6= z, i.e., they do not have any fixed
points (equivalently, their diagonal elements are all zero). While the above formulation
may appear restrictive it is important to note that any Hamiltonian can be written in this
form. In particular, for models of spin-1/2 particles (qubits), the Di’s are diagonal in the
Pauli-Z basis, and the Pi’s are a tensor products of Pauli-X operators, Pi ∈ {1, X}⊗N
where N is the number of spins.

We will refer to the principal diagonal matrix D0 as the diagonal component of the
Hamiltonian, while the set {DiPi}Mi=1 of off-diagonal operators (in the computational ba-
sis) give the system its ‘off-diagonal dimension’. We will call ‘diagonal energies’ the (real)
numbers obtained by acting with D0 on computational basis states: D0|z〉 = Ez|z〉. Sim-
ilarly, by applying the generalized permutation operator DiPi on a basis state, we obtain
DiPi|z〉 = di(z′)|z′〉, where di(z′) will be in general a complex number (z′ depends on z and
i). With these notations in hand, we move on to discuss the off-diagonal series expansion
of the time-evolution operator.

2.2 Expansion of the time-evolution operator
We next consider the evolution of a state under a time-independent HamiltonianH for time
t. We expand the time evolution operator e−iHt using the off-diagonal series expansion.
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We first consider the action of e−iHt on a basis state |z〉:

e−iHt|z〉 =
∞∑
n=0

(−it)n

n! Hn|z〉 =
∞∑
n=0

(−it)n

n!
( M∑
i=0

DiPi
)n
|z〉 =

∞∑
n=0

(−it)n

n!
∑

S
(n)
j ∈Sn

S
(n)
j |z〉 , (2)

where in the last step we have also expanded the multinomial (
∑
iDiPi)n, and Sn de-

notes the set of all (M + 1)n operators that appear in the expansion of the multinomial
(
∑
iDiPi)n. We proceed by ‘stripping’ all the diagonal operators off the sequences S(n)

j . We
do so by evaluating their action on the relevant basis states, leaving only the off-diagonal
operators unevaluated inside the sequence (for example, for the n = 2 sequence D1P1D0
we write D1P1D0|z〉 = EzD1P1|z〉 = EzD1|z1〉 = Ezd1(z1)|z1〉 = Ezd1(z1)P1|z〉, where
|z1〉 = P1|z〉). Collecting all terms together, we arrive at:

e−iHt|z〉 =
∞∑
q=0

∑
iq

diqPiq |z〉
( ∞∑
n=q

(−it)n

n!
∑

k0,...,kq
s.t.
∑

i
ki=n−q

Ek0
z · · ·Ekqzq

)
, (3)

where the boldfaced index iq = (i1, . . . , iq) is a tuple of indices ij , with j = 1, . . . , q,
each ranging from 1 to M and Piq := Piq · · ·Pi2Pi1 . In addition, similar to the diag-
onal energy Ez = 〈z|D0|z〉, we denote Ezj = 〈zj |D0|zj〉 are the energies of the states
|z〉, |z1〉, . . . , |zq〉 obtained from the action of the ordered Pij operators appearing in the
sequence Piq on |z〉, then on |z1〉, and so forth. Explicitly, Pi1 |z〉 = |z1〉, Pi2 |z1〉 = |z2〉, etc.
(Note that the sequence of states, and similarly the energies, should actually be denoted
|z1(z, i1)〉, |z2(z, i1, i2)〉, . . .. For conciseness we will be using the abbreviations |z1〉, |z2〉, . . .)
Last, we have denoted diq =

∏q
j=1 dij (zj) where

dij (zj) = 〈zj |Dij |zj〉 (4)

can be considered the ‘hopping strength’ of Pij with respect to |zj〉 (see Ref. [3] for a
complete and detailed derivation).

The infinite sum in parentheses in Eq. (3) evaluates to the efficiently calculable divided-
differences representation [7, 8]

∞∑
n=q

(−it)n

n!
∑

k0,...,kq
s.t.
∑

i
ki=n−q

Ek0
z · · ·Ekqzq = e−it[Ez ,...,Ezq ] , (5)

where the complex coefficient e−it[Ez ,...,Ezq ] is the divided difference of the exponential func-
tion over the multi-set of the energies {Ez, . . . , Ezq} [7, 8] (more details can be found in
Appendix A.1).

We may therefore write
e−iHt|z〉 = Vz(t)|z〉 , (6)

where

Vz(t) =
∞∑
q=0

∑
iq

α
(z)
iq (t)Piq (7)

and where we have denoted

α
(z)
iq (t) = e−it[Ez ,...,Ezq ]diq . (8)
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(In the special case of q = 0, α(z)
0 (t) = e−itEz .) In Appendix A.2, we show that one

can pull out a global phase from e−it[Ez ,...,Ezq ] to obtain e−itEze−it[∆Ez ,...,∆Ezq ] where
∆Ezj = Ezj − Ez (and specifically ∆Ez = 0). Therefore, we can write α(z)

iq (t) as:

α
(z)
iq (t) = e−itEze−it[∆Ez ,...,∆Ezq ]diq , (9)

where the divided-difference inputs are now energy differences rather than total diagonal
energies.

3 The Hamiltonian dynamics algorithm
3.1 Preliminaries
We first set some definitions and notations that will be used in the description of the
algorithm. We denote the max norm of a matrix A by ‖A‖max = maxi,j |Aij |, where Aij
are the matrix elements of A in the computational basis. For every diagonal matrix Di

(with i > 0) we define the bounds Γi ≥ ‖Di‖max, and denote Γiq =
∏q
j=1 Γij . We define

the dimensionless time T = tΓ with Γ =
∑M
i=1 Γi, the repetition number r = dT/ ln(2)e,

and the short time interval ∆t = t/r ≈ ln(2)/
∑M
i=1 Γi.

3.2 Decomposition to short-time evolutions
To simulate the time evolution of e−iHt, we execute r times in succession a short-time
circuit for the operator

U = e−iH∆t . (10)
Hereafter we omit the explicit dependence on ∆t for brevity. We write

U = U
∑
z

|z〉〈z| =
∑
z

U |z〉〈z| =
∑
z

Vz|z〉〈z|, (11)

where Vz is given by Eq. (7) upon replacing t with ∆t. We can rewrite U as follows:

U =
∑
z

e−i∆tEz
∞∑
q=0

∑
iq

e−i∆t[∆Ez ,...,∆Ezq ]diqPiq |z〉〈z|

=
(∑

z

∞∑
q=0

∑
iq

e−i∆t[∆Ez ,...,∆Ezq ]diqPiq |z〉〈z|
)
e−i∆tD0 := Uode−i∆tD0 . (12)

We thus find that the off-diagonal expansion enables the effective decoupling of the evo-
lution due to the diagonal part of the Hamiltonian from the evolution due its off-diagonal
part, allowing us U as a product of Uod and e−i∆tD0 . In the special case where the off-
diagonal part of the Hamiltonian is zero (thus, diq = 0 for all iq), our method reduces
directly to simulating diagonal Hamiltonians on a quantum computer. The circuit imple-
mentation of the diagonal unitary e−i∆tD0 can be done with a gate cost O(CD0) where
CD0 is the gate cost of calculating a matrix element of D0 [9] (see Appendix B for more
details). This cost depends only of the locality of D0, and is independent of its norm.

