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Objective
• Derive quantum molecular dynamics (QMD) equations, which follow 

classical-mechanical trajectories of atoms, while computing interatomic 
interactions quantum mechanically:
1. Ehrenfest molecular dynamics (EMD)
 • Solve time-dependent Schrödinger equation (dynamic) for electrons
 • Attosecond (10-18 s) to femtosecond (10-15 s) electron dynamics
 P. Ehrenfest, Zeit. Phys. 45, 455 (’27) 
2. Born-Oppenheimer molecular dynamics (BOMD)
 • Obtain the electronic ground state (static) at every time instance
 • Electron & nucleus dynamics above femtosecond (10-15 s)
 M. Born & R. Oppenheimer, Annal. Phys. 84, 457 (’27) 
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Electron-Nucleus Dynamics
• Consider a system of N electrons & Natom nuclei, with their position 

operators, 𝐫!|𝑖 = 1, … , 𝑁  & 𝐑"|𝐼 = 1, … , 𝑁#$%&
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• Here, ℏ is the Planck constant, PI , MI & ZI are the momentum, mass & 
charge of the I-th nucleus, and m & e are the electron mass & charge; Vext & 
vext are external potentials (like external electric field) acting on nuclei & 
electrons, respectively

• We focus on the system dynamics described by the time-dependent 
Schrödinger equation in non-relativistic quantum mechanics, where Ψ+12 is 
the electron-nucleus wave function & t is the time 
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Separation of Length Scales 
• Due to the much larger nuclei masses (MI) compared to the electron mass 

(m), the quantum-mechanical nature of nuclei is negligible except in extreme 
cases like nuclear fusion

• More specifically, the length scale below which a particle’s quantum-
mechanical nature becomes appreciable at a given temperature T (i.e., 
thermal de Broglie wave-length) is much smaller for nuclei than for electron
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• Motivate classical & quantum-mechanical descriptions of nuclei & 
electrons, respectively 



Ehrenfest Molecular Dynamics (EMD)

• Small ℏ expansion, applied to the nucleus degrees-of-freedom, 
leads to mixed quantum (for electrons) & classical (for nuclei) 
dynamical equations

• See notes on:
 (1) QMD summary & (2) QMD equation
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Classical Newton’s equation of motion for nucleus positions

Time-dependent Schrödinger equation for the electronic wave function Ψ

https://aiichironakano.github.io/phys760/QMD-Summary102089.pdf
https://aiichironakano.github.io/phys760/QMD101989.pdf


Derivation of EMD Equations (1)
• Dynamics of the electron-nucleus system is encoded in the scattering matrix 

(or S matrix) in the closed-time path integral form

• See notes on:
 (1) unitary time propagation; (2) closed-time path integral; (3) QMD equation 
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K. Chou et al., “Equilibrium & nonequilibrium formalisms made unified,” 
Phys. Rep. 118, 1 (’85)

https://aiichironakano.github.io/phys760/TimePropagator021110.pdf
https://aiichironakano.github.io/phys760/CTPI092689.pdf
https://aiichironakano.github.io/phys760/QMD101989.pdf


Derivation of EMD Equations (2)
• Path-integral w.r.t. nucleus trajectories: 𝐻(𝑡) = 𝐏%

*H
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• See note on:
 QMD equation
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Derivation of EMD Equations (3)
• Keep the leading term of the ℏ expansion (i.e. saddle-point approximation) 

of the path integral 

 which amounts to

• See notes on
  (1) functional derivative & (2) QMD equation
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Follow the derivation of EMD equations here

https://aiichironakano.github.io/phys760/functional.pdf
https://aiichironakano.github.io/phys760/QMD101989.pdf


EMD Application: Electron Mobility

• Electron transport in condensed matter under electric field 𝓔 
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• A. Nakano, P. Vashishta & R. K. Kalia, “Electron transport in disordered systems: 
a nonequilibrium quantum molecular dynamics approach,” Phys. Rev. B 43, 
10928 (’91)

• A. Nakano, P. Vashishta & R. K. Kalia, “Probing localization & mobility of an 
excess electron in a-Si by quantum molecular dynamics,” Phys. Rev. B 45, 8363 
(’92)

• For the computation of electronic conductivity & associated 
gauge transformation, see the note on quantum dynamical 
computation of electronic conductivity

https://aiichironakano.github.io/phys760/Conductivity111189.pdf
https://aiichironakano.github.io/phys760/Conductivity111189.pdf


EMD Application: Attosecond Dynamics

A. Sommer, K. Yabana et al., “Attosecond nonlinear polarization 
& light-matter energy transfer in solids,” Nature 534, 86 (’16)

Electric field-induced 
polarization in silica 

Positive (red) & negative (blue) 
change in charge density 

• Ehrenfest dynamics code by Prof. Kazuhiro Yabana’s group
 SALMON: http://salmon-tddft.jp 



Dawn of Attosecond Physics



Born-Oppenheimer Molecular Dynamics
• Due to the much larger nuclei masses (MI) compared to the 

electron mass (m), the quantum-mechanical wave function of 
the system is separable to those of the electrons & nuclei

