
 

Accelerating Quantum Light-Matter Dynamics on Graphics Processing Units 
 

Taufeq Mohammed Razakh 

Collaboratory for Advanced 
Computing and Simulations 

University of Southern California 
Los Angeles, CA, USA 

razakh@usc.edu 

  

Thomas Linker 

Stanford PULSE Insitute 

SLAC National Accelerator 
Laboratory 

Menlo Park, CA, USA 

tlinker@slac.stanford.edu 

 

Ye Luo 

Computational Science Division 
Argonne National Laboratory 

Lemont, IL, USA 

yeluo@anl.gov 

 

 

Rajiv K. Kalia 

Collaboratory for Advanced 
Computing and Simulations 

University of Southern California 
Los Angeles, CA, USA 

rkalia@usc.edu

Ken-ichi Nomura 

Collaboratory for Advanced Computing and 
Simulations 

University of Southern California 
Los Angeles, CA, USA 

knomura@usc.edu 
 
 

Priya Vashishta 

Collaboratory for Advanced Computing and 
Simulations 

University of Southern California 
Los Angeles, CA, USA 

priyav@usc.edu 
 
 

Aiichiro Nakano 

Collaboratory for Advanced Computing and 
Simulations 

University of Southern California 
Los Angeles, CA, USA 

anakano@usc.edu 
 

Abstract—To study light-matter interaction, we have developed a 
linear-scaling DC-MESH (divide-and-conquer Maxwell-
Ehrenfest-surface hopping) simulation algorithm, where our 
globally-sparse and locally-dense electronic solvers, multiple time-
scale splitting, and shadow dynamics achieve high scalability and 
allow the most compute-intensive quantum dynamics kernel based 
on time-dependent density functional theory to reside on GPU 
with minimal CPU-GPU data transfer. GPU computation based 
on OpenMP target constructs is accelerated by: (i) data and loop 
reordering for better memory access patterns; (ii) hierarchical 
GPU offloading using teams-distribute and parallel constructs, 
respectively, for coarse and fine computations; (iii) algebraic 
‘BLASification’ of the nonlocal computational bottleneck; and (iv) 
GPU-resident data structures facilitated by custom C++ class 
initializer and destructor based on OpenMP target data 
constructs. We have thereby achieved 644-fold speedup on Nvidia 
A100 GPU over AMD EPYC 7543 CPU of the Polaris computer at 
Argonne Leadership Computing Facility. In addition, the DC-
MESH code exhibits a weak-scaling parallel efficiency of 96.73% 
on 256 nodes (or 1,024 GPUs) of Polaris for 5,120-atom PbTiO3 
material. This enables the study of light-induced topological 
switching for future ultrafast and ultralow-power ferroelectric 
topotronics applications. 

Keywords—quantum dynamics, light-matter interaction, time-
dependent density functional theory, algebraic BLASification, GPU 
acceleration 

 

I. INTRODUCTION  

How light and matter interact is one of the most 

fundamental scientific questions. For example, nonlinear 

interaction of high-intensity laser with matter generates 

ultrashort attosecond (10-18 second) pulses. This discovery has 

opened up the new era of attosecond physics, for which 

Agostini, Krausz, and L’Hullier received the 2023 Nobel prize 

in physics [1]. While high-end supercomputing has 

successfully been applied to quantum-mechanical study of 

static materials properties [2-7], its application to quantum 
dynamics (QD) such as attosecond physics remains in its 

infancy [8]. 

Nonlinear, non-steady dynamics like attosecond light-

matter interaction is theoretically described by Maxwell’s 

equations for light along with time-dependent density 

functional theory (TDDFT) for electrons [9, 10]. This is a 

multiscale physics problem encompassing fast (10-18 second) 

elementary processes of light-electron coupling and slower (10-

12 second) materials response through electron-atom coupling. 

In addition to this temporal disparity, disparate length scales 

need be accounted for, ranging from electronic wave functions 

(10-10 m) to large topological features of quantum materials (10-

6 m) [11, 12]. For static quantum properties, the length-scale 

problem has been addressed by linear-scaling density 

functional theory (DFT) algorithms [13], in which the O(N3) 

complexity of the DFT problem (1998 Nobel prize in chemistry 

for Walter Kohn; N is the number of electrons) [14] is reduced 

to O(N) based on the physical data locality principle called 

quantum nearsightedness [15]. Among various O(N) DFT 

approaches, the most scalable on high-end supercomputers is 

the divide-and-conquer (DC) DFT algorithm, where local 

electronic Kohn-Sham (KS) wave functions and global KS 

potential are determined in global-local self-consistent-field 

(SCF) iterations [16, 17]. 

To move on to the time-scale challenge in QD, the key 

insight is that fundamental physics equations are all local at the 

finest spatiotemporal scales, i.e., simple partial differential 

equations with differential operators acting locally. On the 

other hand, coarse-grained schemes to approximately describe 

complex chemical interactions often come with an excessive 

computational cost of nonlocal operations in space and time. 

Simple data parallelism in the former—which we call Local 

Field Dynamics (LFD)—fits naturally to hardware accelerators 

such as graphic processing unit (GPU). On the other hand, 

1057

2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

979-8-3503-6460-6/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPSW63119.2024.00176



complex chemical interaction in the latter—which we call 

Quantum eXcitation Molecular Dynamics (QXMD)—can take 

advantage of complex instruction sets in central processing unit 

(CPU). To minimize data transfer between CPU and GPU, we 

adopt a shadow dynamics approach [18], in which a GPU-

resident proxy is solved to effectively describe the action of 

LFD on QXMD. In this way, LFD-QXMD handshaking is 

reduced to minimal, i.e., electronic occupation numbers, which 

are negligible compared to the large memory footprint of many 

KS wave functions [19]. 

Dynamics involving excited electrons and atoms is called 

nonadiabatic quantum molecular dynamics (NAQMD) [20-22], 

for which there are two major approaches. The first approach 

called Ehrenfest dynamics relies on TDDFT equations for 

electrons, which in turn dictates interatomic interaction for 

molecular dynamics (MD) at short time scales [21]. At longer 

time scales, adiabatic electronic states with fixed atomic 

positions are good representation of excited electronic states, 

and the second approach called surface hopping describes 

transitions between the excited states via nonadiabatic coupling 

due to atomic motions [21]. Combined with Maxwell equations 

for light, we have developed a multiscale NAQMD approach 

within a DC scheme named DC-MESH (divide-and-conquer 

Maxwell-Ehrenfest-surface hopping). A preliminary version of 

DC-MESH with limited functionality is described in Ref. [12]. 

