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We propose quantum-selected configuration interaction (QSCI), a class of hybrid quantum-
classical algorithms for calculating the ground- and excited-state energies of many-electron Hamil-
tonians on noisy quantum devices. Suppose that an approximate ground state can be prepared on
a quantum computer either by variational quantum eigensolver or by some other method. Then,
by sampling the state in the computational basis, which is hard for classical computation in gen-
eral, one can identify the electron configurations that are important for reproducing the ground
state. The Hamiltonian in the subspace spanned by those important configurations is diagonalized
on classical computers to output the ground-state energy and the corresponding eigenvector. The
excited-state energies can be obtained similarly. The result is robust against statistical and physical
errors because the noisy quantum devices are used only to define the subspace, and the resulting
ground-state energy strictly satisfies the variational principle even in the presence of such errors.
The expectation values of various other operators can also be estimated for obtained eigenstates with
no additional quantum cost, since the explicit eigenvectors in the subspaces are known. We verified
our proposal by numerical simulations, and demonstrated it on a quantum device for an 8-qubit
molecular Hamiltonian. The proposed algorithms are potentially feasible to tackle some challenging
molecules by exploiting quantum devices with several tens of qubits, assisted by high-performance
classical computing resources for diagonalization.

I. INTRODUCTION

Recent years have seen a rapid development of quan-
tum computers towards their practical use. Although
current quantum devices are prone to errors due to phys-
ical noise, ways to achieve quantum advantage over classi-
cal computations have been explored experimentally [1–
3], and such noisy intermediate-scale quantum (NISQ)
devices are believed to become useful in the near fu-
ture [4]. Quantum chemistry is at the top of the list
of such useful applications (see, e.g., Refs. [5–9]): for in-
stance, energy eigenvalues of a molecular Hamiltonian
can be calculated by quantum algorithms developed for
NISQ devices, where the most notable is the variational
quantum eigensolver (VQE) [10] to find the ground-state
energy.

However, VQE faces several challenges to be overcome
for practical use. The major obstacle comes from errors
caused by statistical fluctuation and physical noise inher-
ent in the noisy devices. Suppressing the statistical er-
ror to a practically acceptable level needs a prohibitively
large number of samples [11], and error mitigation tech-
niques [12–21] for reducing physical noise require even
more samples to compensate the additional statistical er-
ror they introduce [22–25]. In particular, the effect of the
errors can spoil the variational nature of VQE: that is,
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the energy estimated by quantum devices is not guaran-
teed to give an upper bound on the exact ground-state
energy. This is problematic because lowering the result-
ing energy of VQE does not necessarily mean approach-
ing to the exact ground state. Besides, there are other
challenges for VQE such as the barren plateau problem,
which can interrupt the optimization [26].

In this paper, we propose a class of hybrid quantum-
classical methods, which we call quantum-selected config-
uration interaction (QSCI), to find low-lying eigenvalues
and eigenstates of a many-electron Hamiltonian.1 QSCI
is noise resilient and, in principle, free of costly opti-
mization of parametrized quantum circuits. In particu-
lar, QSCI sets rigorous upper bounds on the ground-state
energy2 even under the effect of physical and statistical
errors. Here we outline a version of QSCI for finding a
ground state: suppose that an approximate ground state,
which we call an input state in this paper, can be pre-
pared on a quantum computer; one then repeats a mea-
surement of the state to identify the computational basis
states, or electron configurations, that are important to
express the ground state [27]; one then diagonalizes, on
classical computers, the truncated Hamiltonian matrix

1 We focus on applications to quantum chemistry in this paper.
However, the proposed methods can be applied to a variety
of many-body Hamiltonians, including many-electron and spin
problems in condensed matter physics.

2 QSCI can also set rigorous upper bounds on the excited-state
energies, depending on its algorithmic implementation.
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in the subspace spanned by the identified configurations
to obtain the smallest eigenvalue and eigenvector. The
resulting eigenvalue approximates the ground-state en-
ergy. The diagonalization is classically tractable unless
the number of selected configurations is exponentially
large in the system size. The algorithm can be extended
to find excited states by enlarging the subspace or by
repeating the procedure for each energy eigenstate.

Since the matrix elements of the Hamiltonian in the
computational basis can be exactly calculated on classical
computers, the diagonalization results in an energy that
gives a definite upper bound on the exact ground-state
energy regardless of the quality of the subspace spanned
by the identified configurations; the quality only affects
how tight the bound is. The states need to be measured
only in the computational basis, and thus no additional
gate operation is required for the measurement. In the
presence of symmetries with conserved quantities such
as the particle number, the post-selection of the com-
putational basis states in the sampling outcome allows
one to mitigate the bit-flip errors. We experimentally
demonstrate the effectiveness of the post-selection in this
paper. The algorithm may take any quantum states as
the input states, if they roughly approximate the desired
eigenstates and can be prepared on quantum devices.
Such input states can be prepared, e.g., by parametrized
quantum circuits moderately optimized via VQE and its
variants [9], and other preparation schemes are discussed
in Sec. V C. Sampling from such quantum states can be
hard for classical computers [1], and thereby providing a
potential quantum speed-up in QSCI.

QSCI can also be advantageous as a technique for
eigenstate tomography in that it can (classically) esti-
mate the expectation values of a variety of observables
at no additional quantum cost: as we already have the
classical representation of the state, one can efficiently
compute the expectation values using that representa-
tion. Unlike QSCI, other efficient tomography techniques
such as classical shadows [28, 29], neural network tomog-
raphy [30], and tensor network tomography [31] do not
exploit the fact that the states of our interest are eigen-
states of some problem Hamiltonian.

As the name suggests, QSCI can be viewed as a con-
figuration interaction (CI), where the many-body basis
set is determined by quantum computers via sampling
of an input state. There are established techniques [32]
that choose fixed basis sets. A common approach in elec-
tronic structure theory is to select only one- and two-
particle excitations from a reference wavefunction. When
the reference wavefunction is chosen to be Hartree-Fock,
the resulting method is known as CI with singles and
doubles (CISD). If the reference wavefunction is a cor-
related wavefunction beyond the mean-field approxima-
tion, the method is called multi-reference CISD (MR-
CISD). In the context of quantum computing, MR-CISD
has sometimes been called as quantum subspace expan-
sion (QSE) [33–35].

Another approach is the adaptive selection of a suit-

able basis set for a target system. In quantum chemistry,
a systematic selection of important bases has a long his-
tory [36–45]. And there are recently active studies along
with such a systematic selected CI [46–67]. Thanks to
such developments, systematic selected CIs are now grad-
ually being considered as a promising approach for large-
scale quantum chemical simulations. The likely reason
for this revival is that selected CI is an algorithm that
can be adapted to current classical computer architec-
tures with sufficient memory. QSCI may be seen as a
new systematic selected CI that utilizes quantum com-
puters.

Our methods are capable of selecting electron configu-
rations which are necessary to describe the eigenstates to
some accuracy but are missed in the conventional meth-
ods with a fixed basis set. Note that our methods call
the diagonalization procedure at most only once for each
eigenstate, while the adaptive methods iteratively repeat
the diagonalization to search for a configuration to be
added in the basis set; our methods require much less
classical computational time compared to those adaptive
methods.

The classical diagonalization is already utilized in var-
ious hybrid quantum-classical algorithms to find energy
eigenstates. Most notable is QSE, which spans the sub-
space by states built upon the reference VQE state, and
is widely used for various applications, e.g., excited state
calculations [33], band structure calculations [68], and
noise reduction [19, 33, 34, 69–71]. More generally, one
can span the subspace by various methods [72–79], which
are sometimes collectively called as the quantum sub-
space diagonalization. In those methods, however, the
matrix elements of the subspace Hamiltonian are calcu-
lated on quantum computers, and thus are subject to the
physical and statistical errors. There is a proposal [80]
where some of the matrix elements are classically calcu-
lated, but the method still requires some matrix elements
which are efficiently computable only by quantum com-
puters for a possible quantum speed-up. In QSCI, on the
other hand, all the matrix elements are classically com-
puted, giving up the use of more complex and physically-
motivated states as basis states that define the subspace.

The rest of the paper is organized as follows. The pro-
posed methods are introduced in Sec. II, and numerically
tested in Sec. III. A demonstration on a quantum device
is presented in Sec. IV, along with a noisy simulation
as a preparatory study. We discuss aspects of the pro-
posed methods in Sec. V, and finally conclude in Sec. VI.
Details of the algorithms, numerical simulations and ex-
periment, as well as supplemental numerical results are
given in the appendices.

II. METHODS

In this section, we present the methods of QSCI. Two
ways of implementation are introduced: single diagonal-
ization scheme in Sec. II C 1 and sequential diagonaliza-



3

tion scheme in Sec. II C 2. They are designed for finding
multiple energy eigenstates, and reduce to the same sim-
plified method when used for finding the ground state
alone. After introducing necessary ingredients, we begin
with the algorithm specific to finding the ground state,
which is simple and illustrative, and then proceed to the
two methods which can also find excited states.

A. Preliminary

We consider electronic structure problems of molecules
in the second-quantization formalism with the Born-
Oppenheimer approximation. A Hamiltonian and wave
functions for electrons, in this setup, can be mapped
onto Nq qubits such that the Slater determinants3 for the
Hartree-Fock state and its excitations are associated with
the computational basis states |x〉, where x ∈ {0, 1}Nq is
an Nq-bit string (see, e.g., Ref. [5, 6]). In the Jordan-
Wigner mapping, which we adopt in the numerical study,
Nq corresponds to the number of spin orbitals, and “1”
or “0” represents whether each spin orbital is occupied or
not. The methods can work with other mapping schemes
such as the Bravyi-Kitaev mapping [81], although the
fermion-qubit correspondence is less intuitive and the er-
ror mitigation (discussed later) is less effective. We de-

note the qubit Hamiltonian by Ĥ. A linear combination
of all the computational basis states,

|ψ〉 =
∑

x∈{0,1}Nq

αx |x〉 , (1)

encompasses the full-CI wave function. Note that for a
fixed number of electrons only a subset of the computa-
tional basis states is needed.

In the full-CI method, sets of the CI coefficients {αx}
that correspond to energy eigenstates are found by di-
agonalizing the Hamiltonian in the full Fock space. The
method is costly due to the combinatorial growth of the
Fock-space dimension as the number of spin-orbitals in-
creases. For reducing the computational cost, there ex-
ist various classical approaches which truncate the Fock
space and approximate the sum in Eq. (1) using a fixed
or adaptively selected basis set, as mentioned in the pre-
vious section. In line with these efforts, but from a differ-
ent viewpoint, we propose methods which harness quan-
tum computers to identify important computational ba-
sis states, or electron configurations, for truncating the
Fock space.

3 Instead, linear combinations of Slater determinants such as con-
figuration state functions may be mapped to the computational
basis states. QSCI can work with such a mapping, if the matrix
elements of the Hamiltonian in the computational basis can be
efficiently computed by classical computation.

B. QSCI for ground state

We now describe the explicit algorithms. We begin
with the algorithm for finding the lowest eigenvalue and
the corresponding eigenstate (ground state) of an elec-

tronic Hamiltonian Ĥ on Nq qubits. For simplicity, we
assume the ground state is unique. When the degener-
acy exists, the algorithms given in the next subsection,
which is aimed at finding multiple eigenstates, can be
straightforwardly applied. Indeed, the algorithm intro-
duced in this subsection is a special case of each of the
two algorithms in the next subsection.

Let |ψin〉 be an input state, which roughly approxi-
mates the ground state, and suppose |ψin〉 can be pre-
pared by a quantum circuit with Nq qubits. Then, one
prepares the input state on a quantum computer and
measures the state in the computational basis, which re-
sults in an outcome bit string x ∈ {0, 1}Nq . Repeating
such a sampling procedure (or shot) for Nshot times, one
counts how many times each x appears. Based on the to-
tal sampling result, the most frequent R computational
basis states are selected to define the set

SR = {|x〉 |x ∈ {0, 1}Nq , R most frequent}, (2)

where R is a positive integer manually determined. This
is to truncate the Fock space. One may in principle in-
clude all the computational basis states appeared in the
measurements, while choosing an appropriately small R
can reduce the computational cost for diagonalization.

