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ABSTRACT: Near-term quantum devices promise to revolutionize quantum chemistry,
but simulations using the current noisy intermediate-scale quantum (NISQ) devices are
not practical due to their high susceptibility to errors. This motivated the design of NISQ
algorithms leveraging classical and quantum resources. While several developments have
shown promising results for ground-state simulations, extending the algorithms to excited
states remains challenging. This paper presents two cost-efficient excited-state algorithms
inspired by the classical Davidson algorithm. We implemented the Davidson method into
the quantum self-consistent equation-of-motion unitary coupled-cluster (q-sc-EOM-
UCC) excited-state method adapted for quantum hardware. The circuit strategies for
generating desired excited states are discussed, implemented, and tested. We demonstrate
the performance and accuracy of the proposed algorithms (q-sc-EOM-UCC/Davidson
and its variational variant) by simulations of H2, H4, LiH, and H2O molecules. Similar to
the classical Davidson scheme, q-sc-EOM-UCC/Davidson algorithms are capable of
targeting a small number of excited states of the desired character.

I. INTRODUCTION
Quantum computing promises to deliver new technology for
solving complex problems that are beyond the capability of
conventional classical computers.1−6 Particularly exciting is the
potential use of quantum computing in quantum chemistry.
Electronic structure calculations provide fundamental informa-
tion about matter and are essential for research in chemistry,
physics, and materials science. Unfortunately, the computational
complexity of finding the exact solution of the electronic
Schrödinger equation scales factorially with the system size,
limiting predictive power of quantum chemistry. This
unfavorable scaling arises because of the quantum entanglement
of the electronic degrees of freedom in many-body wave-
functions. Because the wavefunction is a quantum object, one
may expect that it could be encoded on a quantum device more
effectively than on classical devices;1 however, the exact details
of effective quantum algorithms for solving the electronic
Schrödinger equation remain elusive.

The main task of an electronic structure calculation is finding
the eigenvalues of a given molecular Hamiltonian (i.e., electronic
energies). One practical quantum algorithm for molecular
simulations is called the quantum phase estimation (QPE)
algorithm.7 QPE�a quantum algorithm for evaluating
eigenvalues of a Hermitian operator �was expected to lead
to an exponential speed-up of quantum simulation relative to

classical algorithms. However, a disturbing feature of QPE is the
large number of quantum operations that are needed to achieve

the target precision: O(p−1) successive operations of ei t are

needed for precision p. To execute this operation, each of ei t is
decomposed into millions or billions of quantum gates, which
exceeds the capability of noisy intermediate-scale quantum
(NISQ) devices.8−11 Consequently, although QPE is an
important milestone in quantum computing for quantum
simulations, it is not practical for realistic applications.12 To
address this limitation, a more NISQ-friendly algorithm with low
circuit depths, called a variational quantum eigensolver (VQE),
was proposed.13 The VQE is a hybrid quantum-classical
algorithm based on a variational principle. The algorithm entails
preparing a parameterized quantum state on the quantum device
and measuring the expectation value of the Hamiltonian on the
trial state. The classical optimization procedure iteratively
adjusts the parameters of the trial state to minimize the
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expectation value of the Hamiltonian. By leveraging classical
optimization techniques with quantum measurements, VQE
requires significantly smaller quantum resources compared to
QPE. The VQE algorithm has been successfully deployed in
ground-state simulations of small molecules on NISQ
devices13−18 and is exploited in many algorithms for quantum
molecular simulations.

The progress in the development of quantum algorithms with
shallow circuit depths has enabled successful simulations of
molecular ground-state energies. Many applications (e.g.,
spectroscopy, photochemistry) require going beyond ground-
state calculations and computing excited states. The develop-
ment of quantum algorithms for molecular excited states is more
challenging compared to the ground-state algorithms. The
existing quantum algorithms for excited states often require a
large number of qubits and gate operations, which precludes
their application to larger systems. This is because excited states
often have more complex wavefunctions (open-shell, multi-
configurational) even when the corresponding ground state is
well behaved. Furthermore, in contrast to the ground state
(which is unique in the sense that it is the lowest-energy state),
there are many excited states, so the quantum algorithms should
be capable of targeting a specific state (or states)�e.g., the
lowest-energy states or states in a particular energy range, states
of a particular symmetry/spin, states of a particular character,
etc.

The success of the VQE algorithm for ground-state
calculations has inspired extensions to excited states, leading
to variational quantum deflation (VQD),19 subspace-search
VQE (SSVQE),20 and other algorithms.21−24 The underlying
framework of all VQE-based methods is the variational principle.
The VQE-based methods for excited states employ supple-
mentary constraints so that the resulting algorithms look for a
minimum-energy state orthogonal to the previously computed
states. For example, the central element of VQD19 is the penalty
terms in the cost function (which is subject to minimization).
The penalty terms quantify the overlap between the previously
obtained solutions and the current target state. The
minimization of the VQD cost function19 ensures the mutual
orthogonality of the computed eigenstates. Thus, the algorithm
entails sequential calculations of the states. Importantly, these
approaches do not guarantee resolving the full energy spectrum
of the Hamiltonian, especially for near-degenerate states. The
essential feature of VQE-based approaches is the need to design
the ansatz that effectively differentiates each eigenstate of the
Hamiltonian from other states.

In the classical quantum chemistry, calculation of excited
states is also challenging.25−28 Among popular wavefunction-
based approaches is the equation-of-motion coupled-cluster
(EOM-CC) ansatz.28−31 In the complete many-body limit (i.e.,
when up to N-electron excitations are included), EOM-CC
becomes identical to full configuration interaction (FCI)�the
exact solution in the given one-electron basis set. In the case of
the truncated many-electron basis, EOM-CC is superior to CI
due to the incorporation of correlation through a similarity
transformation, which also makes the method size-intensive.
Quantum adaptations of the EOM ansatz (qEOM) have been
implemented and tested.32−34 In contrast to the standard EOM-
CC, the reference wavefunction of its quantum counterpart
comes from the ground-state VQE calculation with the unitary
coupled-cluster (UCC) ansatz.35 UCC framework is Hermitian,
provides an upper bound for the energy, and is size-extensive by
construction. However, the price paid for the variational bound

is that the originally proposed qEOM32 ansatz does not satisfy
the killer condition,36−38 which ensures the ground state cannot
be deexcited. Mukherjee and co-workers proposed a unitary
transformation of the EOM projection operators to address the
killer condition issue of the UCC theory.37,39 Asthana et al.40

have implemented this technique37,39 on quantum devices. The
algorithm, named the quantum self-consistent EOM (q-sc-
EOM) method,40 yields more accurate excitation energies
(EEs), ionization potentials (IPs), and electron affinities (EAs)
than the originally proposed qEOM.32