Several software packages exist for Maxwell+TDDFT 

simulations on parallel computers such as Octopus [23] and 

SALMON [24], where a multiscale DC approach has been 

applied to the Maxwell-Ehrenfest subproblem [24], but not to 

the entire Maxwell-Ehrenfest-surface hopping problem. 

II. DC-MESH METHOD 

 

 

DC-MESH is based on an extension of DC called divide-

conquer-recombine (DCR) [25]. In DCR, the three-dimensional 

space  is subdivided into spatially localized domains  as 

 (Fig. 1a) [5, 25]. The initial DC phase constructs 

globally informed local solutions, which are used in the 

subsequent recombine phase as a compact basis to synthesize 

global properties. The recombine phase typically performs 
range-limited n-tuple computations to account for higher-order 

correlations that are not captured by the tree topology used in 

the DC phase. Specifically in TDDFT, the mean electrostatic 

field (or Hartree potential) is computed globally using the 

scalable O(N) multigrid method, whereas higher-order 

correlations represented by the exchange-correlation (XC) 

kernel are treated locally within each DC domain since they are 

known to be short-ranged [26]. Our DC-DFT algorithm 

employs a globally scalable and locally fast (GSLF) electronic 

solver that combines an O(N) tree-based multigrid method to 

represent global potential and fast Fourier transform (FFT) to 

represent local KS wave functions [25]. We have also designed 

a lean divide-and-conquer (LDC) DFT algorithm, which 

significantly reduces the prefactor of the O(N) computational 

cost by applying a density-adaptive boundary condition at the 

peripheries of the DC domains. Hybrid space-band 

decomposition is used to implement the LDC-DFT algorithm 

on parallel computers. In DC-MESH, the QXMD subprogram 

on CPU solves global-local SCF iterations in the DC phase 

using multiple computing nodes based on message passing 

interface (MPI); see Fig. 1b. In the recombines phase, our 

globally-sparse and locally-dense (GSLD) electronic solvers 

allow the compute-intensive, data-parallel LFD subproblem to 

reside on GPU with minimal CPU-GPU data transfer thanks to 

shadow dynamics (Fig. 1b). LFD computation on GPU is based 

on OpenMP target constructs, which is accelerated by several 

computational innovations: (i) data and loop reordering and 

blocking for better memory access patterns; (ii) hierarchical 

GPU offloading using OpenMP teams-distribute and parallel 

constructs, respectively, for coarse and fine computations; (iii) 

algebraic ‘BLASification’ of the nonlocal computational 

bottleneck; and (iv) simplified GPU resident computation 

facilitated by custom C++ class initializer and destructor based 

on OpenMP target data constructs. GPU computing via 

OpenMP maximizes ease of programming and portability. With 

 

Fig. 1: (a) Divide-and-conquer domains embedded in a global potential.  (b) DC-MESH method consists of (i) LFD to describe light-electron 

interaction on GPU and (ii) QXMD to describe electron-atom coupling on CPU, with minimal CPU-GPU data transfer via shadow dynamics. 

1058



the resulting high performance demonstrated in our result 

section, this paper serves as a promising GPU-offloading 

pathway for many scientific and engineering codes. 
Multiple time-scale splitting: Since our DCR algorithm for 

the QXMD subprogram has been reported previously [5, 25], 

we here focus on the LFD subprogram. In the -th domain, we 

numerically integrate Maxwell-TDDFT equations: 

, (1) 

where  is the s-th complex-valued Kohn-Sham (KS) 

wave function with spin  within  at time t, and the 

Hamiltonian operator is defined as [9, 10] 

. (2) 

Here, m and e are the electron mass and charge,  is the Planck 

constant, c is the light speed,  is the electromagnetic 

vector potential at the spatial position of the -th domain , 

 is the ionic pseudopotential,  collectively denotes the 

positions of all atoms, and  is the scalar potential. In Eq. (2), 

 is the exchange-correlation (xc) potential, which is a 

functional of the electron number density, 

, with  being the occupation 

number. We solve Maxwell’s equation for  and an 

auxiliary partial differential equation [27, 28] for . 

Solution of Eq. (1) should account for disparate time scales: 

 second for electrons, , and  

second for atoms, . By expanding the ionic 

pseudopotential in terms of slow atomic velocities, 

, and retaining up to the linear term, we can time-

propagate electrons for one molecular-dynamics step  as 

, (3) 

where  is the time-ordering operator and  is the 

standard surface-hopping (SH) procedure to update the electron 

occupation  perturbatively according to nonadiabatic 

coupling (NAC) arising from slow atomic motions [21]. 

Subsequently, we operate  in Eq. 

(3) using Suzuki-Trotter expansion and space-splitting method 

[28]:  

, (4) 

where  is the number of QD time steps per 

MD step. To ensure stable time propagation during each QD 

time step , we employ a self-consistent, time-reversible 

unitary approach that handles nonlinearity, i.e., the time-

propagation operator itself depends on the wave functions being 

propagated [29, 30]. 

Shadow dynamics: The purpose of the electronic time-

propagator within LFD is to determine the change of electron 

occupation number  due to light-matter interaction during 

one MD time step, , so that it modifies the excited-state 

energy landscape [12, 22, 25] to inform atomic motions in the 

SH approach. This can be achieved in a computationally 

efficient manner similar to the shadow dynamics [18]. Namely, 

we refactor the Hamiltonian  in Eq. (2) as follows: 

, (5) 

where the local potential  represents the local 

pseudopotential, as well as the Hartree and local exchange-

correlation potentials, which apply spatial point-by-point, while 

the nonlocal operator  here collectively denotes the 

nonlocal ionic pseudopotential and nonlocal exchange-

correlation potential, which has much more complex 

computational characteristics [31]. According to this 

refactoring, the electronic time-propagator is approximated as 

[32] 

. (6) 

Here, the local propagator,  can be cast 

into data-local stencil operations using the O(N) space-splitting 

method [28]. To efficiently compute the nonlocal part in Eq. 

(6), we project  onto the vector space spanned by 

 [33]:  

, (7) 

where  denotes the inner product of two wave functions 

and the scissor shift is defined as 

. (8) 

Here, the lowest unoccupied molecular orbital (LUMO) and 

highest occupied molecular orbital (HOMO) KS energies, 

 and , are computed with the expensive nonlocal 

computation (nl) and inexpensive local computation (loc) only 

once at each MD step, which are reused for  

steps to amortize the computational cost. 

