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1. O(N) (vs. conventional O(N3)) eigensolver
2. Krylov subspace



Rayleigh Quotient
Theorem
 Let A be an n´n real symmetric matrix,  l1[A] ≤ … ≤ ln[A] its eigenvalues in 

ascending order, x Î Rn, & the Rayleigh quotient

           then

Proof
 Let q(k) be the k-th orthonormalized eigenvector of A, 𝐀𝐪! = 𝜆!𝐪! , &
 orthogonal transformation matrix, 𝐐 = [𝐪" , 𝐪# , … , 𝐪$], then

Let x = Qz (note QTQ = I), then

 which is a weighted average of l1, …, ln, & the minimum is when zT = 
(1,0,…,0) = e1 & x = Qe1 = q1.  

𝜌(𝐱; 𝐀) =
𝐱%𝐀𝐱
𝐱%𝐱 .
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Rayleigh-Ritz Procedure
Theorem

 Let {q1,…,qm} (qj Î Rn; j = 1,...,m; m < n) be an orthonormal set, so that any 
vector x Î Rn in the range is expressed as a linear combination of q1,…,qm:

           or

 then the best approximations for l1[A] & ln[A] are obtained by 
diagonalizing

 as l1[H] & lm[H].

Proof
 Note (𝐐%𝐐))*= ∑!+"$ 𝑄!)𝑄!* = 𝐪) • 𝐪* = 𝛿)*

 then

 the minimum of which is l1[H] (cf. proof in the previous page). 

𝐱 = 𝑧"𝐪" + ⋯+ 𝑧,𝐪,

1

𝑛
𝑥"
⋮
𝑥$
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𝑚

𝑛 𝐪" ⋯ 𝐪,

1
𝑧"
⋮
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𝑚 = 𝐐𝐳
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=
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=
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𝐱	 ∈	rank-m subspace ⊂ 	𝐑!  



Orthogonalization by QR Decomposition
• Gram-Schmidt orthonormalization: The orthonormal set Q required for the 

Rayleigh-Ritz procedure is obtained starting from an arbitrary set of m vectors, S = 
[s1…sm] (sj Î Rn) as (see supplementary note): 

• The Gram-Schmidt procedure amounts to QR decomposition, S = QR, where R is an 
m´m right-triangle matrix: 

Project out!
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cf. QR decomposition
𝐴 = 𝑄

∴ 𝐬' = 𝐪'( 𝐪' +.
)*+

',+

𝐪) 𝐪) • 𝐬'

• For higher parallelization, Cholesky decomposition (BLAS3) is used instead
 https://aiichironakano.github.io/phys516/Cholesky.pdf Hasegawa et al., SC (’11)

https://aiichironakano.github.io/phys516/LanczosSuppl.pdf
https://aiichironakano.github.io/phys516/Cholesky.pdf


Rayleigh-Ritz Algorithm

1. Start from S = [s1…sm] (sj Î Rn) & do Gram-Schmidt orthonormalization, 
S = QR, to obtain an orthonormal set Q = [q1…qm]

2. Form H = QTAQ

3. Diagonalize H to get l1[H],…,lm[H]: 𝐇𝐠! = 𝜆! 𝐇 𝐠! 	(𝑘 = 1, … ,𝑚) 

4. Approximations of  l1[A] & ln[A] are given by l1[H] & lm[H] with the 
corresponding eigenvectors, yk = Qgk (k = 1 & m). 

* 𝐐𝐐% ≠ 𝐈$×$ 	but spans a subspace of the n-dimensional space
cf. 𝐐"𝐐 ≠ 𝐈#×#  — orthonormal in Rm subspace but not complete in total Rn space

𝐐%𝐀𝐐
𝐇

𝐠! = 𝜆! 𝐇 𝐠!
∗ ↓ 𝐐×

𝐀K𝐐𝐠!
8𝒌

≅ 𝜆! 𝐇 K𝐐𝐠!
𝐲𝒌

Davidson method augments the vector subspace by residual, 𝐫% = 𝐀𝐲% − 𝜆%  𝐲𝐤.

See Tkachenko et al., Quant. Sci. Tech. 9, 035012 (’24)

https://drive.google.com/drive/folders/1SWAZ_inf6dH0A1uyVL5hFGUfDkbH5RMQ


Krylov Subspace
• Krylov subspace Sm is spanned by a Krylov matrix, Km(f) = [f Af … Am-1f]     

(f Î Rn)
Theorem
 Let Qm be the orthonormal basis obtained by QR factorization, Km(f) = 

QmR, then Tm = Qm
TAQm is a tridiagonal matrix

Proof (see supplementary note)
 For i > j+1, qiT(Aqj) = 0, since Aqj Ì Sj+1 by construction & qi ^ Sj+1 by 

Gram-Schmidt orthonormalization for i > j+1.  By the symmetry of A, 
qiT(Aqj) = qjT(ATqi) = qjT(Aqi) = 0 for j > i+1 or i < j-1.