The q-sc-EOM (and qEOM) procedure leverages classical
and quantum computing resources. Specifically, the Hamil-
tonian matrix is measured on a quantum computer within a
given many-electron basis, and the resulting matrix is
subsequently diagonalized on a classical computer. Although
the measurement processes of the Hamiltonian can potentially
benefit from the quantum architecture, for the entire calculation
to be effective, one also needs a cost-efficient algorithm for the
diagonalization step done on a classical computer. In classical
electronic structure calculations, the diagonalization is accom-
plished through iterative determination of only a few eigenvalues
using the Davidson algorithm.41−44 The focus of this paper is on
the adaptation of the Davidson procedure for quantum
computations and its implementation within the q-sc-EOM
protocol, which we call the q-sc-EOM-UCC/Davidson
algorithm. The key feature of the Davidson implementation
on quantum devices is the design of a unitary ansatz that
generates specific quantum superposition states, which is
achieved by using Gray code decomposition.45,46 The proposed
ansatz enables targeting a specific subspace within the Hilbert
space based on the feedback from the Davidson procedure.
Hence, instead of computing the entire spectrum of the
Hamiltonian, our q-sc-EOM-UCCSD/Davidson algorithm is
capable of computing several transitions of a particular type by
defining suitable subspace vectors. Here, we focus on finding
low-lying states of a given symmetry/spin, but the algorithm can
be easily extended44 to finding states around the specified energy
or of a particular type (e.g., such as excitations between specific
orbitals).

The structure of the paper is as follows: Section II.I discusses
EOM formalism, Section II.II describes the choice of the
ground-state ansatz for quantum computing and its incorpo-
ration within the EOM, Section II.III explains the Davidson
procedure with q-sc-EOM implemented on quantum devices,
Section II.IV presents the detailed circuit design, and Section
II.V presents the variational extension of the proposed
algorithm. Section II.VI provides computational details of
illustrative calculations and Section III presents the numerical
results using a set of small molecules (H2, H4, LiH, and H2O).
Section IV gives our concluding remarks.

II. METHODS: THEORY
II.I. Equation-of-Motion (EOM) Formalism. The EOM

formalism employs projection operators Ôk that generate target
states |Ψk⟩ from a reference state |Ψ0⟩.25,47−50 The projection
operator Ôk for a kth excited state of the electronic Hamiltonian
is

O

O

k k k

k k k k

0 0 0

0 0

| = | | = |

| = | | = |†
(1)
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where Ôk
† denotes the deexcitation operator (a Hermitian

conjugate of Ôk). In the context of excitation energy calculations,
|Ψ0⟩ corresponds to the ground electronic state. The
commutator of the Hamiltonian and excitation operator Ôk
acting on the ground state yields the excitation energy of kth
state

H O O, k k k k k0 0 0 0[ ]| = | = | (2)

where ωk0 is the difference between the kth and the ground-state
energies, k k0 0= . Projecting Ôk|Ψ0⟩ on the bra side of
eq 2, one can show that

O H O

O O

O H O

O O

O H O

O O

, , ,

,

, ,

,

k k

k k

k k

k k

k k

k k
k

0 0

0 0

0 0

0 0

0 0

0 0
0

|[ [ ]]|
| |

=
|[ [ ]]|

|[ ]|

= |[ ]|
|[ ]|

=

†

†

†

†

†

†
(3)

where the double commutator is defined as 2[Ôk
†, Ĥ, Ôk] = [[Ôk

†,
Ĥ], Ôk] + [Ôk

†, [Ĥ, Ôk]]. All four expressions in eqs 2 and 3 yield
identical results in the complete operator basis set or when the
killer condition is satisfied50

O k0,k k0 0 0| = | | =†
(4)

The killer condition means that the ground state |Ψ0⟩ cannot be
deexcited due to the orthogonality condition, |Ψk⟩⊥|Ψ0⟩.36−38

The killer condition of eq 4 is trivially satisfied when |Ψ0⟩ is the
exact ground state and Ôk is the exact eigenoperator of Ĥ.
Another way to satisfy the killer condition is to employ a single
Slater determinant |Φ0⟩ as the reference vacuum state while
using Ôk

† with pure deexcitation operators relative to |Φ0⟩. In this
case, the operator Ôk does not have to be complete, e.g.

a a
p i j

q a b

p q
, ,
, ,

0| =
{ ···}

{ ···}

†

(5)

where ap̂† and aq̂ denote creation and annihilation operators
associated with spin-orbitals p and q, and the symbol ⌀
represents an empty state, which is distinct from the Fock
vacuum state |Φ0⟩. In this paper, we follow the standard
convention: i,j,... denote spin-orbitals that are occupied in the
reference Slater determinant (|Φ0⟩), whereas a,b,... denote
unoccupied (virtual) spin-orbitals. The indices p,q,... refer to
spin-orbitals that may be either occupied or unoccupied.

To formulate an EOM operator acting on a correlated
ground-state wavefunction |Ψ0⟩ (instead of |Φ0⟩), one needs to
consider both excitation and deexcitation operators because
|Ψ0⟩ comprises multiple Slater determinants.51,52 The general
form of the operator Ôk can be written as a linear combination of
particle−hole excitation and deexcitation operators with
coefficients {X,Y}

O X E Y Ek
k k= [ ]†

(6)

where Ê and Ê† are a set of particle−hole excitation and
deexcitation operators, respectively. The subscript α denotes the
number of particle−hole pairs to be created in the reference
Slater determinant |Φ0⟩ and μα denotes a set of occupied and
virtual spin-orbitals. For example, Êμd1=a,i = aâ† aî creates a one-
hole−one-particle (1h1p) determinant from the reference Slater
determinant. In practice, the many-electron basis α is truncated

at a particular level to yield a specific model, for example, EOM-
CC with singles and doubles (EOM-CCSD)

O O O

O X E Y E

O X E Y E

( ) ( )

1
4

( ) ( )

k k k

k
ia

i
a k

i
a

a
i k

a
i

k
ijab

ij
ab k

ij
ab

ab
ij k

ab
ij

SD 1 2

1

2

= +

= [ ]

= [ ]
(7)

A variational minimization of eq 3 with respect to the amplitudes
{Xk,Yk} gives rise to the following secular equation

M Q

Q M
X

Y

V W

W V
X

Y

k

k

k

kk0

i
k
jjjjjj

y
{
zzzzzz

i
k
jjjjjj

y
{
zzzzzz

i
k
jjjj

y
{
zzzz

i
k
jjjjjj

y
{
zzzzzz* *

= * * (8)

where the matrices M, Q, V, and W are

M

V

Q

W

E H E

E E

E H E

E E

, ,

,

, ,

,

0 0

0 0

0 0

0 0

= |[ ]|

= |[ ]|

= |[ ]|

= |[ ]|

†

†

† †

† †
(9)

In the case of a finite operator basis set, the killer condition does
not necessarily hold and the four expressions in eqs 2 and 3 are
not equivalent, making the choice of working equations
arbitrary.
II.II. Choice of the Ground-State Ansatz: CC versus

UCC. The CC theory53−56 is designed to compute many-body
wavefunctions, typically for the ground state. The standard CC
theory represents the many-body wavefunction as an
exponential ansatz acting on the reference Slater determinant
|Φ0⟩

e

T T T

T

N

0 CC 0

1

| = | = |

= + ··· + (10)

where T̂μ represents a μ-fold particle−hole excitation operator
(the cluster operator) for the N-electron system (the subscript
denotes the number of particle−hole pairs to be created in |Φ0⟩).
Explicitly,

T t a a a a1
( ) i i

a a

i i
a a

a i a i2
1

1

1
1

1 1
=

!
···

···
···

···
··· † †

(11)

where i1···iμ and a1···aμ are occupied and unoccupied spin-orbital
indices in |Φ0⟩. In practice, the cluster operator is truncated at a
particular level, yielding a specific model such as CCSD,
CCSDT, etc. The main advantage of the exponential ansatz over
linear parameterization (such as in CI) is that the truncated CC
theory is size-extensive.