One then solves the eigenvalue problem in the subspace
spanned by SR:

HRc = ERc, (3)

where HR is the R×R Hermitian matrix defined by

(HR)xy = 〈x|Ĥ|y〉 for |x〉 , |y〉 ∈ SR, (4)

and c is an eigenvector with eigenvalue ER, satisfying
c†c = 1. This step of the algorithm proceeds via classi-
cal computations: calculations of the matrix elements
〈x|Ĥ|y〉 and the diagonalization of HR. The former
calculations can be efficiently done by some classical
method, e.g., by the Slater-Condon rules in the fermionic
basis. The latter diagonalization is performed to obtain
the smallest eigenvalue ER and the eigenvector c, which
are output of the algorithm. See Sec. V A for further dis-
cussion on costs of these classical computations. Here,
ER approximates the exact ground-state energy of Ĥ,
while c approximately gives the (normalized) CI coeffi-
cients, or the vector representation of the ground state,
respectively. The corresponding quantum state, which
we call the output state, is constructed as

|ψout〉 =
∑
|x〉∈SR

cx |x〉 , (5)

where cx is an element of the eigenvector c. The output
state |ψout〉 approximates the true ground state of Ĥ.
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We remark that one does not need to realize the output
state on quantum computers. Retaining the eigenvector
c as classical data is enough for the application explained
below.

The output state can be used to estimate the expec-
tation values of observables other than the Hamiltonian
for the ground state, solely based on classical computa-
tions. Specifically, suppose that an observable in question
is represented by a qubit operator Ô. If the matrix el-
ements 〈x|Ô|y〉 can be efficiently computed on classical

computers, so does the expectation value 〈ψout|Ô|ψout〉,
which is expected to give an approximation to the expec-
tation value for the true ground state. In particular, if
Ô can be expressed as a linear combination of poly(Nq)
Pauli strings, which is the case in many physical quanti-
ties, its expectation value can be efficiently computed on
classical computers.

Comments are in order for technical details. We iden-
tify the set SR to span the subspace by sampling the
input state. In this way, we expect that important com-
putational basis states, or Slater determinants, to de-
scribe the ground state wave function can be selected.
This is because in the sampling procedure a bit string x
occurs with the probability |〈x|ψin〉|2, while 〈x|ψin〉 gives
the CI coefficient of the corresponding Slater determi-
nant in the input wave function |ψin〉.4 Indeed, SR gives
the R Slater determinants with the largest coefficients
|〈x|ψin〉| in |ψin〉, under the ideal situation where physi-
cal noise can be ignored and the sampling is performed
with an infinite number of shots. In passing, we some-
times adopt a method equivalent to this ideal situation
to define SR in the numerical study: that is, we just pick
up the R Slater determinants with the largest absolute
values of the CI coefficients in the input state, instead
of performing actual sampling procedures. We call this
method as the idealized sampling in this paper. Note that
we assume the input state roughly approximates the true
ground state. This is just to ensure the two states share
the important computational basis states, and there is no
need for a precise agreement between the CI coefficients
of the two states. Such an input state can be prepared,
e.g., by a parametrized quantum circuit moderately op-
timized via VQE. In Sec. V C, we discuss methods to
prepare the input state, including non-VQE based ways.

The set SR is defined in Eq. (2) by specifying R, the
number of the computational basis states retained in the
subspace. But this is not the unique choice. For in-
stance, one may define the set by taking all the com-
putational basis states in the measurement outcome, as
already mentioned. Or, one may instead set a thresh-
old on the rate of occurrence fx for an outcome x in the
total sampling result, and then define an alternative set
Sε = {|x〉 |fx ≥ ε} with a threshold parameter ε, For
a proof-of-principle demonstration, we adopt Eq. (2) to

4 See, e.g., Eq. (1). There, the CI coefficients can be expressed as
αx = 〈x|ψ〉.

define the subspace for diagonalizing the Hamiltonian in
the rest of the paper.

In reality, physical noise and statistical fluctuation, the
latter due to a finite number of shots, cannot be ignored,
causing some errors in the output. However, the effect
is only indirect and the method is robust against those
errors: that is, the errors can degrade the quality of the
selected subspace by missing important configurations or
by picking up irrelevant configurations in the sampling
procedures, but the lowest eigenvalue and eigenvectors
are exact within the subspace. The latter point, the
exactness within the subspace, results from the use of
diagonalization for the matrix HR, whose elements are
exactly computed. Consequently, the obtained energy
ER sets an upper bound on Eexact, the true ground-state
energy of Ĥ:

Eexact ≤ ER. (6)

Note that this variational inequality holds even under
statistical fluctuation and physical noise. The situation
is in contrast with VQE, where such an inequality is not
guaranteed as the energy is directly measured on quan-
tum computers and hence is susceptible to the errors.5

It is also worth mentioning that, for a given sampling
outcome, increasing R, the subspace size, always leads
to a better approximation of the ground-state energy:
Eexact ≤ ERa ≤ ERb

for Ra > Rb. This can be used
to see if the calculation converges. On the other hand,
smaller R can reduce the classical computational cost.
Such a trade-off between the accuracy and cost is dis-
cussed in Sec. III C.

The algorithm finds the lowest energy state in the sub-
space SR, which gives an approximation to the ground
state in the full Fock space. When there exists symmetry
in the Hamiltonian, there are associated conserved quan-
tities, e.g., the total electron number Ne (or the charge of
molecule) and the z-component of total electron spin Sz.
Given this, one may wish to find the lowest energy state
in a specific symmetry sector. In such a case, the method
can be similarly applied but by relying on the subspace
with fixed conserved quantities. For Ne and Sz, this can
be easily achieved as follows since each computational
basis state corresponds to a Slater determinant with def-
inite Ne and Sz: one prepares an input state with the de-
sired values of (Ne, Sz), for which the sampling results in
configurations each with the desired (Ne, Sz); or, if such
an input state cannot be prepared, one may post-select
the sampling outcome, where one discards an outcome
x ∈ {0, 1}Nq if it conflicts with the desired (Ne, Sz). It
is worth noting that the variational inequality (6) still
holds in each sector of Fock space specified by (Ne, Sz).

5 In VQE, physical noise in the state preparation can hardly lead to
the violation of the variational inequality, but it may be possible
that an error during the measurement procedure causes it. The
use of error mitigation techniques can also lead to the breakdown
of the inequality.
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FIG. 1. Schematic description of the QSCI algorithm for finding the ground state. When selecting the configurations, one may
post-select the configurations by using conserved quantities such as the electron number or spin Sz to mitigate the errors.

Physical noise can cause a contamination of symme-
try sectors: for an input state with fixed (Ne, Sz), sam-
pling on a noisy device can result in electron configu-
rations with unwanted values of (Ne, Sz), due to the
bit-flip noise6 or readout error. Nevertheless, one can
mitigate such errors by post-selecting the sampling out-
come according to the conserved quantities, as described
above. One then diagonalizes the Hamiltonian in the
post-selected subspace. We find that the post-selection
is particularly effective to mitigate the readout error in
the Jordan-Wigner mapping, while it is also applicable to
other fermion-qubit mapping schemes (see Appendix A
for discussions).

The algorithm is schematically summarized in Fig. 1.

C. QSCI for multiple energy eigenstates

We now extend the algorithm to find multiple energy
eigenstates, including low-lying excited states. For this,
we note that the previous algorithm can output multiple
eigenvectors, which can be taken to approximate excited
states as well as the ground state. Yet, the quality of
the approximation would not be satisfactory for the ex-
cited states, as the subspace is tailored for the ground
state. Hence, we introduce extra input states to con-
struct subspace(s) which can capture the excited states.
In the following, we present two distinct algorithms to
find multiple energy eigenstates and energies, schemati-
cally shown in Fig. 2. The first algorithm, which we call
the single diagonalization scheme, constructs a common
subspace for both ground and excited states of interest,
and performs the diagonalization in the subspace to si-
multaneously obtain all the desired eigenstates and ener-
gies. On the other hand, the second algorithm, dubbed as
the sequential diagonalization scheme, constructs multi-
ple subspaces, each tailored for each energy eigenstate,
and sequentially diagonalizes the Hamiltonian in each
subspace. Both of the algorithms contain the algorithm
specific to the ground state, introduced in the preceding
subsection, as a special case.

6 Note that an error that corresponds to a phase-flip error oc-
curring at the end of a circuit does not affect the probability
distribution |〈x|ψin〉|2 and hence the sampling outcome.

1. Single diagonalization scheme

Here we describe the single diagonalization scheme.
Suppose one seeks for Ns low-lying eigenstates of Ĥ,
which consist of the ground state(s) and subsequent ex-
cited states. In this case, one prepares multiple in-

put states |ψ(i)
in 〉 (i = 0, 1, · · · , Nin − 1), which corre-

spond to the low-lying energy eigenstates. Here, we al-
low Nin ≤ Ns, although the natural choice would be
Nin = Ns. For each of the input states, one repeats
the sampling procedure as in the previous subsection.

One then obtains the set of important configurations S(i)Ri
,

formed by most frequent Ri bit strings in the total sam-
pling outcome for the i-th input state. Combining all the

sets S(i)Ri
, one constructs the common subspace7:

SR = S(0)R0
∪ S(1)R1

∪ · · · ∪ S(Nin−1)
RNin−1

. (7)

In this case, the parameters Ri may be eigenstate depen-
dent, while R is the number of the elements in the com-
mon subspace SR. R ≥ Ns is required to yield at least
Ns eigenvectors in the diagonalization procedure shortly
explained.

One may treat all Ri as free parameters, which deter-
mine R in turn. Or, one may first choose a value for R
and, then, decide each Ri following some strategy. There
are various ways for the latter strategy, depending on the
purpose of using the algorithm. For example, if one pri-
oritizes the ground state in terms of accuracy, a possible
choice would be R0 = R and Ri = 0 for i 6= 0, albeit
extreme. Or, if one wishes to treat all the input states
on equal footing, each of Ri can be chosen as equal as
possible.8

7 Note that the set SR defined here agrees with the definition (2)
in the preceding subsection when Nin = 1.

8 One can make each of Ri as equal as possible by the following
cycle of procedures, starting from an empty set SR, for a given
R: in the first cycle, for each of the Nin input states, the most
frequent bit string is selected from the sampling outcome and
then added to SR; this procedure is executed from the 0-th input
state to (Nin− 1)-th input state, where one skips the state if the
selected bit string already exists in SR; in the second cycle, the
second frequent bit string is added to SR for each input state
according to the same rule; one repeats such a cycle until SR
is filled with R distinct bit strings. Suppose such procedures
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FIG. 2. Schematic descriptions of the QSCI algorithms for finding the ground state and the first excited state: (a) single

diagonalization scheme, and (b) sequential diagonalization scheme. In both panels, |ψ(0)
in 〉 (|ψ(1)

in 〉) is the input state for the

ground (first excited) state. In the panel (b), the overlap term is constructed from the preobtained output state |ψ(0)
out〉 to define

the effective Hamiltonian for the first excited state, Ĥ(1) = Ĥ + β0|ψ(0)
out〉〈ψ

(0)
out|.