III. OPTIMIZED IMPLEMENTATION OF ELECTRONIC TIME-

PROPAGATION AND NONLOCAL CORRECTION: 

VECTORIZATION, HIERARCHIAL PARALLELISM, AND BLAS 

OPERATION 

In this section, we describe optimizations applied to 

improve performance of the LFD subprogram. We use the Open 

Multi-Processing (OpenMP) parallel programming model to 

enable minimally invasive offloading to GPUs. We also avoid 

unnecessary overheads by creating a common device data 

environment to reduce the overall amount spent in host-to-

device data transfer in the OpenMP target region. We first focus 

on the local time-propagator,  in Eq. (6), 

which is a sequence of stencil operations [28]. A series of 

optimizations are applied before enabling offload, which 

1059



include loop-interchange, memory re-use, and tiling. We then 

describe computation transformation of nonlocal correction, 

 in Eq. (7), to BLAS operations and persistent GPU kernel 

transformation. 

The electronic time-propagation kernel (specifically the 

kinetic propagator kernel arising from the gradient operator in 

the Hamiltonian in Eq. (5)) is a stencil operation [28], with 

repeated applications of the time-stepping operator to 

discretized KS wave functions on spatial mesh points. 

Algorithm 1 shows the baseline algorithm. When carrying out 

time propagation along a certain Cartesian axis, the input 

consists of the wave function , stencil direction 

, time step , as well as diagonal, 

upper-diagonal, and lower-diagonal coefficients, 

, defined for each mesh point. 

Here, a straightforward implementation stores data for the 

wave function in array psi, such that the first index 

specifies one of the N KS orbitals and subsequent indices 

specifies one of the M grid points in the x, y and z Cartesian 

directions. When traversing the wave function in line 3, we first 

iterate over the orbitals and then iterate over the grid points in 

lines 4, 5 and 6. The operations in lines 7 and 8 yield the value 

for the real and imaginary parts of the complex-valued wave 

function after time propagation. Once the wave function has 

been time-propagated for all mesh points in each orbital, we 

exit the nested loop and update the wave function in line with 

the values accumulated in line 11. 

Algorithm 1: Baseline implementation of time propagation of 

electronic wave functions 
1: void kin_prop ( ) { 
2:   complex<float> wrk[Nx+2][Ny+2][Nz+2], w; 
3:   for (int n=0; n < Norb; n++) 
4:     for (int i=1; i <= Nr[0]; i++) 
5:       for (int j=1; j <= Nr[1]; j++) 
6:         for (int k=1; k <= Nr[2]; k++) { 
7:           w = al[d][p]*psi[n][i][j][k] 
8:           ... 
9:           wrk[i][j][k] = w; 
10:         }  
11:     #update psi[n][i][j][k]  wrk[i][j][k] 
12: } 

 

A. Loop Interchange and Memory re-use 

Algorithm 1 is inefficient since the range of data swept 

across the wave function and coefficient arrays, which are 

multiplied in the stencil operation, is very large, whereas the 

update operation takes place at the orbital level. This means 

larger strides of data will be out of the cache when grabbing 

values to perform the update. In the current implementation 

scanning the D-dimensional mesh (D = 3) of M grid points 

across N orbitals creates a memory overhead in the order of 

bytes in line 7. Keeping in mind that the wave function 

itself requires allocating bytes (L is the number of grid 

points in one direction), where L < M, such implementation 

results in the memory demand growing at the rate of 

during the stencil operation. 

To minimize the possibility of reaching the memory 

bandwidth, we eliminate storing a copy of the propagated wave 

in line 7 and instead proceed to immediately update the wave 

function with the partial values computed at that grid point. 

This update is achieved through a loop re-ordering such that the 

fastest-changing index corresponds to the orbital, resulting in 

the move of the update operation inside the loop as shown in 

Algorithm 2, line 6 and line 9. We also change the data layout 

of the wave function psi such that the wave function at each 

grid point stores the value for all orbitals, thereby making it a 

structure of arrays (SoA) over the original arrays of structures 

(AoS). A combination of loop interchange and an SoA data 

layout offers better memory access patterns in the available 

registers for both single-instruction multiple-data (SIMD) 

paradigm on CPU and single-instruction multiple-thread 

(SIMT) paradigm on GPU. 

Algorithm 2: Loop re-ordering in time propagation of electronic wave 

functions 
1: void kin_prop ( ) { 
2:   complex<float> float w; 
3:   for (int j=1; j <= Nr[1]; j++)  
4:     for (int k=1; k <= Nr[2]; k++) 
5:       for (int i=1; i <= Nr[0]; i++) 
6:         for (int n=0; n < Norb; n++) { 
7:           w = al[d][p]*psi[i][j][k][n] 
8:           ... 
9:           # update psi[i][j][k][n]  w 
10:         } 
11: } 

While the update operation changes the value of the wave 

function for that orbital, there are still computations in the stencil 

which rely on the value prior to the update step. For this reason, 

we store a small portion of the data structure before doing each 

update, to ensure computational correctness as shown in 

Algorithm 3, line 6. Updating grid points remains fully 

independent in the y and z directions but not in the x direction 

when working on an x -direction stencil for example. 

Algorithm 3: Optimized stencil in time propagation of electronic 

wave functions 
1: void kin_prop ( ) { 
2:   complex<float> w; 
3:   for (int j=1; j <= Nr[1]; j++)  
4:     for (int k=1; k <= Nr[2]; k++) { 
5:       for (int n=0; n < Norb; n++) { 
6:         psi_old[n] = psi[0][j][k][n];  
7:       } 
8:       for (int i=1; i <= Nr[0]; i++)  
9:         for (int n=0; n < Norb; n++) { 
10:           w = al*psi[i][j][k][n]; 
11:           w += bl[i]*psi_old[n]; 
12:           … 
13:           # update psi_old  psi[i][j][k][n] 
14:           # update psi[i][j][k][n]  w 
15:         }  
16:      } 
17: } 

 

B. Blocking/Tiling 

When the number of orbitals, Norb, is not small, the whole 

wave function, psi_old, array may not fit in cache and add 

traffic to the slower tier of memory. Blocking the loop of Norb 

reduces the size of psi_old array to only the desired block size 

instead of Norb, as shown in Algorithm 4. The added loop of 

blocks also allows distributing the computation to more GPU 

blocks when offloading is used. 