In the standard CC theory, one solves the equations derived
by projecting the Schrödinger equation on the manifold of the
excited Slater determinants

H

H 0ij
ab

0 0 CC

CC 0

| | =

| | =···
···

(12)
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which amounts to satisfying the Schrödinger equation in the
subspace of the full Hilbert space. Here, H̅ ≡ e−T̂ĤeT is the
similarity-transformed Hamiltonian (non-Hermitian) and CC
is the CC energy (typically, the ground-state energy). Note that
the similarity transformation conserves the eigenspectrum of the
original Hamiltonian Ĥ.

Equations 12 are tractable because the infinite Taylor series
generated by the exponential ansatz truncate naturally due to the
Slater rules (when bra and ket determinants differ by more than
double excitations).

The EOM-CC ansatz is built on the ground-state CC theory
to describe excited states28−31,38,57−60

R R ek k k
T

CC 0| = | = | (13)

where R̂k denotes the projection operator that generates the kth
excited state from the ground-state CC wavefunction. In the
single-reference EOM-CC theory, R̂k consists only of particle−
hole excitations manifold with respect to |Φ0⟩. Explicitly,

R R R

R r a a a a

,

1
( )

( )

k k k
N

k
i i

a a

i i
a a k

a i a i

1

2
1

1

1
1

1 1

= + ··· +

=
!

···
···
···

···
··· † †

(14)

This choice of the operators means that R̂ and T̂ commute,
leading to the eigenvalue problem for the similarity-transformed
Hamiltonian H̅

HR Rk k k0 0| = | (15)

Equation 15 means that the kth excitation energy can be
obtained by the commutator of eq 2 acting on |Φ0⟩ (and not
|Ψ0⟩)

H R R, k k k0 0 0[ ]| = | (16)

Note that the Hamiltonian for the standard EOM-CC is the
similarity-transformed Hamiltonian H̅. The advantage of the
standard, single-reference EOM-CC compared to the general
case described in the previous section is that it satisfies the killer
condition by construction and that the secular equation of eq 8
becomes an eigenvalue problem

Mr rk k
k0= (17)

Because H̅ is non-Hermitian, its left eigenstates are not
Hermitian conjugates of its right eigenstates and need to be
found by solving the left eigenproblem (this additional step is
required for computing properties60 within the EOM frame-
work).

The quality of EOM-CC results depends on the quality of the
ground-state CC wavefunction. Because the CC equations are
derived by the projection technique, CC is not a variational
bound to the exact ground-state energy and can diverge in the
strongly correlated regime, when the single Slater determinant is
not a good approximation to the exact ground state. Variational
formulation of the CC theory solves the divergence problem61

but is impractical on classical computers because the resulting
equations do not truncate. Therefore, it is tempting to consider
variational implementation of the CC theory on a quantum
device, expecting efficient state preparation, but this is even
more challenging because the exponential ansatz of the CC
theory is nonunitary.

There exists a unitary version of the coupled-cluster theory,
UCC62

e eT T
0 UCC 0 0| = | = | = |

†

(18)

where T̂ is the cluster operator of eq 11 and T̂† is a particle−hole
deexcitation operator with respect to |Φ0⟩. This ansatz satisfies
the condition of unitary operator,U† =U−1, giving rise toUU† =
1

e e e e e( ) ( ) ( )T T T T 1= = = =† †† †

(19)

With the unitary ansatz, the energy of UCC ( UCC) is an upper
bound of the exact ground-state energy. The UCC theory results
in the Hermitian effective Hamiltonian e−σ̂Ĥeσ̂ ≡ H̃ (by using
tilde instead of a bar, we distinguish the UCC effective
Hamiltonian H̃ from the non-Hermitian H̅ of the standard CC
theory). The UCC formalism is Hermitian, variational, and size-
extensive; however, unlike H̅, the Baker−Campbell−Hausdorff
series of H̃ does not terminate naturally making it unfeasible for
classical computers. To overcome this problem, several
approximations to the UCC ansatz have been developed.63−65

Alternatively, the classically intractable UCC equations can be
efficiently implemented on quantum devices13 because Ĥeσ̂|Φ0⟩
can be transformed into a polynomial number of terms that act
on the initial qubit state through Trotterization66,67 and
Jordan−Wigner’s transformation,68 which can be simulated in
polynomial time69 on quantum devices.

Following earlier work,32,40 we use UCC as the ground-state
ansatz on top of which we build the EOM ansatz, giving rise to
EOM-UCC. Specifically, we derive and utilize the effective
Hamiltonian presented in ref 32 to develop the excited-state
algorithms for quantum solvers.

The unitary operator eσ̂ and the projection operator Ôk({Êμ}
or {Êμ}∪{Êμ

†}) do not commute. Therefore, EOM-UCC does
not satisfy the killer condition with the finite operator basis set.
The immediate negative consequence of violating the killer
condition is that the equality condition of eq 3 does not hold.
Mukherjee and co-workers proposed the so-called self-
consistent manifold {Ŝμ}∪{Ŝμ

†} in the UCC-based self-consistent
polarization propagator theory, which is a unitary trans-
formation of operator manifold of Ôk

37,39

S e E e= (20)

where Êμ are the original particle−hole excitation operators that
span the space of Ôk. The UCC amplitudes entering eσ̂ are
known from the ground-state UCC calculation. Adopting
{Ŝμ}∪{Ŝμ

†} instead of {Êμ}∪{Êμ
†} for eq 9, the matrix elements

M of eq 9 can be written as

M S H S

e E e H e E e

e e E e H e E e e

E e He E

E HE

, ,

, ,

, ,

0 0

0 0

0 0

0 0

0 0

= |[ ]|

= |[ ]|

= | [ ] |

= | |

= | |

†

†

†

†

†
(21)

The matrix elements Q and W of eq 9 become 0, and V becomes
I, giving rise to
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{
zzz

i
k
jjjjjj

y
{
zzzzzz* =

(22)