To simulate Uod we will use the LCU technique [1], starting with writing Uod as a
sum of unitary operators. To do that, we first note that |e−i∆t[∆Ezq ,...,∆Ez ]| ≤ ∆tq/q! (this
follows from the mean-value theorem for divided differences [8]). In addition, diq/Γiq are
complex numbers lying inside the unit circle. Therefore, the norm of the complex number

β
(z)
iq = q!

Γiq∆tq
e−i∆t[∆Ez ,...,∆Ezq ]diq (13)
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is not larger than 1. We can thus write β(z)
iq as the average of two phases

β
(z)
iq = cosφ(z)

iq eiχ
(z)
iq = 1

2
(
ei(χ

(z)
iq +φ(z)

iq ) + ei(χ
(z)
iq −φ

(z)
iq ))

. (14)

Using this notation, we can write Uod as

Uod =
∑
k=0,1

∞∑
q=0

∑
iq

Γiq∆tq

2q! U
(k)
iq , (15)

where

U
(k)
iq =

∑
z

ei(χ
(z)
iq +(−1)kφ(z)

iq )
Piq |z〉〈z| = PiqΦ

(k)
iq , (16)

and Φ(k)
iq =

∑
z e

i(χ(z)
iq +(−1)kφ(z)

iq )|z〉〈z| is a (diagonal) unitary transformation. Since Piq is

a bona-fide permutation matrix, it follows that U (k)
iq is a unitary transformation. Thus,

Eq. (15) is the short-time off-diagonal evolution operator Uod represented as a linear com-
bination of unitary transformations.

3.3 The LCU setup
To simulate the evolution under Uod on a finite-size circuit, we truncate the series, Eq. (15),
at some maximal order Q, which leads to the approximate

Ũod =
∑
k=0,1

Q∑
q=0

∑
iq

Γiq∆tq

2q! U
(k)
iq . (17)

Since the coefficients of the off-diagonal operator expansion fall factorially with q (similar
to the truncation of the Taylor series in Ref. [1]), setting

Q = O
( log(T/ε)

log log(T/ε)
)
, (18)

ensures1 that the error per evolution segment is smaller than ε/r:

∞∑
q=Q+1

1
q!
(T
r

)q
=

∞∑
q=Q+1

ln(2)q

q! ≤ ε

r
, (19)

where the last step follows from the inequality q! ≥ (q/e)q. This choice ensures that the
overall error is bounded by ε (as measured by the spectral-norm of the difference between
the approximation and the true dynamics).

We next provide the details of the circuit we implement to execute the LCU routine
and the resource costs associated with it.

1Formally, Eq. (18) should read Q = O
(

log(T/ε)
W (log(T/ε))

)
where W (x) is the W -Lambert function [10]. The

W -Lambert function can be approximated as W (x) = log x− log log x + o(1).
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3.3.1 State preparation

The first ingredient of the LCU is the preparation of the state

|ψ0〉 = 1√
s

Q∑
q=0

∑
iq

√
Γiq

∆tq
q! |iq〉

( |0〉+ |1〉√
2

)
(20)

where |iq〉 = |i1〉 · · · |iq〉|0〉⊗(Q−q) is shorthand for Q quantum registers, each of which has
dimension M (equivalently, a quantum register with dQ log(M + 1)e qubits). In addition,
since

∑
iq Γiq = (

∑
i Γi)q

s =
Q∑
q=0

∆tq

q!
∑
iq

Γiq =
Q∑
q=0

(
∑
i Γi∆t)q

q! ≈ 2 , (21)

by construction [recall that
∑M
i=1 Γi∆t ≈ ln(2)].

We construct |ψ0〉 in two steps: Starting with the state |0〉⊗Q we transform the first
register to the normalized version of

|0〉+

√√√√√ Q∑
q=1

(Γ∆t)q
q! |1〉. (22)

where Γ =
∑M
i=1 Γi. Then the |0〉 state of the q-th register (q = 2, . . . , Q) is transformed

to the normalized version of√
(Γ∆t)q−1

(q − 1)! |0〉+

√√√√√ Q∑
q′=q

(Γ∆t)q′

q′! |1〉. (23)

conditioned on the (q − 1)-th register being in the |1〉 state. The resulting state, up to
normalization, is

|0〉⊗Q →
Q∑
q=0

√
(Γ∆t)q
q! |1〉⊗q|0〉⊗(Q−q). (24)

The gate cost of this step is O(Q). Next, we act on each of the registers with a unitary
transformation that takes a |1〉 state to the normalized version of

∑M
i=1
√

Γi|i〉. Finally we
apply a Hadamard transformation on the last (qubit) register, resulting in the state |ψ0〉.
The gate cost of this step is O(M) [11]. Denoting the unitary transformation that takes
|0〉⊗Q+1 to |ψ0〉 by B, we find that the gate cost of B is O(MQ) [1].

3.3.2 Controlled-unitary transformation

The second ingredient of the LCU routine is the construction of the controlled operation

UC |iq〉|k〉|z〉 = |iq〉|k〉U (k)
iq |z〉 = |iq〉|k〉PiqΦ

(k)
iq |z〉 , (25)

where |k〉 is a single qubit ancillary state in the computational basis. The number of ancilla
qubits here is dQ log(M+1)e+1. Equation (25) indicates that UC can be carried out in two
steps: a controlled-phase operation (UCΦ) followed by a controlled-permutation operation
(UCP ).

The controlled-phase operation UCΦ requires a somewhat intricate calculation of non-
trivial phases. We therefore carry out the required algebra with the help of additional
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ancillary registers and then ‘push’ the results into phases. The latter step is done by
employing the unitary

Uph|ϕ〉 = e−iϕ|ϕ〉 , (26)

whose implementation cost depends only on the precision with which we specify ϕ and is
independent of Hamiltonian parameters [9] (for completeness we provide an explicit con-
struction of Uph in Appendix C). With the help of the (controlled) unitary transformation

Uχφ|iq〉|k〉|z〉|0〉 = |iq〉|k〉|z〉|χ(z)
iq + (−1)kφ(z)

iq 〉 , (27)

we can write
UCΦ = U †χφ(1⊗ Uph)Uχφ , (28)

so that
UCΦ|iq〉|k〉|z〉 = |iq〉|k〉Φ(k)

iq |z〉 . (29)

This is illustrated in Fig. 1. Note that Uχφ is a ‘classical’ calculation sending computational

|iq〉 • •

|k〉 • •

|z〉 • • Φ(k)
iq |z〉

|0〉 Uχφ Uph U †χφ

Figure 1: A circuit description of the controlled phase UCΦ in terms of Uχφ and Uph.

basis states to computational basis states. We provide an explicit construction of Uχφ in
Appendix D. We find that its gate and qubit costs are O(Q2 +QM(C∆D0 + kod + logM))
and O(Q), respectively, where C∆D0 is the cost of calculating the change in diagonal energy
due to the action of a permutation operator and kod is an upper bound on the ‘off-diagonal
locality’, i.e., the locality of the Pi’s [1, 12].