1060



Algorithm 4: Cache blocking optimization in time propagation of 

electronic wave functions 
1: void kin_prop ( ) { 
2:   complex<float> w; 
3:   for (int j=1; j <= Nr[1]; j++)  
4:     for (int k=1; k <= Nr[2]; k++) { 
5:       for (int ib=0; ib < (Norb+1)/block_size; ib++) { 
6:         complex<float> psi_old[block_size]; 
7:         int begin = ib*block_size; 
         int end = min((ib+1)*block_size, Norb); 
8:         for (int n=begin; n < end; n++) 
9:           psi_old[n-begin] = psi[0][j][k][n];  
10:         for (int i=1; i <= Nr[0]; i++)  
11:           for (int n=begin; n <end; n++) { 
12:             w = al*psi[i][j][k][n]; 
13:             w += bl[i]*psi_old[n-begin]; 
14:             … 
15:             # update psi_old  psi[i][j][k][n] 
16:             # update psi[i][j][k][n]  w 
17:           }  
18:       }     
19:     } 
20: } 

 

C. Multiple Parallel Regions 

To offload the computation to the accelerator devices on the 

blade we test, we use the OpenMP programming model. 

Through our loop re-ordering and SoA optimization, we expose 

the computation kernel to a high level of parallelism. The 

propagation of grid points of the y-z plane can be concurrently 

computed for an x-direction stencil. This is because the 

propagation of the electronic wave function along the x-

direction requires the ith index of the wave function to 

inter-mix with every (j,k). Hence, the first level of parallelism is 

achieved as the evolution requires only knowledge of the wave 

function at the current time step and the previous step within the 

same plane. A second level of parallelism comes into effect from 

the ability to propagate the wave function independently of the 

orbital. This hierarchical parallelism applies to both SIMD and 

SIMT paradigms. The parallelization over planes and orbitals 

are collapsed into a larger loop. This grid geometry makes 

efficient targets of Cooperative Thread Arrays (CTA) that are 

available as well as the limited Streaming Multiprocessor (SM) 

register file size. Algorithm 5 shows this parallelism, where the 

data structures are now aligned such that all orbitals for a mesh 

point are aligned in a single stride. Also, note here we flatten 

structures of psi and psi_old into one-dimensional arrays of 

complex numbers.

Algorithm 5: OpenMP stencil in time propagation of electronic wave 

functions 
1: void kin_prop ( ) { 
2:   complex<float> w; 
3:   #pragma omp target teams distribute collapse(3) 
4:   for (int j=1; j <= Nr[1]; j++)  
5:     for (int k=1; k <= Nr[2]; k++) { 
6:       for (int ib=0; ib < (Norb+1)/block_size; ib++) { 
7:         complex<float> psi_old[block_size]; 
8:         int begin = ib*block_size; 
         int end = min((ib+1)*block_size, norb); 
11:         #pragma omp parallel for simd nowait 
9:         for (int n=begin; n < end; n++) 
10:           psi_old[n-begin] = psi[0][j][k][n];  
8:         for (int i=1; i <= Nr[0]; i++)  
9:           #pragma omp parallel for simd nowait 
10:           for (int n=begin; n < end; n++) { 

11:             w = al*psi[i][j][k][n] 
             w += bl[i]*psi_old[n-begin] 
12:             … 
13:             # update psi_old  psi [i][j][k][n]  
14:             # update psi [i][j][k][n]  w 
15:           } 
16:       } 
     }   
17: } 

D. BLASification of Nonlocal Correction 

The compute-intensive nonlocal correction in Eq. (7) for 

time propagation of electronic wave functions can be cast into 

matrix operations. To do so, let us define a  

wave-function matrix , where  and  are the 

number of grid points to represent each wave function and that 

of KS wave functions, respectively. Equation (7) then reads 

, (9) 

where c is a complex number and  denotes a Hermitian 

transpose matrix. We implement Eq. (9) using BLAS level 3 

calls. In addition to time propagation of electronic wave 

functions in function nlp_prop(), BLASified nonlocal correction 

appears in two other functions in LFD: energy calculation in 

function calc_energy() and remapping the final wave functions 

to occupation numbers in function remap_occ(). 

E. Persistent GPU kernel 

The key computational advantage of the shadow dynamics 

is that the large wave-function arrays,  and , can be 

made GPU-resident, thereby eliminating massive CPU-GPU 

data transfer. Such persistent GPU data structures are facilitated 

by our custom C++ class constructor and destructor based on 

OpenMP target data constructs; see Algorithm 6. The custom 

allocator named OMPallocator is used for container classes like 

std::vector, which are intended to be GPU-resident. Upon 

initialization, the allocator calls #pragma omp target enter data 
map(alloc), while upon destruction, it calls #pragma omp target 
exit data map(delete). This significantly eases the 

programmability of persistent GPU dataset, while keeping the 

use-side code neat. In addition, the HostAllocator may be 

replaced with a customized allocator using pinned host memory 

to further improve host-device transfer rate. 

Algorithm 6: OpenMP allocator 
1: template<typename T, class HostAllocator = 

std::allocator<T>> 
2: struct OMPallocator : public HostAllocator { 
3:   OMPallocator() = default; 
4:   value_type* allocate(std::size_t n) { 
5:     value_type* pt = HostAllocator::allocate(n); 
6:     #pragma omp target enter data map(alloc:pt[0:n]) 
7:     return pt; 
8:   } 
   void deallocate(value_type* pt, std::size_t n) { 
11:     #pragma omp target exit data map(delete:pt[0:n]) 
9:     HostAllocator::deallocate(pt, n); 
10:   } 
8: } 

IV. PERFORMANCE EVALUATION 

We measure performance of DC-MESH on the Polaris 

supercomputer at Argonne Leadership Computing Facility 

1061



(ALCF). It is a Hewlett Packard Enterprise (HPE) Apollo 6500 

Gen 10+ based system consisting of two computing nodes per 

chassis, seven chassis per rack, and 40 racks that amount to a 

total of 560 nodes. Each Polaris node has one 2.8 GHz AMD 

EPYC Milan 7543P 32-core CPU with 512 GB of DDR4 RAM, 

four Nvidia A100 GPUs, two 1.6 TB of SSDs in RAID0, and 

two Slingshot network endpoints. Polaris uses the Nvidia A100 

HGX platform to connect all 4 GPUs via NVLink, with a GPU 

interconnect bandwidth of 600 GB/s. The GPU’s PCIe 

bandwidth is 64 GB/s. HBM2 memory for GPUs is available 

on both HGX and PCIe and is 60 GB and 40 GB, respectively. 

Designed by Cray, the Slingshot interconnect is based on high 

radix 64-port switches arranged in dragonfly topology and 

offers adaptive routing, congestion control, and bandwidth 

guarantees by assigning traffic classes to applications. Polaris 

uses Slingshot 11 with a node interconnect bandwidth of 200 

GB/s. Polaris’ peak performance is 44 Petaflop/s, with node-

level performance at 78 Teraflop/s, for double precision. 

The DC-MESH code consists of the QXMD subprogram 

written in Fortran with MPI and the LFD subprogram written 

in C++ with OpenMP. For performance evaluation on Polaris, 

DC-MESH is built using Gfortran and clang 15 compilers. 