With self-consistent manifold operators, EOM-UCC satisfies
the killer condition and the equations can be cast in the form of
an eigenvalue equation, such as eq 17 of the EOM-CC method
but with the UCC effective Hamiltonian H̃.
II.III. Solving q-sc-EOM-UCCSD on Quantum Com-

puters Using a Davidson-Like Procedure. Similar to the
classical electronic structure calculations, the quantum self-
consistent equation-of-motion (q-sc-EOM) protocol computes
the ground state before solving the EOM problem by using the
variational quantum eigensolver (VQE)3,13,14,16,70,71 with the
choice of an appropriate ansatz, such as unitary coupled-cluster
(UCC)35 and Hardware-efficient ansatz.16 As discussed in the
previous section, we use the UCC ansatz with single and double
substitutions (q-sc-EOM-UCCSD)

T T T a a a a a a1
4ia

i
a

a i
ijab

ij
ab

a i b j1 2= + = +† † †

(23)

where {θ} represents the set of variational parameters (same as
the cluster amplitudes {t} in classical simulations). The ground-
state wavefunction in eqs 2−9 is replaced with the VQE-
UCCSD ground-state wavefunction. The ground-state VQE
minimizes the expectation value of the Hamiltonian with respect
to the variational parameters {θia, θijab}

H( , ) min ( , ) ( , )i
a

ij
ab

i
a

ij
ab

i
a

ij
ab

0
,

VQE VQE
i
a

ij
ab

= | |

(24)

In order to compute electronic excitation energies on
quantum devices, the q-sc-EOM ansatz is applied to the
ground-state VQE wavefunction (ground-state VQE circuit with
optimized parameters). q-sc-EOM measures the matrix
elements of H̃ of eq 21 on a quantum device and then solves
the eigenvalue problem of eq 22 on a classical computer.
Equations 21 and 22, which are the working equation of q-sc-
EOM, are the same as in the standard EOM-CC method except
for the form of the effective Hamiltonian. In the standard EOM-
CC calculation, we iteratively determine only a few eigenvalues
using the Davidson algorithm41−43 instead of explicit diagonal-
ization of the entire matrix M. Here, we present the
implementation of this idea within the q-sc-EOM method (we
focus on the standard Davidson algorithm for low-lying states,
but it can be extended to compute interior states or states of a
particular character44).

To compute J excited states, a minimum of J guess vectors are
required, but in practice L(>J) guess vectors are often used to
expand the span of the guess vector space. q-sc-EOM-UCC/
Davidson starts with generating a set of appropriate L
orthonormal guess vectors, {|bi⟩}i=1

L ≥ J. Then, we measure the
matrix elements of H̃ in the given guess vector space and build
the subspace Hamiltonian using a quantum device

H b H b U HU i j L, 1 ,ij i j i j
sub

0 0= | | = | |†
(25)

where Ûμ denotes unitary operators that transform |Φ0⟩ into the
qubit state |bμ⟩. Using a classical computer, we then diagonalize
the subspace Hamiltonian and obtain L approximate eigenvec-
tors and the corresponding eigenvalues

H c c k L, 1, ,k k ksub| = | = ··· (26)

where λk and |ck⟩ denote approximate kth eigenvalue and
eigenvector in the given guess vector space, respectively. We
then select J eigenvectors and the corresponding eigenvalues
from the obtained set of L vectors using appropriate criteria�
for example, in the most basic version in which the algorithm is
looking for J lowest states, the lowest-energy solutions are
selected (different vector selection schemes can be implemented
depending on the desired group of transitions44). These vectors
approximate the solutions and are used to evaluate the
convergence. As in the classical Davidson method, the
computed J eigenvectors are the linear combination of the
guess vectors

c c bk

i

L

i
k

i
1

| = |
= (27)

where cik denotes the expansion coefficient of ith guess vector for
the approximate kth eigenvector. At each iteration, the algorithm
computes the deviation of the approximate eigenvectors, |ck⟩,
from the true eigenvectors by computing the residual vectors

r H c c H b k J( ) ( ) , 1, ,k k k

i

L

i
k k

i
1

| = | = | = ···
=

(28)

As per eq 28, the residual vectors are zero for the true
eigenvectors. The convergence is assessed by the norm of
residual vectors, which also can be measured on quantum
devices. The residual vectors |rk⟩ are linear combinations of
excited Slater determinants. Thus, the evaluation of the norms of
residual vectors is equivalent to probing the composition of
residual vectors, i.e., measurements of overlaps between excited
Slater determinants and residual vectors

r rk
N

k

1

2= | | |
= (29)

Note that {cik}i=1,k=1
L,J , {λk}k=1J , and {bi}i=1L of eq 28 are already

known from the previous steps. Therefore, the q-sc-EOM-
UCC/Davidson only measures the overlap between Slater
determinants and σ-vectors ⟨Φμ|σi⟩. The final step of the q-sc-
EOM-UCC/Davidson algorithm is the orthonormalization of
the residual vectors to the current set of guess vectors and
expansion of the vector space with the (orthonormalized)
residuals. This can be done by the Gram−Schmidt procedure72

on classical computers

b r r b bk
k

i

k
k

i i
1

1

| = | | |
= (30)

b
b

b bk
k

k k

corr| = |
| (31)

where |bkcorr⟩ denotes the correction vector for the kth state.
Finally, the correction vectors are added to the guess vector
space. The algorithm repeats steps 25−31 until convergence is
reached. The guess vector space is expanded at each iteration by
including the maximum of J correction vectors.
II.IV. Gray Code Decomposition. The ground state is the

lowest-energy eigenstate. The existing state preparation
schemes, such as UCCSD35 and hardware-efficient ansatz,16

are designed to effectively search the Hilbert space of a quantum
system. They are commonly used to provide trial wavefunctions
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in the VQE method for searching the ground state. Excited-state
preparation schemes require additional features compared to
those of the ground state. For example, the excited-state ansatz
should be capable of producing particular electronic config-
urations out of the entire Hilbert space (e.g., singlet-coupled
HOMO−LUMO excitation). In addition, the ansatz should be
able to easily adjust the components of a desired quantum state.
Consider, for instance, the H2/6-31G example for which the

number of all possible electronic configurations is ( )8
2 . To

compute the S1 state (at 1 Å bondlength), we need to prepare
the superposition of two singly excited configurations
(excitation from σ to σ* with respect to the reference vacuum
state |11000000⟩) with the equal weights as an initial guess
vector |b1⟩. In the qubit representation, the initial guess vector is

b
1
2

( 01100000 10010000 )1| = | |
(32)

where |0⟩ and |1⟩ represent unoccupied and occupied spin-
orbitals, respectively. Here, we map the spin-orbitals onto the
qubits in the left-to-right order, such that the lowest-energy
orbitals are at the left most, to be consistent with our
implementation using the OpenFermion platform.73,74 α spin-
orbitals (|↑⟩) are mapped onto the even-numbered qubits
(0th,2nd,...) and β spin-orbitals (|↓⟩) are mapped onto the odd-
numbered qubits (1st,3rd,...). Figure 1 shows the electronic

configuration of |b1⟩ of eq 32. The first iteration of the Davidson
algorithm results in the correction vector

b 0.6506( 00000110 00000110 ) 0.2369

( 00011000 00100100 ) 0.1434( 01000010

10000001 )

2| = | | +
| | + |

| (33)

As per eqs 32 and 33, one needs to design unitary operations that
transform an arbitrary qubit state 0i

n
0
1|= into a particular

superposition state, i.e., the quantum state consisting of
particular excited Slater determinants. In addition, the relative
phases between the determinants should be easily adjustable
within the reduced Hilbert space.