The construction of UCP is carried out by a repeated execution of the simpler unitary
transformation Up|i〉|z〉 = |i〉Pi|z〉. Recall that Pi are the off-diagonal permutation opera-
tors that appear in the Hamiltonian. The gate cost of Up is therefore O(M(kod + logM)).
For spin models, each Pi is a tensor product of up to kod Pauli X operators. Applying
this transformation to the Q ancilla quantum registers, we obtain |iq〉|z〉 → |iq〉Piq |z〉 with
a gate cost of O(QM(kod + logM)). A sketch of the circuit is given in Fig. 2. We can thus
conclude that the total gate cost of implementing UC is O(Q2 +QM(C∆D0 +kod +logM)).

3.3.3 Oblivious amplitude amplification

To realize Ũod, the LCU technique calls for the execution of a combination of the state
preparation unitary B and the controlled-unitary transformation UC which together form
an oblivious amplitude amplification (OAA) procedure [1].

Let |ψ〉 be the current state of the system, then under the action of W = B†UCB, the
state becomes

W |0〉⊗Q+1|ψ〉 = 1
s
|0〉⊗Q+1Ũod|ψ〉+

√
1− 1

s2 |Ψ
⊥〉, (30)
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|i1〉 •

|i2〉 •
...
|iQ〉 •

|z〉 Up Up · · · Up Piq |z〉

Figure 2: A circuit description of UCP .

such that |Ψ⊥〉 is supported on a subspace orthogonal to |0〉⊗Q+1. If s = 2 and Ũod is
unitary then the OAA ensures that

A|0〉⊗Q+1|ψ〉 = |0〉⊗Q+1Ũod|ψ〉, (31)

where A = −WRW †RW and R = 1 − 2(|0〉〈0|)⊗Q+1. Under these conditions, the action
of W (1⊗ e−i∆tD0) on the state at time t, namely |ψ(t)〉, advances it by one time step to
|ψ(t+ ∆t)〉. This is illustrated in Fig. 3.

|ψ(t)〉 |ψ(t+ ∆t)〉
|0〉 e−i∆tD0

|0〉
W

R
W †

R
−W

Figure 3: A circuit diagram for a single short-time evolution step U = e−iH∆t. The bottom register
consists of Q sub-registers, each of which containing logM qubits. The middle line is a single-qubit
register.

In Ref [1], a robust version of OAA was given for the case of non-unitary Ũod and s 6= 2.
It is shown that if |s − 2| = O(δ) and ‖Ũod − U‖ = O(δ), where U is the (ideal) unitary
transformation then

‖Tr anc(PA|0〉⊗Q+1|ψ〉)− U |ψ〉〈ψ|U †‖ = O(δ) , (32)

where Tr anc stands for trace over the ancilla registers [recall that s ≈ 2 as per Eq. (21)].
Thus the overall error after r repetitions is O(rδ), so we require δ = O(ε/r) to obtain
an overall error of O(ε). These conditions are satisfied with setting ∆t as in Sec. 3.1 and
choosing Q as in Eq. (18).

For convenience, we provide a glossary of symbols in Table 1. A summary of the gate
and qubit costs of the simulation circuit and the various sub-routines used to construct it
is given in Table 2.

4 Comparison to existing approaches and examples
In this section, we compare the resource costs of our algorithm against those of two state-
of-the-art existing approaches, and further provide a brief analysis of the complexity of our
algorithm for a number of physical models.

Since our approach is based on an application of the LCU technique, we first com-
pare the resource costs of our algorithm’s LCU sub-routine against that of the Taylor
series-based method of Berry et al. [1]. One of main differences in costs between the two
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Symbol Meaning
M number of off-diagonal terms, c.f., Eq. (1)
Γi max-norm of Di, i = 1, . . . ,M

T = t
∑M
i=1 Γi dimensionless time

Q off-diagonal series expansion truncation order, Q = O
(

log(T/ε)
log log(T/ε)

)
kd locality of D0
kod upper bound on locality of Pi
CD0 cost of calculating a diagonal energy (a single D0 matrix element)
C∆D0 cost of calculating the change to a diagonal energy due to the

action of a Pi
CD cost of calculating a single Di matrix element (i 6= 0)

Table 1: Glossary of symbols.

Unitary Description Gate cost Qubit cost
e−i∆tH short-time evolution O(CD0 +Q2 +QM(C∆D0 + kod + logM)) O(Q logM)
e−i∆tD0 diagonal evolution O(CD0) O(1)
W W = B†UCB O(Q2 +QM(C∆D0 + kod + logM)) O(Q logM)
B LCU state preparation O(QM) O(Q logM)
UC LCU controlled unitary O(Q2 +QM(C∆D0 + kod + logM)) O(Q logM)
UCP controlled permutation O(QM(kod + logM)) O(Q logM)
UCΦ controlled phase O(Q2 +QM(C∆D0 + kod + logM)) O(Q logM)

Table 2: A summary of resources for the circuit and the various sub-routines.

series expansions stems from the different way in which the Hamiltonians are decomposed.
In the Taylor series-based LCU the Hamiltonian is written as a sum of unitary opera-
tors H =

∑L
i=1 ciUi. For qubit Hamiltonians, these unitary operators will generally be

tensor products of single-qubit Pauli operators (although of course in some cases, more
compact decompositions can be found). The off-diagonal decomposition, on the other
hand, casts the Hamiltonian as a sum of generalized permutation operators, as given in
Eq. (1); a representation that is generally considerably more compact. (For example, for
qubit Hamiltonians, all operators that flip the same subset of qubits are grouped together.)
This in turn implies that the number of terms in the decomposition of the Hamiltonian
will generally be considerably smaller in the off-diagonal representation (i.e., M � L).
This difference directly translates to reduced gate and qubit costs (a summary is given in
Table 2).