A. Weak and Strong Scalability 
We first perform a weak-scaling benchmark of DC-MESH 

on Polaris, in which the number of atoms per MPI rank, N/P is 

kept constant, i.e., PbTiO3 material consisting of 40 atoms. For 

each MPI rank, 288 KS wave functions are represented using 

the plane-wave basis in QXMD, while each complex-valued 

KS wave function in LFD is represented on 70 70 72 finite-

difference mesh points. Weak scaling test is carried out up to 

256 computing nodes with 4 MPI ranks per node, where each 

rank is accelerated by one GPU. The largest system on 256 

nodes thus consists of 10,240 atoms. 

We measure the wall-clock time per MD simulation step 

with scaled workloads — 40P-atom PbTiO3 material on P MPI 

ranks on Polaris. The execution time includes 3 self-consistent 

field (SCF) iterations to determine the KS wave functions and 

the global potential in QXMD, with 3 conjugate-gradient (CG) 

iterations per SCF cycle to refine each wave function. We run 

1,000 QD steps in LFD per MD step. By increasing the number 

of atoms linearly with the number of MPI ranks, the wall-clock 

time remains nearly constant, indicating excellent weak 

scalability. To quantify the weak-scaling parallel efficiency, we 

first define the speed of the DC-MESH program as a product of 

the total number of atoms and the number of MD simulation 

steps executed per second. The isogranular speedup is given by 

the ratio between the speed on P MPI ranks and that on 4 MPI 

ranks (i.e., one computing node) as a reference system. The 

weak-scaling parallel efficiency is the isogranular speedup 

divided by P/4. Figure 2 shows the weak-scaling parallel 

efficiency as a function of the number of MPI ranks. With the 

granularity of 40 atoms per MPI rank, the parallel efficiency is 

0.9673 on P = 256 for a 10,240-atom PbTiO3 material. This 

result demonstrates the very high scalability of the DC-MESH 

program, mainly due to the globally-sparse and locally-dense 

electronic solvers within the divide-conquer-recombine 

algorithmic framework. 

Next, we perform strong-scaling tests for two problem 

sizes: 5,120- and 10,240-atom PbTiO3 materials. In this test, the 

number of MPI ranks ranges from P = 64 to 256 for the 5,120 

atoms and P = 128 to 512 for the 10,240 atoms, while keeping 

the total problem size constant in each case. The strong-scaling 

speedup is defined as the wall-clock time on the smallest 

number, Pmin, of MPI ranks divided that on the largest number, 

Pmax, of MPI ranks for each problem size. The strong-scaling 

parallel efficiency is the strong-scaling speedup divided by 

Pmax/Pmin. Figure 3 shows the strong-scaling parallel efficiency 

as a function of P. The strong-scaling parallel efficiency is 

0.8083 with 512 MPI ranks for 10,240 atoms, while it is 0.6634 

with 256 MPI ranks for 5,120 atoms. It is more difficult to 

achieve high strong-scaling parallel efficiency compared with 

weak-scaling parallel efficiency. This is due to the increased 

communication/computation ratio as the workload per rank 

reduces. This is partly understood by analyzing the parallel 

efficiency  as a function of the number of MPI ranks P and 

that of atoms N. For the weak-scaling parallel efficiency with 

constant granularity ( ), 

, exhibiting a very weak logarithmic dependence on 

P [34]. For the strong-scaling parallel efficiency with constant 

 

Fig. 2. Weak-scaling parallel efficiency of the DC-MESH 

program, with scaled workloads — 40P-atom PbTiO3 material 

with P MPI ranks (P = 4, ..., 1,024) on Polaris. Black circles are 

measured data, whereas blue triangles show ideal speedup. 

  

Fig. 3. Strong-scaling parallel efficiency of the DC-MESH 

program as a function of the number of MPI ranks on Polaris for 

two problem sizes: 5,120- and 10,240-atom PbTiO3 materials. 

5120 atoms

10240 atoms

50 100 500 1000
0.0

0.2

0.4

0.6

0.8

1.0

Number Of MPI Ranks

Ef
fic

ie
nc

y

Strong Scaling

1062



N, in contrast, , which 

exhibits much stronger dependency on P, i.e.,  and  

in the denominator. 

B. GPU Performance 
To test single-node GPU performance of the DC-MESH 

program, we spawn 4 MPI ranks on one computing node with 

a 40-atom PbTiO3 material per MPI rank. Figure 4 compares 

the throughput on CPU+GPU and that on CPU only. Here, the 

throughput is defined as the number of ranks that complete 

execution per unit time for a fixed problem: . By 

offloading key computations to GPU, we obtain a 19-fold 

speedup over CPU. This signifies decent utilization of GPU 

resources on Polaris by the DC-MESH code. 
 

C. Performance Improvement 
We next examine GPU performance of the stencil-based 

time propagation of KS wave function in the LFD subprogram 

as shown in Algorithms 1-5. Table I compares runtime of the 

kin_prop() function in the LFD subprogram on Polaris system 

using the Clang compiler shipped as a part of LLVM 16 in 

comparison with the corresponding runtime on CPU over each 

successive optimization mentioned in sections III A-C. The 

timing is for 1,000 QD steps involving 64 KS wave functions 

each on 72 finite-difference mesh points. For 

simplicity, a single GPU timing is compared with a single CPU-

core timing. We first measure incremental performance 

improvement due to Algorithms 3 and 4 over that of the 

baseline Algorithm 1. The results in Table I shows 3.67- and 

9.22-fold speedups over the baseline for Algorithms 3 and 4, 

respectively. Further with GPU offloading using Algorithm 5, 

we overall achieve 338-fold speedup over the baseline. Next, as 

an ablation study, we disable the asynchronous offloading 

feature (i.e., the nowait keyword in Algorithm 5) in the GPU-

offloaded code to make it synchronous (fifth entry in Table I). 

The results show 298-fold speedup due to GPU offloading 

compared to the CPU code for the synchronous offloading. The 

asynchronous offloading code thus achieves 10.35% speedup 

compared to the synchronous offloading code. These results 

demonstrate high GPU utilization as a result of the series of 

data-structure and code restructuring outlined through 

Algorithms 1-5. 

Another key performance optimization is the 

transformation of nonlocal correction to BLAS 3 operations 

described in section III-D. Table II compares runtime of various 

versions of the code for both single precision (SP) and double 

precision (DP) floating-point formats of KS wave functions. 

The timing is for 1,000 QD steps involving 64 KS wave 

functions each on 70 70 72 finite-difference mesh points. 