• At ambient conditions, the electronic wave function remains in 
its ground state ( ⟩|𝛹$ ) with the energy eigenvalue 𝜖$, 
corresponding to the instantaneous nuclei positions ({RI}), with 
the latter following classical mechanics
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• See notes on:
 (1) QMD summary & (2) adiabatic approximation

Eigenvalue problem: time-independent Schrödinger equation

https://aiichironakano.github.io/phys760/QMD-Summary102089.pdf
https://aiichironakano.github.io/phys760/Adiabatic101889.pdf


Born-Oppenheimer (BO) MD Derivation (1) 
• Expand the wave function in terms of the complete set of eigenstates, 
{𝝍𝒌(𝐫, 𝐑)}, with fixed nuclei position R (i.e., adiabatic basis)

• Resulting time-dependent Schrödinger equation
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Nonadiabatic coupling due to nuclei motion (cf. nonadiabatic QMD via surface hopping)

• See notes on:
 (1) QMD summary & (2) adiabatic approximation

https://aiichironakano.github.io/phys760/QMD-Summary102089.pdf
https://aiichironakano.github.io/phys760/Adiabatic101889.pdf


Nonadiabatic Quantum MD: DC-MESH

Maxwell-Ehrenfest Surface hopping
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• DC-MESH (divide-&-conquer Maxwell + Ehrenfest + surface-hopping): O(N) 
algorithm to simulate photo-induced quantum materials dynamics

• LFD (local field dynamics): Maxwell equations for light & real-time time-dependent 
density functional theory equations for electrons to describe light-matter interaction

• QXMD (quantum molecular dynamics with excitation): Nonadiabatic coupling of 
excited electrons & ionic motions based on surface-hopping approach

• “Shadow” LFD (GPU)-QXMD (CPU) handshaking via electronic occupation 
numbers with minimal CPU-GPU data transfer

• GSLD: Globally sparse (interdomain Hartree coupling via multigrid) & locally dense 
(intradomain nonlocal exchange-correlation computation via BLAS) solver

GPU CPU

Linker et al., Science Adv. 8, eabk2625 (2022); Razakh et al., PDSEC (IEEE, ’24)



Born-Oppenheimer (BO) MD Derivation (2) 

• Classical limit of the resulting equation for nuclei can be derived using the 
same ℏ expansion as in the derivation of Ehrenfest MD 

𝑇@B 𝐑 ≪ 𝐸@ 𝐑 − 𝐸B 𝐑

• Born-Oppenheimer approximation neglects all Tkk’ terms; when in the 
electronic ground state (k = 0), off-diagonal transition is negligible if

 diagonal term Tkk was shown to be O(m/MI)
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Hellmann-Feynman theorem• See notes on:
 (1) QMD summary & (2) adiabatic approximation

https://aiichironakano.github.io/phys760/QMD-Summary102089.pdf
https://aiichironakano.github.io/phys760/Adiabatic101889.pdf


Hellmann-Feynman Theorem
• Consider a Hamiltonian that include a parameter 𝜆 (in our case, nuclei 

positions R)

𝜓" 𝜓" = 1
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BOMD Application: H2 Production from Water

21,140 time steps (129,208 self-consistent-field iterations); unit time-step = 0.242 fs

16,661-atom BOMD simulation of Li441Al441 in 
water on 786,432 IBM Blue Gene/Q cores

K. Shimamura et al., 
Nano Lett. 14, 4090 (’14)



Berry Phase
• The adiabatic basis (electronic eigenstates with fixed nucleus 

positions R(t) at each instance of time t) with energy Ek(R), 
used here, plays a role in the discussion of Berry (or geometric) 
phase of electronic wave function during adiabatic turning-
on/off of external potential

• Integration of the Berry phase along a closed path can be 
nonzero, which is observable (e.g., Aharonov-Bohm effect)

• QXMD uses it to compute electronic polarizability
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D. Xiao et al., “Berry phase effects on electronic properties,” Rev. Mod. Phys. 82, 1959 (’10)
D. Vanderbilt, Berry Phases in Electronic Structure Theory (Cambridge Univ. Press, ’18) 

Berry phase



• Change of polarization upon adiabatic switching of finite electric field ℰ 
with periodic boundary condition

 R. Resta, Phys. Rev. Lett. 80, 1800 (’98); P. Umari & A. Pasquarello, ibid. 89, 157602 (’02)

Quantum-Mechanical Calculation of Polarization
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• The above formula is equivalent to a sum of valence-band Berry phases
 R. D. King-Smith & D. Vanderbilt, Phys. Rev. B 47, 1651(’93); I. Souza, J. Iniguez & D. 

Vanderbilt, Phys. Rev. Lett. 89, 117602 (’02)
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• Above a critical field ℰ9 ~ (energy gap)/(simulation cell size), the energy 
functional has no minimum, indicating Zener breakdown (i.e., tunneling 
from valence to conduction bands) 

• While polarization 𝐏 = ∫𝑑𝐫𝐫 𝜓(𝐫) * is ill-defined under periodic boundary 
condition, its change ∆𝐏 = ∫B

E 𝑑𝑡F𝐣 is well-defined, with a proper gauge to 
compute current j (note on quantum dynamical computation of electronic conductivity)

https://aiichironakano.github.io/phys760/Conductivity111189.pdf


Nanoscale Polarization