Another key difference is in the respective dimensionless time constants. In the off-
diagonal expansion approach the dimensionless time constant is given by T = t

∑M
i=1 Γi,

while in the Taylor series approach it is T ′ = t
∑L
i=1 ci. In both approaches the dimen-

sionless time determines the cutoff of the respective expansions, and controls the overall
gate and qubit costs of the algorithm. Indeed, as we show below, in general one has∑M
i=1 Γi �

∑L
i=1 ci, which directly translates to a reduced simulation cost in favor of the

off-diagonal expansion. To be more quantitative, we provide an explicit comparison be-
tween the off-diagonal and Taylor expansions for a few spin models in Table 3. The ‘price’
we pay for the above savings is the additional O(Q2) operations per time step required
for calculating the divided-difference coefficient. However, we note, that since Q scales
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Hamiltonian H =
∑
ij JijZiZj

Method this paper Taylor series LCU [1]
No. of LCU unitaries 0 N2

Dimensionless time (T ) 0 t
∑
ij |Jij |

Comments H is diagonal -

Hamiltonian H =
∑
ij JijZiZj +

∑
ij J̃ijZiXj

Method this paper Taylor series LCU [1]
No. of LCU unitaries N + 1 2N2

Dimensionless time (T ) t
∑
j |
∑
i J̃ij | t

∑
ij(|Jij |+ |J̃ij |)

Comments D0 =
∑
ij JijZiZj -

Dj =
∑
i JijZi

Hamiltonian H =
∑
ijk JijkZiZjZk +

∑
ijk J̃ijkZiZjXk

Method this paper Taylor series LCU [1]
No. of LCU unitaries N 2N3

Dimensionless time (T ) t
∑
k |
∑
ij J̃ijk| t

∑
ijk(|Jijk|+ |J̃ijk|)

Comments D0 =
∑
ijk JijkZiZjZk -

Dk =
∑
ij J̃ijkZiZj

Table 3: A comparison between the proposed method and the Taylor series-based
approach [1]. In the table, N denotes the number of qubits. The table illustrates two important
features of the proposed method as compared to the Taylor series-based approach for Hamiltonians
written in the Pauli basis. Firstly, the Taylor series-based approach treats diagonal and off-diagonal
components of the Hamiltonian in the LCU algorithm on an equal footing, while our method requires
only the off-diagonal part as an input to the LCU algorithm. This is shown in the row labeled by ‘No. of
LCU unitaries’. Secondly, in the Taylor series-based approach, each Pauli operator in the decomposition
of H is considered as a unitary, leading to a dimensionless time that is proportional to the sum of the
absolute values of all the coefficients in the decomposition. In our approach on the other hand, all the
diagonal operators that act in the same way on basis states are grouped into a single diagonal operator
(Dj in the table). Therefore, in our algorithm, the dimensionless time is proportional to the sum of the
norm of all ‘grouped’ diagonal operators (sans the diagonal component of the Hamiltonian). Due to
this grouping, the dimensionless time of the present method will be in general extensively smaller than
that of the Taylor series-based method. Having a smaller dimensionless time translates to savings in
gate and qubit resources as well as to a shorter runtime of the algorithm.

logarithmically with T , and T is typically much smaller than T ′, the advantages arising
from the use of divided differences asymptotically outweigh this added complexity.

As an alternative to the Taylor series-based algorithm, recently Low and Wiebe [2] have
proposed a framework within which the dynamics is formulated in the interaction picture
using a (truncated) Dyson series expansion. There, the time-ordered multi-dimensional
integrals of the Dyson series are approximated via Riemann sums and implemented using
control registers, ridding the simulation cost of most of its dependence on the diagonal
component of the Hamiltonian. Our algorithm is similar in this way to the interaction pic-
ture approach, as the off-diagonal series expansion may be viewed as explicitly integrating
the Dyson integrals (the reader is referred to Refs. [4, 13] for more details pertaining to the
relation between the off-diagonal series expansion and the Dyson series). There are how-
ever a few notable differences between the two algorithms, that translate to differences in
resource scaling. The main difference is that the cost of the interaction picture approach
still has a poly-logarithmic dependence on the norm of the diagonal part of the Hamil-
tonian while in our method the dynamics due to the diagonal part of the Hamiltonian
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is completely decoupled from that of its off-diagonal part. This decoupling ensures that
our algorithm has no dependence on the norm of the diagonal component of the Hamilto-
nian. In addition, the poly-logarithmic dependence on the various problem parameters in
the interaction picture algorithm is obtained under certain assumptions on the gate cost
of implementing specific unitary oracles. The power of the logarithmic polynomial (γ in
Ref. [2]) is left undetermined in general. As mentioned above in the context of the Taylor
series-based algorithm, the price paid for the decoupling is an additional O(Q2) operations
per time step, with Q, the expansion order, scaling logarithmically with the algorithm’s
dimensionless time T , which does not depend on the diagonal norm of the Hamiltonian.

In the next subsections, we briefly analyze the off-diagonal circuit complexity for three
models of scientific interest: the (Fermi-)Hubbard model, that of electronic structure and
the Schwinger model.

4.1 The Fermi-Hubbard model
We first examine the asymptotic cost of implementing the Fermi-Hubbard model [14], which
serves as a model of high-temperature superconductors. The Fermi-Hubbard Hamiltonian
is given by

H = U
N∑
i=1

a†i↑ai↑a
†
i↓ai↓ − th

∑
〈ij〉σ

(
a†iσajσ + a†jσaiσ

)
, (33)

describing N electrons with spin σ ∈ {↑, ↓} hopping between neighboring sites on a d-
dimensional hyper-cubic lattice whose adjacency matrix is given by 〈ij〉 with hopping
strength th. In addition, the model has an on-site interaction term with strength U between
opposite-spin electrons occupying the same site.

The Fermi-Hubbard model can be mapped to qubits in a number of different ways [15–
18]. For concreteness, we consider the Jordan-Wigner transformation (JWT) [15] which
maps the second-quantized operator ajσ to an operator on j qubits according to

ajσ →

j−1∏
k=1

Zkσ

 Xjσ − iYjσ
2 (34)

so that a†jσajσ = (1 + Zjσ)/2. To write the Fermi-Hubbard Hamiltonian in the form of
Eq.(1), we rewrite the JWT as

ajσ →

j−1∏
k=1

Zkσ

 1 + Zjσ
2 Xjσ , a†jσ →

j−1∏
k=1

Zkσ

 1− Zjσ
2 Xjσ. (35)

Applying the transformation to the Hamiltonian, Eq. (33), we arrive at:

H = D0 +
∑
〈ij〉σ

DijσXiσXjσ , (36)

where we have identified

D0 = U

4

N∑
j=1

(1 + Zj↑)(1 + Zj↓) and Dijσ = −1
2 th

j∏
k=i

Zkσ . (37)

The product structure of Dijσ implies that their max-norm is simply given by th for all
i, j, σ. The number of off-diagonal terms is M = Nd. Therefore the dimensionless time
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T of the simulation algorithm is T = tMth = tNdth. For comparison, in the Taylor
series decomposition, the number of terms in the Hamiltonian is L = 3N + 2M , and the
dimensionless time parameter is T ′ ∼ 3NUt+2T . Note that due to the independence of T
on the on-site repulsion strength U , the off-diagonal expansion algorithm offers a favorable
scaling as compared to the Taylor series-based LCU in the Mott-insulating regime U � th.