Here, we enumerate the types of builds of the LFD subprogram, 

starting with a purely CPU build without invoking any linear 

algebra libraries, followed by that using the AMD Optimizing 

CPU Libraries (AOCL)—BLAS library. We then offload the 

self-consistent equation kernels to GPU, utilizing optimization 

in section III-E. In addition to AOCL-BLAS library, we 

subsequently use the native cuBLAS library on A100 before we 

finally harness faster data transfers between host and device 

 
Fig. 4. Throughput of DC-MESH on a single computing node of 

Polaris. We compare CPU-only throughput on AMD 7543P and 

that of CPU plus Nvidia A100 GPU. 

AMD 7543P NVIDIA A100
0

1

2

3

4

Architectures Tested

Th
ro

ug
hp

ut
(r

an
ks

/ti
m

e)

Table II. Runtime comparison of several versions of the DC-

MESH program for SP and DP floating-point formats. 

Measurement was made using a single OpenMP thread for 

simplicity. 

 

Electron propagation 

(sec) 

Nonlocal correction 

(sec) 

Total runtime 

(sec) 

SP DP SP DP SP DP  

CPU 

OpenMP 

Parallel 

444.44 470.73 442.84 455.75 1082 1167 

CPU 

OpenMP 

Parallel + 

BLAS 

19.72 30.92 10.71 21.54   

GPU 
OpenMP 

Offload + 

BLAS 

7.03 11.45 6.75 11.12 17.14 29.23 

GPU 

OpenMP 

Offload + 

cuBLAS 

0.61 0.94 0.46 0.761 1.33 2.11 

GPU 

OpenMP 

Offload + 

cuBLAS  

(Pinned 

Memory 

w/ Cuda 

Streams) 

0.512 0.68 0.35 0.51 1.06 1.48 

 

Table I. Runtime of the kin_prop() function in the LFD 

subprogram. 

Implementation Target Runtime (s) 

 

Speedup 

Algorithm 1 CPU 8.655 1 

Algorithm 3 CPU 2.356 3.67 

Algorithm 4 CPU 0.939 9.22 

Algorithm 5 GPU 0.026 338 

Algorithm 5 (disable 

nowait) 
GPU 0.029 298 

 

1063



with pinned memory. We track the runtime of some of the most 

time-consuming operations: (i) time propagation of electronic 

wave functions (or electron propagation) including potential 

propagation, kinetic propagation, and nonlinear propagation 

(cf. Eq. (6)); (ii) additional nonlocal correction operations (cf. 
section III-D); as well as (iii) the total time spent in the LFD 

subroutine. All runs are carried out with a single OpenMP 

thread. Table II shows a 35% reduction in electron propagation 

and a 42% reduction in nonlocal correction kernel completion 

times using SP compared to DP. 

To quantify performance gains from vectorization and 

offloading the code to GPU, Fig. 5 shows DP runtime of 

compute-intensive kernels: electron time-propagation (Eq. (6)), 

nonlocal electron time-propagation (Eq. (7)), and energy 

calculation kernels for the benchmark test by building with 

available options. Here, we start with the purely CPU 

implementation with OpenMP and AOCL-BLAS and show 

subsequent reduction of runtime with GPU offload kernels, 

cuBLAS, and pinned memory. When comparing the purely 

CPU implementation with AOCL-BLAS build and the GPU 

kernel offload build with cuBLAS and pinned memory, we see 

45-fold speedup in electron propagation, 42-fold speedup in 

nonlocal propagation and nearly 46-fold speedup in energy 

calculation kernels in the latter.

 

 
 

Figure 6 shows the speedup of the total DC-MESH code due 

to a sequence of code versions as shown in Fig. 5. The 

BLASification of the nonlocal computations are highly 

effective on both CPU and GPU. Accordingly, we first achieve 

25.2-fold speedup with BLAS on CPU compared to the non-

BLAS baseline on CPU. The BLASified code is then offloaded 

to GPU, achieving 18.6-fold speedup over the BLASified CPU 

code. By the memory-pinning optimization, we achieve 

additional 37.6% speedup. Overall, we achieve 644-fold 

cumulative speedup. 
 

 
Fig. 5. Runtime of compute-intensive kernels when building with different parallel computing interfaces. Measurement was made using a 

single OpenMP thread for simplicity. 

Fig. 7. Flux closure structure during ferroelectric switching in 

PbTiO3. 

 
Fig. 6. Speedup over the baseline DC-MESH code on a single 
Polaris node resulting from a series of code optimizations. 

Measurement was made using a single OpenMP thread for 

simplicity. 

1064



V. APPLICATION 

Performance-optimized DC-MESH code has enabled the 

study of light-induced topological switching for future ultrafast 

and ultralow-power ferroelectric topotronics applications. We 

have adopted a multiscale simulation approach [12], where we 

first prepare a complex polar topology such as the flux closure 

domain illustrated in Fig. 7, which has been investigated for 

next-generation transducer and sensor applications. Our 

multiscale approach utilizes molecular dynamics (MD) 

simulations with a neural-network force field trained with 

ground-state quantum MD simulations [35]. This allows for 

quickly generating ground-state polar topologies that is then 

investigated for their electronic and structural responses to 

femtosecond laser fields with DC-MESH. It is currently an open 

question how to control attosecond electronic excitation 

dynamics initiated by laser pulses to generate longer-time 

structural changes. Using our DC-MESH code, we are currently 

exploring those dynamics to understand laser-induced 

topological changes, such as fs laser induced ultrafast switching 

of the flux closure domain in Fig 7. Such light-matter interaction 

can be directly compared to/inform state-of-the-art experiments 

performed using free-electron lasers such as the newly upgraded 

LCLS-II at Stanford [36]. Integrated computational and 

experimental studies will be essential for developing 

controllable topological switching for ultralow-power 

technologies arising from topological protection from thermal 

noise [37]. 

VI. CONCLUSION 

To study light-matter interaction on emerging exaflop/s 

supercomputers in the new era of attosecond physics, we have 

developed a linear-scaling DC-MESH (divide-and-conquer 

Maxwell-Ehrenfest-surface hopping) simulation algorithm. Our 

globally-sparse and locally-dense electronic solvers, multiple 

time-scale splitting, and shadow dynamics have achieved high 

scalability, while allowing the most compute-intensive quantum 

dynamics kernel based on time-dependent density functional 

theory to reside on GPU with minimal CPU-GPU data transfer. 