With the common subspace SR constructed, one then
diagonalizes the Hamiltonian in SR as in the previous
subsection: one constructs the R × R Hermitian matrix
HR, solves the eigenvalue equation HRc = ERc, and
then picks up Ns low-lying eigenvectors and eigenvalues,

(c(0), E
(0)
R ), (c(1), E

(1)
R ), · · · , (c(Ns−1), E

(Ns−1)
R ), where

c(i)†c(j) = δij . Here, E
(i)
R (E

(0)
R ) approximates the true

energy of the i-th excited state (ground state), when the
ground state is unique, for instance. The corresponding
output states can be constructed as

|ψ(i)
out〉 =

∑
|x〉∈SR

c(i)x |x〉 , (8)

finished after completing R′ cycles. Then, one can ensure that at
leastR′ most frequent bit strings for each input state are included
in SR. This implies R′ or R′ + 1 most important configurations
in each input state are included in the common subspace (7),
in the ideal situation where statistical fluctuation and physical
noise can be ignored.

for i = 0, 1, · · · , Ns − 1.
Note that the algorithm in the previous subsection is

a special case of the single diagonalization scheme with
a single input state (Nin = 1). In this method, one
can apply the same error mitigation technique by the
post-selection as described in the previous subsection.
The variational inequality now holds for each of energy
eigenstates by Cauchy’s interlace theorem [32] (see also
Refs. [82, 83]):

E
(i)
exact ≤ E

(i)
R , (9)

for i = 0, 1, · · · , Ns − 1, where E
(i)
exact is the i-th eigen-

value (in ascending order) by the exact diagonalization.
We remark that QSE [33] and multistate-contracted VQE
(MCVQE) [76], which also rely on the subspace diagonal-
ization to obtain excited states, need to measure matrix
elements, while the current method exactly calculates the
matrix elements. Hence, we expect our method to be
more noise-robust with the guarantee of the variational
inequality.
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2. Sequential diagonalization scheme

We now give another scheme of QSCI to find excited
states. The sequential diagonalization finds the ground
state(s) and subsequent excited states by sequential diag-

onalization procedures of the Hamiltonian Ĥ in distinct
subspaces. The algorithm is similar to the variational
quantum deflation (VQD) [84], a variant of VQE for ex-
cited states.

Suppose one seeks for the k-th excited state9 given
that preceding (k − 1) excited states and ground state
are already obtained by this method with the output

states |ψ(i)
out〉 (i = 0, 1, · · · , k − 1). As in the previous

methods, one repeats the preparation and measurement

of the input state |ψ(k)
in 〉 to obtain the set of important

configurations:

S(k)Rk
= {|x〉 |x ∈ {0, 1}Nq , Rk most frequent}. (10)

One then has to find the lowest energy state of Ĥ in this
subspace, under the restriction that this state is orthogo-

nal to the states already found, |ψ(i)
out〉 (i = 0, 1, · · · , k−1).

This can be achieved by diagonalizing the following ef-

fective Hamiltonian10 in the subspace spanned by S(k)Rk
:

Ĥ(k) = Ĥ +

k−1∑
i=0

βi|ψ(i)
out〉〈ψ

(i)
out|, (11)

where βi are real parameters, which need to be suffi-
ciently large for ensuring the orthogonality. The addi-
tional terms correspond to the overlap terms in VQD.
This is equivalent to solving the eigenvalue equation

H
(k)
Rk
c(k) = E

(k)
Rk
c(k), (12)

and then pick up the smallest eigenvalue E
(k)
Rk

and eigen-

vector c(k), normalized by c(k)†c(k) = 1. Here, H
(k)
Rk

is
the Rk ×Rk Hermitian matrix defined by

(H
(k)
Rk

)xy = 〈x|Ĥ(k)|y〉 for |x〉 , |y〉 ∈ S(k)Rk
, (13)

whose matrix elements can be efficiently calculated by
classical computations based on the expression

(H
(k)
R )xy = 〈x|Ĥ|y〉+

k−1∑
i=0

βic
(i)
x c(i)∗y . (14)

9 We implicitly assume the ground state is unique for ease of il-
lustration. One can straightforwardly translate the description
here to cases of degenerate ground (and possibly excited) states.

10 This is not the unique choice of the effective Hamiltonian. For
instance, the orthogonality can be imposed without introducing
extra parameters though the implementation would be less suit-
able for NISQ devices [85].

One then constructs the output state

|ψ(k)
out〉 =

∑
|x〉∈S(k)

Rk

c(k)x |x〉 , (15)

which approximates the k-th excited state.
Note that the expressions are specific to the k-th ex-

cited state. In order to find entire (low-lying) spectrum,
one has to repeat the above procedure sequentially, start-
ing from k = 0, the ground state, which can be found by
the ground-state algorithm already explained. This is
similar to VQD, but the QSCI method does not require
extra circuits to calculate the overlap terms.

The coefficients βi can be chosen in the same man-

ner as VQD. We want the smallest eigenvalue of H
(k)
Rk

to approximate E
(k)
exact, the k-th eigenvalue of Ĥ. Fol-

lowing the discussion in Ref. [84], it suffices to choose

βi > E
(k)
exact − E

(i)
exact for i = 0, · · · , k − 1; or, one may

apply the looser condition of βi > 2
∑
j |cj |, where cj

are coefficients in the qubit Hamiltonian Ĥ =
∑
j cjPj ,

expressed by the Pauli strings Pj (see Appendix B 1 for

details). In practice, the condition βi > E
(k)
exact − E

(i)
exact

can be utilized if one has prior knowledge on the energy
spectrum, e.g., based on variational quantum algorithms.
Even if such information is not available, one may still
rely on the looser condition βi > 2

∑
j |cj |. Note that

in the sequential diagonalization scheme, the variational
inequality like Eq. (9) is not guaranteed due to the in-
exactness of the effective Hamiltonian, i.e., as Eq. (11)
would be constructed only by approximate eigenstates in
practice (see Appendix B 1 for further discussion).

III. BENCHMARK OF QSCI WITH NOISELESS
SIMULATIONS

In this section, we test various aspects of QSCI
for small molecules by noiseless numerical simulations,
where the effects of physical noise are not included. In
Secs. III A and III B, QSCI calculations are performed
for ground states and excited states, using input states
prepared by VQE and VQD [84], a variant of VQE for
excited states. Then the scalability of QSCI is exam-
ined in Sec. III C, and finally the effect of the statisti-
cal error in QSCI is studied in Sec. III D. For the nu-
merical simulations, a quantum-circuit simulation library
Qulacs [86] is used with the help of QURI Parts [87], a
library for developing quantum algorithms. The simula-
tions in Sec. III D are carried out by the sampling simula-
tor which takes into account the statistical error, while all
the other simulations are performed by the state-vector
simulator, where the expectation values are exactly cal-
culated without errors.

For each simulation and experiment in this paper,
the molecular Hamiltonian is first prepared as the
second-quantized electronic Hamiltonian using the Born-
Oppenheimer approximation with Hartree-Fock orbitals
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FIG. 3. The result of QSCI, the proposed method, for the
ground state of H2O molecule by noiseless simulation, shown
with optimization history of VQE, which is used to prepare
the input states of QSCI. Each of the resulting energies is
shown as the difference to the CASCI result Eexact in Hartree.
The dash-dotted line shows the result by the state-vector sim-
ulation of VQE. The lines specified by the parameter R show
the results of QSCI, ER − Eexact, for the given value of R,
using the parametrized state at each iteration of VQE as the
input state. The parameter R determines the classical com-
putational cost for QSCI, as explained in the main text.

using the STO-3G basis unless otherwise stated, and con-
verted to the qubit one by the Jordan-Wigner mapping.
Active spaces are explicitly specified when employed, oth-
erwise the full-space Hamiltonians are used. The elec-
tronic Hamiltonians are generated by OpenFermion [88]
interfaced with PySCF [89]. The molecular geometries
and other details are shown in Appendix C. Stable ge-
ometries are chosen for all the molecules except for the
hydrogen chains, and a potential impact of unstable ge-
ometry is briefly analyzed in Appendix D 4.

A. QSCI for ground state

We first show the result of numerical simulation for
ground state with input states prepared by noiseless
VQE. We choose H2O molecule with five active spatial or-
bitals and six active electrons as our problem, which leads
to a 10-qubit Hamiltonian after the Jordan-Wigner map-
ping. In the VQE calculation, the parametrized quan-
tum circuit is constructed by the real-valued symmetry-
preserving ansatz [90, 91] with the depth 10, and is
optimized by the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) optimizer in the scientific library SciPy [92]. See
Appendix C 1 for details.

The QSCI calculation is performed for each iteration of

the VQE optimization: given the values of ansatz param-
eters obtained at the iteration, the input state is prepared
by the parametrized quantum circuit with those values
assigned; then, the QSCI calculation with the idealized
sampling introduced in Sec. II B is performed to estimate
the ground-state energy ER for a given R, the number of
configurations in the subspace SR. This calculation is re-
peated for all the iterations of VQE with different values
of R. The effect of the uncertainty due to the finiteness
of the number of shots is addressed later in Secs. III D,
IV, and Appendix D 2.

In Fig. 3, the result is shown along with the opti-
mization history of VQE: ER − Eexact is plotted (in
Hartree) for each optimization step of VQE, where Eexact

is the ground-state energy obtained by the exact diago-
nalization in the active space, called the complete active
space configuration interaction (CASCI). The energies
obtained by VQE are shown in the same way.

Comparing the results at the last iteration in the plot,
one can see that QSCI gives a lower energy than VQE
for R & 16. This shows that the method is able to im-
prove the results of VQE even in the noiseless setting,
where the effect of error mitigation is not present. We
emphasize that, as discussed in Sec. II B, a lower en-
ergy by QSCI means that the energy is closer to the
exact ground-state energy, which is manifested in the
plot where ER − Eexact is always positive. It is notable
that we can already achieve the chemical accuracy11 of
1.6× 10−3 Hartree with R ∼ 16 while the CASCI in this
case uses 100 determinants to express the ground state.12

A similar tendency is observed for iterations of & 200.
Note, in this case, the VQE results already achieve the
chemical accuracy. On the other hand, for intermedi-
ate iterations of 70–200, the VQE results do not reach
the chemical accuracy, while QSCI can improve them to
meet the chemical accuracy if R & 16. This suggests that
an intermediate result of VQE, which is not seeing con-
vergence in the optimization yet, is already useful as an
input state of QSCI, and that one can reduce the number
of optimization steps for VQE by employing QSCI as a
post-processing. We note that the QSCI results do not
monotonically decrease, as a QSCI calculation for an in-
put state with a lower energy does not necessarily result
in a lower output energy.

11 In this paper, we define the chemical accuracy by 1 kcal/mol '
1.6× 10−3 Hartree for the deviation of the calculated energy
from the one obtained by the exact diagonalization of the Hamil-
tonian.

12 For the active space restriction of five active orbitals and six
active electrons with Sz = 0, the number of the Slater determi-
nants is

(5
3

)
·
(5
3

)
= 100. If one does not know the number of

electrons and Sz of the ground state before the calculation, then
one would need to deal with the full Hamiltonian in the Fock
space of 210 = 1024 dimensions.
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(b) S1 state

FIG. 4. Same as Fig. 3 but for the first (T1) and second
(S1) excited states of H2O with Sz = 0, along with optimiza-
tion histories of VQD, shown by dotted lines, for input-state
preparation; the energy differences are plotted by the abso-
lute values. For the QSCI calculation of the T1 (S1) state,
the input state(s) corresponding to the lower energy states,
i.e., S0 (S0 and T1) state(s), are prepared by converged sets
of parameters of VQD. QSCI results are shown for the se-
quential diagonalization and the single diagonalization with
two types of configuration selection, as described in the main
text. The QSCI calculations with sequential diagonalization
are done with Ri = 16 for i = 0, 1, 2, while the value of R is
set to R = 16 for single diagonalization.

B. QSCI for excited states

We next show the results of noiseless simulations for
excited states of H2O using the two distinct implemen-
tations of QSCI presented in Sec. II C, namely the single
diagonalization and sequential diagonalization schemes,
which take the input states for excited states as well as

the ground state. The numerical setup is similar to the
previous subsection, with some differences explained be-
low. In the input-state preparation, we employ VQE for
the ground state and VQD for excited states, each with
the same ansatz and optimizer as in the previous sub-
section; we use the same 10-qubit Hamiltonian, but with
the overlap terms and penalty terms [93–95] in VQD, for
orthogonality between the eigenstates and for symme-
try restrictions (charge neutrality for the molecule and
Sz = 0 for the total electron spin) on the excited states.
Under the same symmetry restrictions, the first excited
state is a triplet state (T1) and the second excited state
is a singlet state (S1), according to the exact diagonaliza-
tion. The VQD calculation for T1 requires information of
the ground state (S0) to generate the overlap term, for
which the ansatz state is used with the converged param-
eters in VQE. A similar procedure is applied for S1, but
with the extra overlap term for T1 added. With the input
states for S0, T1 and S1, we perform QSCI calculations
to find T1 and S1, where the idealized sampling is used.
See Appendix C 2 for details.