In order to demonstrate the general state preparation
algorithm for the q-sc-EOM-UCC/Davidson method, we
consider a simple example�two particles in four spin-
orbitals�for which the subspace is spanned by six electronic
configurations, {|1100⟩, |0110⟩, |1001⟩, |0101⟩, |1010⟩, |0011⟩}.
Considering excitations that conserve spin projection (Δms = 0),
one needs unitary operators that transform the initial reference
qubit state (typically, the Hartree−Fock determinant, |1100⟩)
into the superposition of four particular electronic config-
urations with a set of controllable parameters

U U U( ) ( ) ( ) 1100 cos
2

cos
2

cos
2

1100

sin
2

0110 cos
2

sin
2

1001

cos
2

cos
2

sin
2

0011

3 2 1
1 2 3

1 1 2

1 2 3

| = |

+ | + |

+ |
(34)

Equation 34 implies that the successive operations of U(θ1),
U(θ2), and U(θ3) on the reference state generate a particular
target determinant at each operation. In addition, adjustable

parameters are introduced to both reference |1100⟩( )cos
2

i and

target configurations ( )sin
2

i . This parameterization scheme

ensures normalization of the resulting qubit state and facilitates
the incorporation of spin symmetries. For example, a triplet
excited state can be generated only with U(θ1) and U(θ2) with
the specific values of θ1 and θ2

U U( ) (
2

) 1100
1
2

( 1001 0110 )2 1= = | = | + |

(35)

A singlet excited state with only singly excited determinants can
be generated in a similar fashion

U U( ) (
2

) 1100
1
2

( 1001 0110 )2 1= = | = | |

(36)

To construct a quantum circuit for this task, we utilize the
Gray code decomposition,45,46 which allows one to connect two
arbitrary qubit states by sequential bit flips. An example of the
Gray code quantum circuit that generates the qubit state of eq 34
is shown in Figure 2. The process of populating a desired

Figure 1. Electronic configuration of the initial guess vector of eq 32.

Figure 2. 4-Qubit quantum circuit that generates a superposition state of eq 34 using the Gray code decomposition. Initially applied Pauli-X (NOT)
gates transform the vacuum state into the two-particle subspace. Each dashed box represents unitary operation U(θ) shown in eq 34. The first two
blocks induce single excitation and the last performs double excitation with respect to the reference vacuum |1100⟩ to generate |0110⟩, |1001⟩, and
|0011⟩, respectively. Each Ry(θ) gives rise to the

2
amplitude. For the triplet subspace of eq 35, the third block is not needed.
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quantum state starts with the transformation of the initial qubit
state 0i

n
0
1|= into N-particle subspace, where n and N

correspond to the number of qubits and particles in the system
of interest. Next, one designs unitary operators using the Gray
code decomposition as shown in the example quantum circuit of
Figure 2. Each box in Figure 2 denotes a unitary operationU(θi)
constructed using Gray code decomposition to populate the
target state from the reference qubit state. Similar to the classical
electronic structure procedure, the quantum circuit of U(θi)
performs the action of creation and annihilation operators on
the reference state introducing an expansion coefficient. Here,
we generalize the structure of U(θi) with 2(2M − 1) number of
multiqubit controlled-NOT gates and one multiqubit con-
trolled-Ry(θi) gate. In total, 4M − 1 multiqubit controlled gates
are applied, where M represents the level of excitations such as
singles, doubles, etc. The first 2M − 1 multiqubit controlled-
NOT gates create M holes and M − 1 particles with respect to
the reference qubit state. The subsequent multiqubit controlled-
Ry(θi) creates an additional particle to the state (completion of
MhMp excitation) as well as introduces the parameters to the

reference ( )cos
2

i and target excited determinant ( )sin
2

i . The

Gray code for the single unitary operation is completed by the
same 2M − 1 multiqubit controlled-NOT gates, but in the
reversed order. It should be mentioned that the target electronic
configurations do not have to be populated from the fixed
reference state. For example, the doubly excited determinant of
eq 34 can be created from one of the singly excited determinants
giving rise to different parameterizations

U U U( ) ( ) ( ) 1100

cos
2

cos
2

1100 sin
2

cos
2

0110

cos
2

sin
2

1001 sin
2

sin
2

0011

3 2 1
1 2 1 3

1 2 1 3

|

= | + |

+ | + |
(37)

whereU(θ1) and U(θ2) are the same operators demonstrated in
eq 34 and the doubly excited configuration |0011⟩ is generated
by applying the single excitation operator U′(θ3) to the
configuration |0110⟩. The quantum circuit that generates the
quantum state of eq 37 is shown in Figure 3. An arbitrary
quantum superposition state can be generated using only single
excitation operators using the Gray code scheme resulting in a
smaller number of multiqubit controlled-NOT gates than the
aforementioned scheme. We decompose the quantum circuits of
Figures 2 and 3 into the elementary single and two-qubit gates
using the IBM Qiskit software.75 The gate decompositions result
in 316 generic single-qubit rotation gates and 200 CNOT gates

for the quantum circuit of Figure 2. Alternatively, the quantum
circuit of Figure 3 requires 224 generic single-qubit rotation and
144 CNOT gates. As can be seen from the numerical gate
counts, the Gray code scheme with only single excitations yields
a compact quantum circuit. In this paper, however, we employ
the fixed reference scheme to facilitate the generalization of
circuit constructions.

The q-sc-EOM-UCC/Davidson protocol needs quantum
devices to measure the matrix elements of H̃ and the norm of
residual vectors, as per eqs 25 and 29. This contains a large
number of off-diagonal element measurements, ⟨bi|H̃|bj⟩i ≠j and
⟨Φμ|H̃|bi⟩, which usually require an ancilla qubit, in addition to
the diagonal elements,76−79 ⟨bi|H̃|bi⟩. Note that ⟨bi|H̃|bj⟩=
⟨Φ0 |Ûi

† H̃Ûj |Φ0⟩ and ⟨Φμ|H̃|bi⟩= ⟨Φ0 |Êμ
†H̃Ûj |Φ0⟩, where Ûi and

Êμ are the unitary operators that transform the reference qubit
state |Φ0⟩ into the guess vector (linear combination of excited
Slater determinants) and excited configuration, respectively.
Using the Gray code state preparation scheme, we can measure
the off-diagonal elements without adding an ancilla qubit20,40

because we can directly construct unitary operators that connect
|bi⟩ and |bj⟩ (or |Φμ⟩) states

V b b

V HV b H b b H b b H b

1
2

( )