GPU computation based on minimally invasive OpenMP target 

constructs is accelerated by: (i) data and loop reordering for 

better memory access patterns; (ii) hierarchical GPU offloading 

using teams-distribute and parallel constructs, respectively, for 

coarse and fine computations; (iii) algebraic ‘BLASification’ of 

the nonlocal computational bottleneck; and (iv) GPU-resident 

data structures facilitated by custom C++ class initializer and 

destructor based on OpenMP target data constructs. We have 

thereby achieved 644-fold speedup on Nvidia A100 GPU over 

AMD EPYC 7543 CPU on the Polaris computer at Argonne 

Leadership Computing Facility. In addition, the DC-MESH 

code exhibited a high weak-scaling parallel efficiency of 

96.73% on 256 nodes (or 1,024 GPUs) of Polaris for 5,120-atom 

PbTiO3 material. This enables the study of light-induced 

topological switching for future ultrafast and ultralow-power 

ferroelectric topotronics applications for sustainable future. 

Most recently, the DC-MESH code has been ported to the 

Aurora supercomputer at Argonne, which will be presented 

elsewhere. 

ACKNOWLEDGMENT 

This work was supported by Department of Energy (DOE), 

Office of Science, Basic Energy Sciences, award DE-

SC0000267409. K.N. was supported by an NSF grant OAC-

2118061. The scalable code development was supported by the 

Aurora ESP program. An award for computer time was provided 

by the U.S. DOE Innovative and Novel Computational Impact 

on Theory and Experiment (INCITE) Program. This research 

used resources from the Argonne Leadership Computing 

Facility, a U.S. DOE Office of Science user facility at Argonne 

National Laboratory, which is supported by the Office of 

Science of the U.S. DOE under Contract No. DE-AC02-

06CH11357. 

PUBLISHER’S NOTE 

The submitted manuscript has been created by UChicago 

Argonne, LLC, Operator of Argonne National Laboratory 

("Argonne"). Argonne, a U.S. Department of Energy Office of 

Science laboratory, is operated under Contract No. DE-AC02-

06CH11357. The U.S. Government retains for itself, and others 

acting on its behalf, a paid-up nonexclusive, irrevocable 

worldwide license in said article to reproduce, prepare 

derivative works, distribute copies to the public, and perform 

publicly and display publicly, by or on behalf of the 

Government. The Department of Energy will provide public 

access to these results of federally sponsored research in 

accordance with the DOE Public Access Plan. 

http://energy.gov/downloads/doe-public-access-plan. 
REFERENCES 

1 https://www.nobelprize.org/uploads/2023/10/advanced-

physicsprize2023-2.pdf. 

2 Gygi, F., Draeger, E.W., Schulz, M., de Supinski, B.R., Gunnels, 

J.A., Austel, V., Sexton, J.C., Franchetti, F., Kral, S., Ueberhuber, 

C.W., and Lorenz, J.: ‘Large-scale electronic structure 

calculations of high-Z metals on the BlueGene/L platform’, 

Proceedings of Supercomputing, SC06, IEEE/ACM, 2006, pp. 

45–es 

3 Eisenbach, M., Zhou, C.G., Nicholson, D.M., Brown, G., Larkin, 

J., and Schulthess, T.C.: ‘A scalable method for ab initio 

computation of free energies in nanoscale systems’, Proceedings 

of Supercomputing, SC09, ACM/IEEE, 2009, pp. 64 

4 Hasegawa, Y., Iwata, J., Tsuji, M., Takahashi, D., Oshiyama, A., 

Minami, K., Boku, T., Shoji, F., Uno, A., Kurokawa, M., Inoue, 

H., Miyoshi, I., and Yokokawa, M.: ‘First-principles calculations 

of electron states of a silicon nanowire with 100,000 atoms on the 

K computer’, Proceedings of Supercomputing, SC11, 

ACM/IEEE, 2011, pp. 1 

5 Nomura, K., Kalia, R.K., Nakano, A., Vashishta, P., Shimamura, 

K., Shimojo, F., Kunaseth, M., Messina, P.C., and Romero, N.A.: 

‘Metascalable quantum molecular dynamics simulations of 

hydrogen-on-demand’, Proceedings of Supercomputing, SC14, 

IEEE/ACM, 2014, pp. 661-673 

6 Lass, M., Schade, R., Kuhne, T.D., and Plessl, C.: ‘A submatrix-

based method for approximate matrix function evaluation in the 

quantum chemistry code CP2K’. Proc. Proceedings of 
Supercomputing, SC20, Atlanta, Georgia, Nov IEEE/ACM, 2020 

7 Das, S., Kanungo, B., Subramanian, V., Panigrahi, G., Motamarri, 

P., Rogers, D., Zimmerman, P.M., and Gavini, V.: ‘Large-scale 

materials modeling at quantum accuracy: Ab initio simulations of 

1065



quasicrystals and interacting extended defects in metallic alloys’, 

Proceedings of Supercomputing,  SC23, ACM/IEEE, 2023, pp. 1 

8 Jia, W., Wang, L.-W., and Lin, L.: ‘Parallel transport time-

dependent density functional theory calculations with hybrid 

functional on Summit’. Proceedings of Supercomputing, SC19, 

Denver, Colorado, Nov ACM/IEEE, 2019 

9 Yabana, K., Sugiyama, T., Shinohara, Y., Otobe, T., and Bertsch, 

G.F.: ‘Time-dependent density functional theory for strong 

electromagnetic fields in crystalline solids’, Phys Rev B, 2012, 

85, (4), pp. 045134 

10 Jestadt, R., Ruggenthaler, M., Oliveira, M.J.T., Rubio, A., and 

Appel, H.: ‘Light-matter interactions within the Ehrenfest–

Maxwell–Pauli–Kohn–Sham framework: fundamentals, 

implementation, and nano-optical applications’, Adv Phys, 2019, 

68, (4), pp. 225-333 

11 Basov, D.N., Averitt, R.D., and Hsieh, D.: ‘Towards properties 

on demand in quantum materials’, Nat Mater, 2017, 16, (11), pp. 

1077-1088 

12 Linker, T., Nomura, K., Aditya, A., Fukshima, S., Kalia, R.K., 

Krishnamoorthy, A., Nakano, A., Rajak, P., Shimmura, K., 
Shimojo, F., and Vashishta, P.: ‘Exploring far-from-equilibrium 

ultrafast polarization control in ferroelectric oxides with excited-

state neural network quantum molecular dynamics’, Sci Adv, 

2022, 8, (12), pp. eabk2625 

13 Bowler, D.R., and Miyazaki, T.: ‘O(N) methods in electronic 

structure calculations’, Rep Prog Phys, 2012, 75, (3), pp. 036503 

14 https://www.nobelprize.org/prizes/chemistry/1998/summary/. 