The results are shown in Fig. 4 along with the opti-
mization history of VQD, in the similar way as Fig. 3, but

for |E(i)
R −Eexact| (i = 1 for T1 and i = 2 for S1). At each

iteration, three types of QSCI calculations are performed:
sequential, single-ground-state, and single-mixed. Se-
quential diagonalization uses the T1 (S1) state at the
iteration, and one (two) lower energy state(s) at their
final iterations as input states. Two single diagonaliza-
tion methods use different input states: “single-ground-
state” uses the ground state prepared by the converged
VQE calculation, and that is why they are constant in
the plot; on the other hand, “single-mixed” uses the two
(three) states as input states, and selects R configura-
tions so that each of the two (three) states contributes as
equally as possible, as explained in Sec. II C 1. Note that
R is the dimension of the common subspace SR in Eq. (7).
The coefficient(s) β0 (and β1 for S1 state) of the overlap
term(s) for orthogonality is set to β0 = β1 = 1 Hartree,
which is sufficiently larger than the energy gaps between
the states in question. For sequential diagonalization,
the values of Ri are fixed to Ri = 16 for i = 0, 1 and 2,
corresponding to S0, T1, and S1 states, respectively; for
single diagonalization, the value of R is set to R = 16,
so that the sizes of the subspace Hamiltonian matrices to
be diagonalized are the same among all the setups.

Comparing the three QSCI results for excited states,
the sequential diagonalization performs the best except
for the initial steps of iterations where the quality of the
input state is significantly low. Moreover, the sequential
diagonalization outperforms the VQD calculation, even
with a moderate value of Ri = 16. For some larger R,
the single diagonalization is also expected to improve and
eventually outperform the VQD result at the same itera-
tion as it can achieve the same representability as the se-



10

0 10 20 30 40 50
Number of qubits Nq

10 1

100

101

102

103

104
R 

re
qu

ire
d f

or
 en

er
gy

 er
ro

r 
= 0.001 Ha

1.2 × 2^(0.2N)
= 0.01 Ha
= 0.1 Ha

(a) Cr2

0 10 20 30 40 50
Number of qubits Nq

10 2

100

102

104

106

108

1010

R 
re

qu
ire

d f
or

 en
er

gy
 er

ro
r 

= 0.001 Ha
0.25 × 2^(0.71Nq)

= 0.01 Ha
0.41 × 2^(0.51Nq)

= 0.1 Ha
0.1 × 2^(0.37Nq)

(b) Hydrogen chain

FIG. 5. Estimated R required for a given energy error ε.
Results with (a) expanding active spaces (Cr2) or (b) various
numbers of atoms (hydrogen chain) are shown by markers,
along with the linear fit of each plot.

quential one13. Although the sequential diagonalization
seems to be better in terms of performance, it should be
noted that there is no guarantee for the variational in-
equality in the sequential diagonalization. The inequality
for excited states holds in the single diagonalization, as
explained in Sec. II C.

C. Scaling of computational costs

We now investigate the scalability of the proposed
method by estimating the classical and quantum compu-

13 To show this explicitly, assume Ns = 2 for simplicity. The single

diagonalization with the subspace SR = S(0R0
∪ S(1)R1

, where the
subspaces on the right-hand side denote those of the sequential
diagonalization, have at least the same representability as the

sequential diagonalization calculation with S(1)R1
.

tational costs to calculate the ground states for molecular
Hamiltonians of various sizes. More concretely, we esti-
mate the minimum value for R and the required number
of shots Nshot to obtain the ground-state energy within
an error ε for those Hamiltonians.

For this sake, we employ the chromium dimer Cr2 with
various active spaces and the linear hydrogen chains with
different numbers of atoms. Both Cr2 and hydrogen
chains are known to be challenging molecules in quan-
tum chemistry (see, e.g., Refs. [96, 97] and references
therein), while the hydrogen chains are also expected to
show a clear scaling in the number of atoms. For Cr2, the
cc-pVQZ basis set is used with n active orbitals and n
active electrons with n = 2, 4, . . . , 12; the Jordan-Wigner
mapping produces 4, 8, · · · , 24-qubit Hamiltonians, re-
spectively. For the linear hydrogen chains, we consider
4, 6, · · · , 12 hydrogen atoms equally separated by a dis-
tance 1.0 Å; we use the STO-3G basis set without specify-
ing the active space, corresponding to full-space Hamilto-
nians of 8, 12, · · · , 24-qubit after the Jordan-Wigner map-
ping, respectively.

For each setup, the exact ground state of the Hamilto-
nian is prepared as the input state, and the QSCI calcu-
lation is performed by the idealized sampling introduced
in Sec. II B, which picks up the R Slater determinants
with the largest absolute values of CI coefficients in the
input-state wavefunction. Then, for a given accuracy ε,
the minimal R that satisfies |ER − Eexact| ≤ ε is deter-
mined, where ER is the energy obtained by QSCI with
the R configurations and Eexact by the exact diagonaliza-
tion. In Fig. 5, the results are plotted for each molecule
by varying the number of qubits, for ε = 0.1, 0.01 and
0.001 Hartree; they are extrapolated by fitting (shown
by lines) to discuss the feasibility for larger system sizes.

As detailed in Sec. V A, we infer that the diagonaliza-
tion with R ' 5× 107 configurations is achievable by the
current state-of-the-art classical computing according to
the reports [98, 99]. The result for Cr2 suggests that
R is expected to be manageable even when we require
ε = 0.001 Hartree for a system larger than 50 qubits,
where the exact diagonalization in the whole Fock space,
i.e., CASCI, is challenging for classical computers. In the
case of the hydrogen chains, on the other hand, the expo-
nential growth of R is more clearly observed, and it may
become hard to achieve ε = 0.001 Hartree for a system
much larger than 50 qubits due to the limitation of clas-
sical computing. Note that the two scalings have slightly
different meanings: the active space is enlarged for Cr2
while fixing the molecule, i.e., the system size, while the
system size itself is enlarged for the hydrogen chains. The
results may suggest that our method is more suited to
a localized system with many electrons involved, rather
than a spatially extended system. For similar studies and
results for several diatomic and aromatic molecules, see
Appendix D 1.

We next estimate the number of shots for sampling
required to achieve an error of ε by using the value of
1/|cR|2 for each setup (Fig. 6). Here, cR is the CI coeffi-
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FIG. 6. Estimated number of shots for a given energy er-
ror ε. For QSCI, the number of shots are approximated by
1/|cR|2, where R for each ε is obtained in Fig. 5 and cR is the
CI coefficient of the input state with R-th largest absolute
value. The reasoning for this approximation is explained in
the main text. For comparison, the results of the conventional
expectation-value estimation with QWC grouping are plotted
for each ε, fitted by a logarithmic function in the plot: the
required numbers of shots for evaluating the energy are shown
by dashed curves; for hydrogen chains, the ones for evaluat-
ing the gradients and Hessians in addition to the energy are
shown by dash-dotted curves; the precision of gradients and

Hessians are set to be ε/Å and ε/Å
2
, respectively.

cient that has the R-th largest absolute value in the input
state, where R is taken to be the values shown in Fig. 5.
When the state is sampled 1/|cR|2 times, the probabil-
ity of obtaining the R-th most significant configuration
is O(1), and in that sense, 1/|cR|2 gives a rough estima-
tor for the number of shots required to sample R most
significant configurations. We see in the next section, es-

pecially in Fig. 7, that this gives a ballpark estimate of
the required number of shots for a given accuracy.

For comparison, the total number of shots required in
a conventional expectation-value estimation is also es-
timated. More precisely, we analytically estimate the
number of shots for which the standard deviation of
the expectation-value estimations equals ε for the ex-
act ground state (see, e.g., Ref. [27]). In the conven-
tional methods, the expectation value of the Hamilto-
nian, which is expressed as a linear combination of Pauli
strings, is estimated by directly measuring the quantum
state in the basis of the Pauli strings multiple times and
taking the average of the measurement outcome. To re-
duce the number of measurements, we employ the qubit-
wise commuting (QWC) grouping [93] with the sorted
insertion algorithm [100]. The total shot is distributed
to each of the groups with the shot allocation optimized
for the exact ground state14 [101, 102]. Note that, al-
though there are methods that are capable of reducing
the number of measurements better than QWC, they re-
quire more gate operations for measurements than QWC
does; QWC requires a layer of single-qubit rotations after
the state preparation, which is minimal for methods that
measure the Pauli strings directly, while QSCI requires
no gate operation. Most of the other grouping methods
are thus expected to be more vulnerable to noise, and
QWC is chosen for a fair comparison in this study.

Figure 6 shows the values of 1/|cR|2 in QSCI for vari-
ous numbers of qubits, along with the estimated numbers
of shots in QWC. For the hydrogen chains, the results of
QWC are fitted by a function a(Nq)

b with parameters a
and b as they are expected to be polynomial in the num-
ber of qubits15, while the scaling of QSCI is unclear and
fitting is not performed. In the case of Cr2, the number
of shots for the proposed method seems to be consistently
smaller than that of QWC, while the advantage of QSCI,
in terms of reducing the effect of statistical fluctuation,
is more non-trivial in hydrogen chains with the numbers
of qubits Nq & 30.

The more operators are evaluated with the same out-
put state, the more advantageous QSCI becomes; as we
already noted in the previous section, QSCI does not re-
quire any additional quantum computation to evaluate
additional observables, because QSCI outputs the classi-
cal vector representation of the state, and the expectation
values are evaluated classically. On the other hand, in the

14 This shot allocation may not be possible in practice without prior
knowledge of the exact ground state, but this estimation gives
the lower-bound on the required number of total shots among
possible shot allocation strategies, for a given error tolerance
with the given grouping method and the state.

15 More precisely, the fit was performed by a function

log(Nshot(Nq)) = B log(Nq) +A, (16)

where A and B are the free parameters. Similarly in Fig. 5, a
linear function cNq +d was used to fit the data for log(R), rather
than D × 2CNq for R.
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conventional methods, quantum computational cost be-
comes more expensive, e.g., to measure additional Pauli
strings introduced by the extra operators. To exploit this
feature, we explore a scenario where the nuclear gradi-
ent and Hessian are evaluated along with the energy in
the case of the hydrogen chains. For the shot allocation
in the QWC grouping, we developed a method that is
optimized for measuring multiple operators at once and
is used in the simulation; see Appendix B 2 for details.
The result, shown also in Fig. 6 (b), implies that such a
scenario makes QSCI much more advantageous16, as the
number of shots for QWC significantly increases.

QSCI generally outperforms QWC in terms of the sam-
pling cost within the range of the system size that we
studied. Although the scaling of QSCI seems to be worse
than that of QWC in hydrogen chains, we should empha-
size here that, even if QWC outperforms QSCI at, say,
50 qubits, it does not mean that QSCI is not useful for
Hamiltonians with more than 50 qubits: QSCI has var-
ious features, such as error mitigation and the explicit
representation of the output state, over the conventional
methods, in addition to the reduction of the number of
shots. The result should be interpreted as an implication
that QSCI can be advantageous in moderately smaller
but still classically-challenging systems, even when we
only consider the effect of reduction of the number of
shots.

D. Sampling simulation

For assessing the effect of the statistical error during
the sampling in QSCI, sampling simulation with different
numbers of shots is performed. The result for a linear H6

molecule (12 qubits) is shown in Fig. 7, and results for
other molecules are in Appendix D 2. For this simulation,
the exact ground state is used as the input state, and we
include all the configurations obtained in the sampling
into the basis set SR and we do not specify R beforehand.
For comparison, we also performed a conventional sam-
pling estimation for the exact ground state with QWC
grouping and a shot allocation optimized for Haar ran-
dom states.

For both QSCI and QWC, we perform 10 trials of sam-
pling simulation for each number of shots, and the aver-
age of the absolute differences to the exact ground-state
energy is plotted along with the standard deviation of
the 10 trials. The absolute differences to the exact value
are much smaller in QSCI compared to the conventional
sampling with QWC grouping.