Alexei Krylov with daughter Anna, 
later Anna Kapitsa, wife of Pyotr 
Kapitsa (1904)

• Tridiagonal matrix can be diagonalized in O(N) time
 cf. tqli() in Numerical Recipes

𝐓, =

𝛼" 𝛽"
𝛽" 𝛼# 𝛽#

⋱ ⋱ ⋱
𝛽,:# 𝛼,:" 𝛽,:"

𝛽,:" 𝛼,

.
𝛼* = 𝐪*%𝐀𝐪* 𝑗 = 1, … ,𝑚

𝛽* = 𝐪*;"% 𝐀𝐪* 𝑗 = 1, … ,𝑚 − 1

https://aiichironakano.github.io/phys516/LanczosSuppl.pdf


Recursion Formula
• Due to the tridiagonality, Aqi is a linear combination of qi-1, qi & qi+1:

 If we define q0 = 0, the above equation is valid for i = 1 as well.  Let ri º 
biqi+1 (ri is a component of Aqi orthogonal to qj for j ≤ i), then

• Lanczos algorithm:

Keep increasing m until l1[Tm] converges

𝐀𝐪) = 𝛽):"𝐪):" + 𝛼)𝐪)+𝛽)𝐪);" 2 ≤ 𝑖 ≤ 𝑚 − 1

𝐫) = 𝐀𝐪)−𝛽):"𝐪):" − 𝛼)𝐪) 1 ≤ 𝑖 ≤ 𝑚 − 1
𝐀𝐪)=𝛽):"𝐪):" + 𝛼)𝐪) + 𝛽)𝐪);" 2 ≤ 𝑖 ≤ 𝑚 − 1

Given 𝐫< , 𝛽< = 𝐫< 𝐪< = 0
for 𝑖 = 1, … ,𝑚
 𝐪) ← 𝐫):"/𝛽):"
 𝐫) ← 𝐀𝐪) − 𝛽):"𝐪):"
 𝛼' ← 𝐪'"𝐫' 	 ∵ 𝐪'" 𝐀𝐪' − 𝛽'()𝐪'() = 𝐪'"𝐀𝐪'= 𝛼'  (orthogonality)
 𝐫' ← 𝐫' − 𝛼'𝐪'
 𝛽) = 𝐫)  (only when 𝑖 ≤ 𝑚 − 1)   𝛽' = 𝐪'*)" 𝐀𝐪'
endfor



Application of Rayleigh-Ritz/Lanczos
• Search for transition states (with a negative eigenvalue of the Hessian 

matrix, ¶2E/¶ri¶rj)  by following the eigenvector with the smallest eigenvalue
 —Rayleigh-Ritz: Kumeda, Wales & Munro, Chem. Phys. Lett. 341, 185 (’01) 
 —Lanczos: Mousseau et al., J. Mol. Graph. Model. 19, 78 (’01) 

Figure from Prof. H. B. Schlegel; http://chem.wayne.edu/schlegel



Lanczos Algorithm for Hessian Calculation 

tqli() — O(N)

�⃗� 𝑅 + 𝑄 = �⃗� 𝑅 + ⁄𝜕�⃗� 𝜕𝑅
(+(-)

• 𝑄
∴ 𝐻 𝑅 • 𝑄 = −�⃗� 𝑅 + 𝑄 + �⃗� 𝑅



Sample Run of Lanczos Program  



Electronic Energy Bands of GaAs

C. Pryor, Phys. Rev. B 57, 7190 (’98)

• 8-band k•p model

Band
gap

Conduction band

Valence band



Lanczos Program in Fortran
do s = 1,NWF
  q(:,:,:,s) = v/bet(s-1)
  call hamiltonian_op(q(:,:,:,s),hv)  ! Operates Hamiltonian H on Q(S)
  v = hv-bet(s-1)*q(:,:,:,s-1)
  alp(s) = inner_product(q(:,:,:,s),v)
  v = v-alp(s)*q(:,:,:,s)
  bet(s) = sqrt(inner_product(v,v))
  call tridiag(eval,s)  ! Diagonalize the S by S tridiagonal matrix
end do  ! Lanczos iteration over s

Given 𝐫< , 𝛽< = 𝐫< 𝐪< = 0
for 𝑖 = 1, … ,𝑚
 𝐪) ← 𝐫):"/𝛽):"
 𝐫) ← 𝐀𝐪) − 𝛽):"𝐪):"
 𝛼) ← 𝐪)%𝐫)
 𝐫) ← 𝐫) − 𝛼)𝐪)
 𝛽) = 𝐫)  (only when 𝑖 ≤ 𝑚 − 1)
endfor



Band-edge Wave Functions
• Band-edge states in an array of GaN quantum dots in AlN matrix

S. Sburlan, Ph.D. dissertation, USC (’13)

Valence-band top

Conduction-band states



Globally-Sparse Yet Locally-Dense Eigensolver

J. H. Lam et al., Nature Commun. 15, 3479 (’24)

Bandwidth reduction

Batched tensor products
on GPU

• 250-fold speed-up over state-of-the-art for 2.4M atom molecular vibrational 
modes

Globally sparse
Locally dense

Iterative Krylov-subspace eigensolver 

https://drive.google.com/drive/folders/1alFHo6HZpQKjceUjQFJ_aGsYE84D4_xj


Top 10 Algorithms in History

IEEE CiSE, Jan/Feb (2000)

PHYS 516
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