1
2

1
2

ij i j

ij ij i j i i j j i j

0

0 0

| = | + |

| | = | | + | | + | |†

(38)

where V̂ij denotes unitary operators that connect arbitrary |bi⟩
and |bj⟩. We distinguish it from Ûi, where unitary operators
generate arbitrary |bi⟩. Hence, we can extract the off-diagonal
element ⟨bi|H̃|bj⟩i ≠j by subtracting eq 38 by diagonal elements of
H̃

b H b V HV U HU

U HU

2

2

i j i j ij ij i i

j j

0 0 0 0

0 0

| | = | | | |

| |

† †

†
(39)

The three terms on the right-hand side of eq 39 can be measured
on quantum devices without adding ancilla qubits. The sketch of
the quantum circuit for measuring matrix elements of H̃ and the
flowchart of the q-sc-EOM-UCC/Davidson algorithm are
shown in Figures 4 and 5.
II.V. Variational Implementation of q-sc-EOM-UCC/

Davidson. The q-sc-EOM-UCC/Davidson algorithm utilizes
classical computers to diagonalize H̃sub and orthogonalized
residual vectors by the Gram−Schmidt procedure. The
variational implementation of q-sc-EOM-UCC/Davidson re-

Figure 3. 4-Qubit quantum circuit that generates a superposition state of eq 37 using the Gray code decomposition. The first two blocks induce single
excitations with respect to the reference state, |1100⟩. The last block performs single excitation with respect to the configuration |0110⟩ to generate
|0011⟩.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.3c02480
J. Phys. Chem. A 2023, 127, 6552−6566

6558

https://pubs.acs.org/doi/10.1021/acs.jpca.3c02480?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c02480?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c02480?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c02480?fig=fig3&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.3c02480?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


duces the requirements for both quantum and classical
resources. This is achieved by replacing the Gram−Schmidt
step and the matrix element measurements step with the
expectation-value calculation of H̃. At each iteration, the
Davidson algorithm grows the guess vector space and
subsequently diagonalizes H̃ in the updated space. As per eqs
26 and 27, the resulting solution is a linear combination of the
guess vectors within the current vector space. Note that the
individual guess vectors are a linear combination of excited
Slater determinants that are expected to contribute to the
current target states, i.e., the solution of an arbitrary kth state in
eq 27 can be rewritten as

c c b c ck

i

L

i
k

i
i

L

i
k i i

i

L

i
k i i

k

1 1 1

| = | = | = |

= |
= = =

(40)

where μ represents a set of indices for occupied and virtual spin-
orbitals. The state vector |Φμ

i ⟩ with the corresponding coefficient
βμ
i denotes the excited Slater determinant (the building block of

the guess vector |bi⟩). This implies that the problem is to find the
optimal linear combination of excited Slater determinants,
which yields the minimum expectation value of the Hamiltonian.

Considering the Davidson method,41−43 the particular set of
{|Φμ⟩} can be obtained by examining the residual vectors.
Hence, one needs to construct the quantum circuit that
generates an arbitrary vector subspace where {|Φμ⟩} spans,
and introduce the corresponding {γμ

k} as variational parameters
to find a kth state. Since the number of state vectors (= the
number of variational parameters) that construct the vector
subspace is considerably smaller than that of the entire Hilbert
space, the variational approach with the Davidson formalism
helps to circumvent the barren plateaus phenomenon.80

In practical applications, we need to preserve the spin
symmetry and ensure the orthonormality between the
eigenstates of the Hamiltonian in the course of the minimization
process. To achieve this, we generalize the spin-restricted form
of the Gray code circuit with minor modifications of the scheme
introduced in the previous section. To illustrate this, let us
examine the H2/STO-3G system, which corresponds to eq 34,
and try to find the S1 state variationally. The Gray code scheme
for the nonvariational approach in the previous section creates
the desired quantum superposition by connecting the fixed
reference state with the target excited Slater determinant at a
time. In this way, one introduces parameters to both the
reference and target configurations at each operation. There is
no direct connection between the excited configurations, which
have to be spin-adapted, e.g., between |0110⟩ and |1001⟩ of eq
34. As a result, the variational process with this circuit
construction never produces an S1 state as the solution because
the T1 state is always lower than S1 in H2/STO-3G.
Furthermore, the variational solution is not necessarily spin
pure. Here, we generalize the spin-restricted scheme by “direct
connection” between configurations, which have to be spin-
adapted. “Direct connection” implies, for example, the
configuration |1001⟩ of eq 34 is populated by |0110⟩ not by
the fixed reference |1100⟩ (or vice versa)

Figure 4. Sketch of quantum circuit for measuring the matrix element of
H̃. n and m denote the number of occupied and virtual orbitals, i.e., n +
m corresponds to the total number of required qubits. Initially applied
Pauli-X (NOT) gates transform the vacuum state into the reference
vacuum state, |Φ0⟩(n-particle subspace). The first dashed box (Ui(θ) or
Vij(θ)) represents unitary operators that transform |Φ0⟩ into |bi⟩ or |bi⟩+
|bj⟩. The subsequent operators represent ground-state UCCSD ansatz
and molecular Hamiltonian giving rise to the UCCSD Hamiltonian, H̃.

Figure 5. Sketch of the q-sc-EOM-UCC/Davidson algorithm. “QC” and “CC” refer to the quantum computer and classical computer, respectively.
{|Φp···

r··· ⟩} and {Ap···
r··· } represent excited Slater determinants and their degrees of overlap with residual vector {|Γk⟩}. Orbital indices p,q,r,s,... refer to spatial

orbitals.
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where U(θ1) and U(θ3) connect |1100⟩ with |0110⟩ and |0011⟩.
In contrast, U(θ2) is applied for |0110⟩ (not |1100⟩) to create
|1001⟩. By setting 2 2

= and θ3 = π, one can create variational
ansatz that spans only the excited singlet subspace

( ) sin
2

0110 1001
2

cos
2

00111
1 1i

k
jjj y

{
zzz| = | | + |

(42)

As can be seen from eq 42, the parameters for the spin-adapted
configurations are not treated variationally. Depending upon the
desired spin state, the algorithm employs

2
for the positive and

2
for the negative combinations.