It is worth noting that the standard deviation of QSCI
energy is smaller than its average difference, while those

16 It is numerically shown in Appendix D 3 that the accuracy of
the gradients and Hessians in QSCI are of the same order as

ε when expressed in the units of Hartree/Å and Hartree/Å
2
,

respectively.
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FIG. 7. Energy error results for both QSCI and conventional
QWC in sampling simulations. For each set of 10 trials for
each method, the standard deviation and the average of the
absolute error to the exact value obtained by exact diago-
nalization are shown. QSCI energy error using 1/|cR|2 shots
obtained in Fig. 6 for ε = 0.1, 0.01, 0.001 Ha are also plot-
ted for reference. The horizontal line indicates the chemical
accuracy, 1.6 mHa.

of QWC sampling are roughly equal. Energy values ob-
tained by QSCI are biased estimators for the exact expec-
tation values even when using the exact ground states as
input states. Thus, the absolute difference can roughly be
calculated as a sum of the intrinsic bias existing in QSCI
and the standard deviation which comes from statistical
fluctuation of the subspace SR. In QWC, on the other
hand, the statistical error is the only source of error. One
can say that the QSCI result is much less affected by the
statistical error compared to the conventional method.

Furthermore, as one can see in Fig. 7, 1/|cR|2 calcu-
lated in the previous simulation gives a relatively accu-
rate estimation of the total shots that gives an average
error close to ε. Thus the plots in Fig. 6 for both QWC
and QSCI give reasonable estimations of the number of
shots with expected average error ε, and the comparison
is fair in this sense.

IV. BENCHMARK OF QSCI WITH NOISY
SIMULATION AND EXPERIMENT

In this section, we describe the result of the experiment
for the ground state of the hydrogen chain H4 (8 qubits),
conducted on the IonQ 11-qubit device through Amazon
Braket service, along with the result of noisy sampling
simulation using Qulacs with the identical setup. We first
run a VQE calculation of a linear H4 molecule with bond
lengths 1.0 Å on a noiseless state-vector simulator. We
use the STO-3G basis set without freezing any orbitals,
and thus the problem Hamiltonian is 8-qubit. The so-
called Ry ansatz with depth 8 is employed for the VQE
calculation. See Appendix C 3 for details, including the
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(a) Noisy simulator w/o post-selection
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(b) Noisy simulator w/ post-selection

0 100 200 300 400 500 600
Iteration

10 5

10 4

10 3

10 2

10 1

100

101

En
er

gy
 di

ff.
 to

 ex
ac

t [
Ha

]

QSCI (R=1)
QSCI (R=4)
QSCI (R=16)
QSCI (R=27)
VQE
Conventional
CISD (R=27)

QSCI (R=1)
QSCI (R=4)
QSCI (R=16)
QSCI (R=27)
VQE
Conventional
CISD (R=27)

(c) IonQ device w/o post-selection
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FIG. 8. QSCI results for the ground state of the linear hydrogen chain H4 on 8 qubits by the noisy simulator [(a), (b)] and by
the IonQ device [(c), (d)], with and without post-selection, compared with the conventional method of quantum-expectation
value estimation and CISD, which uses 27 Slater determinants. The resulting energies are plotted in Hartree as deviations
from the one obtained by the exact diagonalization (CASCI). Lines specified by “VQE” show the exact energy value of the
parametrized state at each iteration, and the states at four selected iterations are used as the input states for the QSCI
calculations, shown by “QSCI” with four different values of R. The conventional method uses the QWC grouping in the energy
estimation. The markers on the solid lines show the average value of some trials while each line without markers shows the
result of one of the trials. The number of trials is ten for both QSCI and the conventional method on the noisy simulator, one
for the conventional method and five for QSCI on the IonQ device.

circuit diagram of the ansatz. Then, we perform QSCI
calculations on the quantum hardware and the noisy sim-
ulator using four sets of parameters at four distinct iter-
ations of the VQE calculation. We use 10,000 shots for
each sampling, and the most frequent R configurations
are selected to define the subspace, with and without the
post-selection. The post-selection of the sampling result
is performed using the number of electrons Ne = 4 and
the spin Sz = 0. For noisy simulation, to simulate the
physical noises on the device, single-qubit depolarizing
noise is added after each gate and bit-flip noises are added
at the end of the circuit to mimic the measurement error.
The level of each type of the noise is determined by the
single-qubit and two-qubit gate fidelities, and the mea-
surement fidelity of the actual device: 99.61%, 96.868%,
and 99.824%, respectively17.

17 More precisely, the error rate of the single-qubit depolarizing
noise for each single-qubit gate is set to p1, where p1 is the single-

For comparison, on the quantum device and the noisy
simulator, the calculation of the expectation value of the
energy using a conventional method is performed with
10,000 shots. The QWC grouping and the shot alloca-
tion optimized for Haar random states are employed. Er-
ror mitigation techniques, which may improve the result
at the cost of additional quantum resources, are not em-
ployed in this study.

The results are presented in Fig. 8. By comparing the
results from the noisy simulator and the quantum device,
one can see that they have a reasonable agreement, al-
though the result from the quantum device seems to be
more affected by the errors. Moreover, it is clear that
the post-selection is powerful in both simulation and ex-

qubit gate infidelity. For the two-qubit gates, single-qubit depo-
larizing noise is applied to each of the two qubits with probability
1−
√

1− p2 for a two-qubit gate infidelity p2. The bit-flip noise
is applied to each qubit with probability pro, the measurement
infidelity.
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periment. It is particularly worth noting that even on
the physical device, some of the QSCI calculations with
R = 27 do outperform the result of CISD, which also di-
agonalizes the subspace Hamiltonian with 27 Slater de-
terminants, and achieve the chemical accuracy on the
8-qubit system.

Some minor comments are in order: firstly, at the ear-
lier iterations, the number of sampled (and post-selected)
configurations was sometimes less than the given R, be-
cause the state is concentrated in some computational
basis states. In that case, we only used the sampled con-
figurations for the QSCI calculation; secondly, CASCI
result, i.e., the exact diagonalization result, corresponds
to18 R = 36; this number may seem to be comparable
to R = 27, but it is still a non-trivial task to choose 27
configurations out of 36 possibilities.

V. DISCUSSION

In this section, we discuss various aspects of QSCI. We
start from its classical and quantum computational costs
in Sec. V A, and then discuss its benefits for refining VQE
results in Sec. V B. In Sec. V C, several ideas for preparing
input states are introduced. The aspect of QSCI as a
selected CI is discussed in Sec. V D, and ideas for future
directions are finally introduced.

A. Computational costs

Here classical and quantum computational costs are
examined. In QSCI, classical computing is used for gen-
erating the truncated Hamiltonian matrix HR and diag-
onalizing it. Exploiting the Slater-Condon rules, one can
generate the sparse matrix HR efficiently in both R and
the number of orbitals (see, e.g., Ref. [58] for details).
For diagonalizing HR, one can employ algorithms to di-
agonalize a sparse matrix, such as the Lanczos method or
the Davidson method. The generation and diagonaliza-
tion of the Hamiltonian matrix are common procedures
in the selected CI methods, and it is reported [99] that
R ' 5× 107 of Slater determinants are manageable when
a state-of-the-art high-performance computing resource
is available, even for the method that repeats the Hamil-
tonian generation and diagonalization. In our method,
such a repetition is not needed, and thus the compu-
tational cost should be smaller. As already discussed
in Sec. III C, Fig. 5 suggests that, for some challenging
molecules of ∼50 qubits, the QSCI calculation is feasible
in terms of the classical cost by the current state-of-the-
art classical computing, while meeting the accuracy re-
quirement of ε . 0.001 Hartree. Note such a system size
would be beyond the reach of the exact diagonalization.

18 The number of Slater determinants which have the required par-
ticle number and Sz is

(4
2

)
·
(4
2

)
= 36.

The quantum computational time is tQ = Nshot ×
tprepare, where Nshot is the number of shots for the sam-
pling, i.e., the repetitions of the input-state preparation
and measurement, and tprepare is the time needed for
a single shot. Note that the total computational time
can be reduced if multiple quantum computers are avail-
able, since the sampling procedures are completely par-
allelizable. tprepare highly depends on the type of quan-
tum device to be used and the way to prepare the input
state. For example, the Sycamore processor used in the
Google’s quantum supremacy experiment [1] can achieve
Nshot = 1× 106 in 200 seconds for a quantum circuit
with 53 qubits and 20 repetitions of entangling opera-
tions, which corresponds to Nshot ∼ 4× 108 in a day.
Hence, Fig. 6 implies that the sampling cost is affordable
for Cr2 with several tens of qubits, while it may be chal-
lenging at the moment to achieve ε = 0.001 Hartree for a
hydrogen chain with, say, 50 qubits.

We remark that the sampling cost can be significantly
reduced if one can prepare a state |∆ψ〉 that is orthog-
onal to a classically tractable state |ψc〉 such that, for
some complex numbers α and β, |ψGS〉 = α |ψc〉+β |∆ψ〉
approximates the ground state, and can sample from
|∆ψ〉 on a quantum computer. The state |ψc〉 can be
the Hartree-Fock state or more intricate states such as
the CISD state. For example, if |α|2 = 0.9, then the
sampling cost for a given precision can be reduced by a
factor of ten. On the other hand, |∆ψ〉 can be prepared,
e.g., by the method of Ref. [80].

B. Use of QSCI to refine VQE results

QSCI can be viewed as a post-processing technique for
VQE and its variants, when they are used to prepare the
input states. Our methods have the following advantages:

Error reduction: By virtue of the classical diagonaliza-
tion of a Hamiltonian matrix generated classically,
the proposed methods can refine the VQE results,
as demonstrated in Sec. III and Sec. IV. Although
results of noiseless VQE simulations are used to
prepare the input states in our numerical and ex-
perimental studies, our results suggest that QSCI
is also effective to refine dirty VQE results subject
to the statistical and physical errors. Figure 8 also
shows the effectiveness of the post-selection: the
rate of the readout error, which is one of the ma-
jor sources of physical errors, can be reduced from
O(p) to O(p2) with the Jordan-Wigner mapping, as
discussed in Appendix A. Note that QSCI does not
require extra gate operations for the measurement,
unlike expectation-value estimations in VQE. As al-
ready shown in Fig. 3, our method is also effective
to improve the quality of the input state even in the
absence of physical and statistical errors. This fea-
ture may enable one to use ansatzes with shallower
circuits, or to reduce the number of optimization
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steps in VQE, by employing QSCI to improve the
final result.

Reliability: Our method is free of errors in the sense
that the resulting ground-state energy is exact
within the subspace spanned by the quantum-
selected configurations. This means that the ob-
tained energy is a definite upper bound for the ex-
act ground-state energy, which is not the case in
conventional VQE because of physical and statisti-
cal errors, as discussed in Sec. II B. This is advan-
tageous for comparing the QSCI result obtained on
noisy quantum devices with the results of classi-
cal variational methods such as CISD or density
matrix renormalization group (DMRG) [103–105]:
the variational nature of these methods guarantees
that the method that gives the lowest energy is the
most accurate one. Similar variational inequalities
hold for excited states in the single diagonalization
scheme of QSCI, while there is no such guarantee
in the sequential diagonalization scheme. Although
the latter appeared to be more accurate in our nu-
merical simulation, the former is of great use if one
is interested in giving rigorous upper bounds on
excited-state energies.

Handiness: As one has the classical representations of
the eigenstates as output, one can compute the ex-
pectation values of a large class of observables with
no additional quantum computation. Our method
becomes more valuable when more observables are
to be evaluated, as exemplified in Fig. 6. Moreover,
one can also analyze the classical vectors them-
selves, which may be useful to study the signifi-
cance of each Slater determinant.

C. Use of QSCI with more general input states

As discussed in the previous sections, input states for
ground state can be prepared by VQE, and those for
excited states by its variants, but the proposed methods
are applicable to more general input states.

Our method can in principle be applied to any kind
of input states that can be prepared and sampled on a
quantum computer. We give an incomplete list of possi-
ble preparation schemes for input states in the following:
the adiabatic state preparation [106, 107], the imaginary
time evolution [108–111], classically-boosted VQE [80],
classically-optimized shallow ansatz circuits [112], uni-
tary coupled-cluster ansatz circuits with classically-
optimized parameters [93, 113–115], and parametrized
states classically optimized by Clifford circuits [116, 117].
Note that the performance of QSCI depends on the qual-
ity of the input state and also on the form of the exact
eigenstate. For example, if the exact eigenstate is the
equal superposition of all the computational basis states,
then our algorithm will not perform well.