4.2 Hamiltonian simulation of electronic structure
Another model of major practical relevance is the simulation of electronic structure in the
framework of which the stationary properties of electrons interacting via Coulomb forces
in an external potential are of interest. This problem was recently analyzed in detail in
Ref. [19], where a ‘plane wave dual basis Hamiltonian’ formulation was proposed, which
diagonalizes the potential operator leading to a Hamiltonian representation with O(N2)
second-quantized terms, where N is the number of basis functions.

Using JWT to map the model to qubits, one arrives at

H =
∑
p,σ
ν 6=0

 π

Ω k2
ν

− k2
ν

4N + 2π
Ω
∑
j

ζj
cos [kν · (Rj − rp)]

k2
ν

Zp,σ (38)

+ π

2 Ω
∑

(p,σ)6=(q,σ′)
ν 6=0

cos [kν · rp−q]
k2
ν

Zp,σZq,σ′ +
∑
ν 6=0

(
k2
ν

2 −
πN

Ω k2
ν

)
1

+ 1
4N

∑
p 6=q
ν 6=0,σ

k2
ν cos [kν · rq−p] (Xp,σZp+1,σ · · ·Zq−1,σXq,σ + Yp,σZp+1,σ · · ·Zq−1,σYq,σ) ,

where, Rj and rp denote nuclei and electron coordinates, respectively, ζj are nuclei charges
and kν is a vector of the plane wave frequencies at the ν-th harmonic of the computational
cell in three dimensions whose volume we denote by Ω (see Ref. [19]).

The permutation matrix representation dictates that we write the Hamiltonian above
as

H = D0 +
∑
p6=q,σ

DpqσXpσXqσ (39)

where all the diagonal terms are grouped together to form

D0 =
∑
p,σ
ν 6=0

 π

Ω k2
ν

− k2
ν

4N + 2π
Ω
∑
j

ζj
cos [kν · (Rj − rp)]

k2
ν

Zp,σ (40)

+ π

2 Ω
∑

(p,σ)6=(q,σ′)ν 6=0

cos [kν · rp−q]
k2
ν

Zp,σZq,σ′ +
∑
ν 6=0

(
k2
ν

2 −
πN

Ω k2
ν

)
1,

and are integrated out of the LCU. Off-diagonal (p 6= q) terms are also grouped as

Dpqσ = 1
4N

∑
ν 6=0

k2
ν cos [kν · rq−p] (Zp+1,σ · · ·Zq−1,σ) (1pq + ZpσZqσ) . (41)

We notice that in the off-diagonal representation, the Hamiltonian of Eq. (39) has a struc-
ture similar to that of Eq. (36), with kod = 2. Similar to the Fermi-Hubbard model, each
Dijσ has a product structure and their max-norm is simply given by 1

2N |
∑
ν k

2
ν cos [kν · rq−p] |
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for all p, q, σ. The number of terms in the off-diagonal part of the Hamiltonian in this repre-
sentation isM = 2(N2−N), and thus the dimensionless time T of the simulation algorithm
is

T = t(N − 1)
∑
p6=q

∣∣∣∑
ν 6=0

k2
ν cos [kν · rq−p]

∣∣∣. (42)

For comparison, in the Taylor series-based LCU approach the number of terms in the
Hamiltonian is L = 2N + 6(N2 −N), and the dimensionless time parameter is

T ′ = t

(∑
p 6=q
ν 6=0

(π
Ω

1
k2
ν

+ 1
2N k2

ν

)∣∣∣cos [kν · rq−p]
∣∣∣+ 2

∑
p

ν 6=0

∣∣∣ π

Ω k2
ν

− k2
ν

4N + 2π
Ω
∑
j

ζj
cos [kν · (Rj − rp)]

k2
ν

∣∣∣).
(43)

In particular, the dimensionless parameter in the current scheme depends only on the
magnitude of the two-electron interaction and can take values much smaller than T ′ due
to a ‘destructive interference’ of the cosine terms evaluated at different values of [kν · rq−p].

4.3 The Schwinger model
The Schwinger model [20] is an Abelian low-dimensional gauge theory describing two-
dimensional (one spatial plus time) Euclidean quantum electrodynamics with a Dirac
fermion. Despite being a simplified model, the theory exhibits rich properties, similar
to those seen in more complex theories such as QCD (e.g., confinement and spontaneous
symmetry breaking).

The model can be converted to an equivalent spin model [21–23] whose Hamiltonian is

H = 1
2a2g2

N−1∑
i=1

(XiXi+1 + YiYi+1) + m

ag2

N∑
i=1

(−1)iZi +
N−1∑
i=1

ε01 + 1
2

i∑
j=1

(
Zj + (−1)j

)2

,(44)

where ε0 is a constant (that can be set to zero), g,m and a are the fermion-gauge field
coupling, mass and lattice spacing, respectively and N is the number of lattice sites.

In permutation matrix representation, the Hamiltonian is written asH = D0 +
∑
iDiXiXi+1

where the diagonal component D0 is given by

D0 = m

ag2

N∑
i=1

(−1)iZi +
N−1∑
i=1

ε01 + 1
2

i∑
j=1

(
Zj + (−1)j

)2

(45)

and Di = 1/(2a2g2)(1− ZiZi+1).
It follows then that the number of off-diagonal terms is M = N and the off-diagonal

dimensionless time is T = tN/(2a2g2). For comparison, in the Taylor series-based LCU
approach the number of terms L to which the Hamiltonian is decomposed is proportional to
N2 due to the diagonal term, and the dimensionless time parameter T ′ scales as O(t(N2 +
mN/(ag2) + N/(a2g2))). We thus find that the off-diagonal formulation provides in this
case a scaling advantage over a Taylor series-based approach.

5 Summary and conclusions
We proposed a quantum algorithm for simulating the dynamics of general time-independent
Hamiltonians. Our approach consisted of expanding the time evolution operator using an
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off-diagonal series; a parameter-free Trotter error-free method that was recently developed
in the context of quantum Monte Carlo simulations [3–5]. This expansion enabled us to
simulate the time evolution of states under general Hamiltonians using alternating seg-
ments of diagonal and off-diagonal evolutions, with the latter implemented using the LCU
technique [1].

We argued that our scheme provides considerable savings in gate and qubit costs for
certain classes of Hamiltonians, specifically Hamiltonians that are represented in a basis in
which the diagonal component is dominant. In fact, we find that for optimal savings one
should choose the basis of representation such that the norm of the off-diagonal component
of the Hamiltonian is minimal.