15 Kohn, W.: ‘Density functional and density matrix method scaling 

linearly with the number of atoms’, Phys Rev Lett, 1996, 76, (17), 

pp. 3168-3171 

16 Yang, W.T.: ‘Direct calculation of electron-density in density-

functional theory’, Phys Rev Lett, 1991, 66, (11), pp. 1438-1441 

17 Shimojo, F., Kalia, R.K., Nakano, A., and Vashishta, P.: 

‘Embedded divide-and-conquer algorithm on hierarchical real-

space grids: parallel molecular dynamics simulation based on 

linear-scaling density functional theory’, Comput Phys Commun, 

2005, 167, (3), pp. 151-164 

18 Niklasson, A.M.N.: ‘Extended Lagrangian Born–Oppenheimer 

molecular dynamics: from density functional theory to charge 

relaxation models’, Euro Phys J B, 2021, 94, (8), pp. 164 

19 Lee, C.W., and Schleife, A.: ‘Hot-electron-mediated ion diffusion 

in semiconductors for ion-beam nanostructuring’, Nano Lett, 

2019, 19, (6), pp. 3939-3947 

20 Craig, C.F., Duncan, W.R., and Prezhdo, O.V.: ‘Trajectory 

surface hopping in the time-dependent Kohn-Sham approach for 

electron-nuclear dynamics’, Phy Rev Lett, 2005, 95, (16), pp. 

163001 

21 Tully, J.C.: ‘Perspective: nonadiabatic dynamics theory’, J Chem 

Phys, 2012, 137, (22), pp. 22A301 

22 Shimojo, F., Ohmura, S., Mou, W., Kalia, R.K., Nakano, A., and 

Vashishta, P.: ‘Large nonadiabatic quantum molecular dynamics 

simulations on parallel computers’, Comput Phys Commun, 2013, 

184, (1), pp. 1-8 

23 Tancogne-Dejean, N., Oliveira, M.J.T., Andrade, X., Appel, H., 

Borca, C.H., Le Breton, G., Buchholz, F., Castro, A., Corni, S., 

Correa, A.A., De Giovannini, U., Delgado, A., Eich, F.G., Flick, 

J., Gil, G., Gomez, A., Helbig, N., Hübener, H., Jestädt, R., 

Jornet-Somoza, J., Larsen, A.H., Lebedeva, I.V., Lüders, M., 

Marques, M.A.L., Ohlmann, S.T., Pipolo, S., Rampp, M., Rozzi, 

C.A., Strubbe, D.A., Sato, S.A., Schäfer, C., Theophilou, I., 

Welden, A., and Rubio, A.: ‘Octopus, a computational framework 

for exploring light-driven phenomena and quantum dynamics in 

extended and finite systems’, J Chem Phys, 2020, 152, (12), pp. 

124119 

24 Noda, M., Sato, S.A., Hirokawa, Y., Uemoto, M., Takeuchi, T., 

Yamada, S., Yamada, A., Shinohara, Y., Yamaguchi, M., Iida, K., 

Floss, I., Otobe, T., Lee, K.-M., Ishimura, K., Boku, T., Bertsch, 

G.F., Nobusada, K., and Yabana, K.: ‘SALMON: Scalable Ab-

initio light–matter simulator for optics and nanoscience’, Comput 

Phys Commun, 2019, 235, pp. 356-365 

25 Shimojo, F., Kalia, R.K., Kunaseth, M., Nakano, A., Nomura, K., 

Ohmura, S., Shimamura, K., and Vashishta, P.: ‘A divide-

conquer-recombine algorithmic paradigm for multiscale 

materials modeling’, J Chem Phys, 2014, 140, (18), pp. 18A529 

26 Nakano, A., and Ichimaru, S.: ‘Dynamic correlations in electron 

liquids. 1. General formalism’, Phys Rev B, 1989, 39, (8), pp. 

4930-4937 

27 Car, R., and Parrinello, M.: ‘The unified approach to density 

functional and molecular dynamics in real space’, Solid State 

Commun, 1987, 62, (6), pp. 403-405 
28 Nakano, A., Vashishta, P., and Kalia, R.K.: ‘Massively-parallel 

algorithms for computational nanoelectronics based on quantum 

molecular dynamics’, Comput Phys Commun, 1994, 83, (2-3), pp. 

181-196 

29 Sato, S.A., Taniguchi, Y., Shinohara, Y., and Yabana, K.: 

‘Nonlinear electronic excitations in crystalline solids using meta-

generalized gradient approximation and hybrid functional in 

time-dependent density functional theory’, J Chem Phys, 2015, 

143, (22), pp. 224116 

30 Lian, C., Guan, M.X., Hu, S.Q., Zhang, J.N., and Meng, S.: 

‘Photoexcitation in solids: first-principles quantum simulations 

by real-time TDDFT’, Adv Theory Sim, 2018, 1, (8), pp. 1800055 

31 Martin, R.M.: ‘Electronic Structure: Basic Theory and Practical 

Methods’ (Cambridge University Press, 2008. 2008) 

32 Vlcek, V., Baer, R., and Neuhauser, D.: ‘Stochastic time-

dependent DFT with optimally tuned range-separated hybrids: 

application to excitonic effects in large phosphorene sheets’, J 

Chem Phys, 2019, 150, (18), pp. 184118 

33 Wang, C.Y., Elliott, P., Sharma, S., and Dewhurst, J.K.: ‘Real 

time scissor correction in TD-DFT’, J Phys-Condens Mat, 2019, 

31, (21), pp. 214002 

34 Tiwari, S.C., Sakdhnagool, P., Kalia, R.K., Krishnamoorthy, A., 

Kunaseth, M., Nakano, A., Rajak, P., Shimojo, F., Luo, Y., and 

Vashishta, P.: ‘Quantum dynamics at scale: ultrafast control of 

emergent functional materials’, Proceedings of International 

Conference on High Performance Computing in Asia-Pacific 

Region, HPCAsia2020, ACM, 2020 

35 Linker, T., Nomura, K., Fukushima, S., Kalia, R.K., 

Krishnamoorthy, A., Nakano, A., Shimamura, K., Shimojo, F., 

and Vashishta, P.: ‘Induction and Ferroelectric Switching of Flux 

Closure Domains in Strained PbTiO3 with Neural Network 

Quantum Molecular Dynamics’, Nano Lett, 2023, 23, (16), pp. 

7456-7462 

36 Rini, M.: ‘First light for a next-generation light source’, Phys, 

2023, 16, pp. 160 

37 Tian, G., Yang, W.D., Gao, X.S., and Liu, J.M.: ‘Emerging 

phenomena from exotic ferroelectric topological states’, APL 

Mater, 2021, 9, (2), pp. 020907 

 

 

1066