The algorithm can also be useful for a Hamiltonian
that has an exactly-known ground state. For example,
one can calculate an exact ground-state energy of a sys-
tem that is solvable with the Bethe ansatz, but there
are quantities, such as a class of correlation functions,
that cannot be computed efficiently [118]. Our method
provides the classical representation of an approximate
eigenstate, which means that one can evaluate various
physical quantities without additional quantum resource,
as we already discussed for states prepared by VQE. The
preparation of the Bethe ansatz states on quantum com-
puters is addressed in Refs. [119, 120].

Moreover, although we proposed the method as a
hybrid quantum-classical algorithm, one can apply the
method to input states that can be sampled efficiently on
classical computers. This is shortly discussed in Sec. V E.

D. QSCI as selected CI

As selected CI methods, the novelty of QSCI comes
simply from how to define the subspace on which we
construct the subspace Hamiltonian. Quantum comput-
ers are used to sample important configurations from the
input state, and there is a quantum speed-up when the
input state is hard to sample classically. In selected CI
methods, the subspace of the Fock space for the diago-
nalization is either fixed by the method, e.g., CISD, or
adaptively chosen according to the algorithm. We have
shown experimentally that CISD performs worse even
when compared to the QSCI result on the current NISQ
device (Fig. 8).

One of the most advanced methods for sampling dy-
namically important bases is the adaptive sampling con-
figuration interaction (ASCI) algorithm developed by
Tubman and co-workers [50, 58]. The idea of system-
atically selecting important bases based on perturbation
theory was developed about 50 years ago [36–40], and
a selection scheme based on Monte Carlo methods was
proposed in the 1990s [44, 45]. However, systematically
selected CI was not widely used in quantum chemistry
calculations for many years. Recently, it has undergone
rapid development and is now becoming applicable to
large-scale quantum chemical simulationst [46–67]. In-
deed, Tubman et al. showed that ASCI is capable of
handling 34 electrons in 152 spatial orbitals [58].

ASCI has hyperparameters that define the size of the
search space to adaptively select the configurations, and
we will see in Appendix D 5 that, with some set of hy-
perparameters, QSCI can perform better than ASCI.

E. Outlook

QSCI is applicable to diverse systems, and has many
directions for generalizations.

• It would be possible to consider a hybrid of the
proposed method and another adaptive selected CI
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method, such as ASCI, by combining the configu-
rations suggested by QSCI with those of the other
method. In this way, one could improve the results
of the state-of-the-art selected CI methods by using
quantum computers.

• QSCI is essentially a selected CI where the con-
figurations are randomly selected according to a
probability distribution p(x) = |〈x|ψin〉|2. A classi-
cal counterpart of this approach is called Monte-
Carlo configuration interaction (MCCI) [44, 45].
MCCI does not seem to have been extensively stud-
ied since the first proposal in 1995, and the use of
a more sophisticated (classical) probability distri-
bution for MCCI is yet to be explored. It would
be an interesting future work to use a classically
tractable p(x) for MCCI and compare/combine it
with QSCI. For example, some of the tensor net-
work states, such as the matrix product states
(MPS) and the multi-scale entanglement renormal-
ization ansatz (MERA) states, can be efficiently
sampled on classical computers [121].

• Our method, compared to the conventional VQE,
has an advantage that it can evaluate physical ob-
servables classically with no additional quantum
computational cost. One may leverage this fea-
ture by using QSCI for the geometry optimization
problem of a molecule, or a molecular dynamics cal-
culation. In those applications, one may skip the
sampling for some iterations, and continue to run
with the same state subspace defined by the R elec-
tron configurations, thereby reducing the quantum
computational cost further.

We remark that the performance of QSCI depends
highly on the quality of the input state. It would be
great if there is a way to start from an input state with
modest quality, and then improve the quality of the input
state by an iterative use of QSCI.

VI. CONCLUSION

In this work, we proposed QSCI, a class of hybrid
quantum-classical algorithms, to find low-lying eigen-
values and eigenstates of a many-electron Hamiltonian.
Taking rough approximations of such eigenstates as in-
put, QSCI selects important electron configurations to
represent the eigenstates by sampling the input states
on quantum computers, and then classically diagonalizes
the Hamiltonian in the subspace(s) spanned by the se-
lected configurations to yield better approximations for
the eigenstates and their energies. QSCI is robust against
noise and statistical fluctuation, as quantum computa-
tion is used only to define the subspaces. A quantum
speed-up potentially arises in that sampling a quantum
state is, in general, classically intractable.

We verified the algorithms for ground and excited
states of small molecules by numerical simulations and

experiment, where the latter was conducted on the quan-
tum device with the 8-qubit quantum circuits. We dis-
cussed potential utility of QSCI in various aspects: for
instance, taking a state obtained by VQE as the input
state, QSCI can be used to refine the VQE result, which
may not be accurate enough due to statistical fluctua-
tion, physical noise, and poor optimization; QSCI can
be used as a technique for eigenstate tomography, which
enables estimation of a variety of observables with no
additional quantum computational cost. We also ar-
gued that QSCI is potentially feasible to tackle challeng-
ing molecules such as the chromium dimer by exploiting
quantum devices with several tens of qubits, assisted by
a high-performance classical computing resource for di-
agonalization.
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Appendix A: The effect of post-selection

In this section, we discuss the effect of post-selection to
mitigate errors in QSCI. To be specific, we consider the
post-selection technique introduced in Sec. II B, which
exploits the conservation of particle number and spin,
targeting the bit-flip noise. In the following, we consider
to measure an N -qubit computational basis state. We
assume that the state is prepared without the effects of
noise but each bit of the measurement result is flipped
with error probability p. It is equivalent to the situa-
tion where the bit-flip noise is introduced to each qubit
independently after the input state is generated. The
probability that the N -bit string describing the state is
measured correctly is (1− p)N .

1. Jordan-Wigner mapping

Let us now assume that we consider an electronic
Hamiltonian converted by the Jordan-Wigner mapping.
In this case, the number of 1’s in the N -bit string, which
we denote by n1, corresponds to the number of electrons
in the system and is sometimes known prior to the cal-
culation for a ground state or an excited state. One can
thus perform the post-selection for a measurement out-
come that excludes resulting bit strings with the number
of 1’s not equal to n1. Although one may still get incor-
rect results, the probability is reduced.
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More concretely, the probability to get a result with
correct n1 is

(1− p)N + n0n1p
2(1− p)N−2 +O(p4), (A1)

where we define n0 := N − n1. After the post-selection,
the probability to get the correct result is thus

(1− p)N

(1− p)N + n0n1p2(1− p)N−2 +O(p4)
(A2)

=
1

1 + n0n1p2/(1− p)2 +O(p4)
(A3)

=
1

1 + n0n1p2 +O(p3)
(A4)

= 1− n0n1p2 +O(p3). (A5)

The error rate of getting an incorrect result is reduced
from 1− (1− p)N ∼ pN to n0n1p

2 with the ratio being

n0n1p
2

pN
=
(n0
N

)(n1
N

)
Np ∼ O(pN), (A6)

which is less than one in a sensible situation Np � 1,
where the original success probability (1−p)N is not too
small.

Although we here considered a computational basis
state as the input state, we expect that the post-selection
similarly works for a general input state that is a super-
position of computational basis states with some fixed n1.
Note that, if one also knows the total spin Sz of electrons
prior to the calculation, one can count the number of 1’s
separately for up- and down-spin electrons, and make the
post-selection more efficient.

2. Other mappings

For most of the other fermion-qubit mappings, it is
not expected that the reduction of the error probability
from O(p) to O(p2) happens. For example, in the parity
mapping [81, 122] and the Bravyi-Kitaev mapping [81],
the states |01〉 and |11〉 are connected by just one bit
flip, but both of them are one-electron states. This bit
flip, which cannot be detected by the post-selection, oc-
curs with probability O(p), and thus the error rate af-
ter the post-selection is still O(p). The same is true for
a Hamiltonian with a reduced number of qubits using
symmetries, where there is always a bit flip that does
not change the total number of electrons.

Appendix B: Details of the algorithms

In this section, we present several detailed discussions
on the QSCI algorithms.

1. Choice of βi parameters and variational
inequalities in sequential diagonalization scheme

Here we discuss the sequential diagonalization scheme,
introduced in Sec. II C 2, on how to choose the βi parame-
ters and a potential violation of the variational inequality,
following the discussion in Ref. [84].

Suppose k low-lying eigenstates of Ĥ,
|E0〉 , · · · , |Ek−1〉, are known exactly. Then, the ef-
fective Hamiltonian to find the k-th eigenstate can be
exactly constructed as

Ĥ(k)′ = Ĥ +

k−1∑
i=0

βi |Ei〉 〈Ei| . (B1)

This can be formally expressed as

Ĥ(k)′ =

k−1∑
i=0

(Ei + βi) |Ei〉 〈Ei|+
∑
i≥k

Ei |Ei〉 〈Ei| , (B2)

where Ei represents the i-th eigenvalue of Ĥ in this ap-
pendix. For βi > Ek−Ei (i = 0, · · · , k−1), the following
inequality holds for an arbitrary |ψ〉 with 〈ψ|ψ〉 = 1:

〈ψ| Ĥ(k)′ |ψ〉 ≥ Ek, (B3)

where the equality holds if and only if |ψ〉 = |Ek〉 up to
a phase factor. In the language of the eigenvalue prob-

lem of Eq. (12), this implies E
(k)′
Rk
≥ Ek, where E

(k)′
Rk

is

the smallest eigenvalue of H
(k)′
Rk

, the subspace matrix for

Ĥ(k)′, defined in the same way as Eq. (13).
In practice, the condition βi > Ek − Ei can be uti-

lized if one has prior knowledge on the energy spec-
trum, e.g., based on variational quantum algorithms. But
even without such knowledge, one may still rely on the
stronger condition of βi > 2

∑
j |cj | [84], which is written

in terms of the coefficients cj of the qubit Hamiltonian

Ĥ =
∑
j cjPj , expressed by the Pauli strings Pj .

In reality, the effective Hamiltonian cannot be ex-
actly constructed as the k low-lying eigenstates would
be obtained only approximately and, hence, the inequal-

ity E
(k)
Rk
≥ Ek is not guaranteed. For instance, in

the problem to find the first excited state, the effective

Hamiltonian Ĥ(1) is constructed with |ψ(0)
out〉, the out-

put state for the ground state obtained by the preced-
ing step in sequential diagonalization. Unless the out-
put state perfectly overlaps with the true ground state

|E0〉, or |〈ψ(0)
out|E0〉| = 1, there is no guarantee that

〈ψ|Ĥ(1)|ψ〉 is bounded by the exact eigenvalue E1. In-

stead, minψ 〈ψ|Ĥ(1)|ψ〉 is only bounded as [84]:

E1 −O((E1 − E0)ε0) ≤ min
ψ
〈ψ|Ĥ(1)|ψ〉 ≤ E1 + β0ε0,

(B4)

where ε0 = 1 − |〈ψ(0)
out|E0〉|2 and 〈ψ|ψ〉 = 1. A concrete

example for breaching the variational inequality is given
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as follows. Consider a system with the unique ground
state, i.e., E0 < E1. Suppose that one has a poor output

state |ψ(0)
out〉 that is orthogonal to the true ground state

|E0〉, i.e., ε0 = 1. Then, 〈ψ| Ĥ(1) |ψ〉 ≥ E0 for any posi-
tive β0, where the equality holds if and only if |ψ〉 = |E0〉
up to a phase factor. This means that the variational

inequality E
(1)
R1
≥ E1(> E0) is violated at least in the

limit where the subspace S(1)R1
is enlarged to cover the

part of the Fock space necessary to express |E0〉. Such
a subspace can be constructed, e.g., if the input state is

chosen to be |ψ(1)
in 〉 = |E0〉 with a sufficiently large R1.