In this work, we focused only on time-independent Hamiltonians. The algorithm can
be extended to the time-dependent case by writing the time-evolution operator in a Dyson
series and appropriately discretizing the Dyson time integrals [6].

We believe that further improvements to our algorithm can likely be made. In Ap-
pendix E, we provide a slightly modified representation of the Hamiltonian which simpli-
fies, to an extent, the circuit construction, specifically the implementation of the ‘classical’
calculation Uχφ, which requires additional auxiliary O(Q) ancillas beyond those required
by the LCU. It would not be unreasonable to assume that it is possible to encode all the
classical calculation directly into phases, eliminating this extra cost.
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A Divided differences
A.1 Definition and relevant properties
We provide below a brief summary of the concept of divided differences, which is a recursive
division process. This method is typically encountered when calculating the coefficients in
the interpolation polynomial in the Newton form.

The divided differences [7, 8] of a function f(·) is defined as

f [x0, . . . , xq] ≡
q∑
j=0

f(xj)∏
k 6=j(xj − xk)

(46)

with respect to the list of real-valued input variables [x0, . . . , xq]. The above expression is
ill-defined if some of the inputs have repeated values, in which case one must resort to the
use of limits. For instance, in the case where x0 = x1 = . . . = xq = x, the definition of
divided differences reduces to:

f [x0, . . . , xq] = f (q)(x)
q! , (47)

where f (n)(·) stands for the n-th derivative of f(·). Divided differences can alternatively
be defined via the recursion relations

f [xi, . . . , xi+j ] = f [xi+1, . . . , xi+j ]− f [xi, . . . , xi+j−1]
xi+j − xi

, (48)

with i ∈ {0, . . . , q − j}, j ∈ {1, . . . , q} and the initial conditions

f [xi] = f(xi), i ∈ {0, . . . , q} ∀i . (49)

A function of divided differences can be defined in terms of its Taylor expansion. In the
case where f(x) = e−itx, we have

e−it[x0,...,xq ] =
∞∑
n=0

(−it)n[x0, . . . , xq]n

n! . (50)

Moreover, it is easy to verify that

[x0, . . . , xq]q+n =
{ 0 n < 0

1 n = 0∑∑
kj=n

∏q
j=0 x

kj
j n > 0

. (51)

One may therefore write:

e−it[x0,...,xq ] =
∞∑
n=0

(−it)n[x0, . . . , xq]n

n! =
∞∑
n=q

(−it)n[x0, . . . , xq]n

n! =
∞∑
n=0

(−it)q+n[x0, . . . , xq]q+n

(q + n)! .
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The above expression can be further simplified to

e−it[x0,...,xq ] =
∞∑
n=q

(−it)n

n!
∑∑
kj=n−q

q∏
j=0

(xj)kj ,

(52)

as was asserted in the main text.

A.2 Proof of Eq. (9)

Given a list of inputs x0, . . . , xq, we prove that

e−it[x0,...,xq ] = e−itxe−it[∆0,...,∆q ] , (53)

where x is an arbitrary constant and ∆j = xj − x. By definition [8],

e−it[x0,...,xq ] =
∑
j

e−itxj∏
k 6=j(xj − xk)

(54)

(assuming for now that all inputs are distinct). It follows then that

e−it[x0,...,xq ] =
∑
j

e−it(∆j+x)∏
k 6=j(∆j −∆k)

= e−itx
∑
j

e−it∆j∏
k 6=j(∆j −∆k)

= e−itxe−it[∆0,...,∆q ] . (55)

This result holds for arbitrarily close inputs and can be easily generalized to the case where
inputs have repeated values.

B Circuit construction of e−i∆tD0

Assume that D0 is a kd-local Hamiltonian on n qubits, i.e., can be written as a sum of
terms each of which acts on at most kd qubits,

D0 =
L∑
i=1

JiZi (56)

where Ji ∈ R and Zi is a shorthand for a specific tensor product of (at most) kd single-qubit
Pauli-Z operators. Given this form of D0 we can write

e−i∆tD0 =
L∏
i=1

e−i∆tJiZi . (57)

Each unitary operator in the above product, e−i∆tJiZi , can be further simplified as

e−i∆tJiZi =
∑
z

e−i∆tJi(−1)
∑m

l=1 zl |z〉〈z|, (58)

where |z〉 is the computational basis state of them qubits on which e−i∆tJiZi acts (m ≤ kd),
i.e., z ∈ {0, 1}m and zl = 0, 1 is the l-th bit of z. Therefore, e−i∆tJiZi can be implemented
using a single ancilla qubit and 2m CNOT gates [9]. A diagram is provided in Fig. 4.
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|z1〉 • •
...
|zm〉 • •
|0〉 e−i∆tJiZi

Figure 4: A circuit for e−i∆tJiZi . The m single-qubit registers control the application of e−i∆tJiZi on
the last single-qubit register.

C Circuit construction of Uph

Following [9], we construct a unitary Uph|φ̃〉 = e−i2πφ̃|φ̃〉, where φ̃ =
∑b−1
j=0 2jxj is an ap-

proximate b-bit representation of d2b φ2π e for φ ∈ [0, 2π). We define a single qubit rotation

Rj =
(

1 0
0 e

−2πi
2b−j

)
. (59)

By applying Rj on an additional single qubit in the state |1〉, controlled by the j-th register
of |φ̃〉 = |x0, x1, . . . , xb−1〉, we obtain

|x0, x1, . . . , xb−1〉Rx0
0 · · ·R

xb−1
b−1 |1〉 (60)

= |x0, x1, . . . , xb−1〉e−i2πφ̃|1〉 = Uph|φ̃〉|1〉 .

This is illustrated in Fig. 5.

|x0〉 • · · ·
...

|xb−1〉 · · · •

|1〉 R0 · · · Rb−1 e−i2πφ̃|1〉

Figure 5: A circuit for Uph. The b single-qubit registers control the application of Rj on the last
single-qubit register.

D Implementation of Uχφ
The controlled unitary Uχφ essentially carries out a classical computation (it is a pure
permutation, sending diagonal elements to diagonal elements). As such, its gate complexity
can be given in terms of the classical cost of the calculation plus an incurred logarithmic
overhead which comes from making the classical calculation reversible [24]. The classical
gate cost of calculating the complex number β(z)

iq , Eq. (13), and therefore also that of

χ
(z)
iq + (−1)kφ(z)

iq (recall that β(z)
iq = cosφ(z)

iq eiχ
(z)
iq ), consists of calculating (i) the product

of q off-diagonal Hamiltonian matrix elements, namely diq =
∏q
j=1 dij (zj), and (ii) the

divided-differences of the exponential function with q diagonal matrix elements as inputs
(energy differences to be precise). The former can be calculated with O(1) registers and
O(QM CD) operations, where CD is the cost of calculating a single Dj matrix element as
this is a controlled operation on the evaluation of at most Q off-diagonal matrix entries.
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The latter requires roughly O(QM) operations to generate the energy differences in the
worst case, and another O(Q2) operations for calculating the divided difference given the
inputs. The number of registers required for the above operation scales as O(Q) [25].