To ensure the orthonormality of the eigenstates of H̃, we use
the VQD method,19 the extension of VQE to compute the kth
excited state by minimizing the following cost function

F H

W

( ) ( ) ( )

( ) ( )

k k k

i

k

i k i
0

1
2

{ } = { } | | { }

+ | { } | { } |
= (43)

where {θk} represents the set of variational parameters
optimized to obtain the minimum Ek. {θi} is the set of
variational parameters that is already determined for the state
|Ψi⟩i∈0,···,k−1. {Wi} is the set of sufficiently large real-valued
coefficients. Hence, the minimization of F({θk}) means to
minimize the Ek with the constraint that |Ψ({θk}) is orthogonal

to the states |Ψ0⟩,···,|Ψk−1⟩. In the q-sc-EOM-UCC/Davidson/
Variational algorithm, we include a single set of spin-adapted
determinants into the ansatz at a time, similar to the ADAPT
algorithm for the ground state.81 The determinants are selected
based on the overlaps between the residual vector and the
excited Slater determinants, as per eq 29. The algorithm repeats
until the norm of the residual vector satisfies the set convergence
criteria. Figure 6 shows the flowchart of the q-sc-EOM-UCC/
Davidson/Variational algorithm.
II.VI. Computational Details. Following ref 32, we use the

acronym q-sc-EOM-UCC/Davidson(/Variational) to distin-
guish it from standard EOM-CC. All simulations were
performed using the OpenFermion−Q-Chem interface.74 The
source code and data used in this work are available on github.82

One-electron and two-electron integrals are computed using the
Q-Chem83 electronic structure package. The Jordan−Wigner
transformation68 is carried out to convert the fermionic
operators into qubit representation using the OpenFermion
package.73 q-sc-EOM-UCC/Davidson(/Variational) begins
after ground-state VQE. The ground-state energy and wave-
function are obtained using the ADAPT-VQE method with the
generalized singles and doubles (GSD) operator pool.81,84

Wavefunction optimization is carried out via the Broyden−
Fletcher−Goldfarb−Shannon (BFGS) implemented in Scipy
package85 with the gradient convergence criterion of 10−3.
Quantum circuits for the excited-state calculations are
constructed using Cirq python library.86 The convergence
threshold (the norm of the residual vectors) was 10−3. The pool
of the excited Slater determinants is restricted to the singles and
doubles. For the variational approach, {Wi} of eq 43 is set to 10.0
Eh for all excited states. Likewise the ground-state calculation,
the BFGS optimizer is employed to minimize the cost function
of eq 43. To validate the performance and accuracy of the
suggested algorithms, a classical state-vector type of simulator is
used for all ground and excited-state calculations where the exact
unitary operations (noise-free) are applied to the wavefunction.

Figure 6. Sketch of the variational extension of the q-sc-EOM-UCC/Davidson algorithm in which matrix element measurement, diagonalization, and
Gram−Schmidt procedures are replaced by expectation-value calculations on quantum devices. To guarantee orthogonal eigenstates, the VDQ
algorithm is implemented. Orbital indices p,q,r,s,... refer to spatial orbitals; the overbar denotes β spin and orbital indices without overbars denote α
spin.
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The q-sc-EOM-UCCSD/Davidson calculation begins by
defining appropriate initial guess vectors. Similar to the standard
EOM-CC, we define the initial guess vectors based on the
diagonal elements of the UCCSD Hamiltonian H̃. Considering
H2/6-31G at 1.0 Å bondlength, σ to σ* transitions (HOMO to
LUMO) give rise to the lowest-energy difference. Two
configurations are degenerate in energy, such that the equal
superposition of two determinants is chosen for the first
excitation energy computation. The relative phase between two
configurations is appropriately adjusted depending on the spin
symmetry. For the S2 state, the next lowest diagonal elements are
considered, namely, double excitation involving (σα,σβ) to
(σα*,σ*β). All computations follow the same procedure of
generating the initial guesses except for the singlet calculations
of H4/STO-3G system and some triplet calculations of H2O/
STO-3G system. The initial guess vectors for the case of
exceptions are collected in Table 1.

III. RESULTS AND DISCUSSION
III.I. Resource Requirements. We begin by discussing the

computational complexities of the q-sc-EOM algorithm. The q-
sc-EOM method utilizes both classical and quantum devices to
compute molecular excitation energies. The number of matrix
elements that need to be measured on quantum computers and
the dimension of the matrix that needs to be diagonalized on
classical computers depend on the level of correlation treatment
and the one-electron basis set used. When restricting the
excitation levels to singles and doubles, the quantum computer
needs to measure approximately n n( )occ

4
vir
4 matrix elements,

where nocc and nvir represent the number of occupied and virtual
spin-orbitals, respectively. Consequently, the overall scaling of
quantum shots required to measure the matrix elements of M is
approximately n n( )4

occ
4

vir
4 , where η denotes the total number

of spin-orbitals (qubits), nocc + nvir. Additionally, the classical
computer needs to diagonalize the matrix M, which scales as

n n( )occ
6

vir
6 , because the dimension of M scales as n n( )occ

2
vir
2 .

While utilizing the sparsity and symmetries of the Hamiltonian
can significantly reduce the overall shot scaling and the
dimension of matrix M, the scaling quickly becomes intractable
as the system size increases.

The implementation of the Davidson method affords
significant reductions in both quantum and classical complex-
ities. Specifically, there are two distinct quantum measurement
steps involved: the measurement of the matrix elements of M
and the measurement of the residual vectors. By restricting the
excitation level to singles and doubles, the quantum computer

needs to measure the overlaps between excited Slater
determinants and the residual vectors, which scales as

n n( )occ
2

vir
2 . Consequently, the overall shot scaling for these

measurements is approximately n n( )4
occ
2

vir
2 . Moreover, the

overall shot scaling to construct the matrix M is L( )4 2 , as we
only need to measure the matrix elements within the guess
vector subspace instead of all singly and doubly excited
determinants. Hence, the primary contribution to the quantum
complexities arises from the computations involving the residual
vectors. However, with the Davidson method, the dimension of
the subspace matrix M is much smaller than that of the full
Hamiltonian H̃, specifically L ≪ nocc

2 nvir
2 . As a result, the

diagonalization step has a computational cost of L( )3 , which is
affordable. The Gram−Schmidt procedure determines the cost,
which scales as n n L( )occ

2
vir
2 2 . Even this scaling can be further

reduced by considering the sparsity and symmetries of the
Hamiltonian. In the case of Variational implementation, the
classical complexities are not relevant. The primary quantum
complexities lie in the measurement of the residual vectors, with
an overall shot scaling of approximately n n( )4

occ
2

vir
2 .

III.II. Examples. To illustrate the new algorithms, we
consider excited states of four small molecules: H2/6-31G,
H4/STO-3G, LiH/STO-3G, and H2O/STO-3G. In H2O
calculations, we use the frozen-core (FC) approximation. The
number of qubits for H2, H4, LiH, and H2O systems are 8, 8, 12,
and 12, respectively. Note that the UCCSD Hamiltonian used in
this paper is the same Hamiltonian in the q-sc-EOM approach,40

and, therefore, Davidson implementation should yield the
identical results. The advantage of the Davidson method is the
reduction of the full Hilbert space into a subspace defined by the
type and number of target states. Moreover, the q-sc-EOM-
UCCSD/Davidson(/Variational) preserves symmetries, i.e., the
Davidson routine yields only singlet states if one starts the
calculation with the singlet initial guess vectors (subject to
numeric noise). Hence, the q-sc-EOM-UCCSD/Davidson(/
Variational) computes singlets and triplets separately instead of
producing all spin states in one calculation.