2. An optimal shot allocation for evaluating
expectation values of multiple observables in

conventional method

In this subsection, we describe the details of the nu-
merical estimation of computational cost in Sec. III C
for evaluating multiple operators. In the numerical sim-
ulation, we considered a situation where we want to
calculate the expectation values of the nuclear gradi-

ent
{
∂Ĥ
∂xi
| i = 1, . . . , 3Natom

}
and the nuclear Hessian{

∂2Ĥ
∂xi∂xj

| i, j = 1, . . . , 3Natom

}
along with the Hamilto-

nian Ĥ({xi}), where xi are the nuclear coordinates and
Natom is the number of atoms in the molecule. The most
naive way of doing it would be to calculate each expec-
tation value completely separately. This is, though, too
naive to be considered as the optimal strategy; all the ob-

servables are linear combinations of operators a†iaj and

a†iaja
†
kal in the fermionic basis, and the expectation val-

ues of these operators can be reused among the operators.
Before discussing the optimal strategy for evaluating

expectation values of multiple observables, let us review
the one for a single observable, following the discussion
in Ref. [102]. Consider a quantum state |ψ〉 and the ex-

pectation value of an operator Ô which can be written
as a sum of operators Ôl:

Ô =

L∑
l=1

Ôl. (B5)

Each term Ôl can be either a Pauli string or a sum of
Pauli strings that commute with each other, which ad-
mits the projective measurement on eigenvalues of each
Ôl. We denote the variance of each term Ôl per one
shot by σ2

l := Var(Ôl) := 〈ψ|Ô2
l |ψ〉 − 〈ψ|Ôl|ψ〉

2
. By

measuring each term Ôl with a number of shots Ml, the
observed expectation value has the variance

∑
l σ

2
l /Ml.

Employing the method of Lagrange multiplier with the
Lagrangian

L =
∑
l

Ml + λ

(∑
l

σ2
l

Ml
− ε2

)
, (B6)

one can get the optimal allocation of the number of shots
with the total variance of the expectation value fixed to
ε2, which is

Ml ∝ σl. (B7)

In general, σl is not exactly known a priori, so one may
use σl for Haar random states to get a reasonable strat-
egy. One may also try to improve the strategy by divid-
ing the shot budget for one evaluation of an expectation
value into several iterations: one can simply evaluate the
expectation value with a mildly optimized strategy in the
first iteration, and then, in the rest of the iterations, one
can adjust the strategy by calculating σl by using the
expectation values obtained in the previous iterations.

Generalizing the above discussion, let us consider a
situation where one calculates the expectation values of

a set of operators
{
Ô(i) | i = 1, . . . , n

}
. We assume that

Ô(i) is decomposed as

Ô(i) =

L∑
l=1

Ô
(i)
l , (B8)

where all of
{
Ô

(i)
l | i = 1, . . . , n

}
are simultaneously mea-

surable for each l, i.e., [Ô
(i)
l , Ô

(j)
l ] = 0 for any i, j. In our

numerical simulation, the grouping was done by firstly
taking the sum of all the observables Ô(i) with each
Pauli string with negative coefficient multiplied by −1
to make it positive. Then the greedy qubit-wise group-
ing of Refs. [93, 100] was used. Our aim here is to find
a good strategy to estimate the expectation values of all
the operators O(i) with statistical error less than ε. Note
that one can always rescale the observables so that the
required precision is the same for all observables even
when one requires different precision for different opera-
tors. To get an analytical solution, we choose the follow-
ing Lagrangian with slightly modified constraint,

L =
∑
l

Ml + λ

∑
l

∑
i

σ(i)
l

2

Ml

− εtot
 , (B9)

where εtot can be N × ε but it turns out that the choice
of εtot does not affect the final result. By solving the
extremal condition of this Lagrangian, one can get the
best shot allocation that minimizes the total number of
shots, while keeping the sum of the variances of all the
operators less than εtot. The result implies that

Ml ∝
√∑

i

σ
(i)
l

2
. (B10)

By estimating the variance of each operator Ô(i) with
this shot allocation, and by adjusting the total number
of shots so that the statistical error of each operator is ε
at worst, one can obtain the total number of shots

∑
lMl

with desired precision for all the operators. This may not
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be the optimal shot allocation to achieve the statistical
error ε for each operator as we are minimizing the total
variance rather than the maximum value of the variances,
but this will give a reasonable strategy that is analytically
available.

There is one comment to make on the evaluation
of nuclear Hessians. In the following, the expectation
value is always taken by an ansatz state |ψ(θ({xi}))〉
parametrized by the ansatz parameters θ({xi}); we as-
sume that θ({xi}) is optimized so that |ψ(θ({xi}))〉 has
the minimum energy within the ansatz for each {xi}.
We denote the energy expectation value of the state by
E({xi}). In the case of the nuclear gradient,

∂E({xi})
∂xi

=

〈
∂Ĥ({xi})

∂xi

〉
(B11)

holds thanks to the Hellmann-Feynman theorem, and it
suffices to compute the right-hand side to obtain the nu-
clear gradient of the energy. In the case of the nuclear
Hessian of the energy [123], on the other hand, it is in
general necessary to evaluate the contribution of deriva-
tives acting on the state as well as on the Hamiltonian
operator,

∂2E({xi})
∂xi∂xj

=

〈
∂2Ĥ({xi})
∂xi∂xj

〉
+ . . . (B12)

In our numerical simulation, we ignored the contribution
of the derivatives acting on the state for simplicity. In
the case of QWC, this contribution requires additional
quantum resources. On the other hand, in the case of
QSCI, one can generate and diagonalize the Hamiltonians
at small finite distance xi → xi± δ to get the derivatives
of the state within the same selected subspace of the Fock
space with no additional quantum resources. If we take
this contribution into account properly, the advantage of
QSCI will increase.

It should also be noted that, although we evaluate
O(N2

atom) observables in the numerical simulations for
the hydrogen chain in the main text, due to the rich
geometrical symmetry of the molecules, many of the ob-
servables are zero as an operator. It is likely that, for
more generic molecules, the crossing-point of QSCI and
QWC comes at a larger number of qubits.

Appendix C: Details of numerical simulations and
experiments

In this section, we explain details of the numerical sim-
ulations and the experiment on quantum hardware in
the main text. For all the molecules examined in this
study, the second-quantized electronic Hamiltonian un-
der the Born-Oppenheimer approximation is generated
by OpenFermion [88] interfaced with PySCF [89] us-
ing the Hartree-Fock orbitals with the STO-3G mini-
mal basis set, unless otherwise stated. The electronic

Hamiltonians are mapped to qubit ones by the Jordan-
Wigner transformation. The molecular geometries used
in our study are shown in Table I. Stable geome-
tries for diatomic molecules are taken from CCCBDB
database [124] and Ref. [125], while those for the other
molecules are taken from PubChem [126], except for the
hydrogen chains which are not in their stable geometries.
We list the details specific to each of simulations and
experiment in the following.

1. Noiseless simulation for ground state

× 𝑑

FIG. 9. Real-valued symmetry-preserving ansatz with n
qubits and depth d.

In Sec. III A, the H2O molecule with six active elec-
trons and five active orbitals, is chosen to find the ground
state by QSCI. In the VQE calculation for preparing the
input states, the BFGS optimizer is employed through
the scientific library SciPy [92], and the real-valued
symmetry-preserving ansatz [91] is used to construct
parametric quantum circuits with depth 10 (Fig. 9). The
initial state of the ansatz circuits is set to be the Hartree-
Fock state, and the initial parameters in the optimization
are randomly chosen.

2. Noiseless simulations for excited states

In Sec. III B, QSCI is demonstrated for the same H2O
molecule but to find excited states. To prepare the in-
put states, the VQD calculations are performed in the
same setup as the previous VQE calculation, but with the
penalty terms [93–95] added to the Hamiltonian for con-
straining the resulting states to have Sz = 0 and Ne = 6;
specifically, the following operator (in atomic units) is
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TABLE I. Geometries of molecules. “(X, (x, y, z))” denotes three dimensional coordinates x, y, z of an atom X in units of Å.

Molecule Geometry
H2O (O, (0, 0, 0)), (H, (0.2774, 0.8929, 0.2544)), (H, (0.6068, -0.2383, -0.7169))

Hn (n = 4, 6, 8, 10, 12) (H, (0, 0, 0)), (H, (0, 0, 1.0), . . . , (H, (0, 0, n× 1.0))
LiH (Li, (0, 0, 0)), (H, (0, 0, 1.595))
N2 (N, (0, 0, 0)), (N, (0, 0, 1.1))
O2 (O, (0, 0, 0)), (O, (0, 0, 1.2))
F2 (F, (0, 0, 0)), (F, (0, 0, 1.4))
Cl2 (Cl, (0, 0, 0)), (Cl, (0, 0, 2.0))
HCl (H, (0, 0, 0)), (Cl, (0, 0, 1.3))
CO (C, (0, 0, 0)), (O, (0, 0, 1.1))
Cr2 (Cr, (0, 0, 0)), (Cr, (0, 0, 1.6))

Benzene (C, (-1.2131, -0.6884, 0)), (C, (-1.2028, 0.7064, 0.0001)), (C, (-0.0103, -1.3948, 0)),
(C, (0.0104, 1.3948, -0.0001)), (C, (1.2028, -0.7063, 0)), (C, (1.2131, 0.6884, 0)), (H,
(-2.1577, -1.2244, 0)), (H, (-2.1393, 1.2564, 0.0001)), (H, (-0.0184, -2.4809, -0.0001)),
(H, (0.0184, 2.4808, 0)), (H, (2.1394, -1.2563, 0.0001)), (H, (2.1577, 1.2245, 0))

Naphthalene (C, (0, -0.7076, 0)), (C, (0, 0.7076, 0.0001)), (C, (1.225, -1.3944, 0.0001)), (C, (1.225,
1.3944, 0)), (C, (-1.225, -1.3943, 0)), (C, (-1.225, 1.3943, 0)), (C, (2.4327, -0.6958, 0)),
(C, (2.4327, 0.6959, -0.0001)), (C, (-2.4327, -0.6958, -0.0001)), (C, (-2.4327, 0.6958,
0)), (H, (1.2489, -2.4822, 0.0001)), (H, (1.2489, 2.4821, -0.0001)), (H, (-1.2489, -
2.4822, -0.0001)), (H, (-1.249, 2.4821, 0.0001)), (H, (3.3733, -1.239, -0.0001)), (H,
(3.3732, 1.2391, -0.0001)), (H, (-3.3733, -1.239, -0.0001)), (H, (-3.3732, 1.239, 0))

Anthracene (C, (-1.225, 0.706, 0.0001)), (C, (-1.2251, -0.7061, 0.0001)), (C, (1.2251, 0.7061,
0.0002)), (C, (1.2251, -0.7061, 0.0001)), (C, (0, 1.3937, 0.0001)), (C, (0, -1.3938, 0)),
(C, (-2.4504, 1.393, -0.0001)), (C, (-2.4505, -1.393, 0)), (C, (2.4505, 1.3929, 0)), (C,
(2.4505, -1.3929, 0)), (C, (-3.6587, 0.6956, -0.0001)), (C, (-3.6588, -0.6955, -0.0001)),
(C, (3.6587, 0.6956, -0.0002)), (C, (3.6587, -0.6956, -0.0002)), (H, (0, 2.4838, 0)),
(H, (0, -2.4839, -0.0001)), (H, (-2.4742, 2.4808, -0.0001)), (H, (-2.4744, -2.4809, 0)),
(H, (2.4742, 2.4808, 0)), (H, (2.4743, -2.4808, 0)), (H, (-4.5989, 1.2394, -0.0003)),
(H, (-4.5991, -1.2391, -0.0002)), (H, (4.5989, 1.2393, -0.0003)), (H, (4.5989, -1.2393,
-0.0004))

Tetracene (C, (0, 0.7045, -0.0002)), (C, (0, -0.7046, -0.0001)), (C, (-2.451, 0.7058, 0)), (C, (-
2.4511, -0.7058, 0.0002)), (C, (2.4511, 0.7057, 0.0001)), (C, (2.4511, -0.7058, -0.0001)),
(C, (1.2254, 1.3923, -0.0001)), (C, (1.2254, -1.3924, -0.0003)), (C, (-1.2254, 1.3923,
-0.0002)), (C, (-1.2255, -1.3923, 0.0002)), (C, (-3.6764, 1.3928, -0.0001)), (C, (-3.6764,
-1.3929, 0.0002)), (C, (3.6764, 1.3929, 0.0003)), (C, (3.6765, -1.3929, -0.0001)), (C, (-
4.8846, 0.6957, -0.0001)), (C, (-4.8847, -0.6955, 0.0001)), (C, (4.8846, 0.6957, 0.0004)),
(C, (4.8847, -0.6956, -0.0001)), (H, (1.2253, 2.4825, -0.0001)), (H, (1.2254, -2.4825,
-0.0003)), (H, (-1.2254, 2.4824, -0.0003)), (H, (-1.2255, -2.4824, 0.0003)), (H, (-3.6999,
2.4807, -0.0002)), (H, (-3.7001, -2.4808, 0.0003)), (H, (3.6999, 2.4807, 0.0004)), (H,
(3.7001, -2.4807, -0.0003)), (H, (-5.8248, 1.2393, -0.0002)), (H, (-5.8249, -1.2392,
0.0002)), (H, (5.8248, 1.2394, 0.0005)), (H, (5.8249, -1.2392, -0.0002))

added to the Hamiltonian

3.0(Ŝz)
2 + 3.0(N̂e − 6)2, (C1)

where Ŝz is the operator for the total electron spin in
z-direction, and N̂e for the particle number operator of
electrons in the active space. Furthermore, the overlap
terms to constrain the state to be orthogonal to lower en-
ergy eigenstates [84] are added with coefficients of unity
(in Hartree). For the sequential diagonalization scheme
of QSCI, the coefficients βi for ensuring orthogonality are
also set to unity.

