METHODS OF COMPUTATIONAL PHYSICS
Reading List
-
Computer Meets Theoretical Physics,
G. Battimelli et al. (Springer, 2020)
-
Ten computer codes that transformed science,
J. Perkel, Nat. Phys. 589, 345 (2021)
- Monte Carlo simulations:
U. Wolff, Phys. Rev. Lett. 62, 361 (1989);
D. Kandel, et al., Phys. Rev. Lett. 60, 1591 (1988);
B. A. Berg & T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992);
F. Wang & D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001);
B. Mehlig, et al., Phys. Rev. B 45, 679 (1992)
- Minimally entangled typical thermal state algorithms,
E. M. Stoudenmire & S. R. White, New J. Phys. 12, 055026 (2010)
-
Boltzmann generators: sampling equilibrium states of many-body systems with deep learning:
F. Noe, et al., Science 365, eaaw1147 (2019)
-
Integrating neural networks with a quantum simulator for state reconstruction:
G. Torlai, et al., Phys. Rev. Lett. 123, 230504 (2019)
- Machine learning for the physical sciences:
G. Carleo, et al., Rev. Mod. Phys. 91, 045002 (2020)
-
Boltzmann machine modeling of layered MoS2 synthesis on a quantum annealer:
J. Liu, et al., Comput. Mater. Sci. 173, 109429 (2020)
-
Statistical Mechanics of Neural Networks, H. Huang (Springer, 2021)
- Molecular dynamics integrator:
M. Tuckerman, B. J. Berne & G. J. Martyna, J. Chem. Phys. 97, 1990 (1992)
- Higher-order symplectic integrators:
H. Yoshida, Phys. Lett. A 150, 262 (1990)
-
Backward error analysis for numerical integrators:
S. Reich, SIAM J. Numer. Anal. 36, 1549 (1999)
-
A unified formulation of the constant temperature molecular dynamics methods:
S. Nose, J. Chem. Phys. 81, 511 (1984)
-
Explicit reversible integrators for extended systems dynamics:
G. J. Martyna, M. E. Tuckerman, D. J. Tobias & M. L. Klein,
Mol. Phys. 87, 117 (1996)
-
Product formula algorithms for solving the time dependent Schrodinger equation:
H. de Raedt, Comput. Phys. Rep. 7, 1 (1987)
-
Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients:
M. C. Payne, et al., Rev. Mod. Phys. 64, 1045 (1992)
- Inhomogeneous electron gas:
P. Hohenberg & W. Kohn, Phys. Rev. 136, B864 (1964)
- CACS DFT (density functional theory)-seminar papers
-
Quantum molecular dynamics in the post-petaflops era:
N. Romero, et al., IEEE Computer, 48(11), 33 (2015)
- Transferable tight-binding models for silicon:
I. Kwon, et al., Phys. Rev. B 49, 7242 (1994)
- Density-matrix algorithms for quantum
renormalization groups:
S. R. White, Phys. Rev. B 48, 10345 (1993)
- The density-matrix renormalization group in quantum chemistry:
G. K.-L. Chan & S. Sharma, Annu. Rev. Phys. Chem. 62, 465 (2011)
- Quantum Monte Carlo simulations of solids:
W. M. C. Foulkes, et al., Rev. Mod. Phys. 73, 33 (2001)
- Accelerated molecular dynamics methods:
D. Perez, et al., Annu. Rep. Comput. Chem. 5, 79 (2009)
-
An introduction to Monte Carlo simulations of surface reactions:
A. P. J. Jansen (Springer, 2012)
-
Theoretical foundations of dynamical Monte Carlo simulations:
K. A. Fichthorn & W. H. Weinberg, J. Chem Phys. 95, 1090 (1991)
- Molecular kinetics simulation:
A. Nakano, Comput. Phys. Commun. 176, 292 (2007);
ibid. 178, 280 (2008)
- Multiscale Simulation Methods in Molecular Sciences:
J. Grotendorst, N. Attig, S. Bluegel & D. Marx
(John von Neumann Institute for Computing, Juelich, Germany, 2009)