Figure 7 shows the potential energy curves of the excited
states of four molecules obtained from the q-sc-EOM-UCCSD/
Davidson (solid circles) and its variational variant (empty
squares) as a function of the bondlengths. The corresponding
FCI and q-sc-EOM energies are shown as dashed lines and solid
crosses. The absolute errors of the q-sc-EOM-UCCSD/
Davidson, Variational, and q-sc-EOM against FCI are shown
in the subgraph on top of each panel. The excited states shown in
Figure 7 are the four (H2, LiH, and H2O) and five (H4) lowest-
lying excited states for the FCI and q-sc-EOM in the singles and
doubles (SD) subspace. In the case of q-sc-EOM-UCCSD/
Davidson and Variational, singlet and triplet states are computed
separately. As shown in Figure 7, the q-sc-EOM-UCCSD/
Davidson and its variational variant reproduce the q-sc-EOM
excitation energies for all systems. The excitation energies for
H2/6-31G are identical to the FCI results, showing absolute
errors less than 10−5 mEh because the SD level of theory recovers
FCI regime for the two-electron systems. The new algorithms
also produce nearly exact excitation energies for the LiH/STO-
3G system, with errors within the shaded region (MAX(error)
∼0.17 and ∼0.30 mEh for the nonvariational and variational
variants, respectively). Figure 7b,d clearly shows that the errors
in excitation energies exceed the target accuracy, 1.6 mEh, for
H4/STO-3G and H2O/STO-3G at certain internuclear

Table 1. Initial Guess Vectors for Exceptionsa

molecule ⟨S2⟩ r (Å) target state initial guess vector

H4/STO-3G 0.0 1.8−2.4 S1 |Φ23
45⟩

S2 ( )1
2 3

5
2
4| |

S3 ( )1
2 3

7
2
6| |

H2O/STO-3G 2.0

0.9
T1 ( )1

2 6
8

7
9| + |

T2 ( )1
2 4

8
5
9| + |

1.5−1.6
T1 ( )1

2 4
8

5
9| + |

T2 ( )1
2 6

8
7
9| + |

aQubit index starts from 0.
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distances due to the strong electron correlation�it is well
known that triple and higher excitations are significant in the
bond-breaking regime.87 In the case of the H4/STO-3G system,
one needs to take into account triple excitations for T1, T2, S2,
and S3 states. In addition, even quadruple level of excitations
(FCI level) need to be considered to achieve the target accuracy
for S1 in H4/STO-3G. In this regard, the H4/STO-3G and H2O/
STO-3G examples illustrate the advantage of using the Davidson

algorithm within q-sc-EOM-UCCSD. Both qEOM32 and q-sc-
EOM40 diagonalize the entire Hamiltonian within the chosen
excitation space�hence, the dimension of the matrix (size of
Hilbert space) to diagonalize increases from 26 × 26 (SD) to 35
× 35 (SDTQ) for H4/STO-3G and and 92 × 92 (SD) to 188 ×
188 (SDT) for H2O/STO-3G/FC. However, the Davidson
algorithm allows one to work with a much smaller subspace,
yielding the electronic configurations that are expected to

Figure 7. Excitation energies (singlet S and triplet T) for (a) H2, (b) H4, (c) LiH, and (d) H2O as a function of bondlength. The errors with respect to
the FCI results are shown in the upper panel, where the shaded region indicates errors below the chemical accuracy of 1 kcal/mol ∼1.6 mEh.
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recover the electronic correlations of the current excited state.
That is, the dimension of the working space remains within a
practical regime for classical computers. The numerical example
of H4/STO-3G with SDTQ level of excitations is shown in
Figure 8.

Although the dimension of the working space does not grow
significantly with the Davidson method, the increase in the level
of excitations leads to the increase in the number of projections
to be measured in the residual vector calculations of eq 29 (and
individual projection should be done with multiple quantum
measurements). For example, in the singles and doubles
subspace, the number of projections is 26. This number
increases to 35 once the quadruple excitations are included.
However, quantum measurement processes can be executed in
parallel, as shown in the flowcharts in Figures 5 and 6. As long as
the scaling for the projection evaluation is not that burdensome,
it is a huge advantage.

IV. SUMMARY AND CONCLUSIONS
In this contribution, we discussed the adaptation of the
Davidson algorithm to quantum algorithms and presented its
implementation within the quantum version of EOM-CC for
computing electronically excited states. We tested the method,
named q-sc-EOM-UCCSD/Davidson and q-sc-EOM-UCCSD/
Davidson/Variational, on four systems: H2/6-31G, H4/STO-
3G, LiH/STO-3G, and H2O/STO-3G(FC). The results agree
well with the energies obtained from q-sc-EOM.40

The Davidson implementation of the q-sc-EOM-UCCSD
algorithm provides the advantage over qEOM and q-sc-EOM by
reducing the working Hilbert space significantly. The classic
Davidson method iteratively interacts with the outcome from
the quantum devices and provides feedback for growing the
ansatz (vector space) to prepare the desired quantum states. The
implementation provides several advantages compared to the

currently available excited-state methods in quantum comput-
ing. First, q-sc-EOM-UCCSD/Davidson significantly reduces
the computational demand for the classical diagonalization step
because the dimension of the resulting subspace Hamiltonian
only spanned by a few guess vectors. In the case of its variational
variant, the Davidson algorithm provides certain electronic
configurations that are expected to contribute to the target
excited states. Therefore, it employs a significantly smaller
number of variational parameters resulting in a significantly
reduced searching space. In addition, similar to the classical
variant, the presented Davidson algorithm produces the excited
state of the desired spatial or spin symmetry (in the case of the
closed-shell references). The q-sc-EOM-UCCSD/Davidson can
target the specific group of transitions by defining suitable
subspace vectors and can be extended to target higher-energy
states or specific transitions.44 Apart from the advantages of
using the Davidson implementation, the q-sc-EOM-UCCSD
shares the key features with the classical EOM-CCSD method
except for the form of effective Hamiltonian, such that the
different types of excitation variants, such as EA, IP, and SF, can
be implemented.

The current NISQ devices are noisy and prohibitively costly
in terms of scaling up. They are far from achieving quantum
supremacy for quantum-chemistry applications. Hence, efforts
have been focused on developing efficient quantum algorithms
that combine classical and quantum algorithms, with the hope to
gain an advantage, or perhaps just a minor benefit, by leveraging
the two technologies. In order to make such hybrid calculations
practical, it is essential to reduce the resource requirements for
both classical and quantum devices. The essential feature of the
Davidson algorithm is the ability to encode a specific linear
combination of Slater determinants. To achieve this goal, we
used multiqubit controlled gates giving rise to numerous CNOT
gates by gate decomposition. Our future work will aim at an

Figure 8.Changes in the dimension of the working pace and the errors with respect to the FCI for (a) H4 with SDTQ and (b) H2O with SDT where the
shaded region indicates errors below the chemical accuracy of 1 kcal/mol ∼1.6 mEh.
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efficient circuit design to reduce the circuit depth and the
number of CNOT gates without compromising the stability and
accuracy of q-sc-EOM-UCCSD/Davidson and q-sc-EOM-
UCCSD/Davidson/Variational.
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