3. Noisy simulation and experiment

For the noisy simulation and experiment in Sec. IV, the
input states are prepared by noiseless VQE simulations.
The VQE calculations are performed with the BFGS op-
timizer and Ry ansatz (Fig. 10) with depth 8. Other
details are described in the main text.

Appendix D: Supplemental numerical results

In this section, we provide additional numerical results
to supplement the contents in Sec. III.
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× depth

FIG. 10. Ry ansatz with 8 qubits. All the rotational gates
have independent parameters. The depth is set to be 8 in our
experiment.

1. Scaling of computational costs with various
molecules

Figure 11 shows the scaling of the classical and quan-
tum computational costs, discussed in Sec. III C, for dif-
ferent types of molecules. Here, we test three kinds of
molecules: hydrogen chains, diatomic molecules, and aro-
matic molecules. The data for hydrogen chains are ex-
actly the same as in the main text. Diatomic molecules
are N2, O2, F2, Cl2, HCl, CO, and Cr2 with cc-pVQZ
basis, and we tested them with various active spaces just
as in the main text for Cr2. To test with larger molecules,
four aromatic molecules are chosen: benzene, naphtha-
lene, anthracene, and tetracene. The Hamiltonian is gen-
erated by using the Hartree-Fock orbitals with STO-3G
basis. The active space of n orbitals and n electrons with
varying n was employed for the diatomic and aromatic
molecules. The geometries of these tested molecules are
summarized in Table I.

As can be seen in Fig. 11, hydrogen chains with various
numbers of atoms show the worst scalings, while Cr2 is
one of the least expensive systems among others.

2. Sampling simulations with various molecules

In this subsection, we present similar results as Fig. 7
but with various other molecules. The results, shown
in Fig. 12, show the same features as H6 in the main
text, such as the small standard deviation for QSCI and

1/|cR|2 giving an accurate estimation of the number of
shots for given accuracy ε. One can also see that the
standard deviation is almost constant for hydrogen chains
with various numbers of atoms, while the absolute error
is highly dependent on the number of atoms. Comparing
the three 12-qubit systems, it can be seen that the dif-
ference between the standard deviation and the absolute
error depends on the system.

3. Accuracy of expectation values of observables
other than the Hamiltonian in QSCI

Here, we examine the accuracy of the expectation val-
ues of observables other than the Hamiltonian, estimated
for the output state obtained by QSCI calculation. Fig-
ure 13 shows the histograms for absolute errors of the
expectation values for the gradient and Hessian, where
the absolute error for an observable Ô is defined by∣∣∣ 〈ψout|Ô|ψout〉 − 〈ψexact|Ô|ψexact〉

∣∣∣. (D1)

Here, |ψout〉 is the output state of QSCI calculation with
the idealized sampling from the exact ground state with
R given in Fig. 5 for each error tolerance ε for energy, and
|ψexact〉 is the exact ground state. The observables Ô are

set to be the nuclear gradient ∂Ĥ
∂xi

(i = 1, . . . , 3Natom) and

the Hessian ∂2Ĥ
∂xi∂xj

(i, j = 1, . . . , 3Natom), where Natom is

the number of atoms in the molecule and xi are coordi-
nates of the nuclei. The absolute error is shown in the
unit of Hartree, Hartree/Å, or Hartree/Å

2
, depending

on the observables. Although there are some observables
(i.e., components of the gradient or Hessian) whose ex-
pectation values exhibit larger absolute errors than that
of the energy, the expectation values of the majority of
the observables have similar accuracy as the energy.

4. Bond length dependence

The Hartree-Fock calculation is known to perform bet-
ter for a stable geometry of a molecule than for the disso-
ciation limit, so it is worth studying if QSCI also performs
worse in the dissociation limit. Figure 14 shows the result
of the same numerical analysis as Fig. 5, but for various
bond lengths of H2O molecules. The Hamiltonian is gen-
erated by the Hartree-Fock orbitals using STO-3G basis
without specifying the active space, and is of 14-qubit
after the Jordan-Wigner mapping. The bond lengths of
two H-O bonds are taken to be equal, and the H-O-H an-
gle is fixed to 104.45°. The result implies that, although
there is some dependency on the bond length for larger
ε, the dependency disappears for smaller ε. It can be ex-
pected from the result that the potential energy surface
calculated by QSCI has a relatively constant accuracy,
at least compared to the Hartree-Fock result, when the
error tolerance is not very large.
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(b) 1/|cR|2 for energy error ε = 0.001 Hartree.
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(d) 1/|cR|2 for energy error ε = 0.01 Hartree.
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(f) 1/|cR|2 for energy error ε = 0.1 Hartree.

FIG. 11. Estimated R and 1/|cR|2 for various molecules with the same setup as Figs. 5 and 6. The number of qubits is varied
by changing the number of atoms for hydrogen chains, and by changing the active space for the other molecules.

5. Comparison to ASCI

Here, we investigate if there is a possibility that QSCI
outperforms the state-of-the-art selected CI methods by
taking ASCI for illustration. ASCI is a selected CI
method solely based on classical computation, which

adaptively searches for the optimal subspace of the Fock
space for the diagonalization. In Fig. 15, we compare
QSCI with ASCI, for which we follow the description in
Ref. [58]. Here, we use the QSCI method with the ide-
alized sampling from the ground state obtained by the
exact diagonalization (full-CI) calculation.

The target molecule is the linear hydrogen chain H10
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(c) H8 (16 qubits)
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(d) H10 (20 qubits)
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(f) LiH (12 qubits)

FIG. 12. Sampling simulation with various molecules. See Fig. 7 and the main text for details.

with the equal separation of 1.0 Å. The basis set is STO-
3G and the Hamiltonian with the Hartree-Fock orbitals is
mapped to the 20-qubit one by the Jordan-Wigner map-
ping. For ASCI, in addition to the parameter R (called
as Ntdets in Ref. [58]), there are two additional param-
eters: they are denoted by ε and Ncdets in that paper,
and are denoted by δ and Rcore, respectively, in the fol-
lowing. The parameters δ and Rcore determine the size

of the search space for the iterative search for the new
determinants, while the cost for the generation and di-
agonalization of the Hamiltonian, which is common for
both ASCI and QSCI, are determined solely by R. We
fixed δ = 0.05 Hartree and r := R/Rcore = 10 or 20 for
ASCI, and run QSCI and ASCI calculations with various
R.

While in the case of r = 10 the two methods perform
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FIG. 13. Histograms of absolute errors of nuclear gradients
and Hessians for H4, H6, and H8 molecules in QSCI, compared
to the exact, CASCI value. Each plot corresponds to QSCI
calculations with an energy error ε. Absolute errors are in

units of Hartree, Hartree/Å, or Hartree/Å
2
, depending on

the observables.

similarly, QSCI performs better for r = 20, where less
computational cost is required for searching for a bet-
ter set of configurations in ASCI. The result shows that,
depending on the hyperparameters for ASCI, there is a
possibility that QSCI performs better, at least in the case
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FIG. 14. Estimated R and 1/|cR|2 for H2O molecule (14
qubits) with various bond lengths. Potential energy curves
are also shown for reference. The estimation method of R
and 1/|cR|2 are the same as in Figs. 5 and 6.

of the idealized sampling from the exact ground state.
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[105] U. Schollwöck, The density-matrix renormalization
group, Rev. Mod. Phys. 77, 259 (2005).

[106] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser,
Quantum computation by adiabatic evolution, arXiv
preprint quant-ph/0001106 (2000).

[107] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-
Gordon, Simulated quantum computation of molecular
energies, Science 309, 1704 (2005).

[108] C. P. Williams, Probabilistic nonunitary quantum com-
puting, in Quantum Information and Computation II,
Vol. 5436 (International Society for Optics and Photon-
ics, 2004) pp. 297–306.

[109] H. Terashima and M. Ueda, Nonunitary quantum cir-
cuit, International Journal of Quantum Information 3,
633 (2005).

[110] S. McArdle, T. Jones, S. Endo, Y. Li, S. C. Benjamin,
and X. Yuan, Variational ansatz-based quantum simu-
lation of imaginary time evolution, npj Quantum Infor-
mation 5, 1 (2019).

[111] Y. Mao, M. Chaudhary, M. Kondappan, J. Shi, E. O.
Ilo-Okeke, V. Ivannikov, and T. Byrnes, Measurement-
based deterministic imaginary time evolution, arXiv
preprint arXiv:2202.09100 (2022).

[112] K. N. Okada, K. Osaki, K. Mitarai, and K. Fujii,
Identification of topological phases using classically-
optimized variational quantum eigensolver, arXiv
preprint arXiv:2202.02909 (2022).

[113] J. Romero, R. Babbush, J. R. McClean, C. Hempel,
P. J. Love, and A. Aspuru-Guzik, Strategies for quan-
tum computing molecular energies using the unitary
coupled cluster ansatz, Quantum Science and Technol-

ogy 4, 014008 (2018).
[114] K. Kuroiwa and Y. O. Nakagawa, Clifford+ t-gate de-

composition with limited number of t gates, its error
analysis, and performance of unitary coupled cluster
ansatz in pre-ftqc era, arXiv preprint arXiv:2301.04150
(2023).

[115] M. R. Hirsbrunner, D. Chamaki, J. W. Mullinax, and
N. M. Tubman, Beyond mp2 initialization for uni-
tary coupled cluster quantum circuits, arXiv preprint
arXiv:2301.05666 (2023).

[116] K. Mitarai, Y. Suzuki, W. Mizukami, Y. O. Nakagawa,
and K. Fujii, Quadratic clifford expansion for efficient
benchmarking and initialization of variational quantum
algorithms, Physical Review Research 4, 033012 (2022).

[117] G. S. Ravi, P. Gokhale, Y. Ding, W. Kirby, K. Smith,
J. M. Baker, P. J. Love, H. Hoffmann, K. R. Brown,
and F. T. Chong, Cafqa: A classical simulation boot-
strap for variational quantum algorithms, in Proceedings
of the 28th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, Volume 1 (2022) pp. 15–29.

[118] F. Verstraete, J. I. Cirac, and J. I. Latorre, Quantum
circuits for strongly correlated quantum systems, Phys-
ical Review A 79, 032316 (2009).

[119] J. S. Van Dyke, G. S. Barron, N. J. Mayhall, E. Barnes,
and S. E. Economou, Preparing bethe ansatz eigenstates
on a quantum computer, PRX Quantum 2, 040329
(2021).

[120] A. Sopena, M. H. Gordon, D. Garćıa-Mart́ın, G. Sierra,
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