With the above stated, we next present an explicit algorithm for constructing Uχφ for
completeness. To that aim, we use two transformations, Uβ and Udecomp, defined as follows:

Uβ|iq〉|z〉|0〉 = |iq〉|z〉|β(z)
iq 〉 , (61)

with β(z)
iq given in Eq. (13), and

Udecomp|β〉|k〉|0〉 = |β〉|k〉|χ+ (−1)kφ〉 , (62)

which decomposes a complex number β = cosφeiχ (here, |β| < 1) to the two angles φ
and χ. The third register of Eq. (61), and similarly the first register of Eq. (62), store
complex numbers, that is, they each consist of two registers for their real and imaginary
parts (hereafter, complex numbers inside kets indicate complex-number registers). The
gate cost of Udecomp is a function of bit-precision only. Combined, the two sub-routines
above yield Uχφ = U †β Udecomp Uβ . This is illustrated in Fig. 6.

|iq〉 • •

|k〉 •

|z〉 • •

|0〉 Uβ • U †β

|0〉 Udecomp Uχφ|0〉

Figure 6: A circuit description of Uχφ in terms of the unitaries Uβ and Udecomp.

For the construction of Uβ , it will be useful to rewrite the complex number β(z)
iq as

β
(z)
iq = e−i∆t∆E(z,...,zq)

∏
j

rij (63)

where we have defined the (complex-valued) ‘effective energy difference’ ∆E(z,...,zq) [3] such
that

e−i∆t∆E(z,...,zq) = q!
(−i∆t)q e

−it[∆Ez ,...,∆Ezq ] . (64)

Note that e−i∆t∆E(z,...,zq) is a complex number lying inside the unit circle. In addition,
rij = −idij (zj)/Γij are (normalized) matrix elements of Di (i 6= 0) and are trivial to
compute at the cost of evaluating an off-diagonal matrix element of the Hamiltonian.

Thus, the only nontrivial component of Uβ is the sub-routine

Udd|iq〉|z〉|0〉 = |iq〉|z〉|∆E(z,...,zq)〉 , (65)

which computes the ‘effective energy difference’ (which should be followed by a O(1)-cost
circuit |∆E(z,...,zq)〉|0〉 → |∆E(z,...,zq)〉|e

−i∆t∆E(z,...,zq)〉.)
We next discuss a classically efficient method for calculating ∆E(z,...,zq) given the se-

quence of energy differences {∆Ez,∆Ez1 , . . . ,∆Ezk}. For simplicity we will assume the
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energy values are sorted (the divided difference of a function is invariant under a permuta-
tion of its inputs). To carry out the calculation, we will use the divided differences recursion
relations, Eq. (48), which we will rewrite in terms of ‘effective energy differences’ [3]:

(−i∆t)q

q! e−i∆t∆E(z,...,zq) = (−i∆t)q−1

(q − 1)!

(
e−i∆t∆E(z,...,zq−1) − e−i∆t∆E(z1,...,zq)

)
∆Ez −∆Ezq

. (66)

Isolating ∆E(z,...,zq), we arrive at

∆E(z,...,zq) = Ē − 1
i∆t ln 2q sin ∆t∆Ē

∆t(Ezq − Ez)
, (67)

where

Ē = (∆E(z1,...,zq) + ∆E(z,...,zq−1))/2 and ∆Ē = (∆E(z1,...,zq) −∆E(z,...,zq−1))/2 . (68)

Thus Eq. (67) provides a recursion relation for the effective energy differences. The ini-
tial condition for the above recursion is simply E(zi) = Ezi (we will sometimes denote
a state z by z0 for notational convenience). In the limit where all energies in a se-
quence {zi, . . . , zj} are equal, i.e., zi = . . . = zj = z′, the above relation neatly becomes
∆E(zi,...,zj) = ∆E(z′) = ∆Ez′ .

A convenient way to calculate the divided difference, equivalently the ‘effective energy
difference’ ∆E(z,...,zq), relying on the recursion relations given above is using a ‘pyramid
scheme’ as illustrated in Fig. 7. The base of the pyramid has q+1 elements, corresponding
to the ‘initial’ energies ∆E(zi) = ∆Ezi with i = 0, . . . , q. Let us denote this as level zero.
Level one of the pyramid, which has q elements only, is now evaluated as follows. For each
element at level one, we invoke the recursion relation Eq. (67) using the two elements below
it (see Fig. 7) at level zero. To avoid ill-defined ratios, we order the energies at level zero
such that repeated values are grouped together. In this case, the evaluation of ∆E(zi,zi+1)
for ∆E(zi) = ∆E(zi+1) gives ∆E(zi,zi+1) = E(zi). Similarly, every level-two element is
calculated using the two level-one elements immediately below it. This procedure can be
continued until the top level (level q) of the pyramid is reached, which gives the desired
value of ∆E(z,...,zq) the effective energy difference. The above procedure requires O(Q)
complex-valued registers and can be done reversibly with O(Q2) operations.

Because the routine just discussed for calculating divided differences requires the eval-
uation of logarithms and trigonometric functions, which are known to be somewhat cum-
bersome to implement on quantum computers [26], we also provide an alternative rou-
tine which is on the one hand slightly less efficient, requiring O(Q2) registers but on the
other hand uses only basic arithmetic operations. To accomplish that, we first discuss an
analogous classical method for calculating e−i∆t[∆Ezj ,...,∆Ezk ] given a sequence of real num-
bers {∆Ezj , . . . ,∆Ezk}. Our calculation will be based on the divided-differences Leibniz
rule [7, 8] which states that for any value τ

e−iτ [∆Ezj ,...,∆Ezk ] =
k∑

m=j
e−i

τ
2 [∆Ezj ,...,∆Ezm ]e−i

τ
2 [∆Ezm ,...,∆Ezk ] . (69)

We use this rule as a ‘time-doubling’ mechanism for the exponent, from τ/2 to τ . Let us
rephrase Eq. (69) as

ejk(τ) = 1
2k−j

k∑
m=j

(
k − j
m− j

)
ejm(τ/2)emk(τ/2) , (70)
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Figure 7: Calculating the effective energy differences using a ‘pyramid’ structure. The evaluation of the
divided differences of the exponential function of q + 1 input energy differences consists of calculating
each level of the pyramid starting at its base. The values at the base of the pyramid ∆E(zj) are simply
the energy inputs ∆Ezj

(shown as the red line at the bottom of the pyramid), with all identical energy
differences placed together as a group (energies are assumed to be sorted). To calculate the elements
at the next level of the pyramid, we use the relation in Eq. (67). This procedure is continued until
the final level of the pyramid is evaluated, which corresponds to the desired effective energy difference
∆E(z,...,zq).

where we have denoted

ejk(τ) = (k − j)!
(−iτ)k−j e

−iτ [∆Ezj ,...,∆Ezk ]. (71)

This certifies that the norms of the complex numbers we are dealing with are smaller than
1. For small enough values of τ , that we denote by δt, we can write

ejk(δt) ≈ e−iδt∆̄ =
k∏

m=j
e−iδt

∆Ezm
k−j+1 (72)

where ∆̄ =
∑k
m=j

∆Ezm
k−j+1 . This approximation generates an error of∣∣∣ejk(δt)− e−iδt∆̄

∣∣∣ < δt2 (73)

(see Appendix F for proof). We can therefore choose a large enough integer ` that is
commensurate with the precision of the complex-valued registers and set δt = ∆t/2`, and
then repeatedly apply Leibniz’s rule, Eq. (70), ` times to calculate e0q(∆t).

With |∆Ez〉|∆Ez1〉 · · · |∆Ezq〉 as inputs, we then prepare the state:

|ξ(δt)〉1|0〉2 · · · |0〉` (74)

where each of the ` registers above is a set of Q2/2 complex-number registers and

|ξ(τ)〉 =
Q⊗
j=0

Q⊗
k=j
|ejk(τ)〉 . (75)
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Based on the approximation of Eq. (72), the state |ξ(δt)〉 can be prepared with cost O(Q2).
We populate the registers |0〉2 · · · |0〉` in succession via the update rule

x
(`′+1)
jk → x

(`′+1)
jk ⊕ 1

2k−j
k∑

m=j

(
k − j
m− j

)
x

(`′)
jmx

(`′)
mk , (76)

where x(`′)
jk denotes the contents of the register in (jk)-th sub-register of the `′-th register

(`′ = 1, . . . , `− 1). The resultant state is

|ξ(δt)〉1 · · · |ξ(2`δt)〉` = |ξ(δt)〉1 · · · |ξ(∆t)〉` . (77)

At this point we can uncompute registers 1, . . . , `− 1 to free these registers arriving at the
state

|0〉1|0〉2 · · · |0〉`−1|ξ(∆t)〉` . (78)

The (0q)-th sub-register of the last register above contains the desired e−i∆t[Ez ,...,Ezq ]. This
circuit requires Q(Q− 1)/2× ` complex registers. A more resource efficient version based
on irreversible computation (and therefore also a similarly costly reversible version) of the
circuit exists which only requires O(Q) registers and O(Q2) gates [24].

To complete our analysis, we provide next a circuit, U∆, that generates the inputs
to the divided-differences sub-routine, namely ∆Ezi . A sketch of the circuit is given in
Fig. 8. It requires Up (see Sec. 3.3.2), the adder U+|x〉|y〉 = |x〉|x ⊕ y〉 and a sub-routine
for calculating the difference in diagonal energy following a change in the input state
|zi−1〉 → Pi|zi−1〉 = |zi〉, namely,

U∆E |i〉|z〉|y〉 = |i〉|z〉|y + Ezi − Ezi−1〉 . (79)

We note that, conveniently, the size of these energy-difference registers is not expected
to grow with system size for physical systems. The gate cost of U∆E is O(MC∆D0),
where C∆D0 is the cost of calculating the change in diagonal energy due to the action of
a single permutation operator, and therefore we can conclude that the gate cost of U∆ is
O(QM(C∆D0 + kod + logM)).

|i1〉 • • · · ·

|i2〉 • • · · ·
...
|iQ〉 · · · •

|z〉 Up • Up • · · · • Piq |z〉

|0〉 U∆E
U+

· · · |∆Ez1〉

|0〉
|∆Ez1 〉

U∆E · · · |∆Ez2〉
...
|0〉 · · · U∆E |∆EzQ〉

Figure 8: A circuit for U∆, which calculates the energy differences ∆Ezi
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E Alternative description of the Hamiltonian
A somewhat more efficient short-time evolution circuit can be obtained if we slightly modify
the representation of the Hamiltonian. As before, every Di (for i > 0) in H can be written
as Γi(Di/Γi) where Γi is an upper bound on the norm of Di and the matrix elements of
(Di/Γi) lie within the unit circle. Each such (diagonal) element can be written as a product
cos θeiχ. We can thus replace every Di with an average of two pure phase matrices with
phases ei(χ+θ) and ei(χ−θ) along their diagonals. This suggests the following representation
of the Hamiltonian:

H = D0 + 1
2

M∑
i=1

Γi
(
Θ(1)
i + Θ(2)

i

)
Pi = D0 +

M∑
i=1

Γi
2
(
P

(1)
i + P

(2)
i

)
. (80)

where Θ(1)
i and Θ(2)

i are pure phase matrices, and P (1/2)
i = Θ(1/2)

i Pi are generalized per-
mutations (and are of course unitary).

Re-deriving the simulation algorithm using the above representation simplifies the ‘clas-
sical’ calculation of the controlled phase UCΦ, Eq. (29), which now includes only the
divided-difference calculation.

F Small-τ approximation of divided differences
We show that ∣∣∣e−iδt[E0,...,Eq ] − e−iδtĒ

∣∣∣ = O(δt2) , (81)

where
e−iδt[E0,...,Eq ] = q!

(−iδt)q e
−iδt[E0,...,Eq ] , (82)

and

e−iδtĒ =
k∏

m=j
e−iδt

Em
k−j+1 . (83)

First, we observe that

e−iδt[E0,...,Eq ] = cos (δt[E0, . . . , Eq])− i sin (δt[E0, . . . , Eq]) (84)

and apply the mean-value theorem for divided differences [8], which states that if f(·) is a
real-valued function then

q!f [E0, . . . , Eq] = f (q)(Ẽ) (85)

for some Ẽ in the range RE = [minj Ej ,maxj Ej ] and f (q)(·) denotes the q-th derivative
of f(·).

For small enough ranges RE , f(·) is approximately linear, in which case Ẽ will be the
simple mean Ẽ ≈

∑
j Ej/(q + 1). In this case, the error of the approximation will be of

second order, meaning:∣∣∣∣∣q!f [E0, . . . , Eq]− f (q)
(∑

j Ej

q + 1

)∣∣∣∣∣ = O(R2
E) . (86)

Choosing f(·) to be cos(·) and sin(·) with inputs [δtE0, . . . , δtEq], we arrive at:∣∣∣∣∣∣q!e−i[δtE0,...,δtEq ] − (−i)qe−iδt
∑

j
Ej

q+1

∣∣∣∣∣∣ = O(δt2) . (87)
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Combining the above with the fact that

e−i[δtE0,...,δtEq ] = e−iδt[E0,...,Eq ]/(δt)q , (88)

completes the proof.
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